xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision e23feb16)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct sock_filter *pass_filter;	/* filter for packets to pass */
147 	struct sock_filter *active_filter;/* filter for pkts to reset idle */
148 	unsigned pass_len, active_len;
149 #endif /* CONFIG_PPP_FILTER */
150 	struct net	*ppp_net;	/* the net we belong to */
151 	struct ppp_link_stats stats64;	/* 64 bit network stats */
152 };
153 
154 /*
155  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
156  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
157  * SC_MUST_COMP
158  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
159  * Bits in xstate: SC_COMP_RUN
160  */
161 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
162 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
163 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
164 
165 /*
166  * Private data structure for each channel.
167  * This includes the data structure used for multilink.
168  */
169 struct channel {
170 	struct ppp_file	file;		/* stuff for read/write/poll */
171 	struct list_head list;		/* link in all/new_channels list */
172 	struct ppp_channel *chan;	/* public channel data structure */
173 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
174 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
175 	struct ppp	*ppp;		/* ppp unit we're connected to */
176 	struct net	*chan_net;	/* the net channel belongs to */
177 	struct list_head clist;		/* link in list of channels per unit */
178 	rwlock_t	upl;		/* protects `ppp' */
179 #ifdef CONFIG_PPP_MULTILINK
180 	u8		avail;		/* flag used in multilink stuff */
181 	u8		had_frag;	/* >= 1 fragments have been sent */
182 	u32		lastseq;	/* MP: last sequence # received */
183 	int		speed;		/* speed of the corresponding ppp channel*/
184 #endif /* CONFIG_PPP_MULTILINK */
185 };
186 
187 /*
188  * SMP locking issues:
189  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
190  * list and the ppp.n_channels field, you need to take both locks
191  * before you modify them.
192  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
193  * channel.downl.
194  */
195 
196 static DEFINE_MUTEX(ppp_mutex);
197 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
198 static atomic_t channel_count = ATOMIC_INIT(0);
199 
200 /* per-net private data for this module */
201 static int ppp_net_id __read_mostly;
202 struct ppp_net {
203 	/* units to ppp mapping */
204 	struct idr units_idr;
205 
206 	/*
207 	 * all_ppp_mutex protects the units_idr mapping.
208 	 * It also ensures that finding a ppp unit in the units_idr
209 	 * map and updating its file.refcnt field is atomic.
210 	 */
211 	struct mutex all_ppp_mutex;
212 
213 	/* channels */
214 	struct list_head all_channels;
215 	struct list_head new_channels;
216 	int last_channel_index;
217 
218 	/*
219 	 * all_channels_lock protects all_channels and
220 	 * last_channel_index, and the atomicity of find
221 	 * a channel and updating its file.refcnt field.
222 	 */
223 	spinlock_t all_channels_lock;
224 };
225 
226 /* Get the PPP protocol number from a skb */
227 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
228 
229 /* We limit the length of ppp->file.rq to this (arbitrary) value */
230 #define PPP_MAX_RQLEN	32
231 
232 /*
233  * Maximum number of multilink fragments queued up.
234  * This has to be large enough to cope with the maximum latency of
235  * the slowest channel relative to the others.  Strictly it should
236  * depend on the number of channels and their characteristics.
237  */
238 #define PPP_MP_MAX_QLEN	128
239 
240 /* Multilink header bits. */
241 #define B	0x80		/* this fragment begins a packet */
242 #define E	0x40		/* this fragment ends a packet */
243 
244 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
245 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
246 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
247 
248 /* Prototypes. */
249 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
250 			struct file *file, unsigned int cmd, unsigned long arg);
251 static void ppp_xmit_process(struct ppp *ppp);
252 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
253 static void ppp_push(struct ppp *ppp);
254 static void ppp_channel_push(struct channel *pch);
255 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
256 			      struct channel *pch);
257 static void ppp_receive_error(struct ppp *ppp);
258 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
259 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
260 					    struct sk_buff *skb);
261 #ifdef CONFIG_PPP_MULTILINK
262 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
263 				struct channel *pch);
264 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
265 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
266 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
267 #endif /* CONFIG_PPP_MULTILINK */
268 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
269 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
270 static void ppp_ccp_closed(struct ppp *ppp);
271 static struct compressor *find_compressor(int type);
272 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
273 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_shutdown_interface(struct ppp *ppp);
276 static void ppp_destroy_interface(struct ppp *ppp);
277 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
278 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
279 static int ppp_connect_channel(struct channel *pch, int unit);
280 static int ppp_disconnect_channel(struct channel *pch);
281 static void ppp_destroy_channel(struct channel *pch);
282 static int unit_get(struct idr *p, void *ptr);
283 static int unit_set(struct idr *p, void *ptr, int n);
284 static void unit_put(struct idr *p, int n);
285 static void *unit_find(struct idr *p, int n);
286 
287 static struct class *ppp_class;
288 
289 /* per net-namespace data */
290 static inline struct ppp_net *ppp_pernet(struct net *net)
291 {
292 	BUG_ON(!net);
293 
294 	return net_generic(net, ppp_net_id);
295 }
296 
297 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
298 static inline int proto_to_npindex(int proto)
299 {
300 	switch (proto) {
301 	case PPP_IP:
302 		return NP_IP;
303 	case PPP_IPV6:
304 		return NP_IPV6;
305 	case PPP_IPX:
306 		return NP_IPX;
307 	case PPP_AT:
308 		return NP_AT;
309 	case PPP_MPLS_UC:
310 		return NP_MPLS_UC;
311 	case PPP_MPLS_MC:
312 		return NP_MPLS_MC;
313 	}
314 	return -EINVAL;
315 }
316 
317 /* Translates an NP index into a PPP protocol number */
318 static const int npindex_to_proto[NUM_NP] = {
319 	PPP_IP,
320 	PPP_IPV6,
321 	PPP_IPX,
322 	PPP_AT,
323 	PPP_MPLS_UC,
324 	PPP_MPLS_MC,
325 };
326 
327 /* Translates an ethertype into an NP index */
328 static inline int ethertype_to_npindex(int ethertype)
329 {
330 	switch (ethertype) {
331 	case ETH_P_IP:
332 		return NP_IP;
333 	case ETH_P_IPV6:
334 		return NP_IPV6;
335 	case ETH_P_IPX:
336 		return NP_IPX;
337 	case ETH_P_PPPTALK:
338 	case ETH_P_ATALK:
339 		return NP_AT;
340 	case ETH_P_MPLS_UC:
341 		return NP_MPLS_UC;
342 	case ETH_P_MPLS_MC:
343 		return NP_MPLS_MC;
344 	}
345 	return -1;
346 }
347 
348 /* Translates an NP index into an ethertype */
349 static const int npindex_to_ethertype[NUM_NP] = {
350 	ETH_P_IP,
351 	ETH_P_IPV6,
352 	ETH_P_IPX,
353 	ETH_P_PPPTALK,
354 	ETH_P_MPLS_UC,
355 	ETH_P_MPLS_MC,
356 };
357 
358 /*
359  * Locking shorthand.
360  */
361 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
362 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
363 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
364 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
365 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
366 				     ppp_recv_lock(ppp); } while (0)
367 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
368 				     ppp_xmit_unlock(ppp); } while (0)
369 
370 /*
371  * /dev/ppp device routines.
372  * The /dev/ppp device is used by pppd to control the ppp unit.
373  * It supports the read, write, ioctl and poll functions.
374  * Open instances of /dev/ppp can be in one of three states:
375  * unattached, attached to a ppp unit, or attached to a ppp channel.
376  */
377 static int ppp_open(struct inode *inode, struct file *file)
378 {
379 	/*
380 	 * This could (should?) be enforced by the permissions on /dev/ppp.
381 	 */
382 	if (!capable(CAP_NET_ADMIN))
383 		return -EPERM;
384 	return 0;
385 }
386 
387 static int ppp_release(struct inode *unused, struct file *file)
388 {
389 	struct ppp_file *pf = file->private_data;
390 	struct ppp *ppp;
391 
392 	if (pf) {
393 		file->private_data = NULL;
394 		if (pf->kind == INTERFACE) {
395 			ppp = PF_TO_PPP(pf);
396 			if (file == ppp->owner)
397 				ppp_shutdown_interface(ppp);
398 		}
399 		if (atomic_dec_and_test(&pf->refcnt)) {
400 			switch (pf->kind) {
401 			case INTERFACE:
402 				ppp_destroy_interface(PF_TO_PPP(pf));
403 				break;
404 			case CHANNEL:
405 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
406 				break;
407 			}
408 		}
409 	}
410 	return 0;
411 }
412 
413 static ssize_t ppp_read(struct file *file, char __user *buf,
414 			size_t count, loff_t *ppos)
415 {
416 	struct ppp_file *pf = file->private_data;
417 	DECLARE_WAITQUEUE(wait, current);
418 	ssize_t ret;
419 	struct sk_buff *skb = NULL;
420 	struct iovec iov;
421 
422 	ret = count;
423 
424 	if (!pf)
425 		return -ENXIO;
426 	add_wait_queue(&pf->rwait, &wait);
427 	for (;;) {
428 		set_current_state(TASK_INTERRUPTIBLE);
429 		skb = skb_dequeue(&pf->rq);
430 		if (skb)
431 			break;
432 		ret = 0;
433 		if (pf->dead)
434 			break;
435 		if (pf->kind == INTERFACE) {
436 			/*
437 			 * Return 0 (EOF) on an interface that has no
438 			 * channels connected, unless it is looping
439 			 * network traffic (demand mode).
440 			 */
441 			struct ppp *ppp = PF_TO_PPP(pf);
442 			if (ppp->n_channels == 0 &&
443 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
444 				break;
445 		}
446 		ret = -EAGAIN;
447 		if (file->f_flags & O_NONBLOCK)
448 			break;
449 		ret = -ERESTARTSYS;
450 		if (signal_pending(current))
451 			break;
452 		schedule();
453 	}
454 	set_current_state(TASK_RUNNING);
455 	remove_wait_queue(&pf->rwait, &wait);
456 
457 	if (!skb)
458 		goto out;
459 
460 	ret = -EOVERFLOW;
461 	if (skb->len > count)
462 		goto outf;
463 	ret = -EFAULT;
464 	iov.iov_base = buf;
465 	iov.iov_len = count;
466 	if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
467 		goto outf;
468 	ret = skb->len;
469 
470  outf:
471 	kfree_skb(skb);
472  out:
473 	return ret;
474 }
475 
476 static ssize_t ppp_write(struct file *file, const char __user *buf,
477 			 size_t count, loff_t *ppos)
478 {
479 	struct ppp_file *pf = file->private_data;
480 	struct sk_buff *skb;
481 	ssize_t ret;
482 
483 	if (!pf)
484 		return -ENXIO;
485 	ret = -ENOMEM;
486 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
487 	if (!skb)
488 		goto out;
489 	skb_reserve(skb, pf->hdrlen);
490 	ret = -EFAULT;
491 	if (copy_from_user(skb_put(skb, count), buf, count)) {
492 		kfree_skb(skb);
493 		goto out;
494 	}
495 
496 	skb_queue_tail(&pf->xq, skb);
497 
498 	switch (pf->kind) {
499 	case INTERFACE:
500 		ppp_xmit_process(PF_TO_PPP(pf));
501 		break;
502 	case CHANNEL:
503 		ppp_channel_push(PF_TO_CHANNEL(pf));
504 		break;
505 	}
506 
507 	ret = count;
508 
509  out:
510 	return ret;
511 }
512 
513 /* No kernel lock - fine */
514 static unsigned int ppp_poll(struct file *file, poll_table *wait)
515 {
516 	struct ppp_file *pf = file->private_data;
517 	unsigned int mask;
518 
519 	if (!pf)
520 		return 0;
521 	poll_wait(file, &pf->rwait, wait);
522 	mask = POLLOUT | POLLWRNORM;
523 	if (skb_peek(&pf->rq))
524 		mask |= POLLIN | POLLRDNORM;
525 	if (pf->dead)
526 		mask |= POLLHUP;
527 	else if (pf->kind == INTERFACE) {
528 		/* see comment in ppp_read */
529 		struct ppp *ppp = PF_TO_PPP(pf);
530 		if (ppp->n_channels == 0 &&
531 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
532 			mask |= POLLIN | POLLRDNORM;
533 	}
534 
535 	return mask;
536 }
537 
538 #ifdef CONFIG_PPP_FILTER
539 static int get_filter(void __user *arg, struct sock_filter **p)
540 {
541 	struct sock_fprog uprog;
542 	struct sock_filter *code = NULL;
543 	int len, err;
544 
545 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
546 		return -EFAULT;
547 
548 	if (!uprog.len) {
549 		*p = NULL;
550 		return 0;
551 	}
552 
553 	len = uprog.len * sizeof(struct sock_filter);
554 	code = memdup_user(uprog.filter, len);
555 	if (IS_ERR(code))
556 		return PTR_ERR(code);
557 
558 	err = sk_chk_filter(code, uprog.len);
559 	if (err) {
560 		kfree(code);
561 		return err;
562 	}
563 
564 	*p = code;
565 	return uprog.len;
566 }
567 #endif /* CONFIG_PPP_FILTER */
568 
569 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
570 {
571 	struct ppp_file *pf = file->private_data;
572 	struct ppp *ppp;
573 	int err = -EFAULT, val, val2, i;
574 	struct ppp_idle idle;
575 	struct npioctl npi;
576 	int unit, cflags;
577 	struct slcompress *vj;
578 	void __user *argp = (void __user *)arg;
579 	int __user *p = argp;
580 
581 	if (!pf)
582 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
583 					pf, file, cmd, arg);
584 
585 	if (cmd == PPPIOCDETACH) {
586 		/*
587 		 * We have to be careful here... if the file descriptor
588 		 * has been dup'd, we could have another process in the
589 		 * middle of a poll using the same file *, so we had
590 		 * better not free the interface data structures -
591 		 * instead we fail the ioctl.  Even in this case, we
592 		 * shut down the interface if we are the owner of it.
593 		 * Actually, we should get rid of PPPIOCDETACH, userland
594 		 * (i.e. pppd) could achieve the same effect by closing
595 		 * this fd and reopening /dev/ppp.
596 		 */
597 		err = -EINVAL;
598 		mutex_lock(&ppp_mutex);
599 		if (pf->kind == INTERFACE) {
600 			ppp = PF_TO_PPP(pf);
601 			if (file == ppp->owner)
602 				ppp_shutdown_interface(ppp);
603 		}
604 		if (atomic_long_read(&file->f_count) <= 2) {
605 			ppp_release(NULL, file);
606 			err = 0;
607 		} else
608 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
609 				atomic_long_read(&file->f_count));
610 		mutex_unlock(&ppp_mutex);
611 		return err;
612 	}
613 
614 	if (pf->kind == CHANNEL) {
615 		struct channel *pch;
616 		struct ppp_channel *chan;
617 
618 		mutex_lock(&ppp_mutex);
619 		pch = PF_TO_CHANNEL(pf);
620 
621 		switch (cmd) {
622 		case PPPIOCCONNECT:
623 			if (get_user(unit, p))
624 				break;
625 			err = ppp_connect_channel(pch, unit);
626 			break;
627 
628 		case PPPIOCDISCONN:
629 			err = ppp_disconnect_channel(pch);
630 			break;
631 
632 		default:
633 			down_read(&pch->chan_sem);
634 			chan = pch->chan;
635 			err = -ENOTTY;
636 			if (chan && chan->ops->ioctl)
637 				err = chan->ops->ioctl(chan, cmd, arg);
638 			up_read(&pch->chan_sem);
639 		}
640 		mutex_unlock(&ppp_mutex);
641 		return err;
642 	}
643 
644 	if (pf->kind != INTERFACE) {
645 		/* can't happen */
646 		pr_err("PPP: not interface or channel??\n");
647 		return -EINVAL;
648 	}
649 
650 	mutex_lock(&ppp_mutex);
651 	ppp = PF_TO_PPP(pf);
652 	switch (cmd) {
653 	case PPPIOCSMRU:
654 		if (get_user(val, p))
655 			break;
656 		ppp->mru = val;
657 		err = 0;
658 		break;
659 
660 	case PPPIOCSFLAGS:
661 		if (get_user(val, p))
662 			break;
663 		ppp_lock(ppp);
664 		cflags = ppp->flags & ~val;
665 		ppp->flags = val & SC_FLAG_BITS;
666 		ppp_unlock(ppp);
667 		if (cflags & SC_CCP_OPEN)
668 			ppp_ccp_closed(ppp);
669 		err = 0;
670 		break;
671 
672 	case PPPIOCGFLAGS:
673 		val = ppp->flags | ppp->xstate | ppp->rstate;
674 		if (put_user(val, p))
675 			break;
676 		err = 0;
677 		break;
678 
679 	case PPPIOCSCOMPRESS:
680 		err = ppp_set_compress(ppp, arg);
681 		break;
682 
683 	case PPPIOCGUNIT:
684 		if (put_user(ppp->file.index, p))
685 			break;
686 		err = 0;
687 		break;
688 
689 	case PPPIOCSDEBUG:
690 		if (get_user(val, p))
691 			break;
692 		ppp->debug = val;
693 		err = 0;
694 		break;
695 
696 	case PPPIOCGDEBUG:
697 		if (put_user(ppp->debug, p))
698 			break;
699 		err = 0;
700 		break;
701 
702 	case PPPIOCGIDLE:
703 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
704 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
705 		if (copy_to_user(argp, &idle, sizeof(idle)))
706 			break;
707 		err = 0;
708 		break;
709 
710 	case PPPIOCSMAXCID:
711 		if (get_user(val, p))
712 			break;
713 		val2 = 15;
714 		if ((val >> 16) != 0) {
715 			val2 = val >> 16;
716 			val &= 0xffff;
717 		}
718 		vj = slhc_init(val2+1, val+1);
719 		if (!vj) {
720 			netdev_err(ppp->dev,
721 				   "PPP: no memory (VJ compressor)\n");
722 			err = -ENOMEM;
723 			break;
724 		}
725 		ppp_lock(ppp);
726 		if (ppp->vj)
727 			slhc_free(ppp->vj);
728 		ppp->vj = vj;
729 		ppp_unlock(ppp);
730 		err = 0;
731 		break;
732 
733 	case PPPIOCGNPMODE:
734 	case PPPIOCSNPMODE:
735 		if (copy_from_user(&npi, argp, sizeof(npi)))
736 			break;
737 		err = proto_to_npindex(npi.protocol);
738 		if (err < 0)
739 			break;
740 		i = err;
741 		if (cmd == PPPIOCGNPMODE) {
742 			err = -EFAULT;
743 			npi.mode = ppp->npmode[i];
744 			if (copy_to_user(argp, &npi, sizeof(npi)))
745 				break;
746 		} else {
747 			ppp->npmode[i] = npi.mode;
748 			/* we may be able to transmit more packets now (??) */
749 			netif_wake_queue(ppp->dev);
750 		}
751 		err = 0;
752 		break;
753 
754 #ifdef CONFIG_PPP_FILTER
755 	case PPPIOCSPASS:
756 	{
757 		struct sock_filter *code;
758 		err = get_filter(argp, &code);
759 		if (err >= 0) {
760 			ppp_lock(ppp);
761 			kfree(ppp->pass_filter);
762 			ppp->pass_filter = code;
763 			ppp->pass_len = err;
764 			ppp_unlock(ppp);
765 			err = 0;
766 		}
767 		break;
768 	}
769 	case PPPIOCSACTIVE:
770 	{
771 		struct sock_filter *code;
772 		err = get_filter(argp, &code);
773 		if (err >= 0) {
774 			ppp_lock(ppp);
775 			kfree(ppp->active_filter);
776 			ppp->active_filter = code;
777 			ppp->active_len = err;
778 			ppp_unlock(ppp);
779 			err = 0;
780 		}
781 		break;
782 	}
783 #endif /* CONFIG_PPP_FILTER */
784 
785 #ifdef CONFIG_PPP_MULTILINK
786 	case PPPIOCSMRRU:
787 		if (get_user(val, p))
788 			break;
789 		ppp_recv_lock(ppp);
790 		ppp->mrru = val;
791 		ppp_recv_unlock(ppp);
792 		err = 0;
793 		break;
794 #endif /* CONFIG_PPP_MULTILINK */
795 
796 	default:
797 		err = -ENOTTY;
798 	}
799 	mutex_unlock(&ppp_mutex);
800 	return err;
801 }
802 
803 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
804 			struct file *file, unsigned int cmd, unsigned long arg)
805 {
806 	int unit, err = -EFAULT;
807 	struct ppp *ppp;
808 	struct channel *chan;
809 	struct ppp_net *pn;
810 	int __user *p = (int __user *)arg;
811 
812 	mutex_lock(&ppp_mutex);
813 	switch (cmd) {
814 	case PPPIOCNEWUNIT:
815 		/* Create a new ppp unit */
816 		if (get_user(unit, p))
817 			break;
818 		ppp = ppp_create_interface(net, unit, &err);
819 		if (!ppp)
820 			break;
821 		file->private_data = &ppp->file;
822 		ppp->owner = file;
823 		err = -EFAULT;
824 		if (put_user(ppp->file.index, p))
825 			break;
826 		err = 0;
827 		break;
828 
829 	case PPPIOCATTACH:
830 		/* Attach to an existing ppp unit */
831 		if (get_user(unit, p))
832 			break;
833 		err = -ENXIO;
834 		pn = ppp_pernet(net);
835 		mutex_lock(&pn->all_ppp_mutex);
836 		ppp = ppp_find_unit(pn, unit);
837 		if (ppp) {
838 			atomic_inc(&ppp->file.refcnt);
839 			file->private_data = &ppp->file;
840 			err = 0;
841 		}
842 		mutex_unlock(&pn->all_ppp_mutex);
843 		break;
844 
845 	case PPPIOCATTCHAN:
846 		if (get_user(unit, p))
847 			break;
848 		err = -ENXIO;
849 		pn = ppp_pernet(net);
850 		spin_lock_bh(&pn->all_channels_lock);
851 		chan = ppp_find_channel(pn, unit);
852 		if (chan) {
853 			atomic_inc(&chan->file.refcnt);
854 			file->private_data = &chan->file;
855 			err = 0;
856 		}
857 		spin_unlock_bh(&pn->all_channels_lock);
858 		break;
859 
860 	default:
861 		err = -ENOTTY;
862 	}
863 	mutex_unlock(&ppp_mutex);
864 	return err;
865 }
866 
867 static const struct file_operations ppp_device_fops = {
868 	.owner		= THIS_MODULE,
869 	.read		= ppp_read,
870 	.write		= ppp_write,
871 	.poll		= ppp_poll,
872 	.unlocked_ioctl	= ppp_ioctl,
873 	.open		= ppp_open,
874 	.release	= ppp_release,
875 	.llseek		= noop_llseek,
876 };
877 
878 static __net_init int ppp_init_net(struct net *net)
879 {
880 	struct ppp_net *pn = net_generic(net, ppp_net_id);
881 
882 	idr_init(&pn->units_idr);
883 	mutex_init(&pn->all_ppp_mutex);
884 
885 	INIT_LIST_HEAD(&pn->all_channels);
886 	INIT_LIST_HEAD(&pn->new_channels);
887 
888 	spin_lock_init(&pn->all_channels_lock);
889 
890 	return 0;
891 }
892 
893 static __net_exit void ppp_exit_net(struct net *net)
894 {
895 	struct ppp_net *pn = net_generic(net, ppp_net_id);
896 
897 	idr_destroy(&pn->units_idr);
898 }
899 
900 static struct pernet_operations ppp_net_ops = {
901 	.init = ppp_init_net,
902 	.exit = ppp_exit_net,
903 	.id   = &ppp_net_id,
904 	.size = sizeof(struct ppp_net),
905 };
906 
907 #define PPP_MAJOR	108
908 
909 /* Called at boot time if ppp is compiled into the kernel,
910    or at module load time (from init_module) if compiled as a module. */
911 static int __init ppp_init(void)
912 {
913 	int err;
914 
915 	pr_info("PPP generic driver version " PPP_VERSION "\n");
916 
917 	err = register_pernet_device(&ppp_net_ops);
918 	if (err) {
919 		pr_err("failed to register PPP pernet device (%d)\n", err);
920 		goto out;
921 	}
922 
923 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
924 	if (err) {
925 		pr_err("failed to register PPP device (%d)\n", err);
926 		goto out_net;
927 	}
928 
929 	ppp_class = class_create(THIS_MODULE, "ppp");
930 	if (IS_ERR(ppp_class)) {
931 		err = PTR_ERR(ppp_class);
932 		goto out_chrdev;
933 	}
934 
935 	/* not a big deal if we fail here :-) */
936 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
937 
938 	return 0;
939 
940 out_chrdev:
941 	unregister_chrdev(PPP_MAJOR, "ppp");
942 out_net:
943 	unregister_pernet_device(&ppp_net_ops);
944 out:
945 	return err;
946 }
947 
948 /*
949  * Network interface unit routines.
950  */
951 static netdev_tx_t
952 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
953 {
954 	struct ppp *ppp = netdev_priv(dev);
955 	int npi, proto;
956 	unsigned char *pp;
957 
958 	npi = ethertype_to_npindex(ntohs(skb->protocol));
959 	if (npi < 0)
960 		goto outf;
961 
962 	/* Drop, accept or reject the packet */
963 	switch (ppp->npmode[npi]) {
964 	case NPMODE_PASS:
965 		break;
966 	case NPMODE_QUEUE:
967 		/* it would be nice to have a way to tell the network
968 		   system to queue this one up for later. */
969 		goto outf;
970 	case NPMODE_DROP:
971 	case NPMODE_ERROR:
972 		goto outf;
973 	}
974 
975 	/* Put the 2-byte PPP protocol number on the front,
976 	   making sure there is room for the address and control fields. */
977 	if (skb_cow_head(skb, PPP_HDRLEN))
978 		goto outf;
979 
980 	pp = skb_push(skb, 2);
981 	proto = npindex_to_proto[npi];
982 	put_unaligned_be16(proto, pp);
983 
984 	skb_queue_tail(&ppp->file.xq, skb);
985 	ppp_xmit_process(ppp);
986 	return NETDEV_TX_OK;
987 
988  outf:
989 	kfree_skb(skb);
990 	++dev->stats.tx_dropped;
991 	return NETDEV_TX_OK;
992 }
993 
994 static int
995 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
996 {
997 	struct ppp *ppp = netdev_priv(dev);
998 	int err = -EFAULT;
999 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1000 	struct ppp_stats stats;
1001 	struct ppp_comp_stats cstats;
1002 	char *vers;
1003 
1004 	switch (cmd) {
1005 	case SIOCGPPPSTATS:
1006 		ppp_get_stats(ppp, &stats);
1007 		if (copy_to_user(addr, &stats, sizeof(stats)))
1008 			break;
1009 		err = 0;
1010 		break;
1011 
1012 	case SIOCGPPPCSTATS:
1013 		memset(&cstats, 0, sizeof(cstats));
1014 		if (ppp->xc_state)
1015 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1016 		if (ppp->rc_state)
1017 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1018 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1019 			break;
1020 		err = 0;
1021 		break;
1022 
1023 	case SIOCGPPPVER:
1024 		vers = PPP_VERSION;
1025 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1026 			break;
1027 		err = 0;
1028 		break;
1029 
1030 	default:
1031 		err = -EINVAL;
1032 	}
1033 
1034 	return err;
1035 }
1036 
1037 static struct rtnl_link_stats64*
1038 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1039 {
1040 	struct ppp *ppp = netdev_priv(dev);
1041 
1042 	ppp_recv_lock(ppp);
1043 	stats64->rx_packets = ppp->stats64.rx_packets;
1044 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1045 	ppp_recv_unlock(ppp);
1046 
1047 	ppp_xmit_lock(ppp);
1048 	stats64->tx_packets = ppp->stats64.tx_packets;
1049 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1050 	ppp_xmit_unlock(ppp);
1051 
1052 	stats64->rx_errors        = dev->stats.rx_errors;
1053 	stats64->tx_errors        = dev->stats.tx_errors;
1054 	stats64->rx_dropped       = dev->stats.rx_dropped;
1055 	stats64->tx_dropped       = dev->stats.tx_dropped;
1056 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1057 
1058 	return stats64;
1059 }
1060 
1061 static struct lock_class_key ppp_tx_busylock;
1062 static int ppp_dev_init(struct net_device *dev)
1063 {
1064 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1065 	return 0;
1066 }
1067 
1068 static const struct net_device_ops ppp_netdev_ops = {
1069 	.ndo_init	 = ppp_dev_init,
1070 	.ndo_start_xmit  = ppp_start_xmit,
1071 	.ndo_do_ioctl    = ppp_net_ioctl,
1072 	.ndo_get_stats64 = ppp_get_stats64,
1073 };
1074 
1075 static void ppp_setup(struct net_device *dev)
1076 {
1077 	dev->netdev_ops = &ppp_netdev_ops;
1078 	dev->hard_header_len = PPP_HDRLEN;
1079 	dev->mtu = PPP_MRU;
1080 	dev->addr_len = 0;
1081 	dev->tx_queue_len = 3;
1082 	dev->type = ARPHRD_PPP;
1083 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1084 	dev->features |= NETIF_F_NETNS_LOCAL;
1085 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
1086 }
1087 
1088 /*
1089  * Transmit-side routines.
1090  */
1091 
1092 /*
1093  * Called to do any work queued up on the transmit side
1094  * that can now be done.
1095  */
1096 static void
1097 ppp_xmit_process(struct ppp *ppp)
1098 {
1099 	struct sk_buff *skb;
1100 
1101 	ppp_xmit_lock(ppp);
1102 	if (!ppp->closing) {
1103 		ppp_push(ppp);
1104 		while (!ppp->xmit_pending &&
1105 		       (skb = skb_dequeue(&ppp->file.xq)))
1106 			ppp_send_frame(ppp, skb);
1107 		/* If there's no work left to do, tell the core net
1108 		   code that we can accept some more. */
1109 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1110 			netif_wake_queue(ppp->dev);
1111 		else
1112 			netif_stop_queue(ppp->dev);
1113 	}
1114 	ppp_xmit_unlock(ppp);
1115 }
1116 
1117 static inline struct sk_buff *
1118 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1119 {
1120 	struct sk_buff *new_skb;
1121 	int len;
1122 	int new_skb_size = ppp->dev->mtu +
1123 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1124 	int compressor_skb_size = ppp->dev->mtu +
1125 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1126 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1127 	if (!new_skb) {
1128 		if (net_ratelimit())
1129 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1130 		return NULL;
1131 	}
1132 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1133 		skb_reserve(new_skb,
1134 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1135 
1136 	/* compressor still expects A/C bytes in hdr */
1137 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1138 				   new_skb->data, skb->len + 2,
1139 				   compressor_skb_size);
1140 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1141 		consume_skb(skb);
1142 		skb = new_skb;
1143 		skb_put(skb, len);
1144 		skb_pull(skb, 2);	/* pull off A/C bytes */
1145 	} else if (len == 0) {
1146 		/* didn't compress, or CCP not up yet */
1147 		consume_skb(new_skb);
1148 		new_skb = skb;
1149 	} else {
1150 		/*
1151 		 * (len < 0)
1152 		 * MPPE requires that we do not send unencrypted
1153 		 * frames.  The compressor will return -1 if we
1154 		 * should drop the frame.  We cannot simply test
1155 		 * the compress_proto because MPPE and MPPC share
1156 		 * the same number.
1157 		 */
1158 		if (net_ratelimit())
1159 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1160 		kfree_skb(skb);
1161 		consume_skb(new_skb);
1162 		new_skb = NULL;
1163 	}
1164 	return new_skb;
1165 }
1166 
1167 /*
1168  * Compress and send a frame.
1169  * The caller should have locked the xmit path,
1170  * and xmit_pending should be 0.
1171  */
1172 static void
1173 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1174 {
1175 	int proto = PPP_PROTO(skb);
1176 	struct sk_buff *new_skb;
1177 	int len;
1178 	unsigned char *cp;
1179 
1180 	if (proto < 0x8000) {
1181 #ifdef CONFIG_PPP_FILTER
1182 		/* check if we should pass this packet */
1183 		/* the filter instructions are constructed assuming
1184 		   a four-byte PPP header on each packet */
1185 		*skb_push(skb, 2) = 1;
1186 		if (ppp->pass_filter &&
1187 		    sk_run_filter(skb, ppp->pass_filter) == 0) {
1188 			if (ppp->debug & 1)
1189 				netdev_printk(KERN_DEBUG, ppp->dev,
1190 					      "PPP: outbound frame "
1191 					      "not passed\n");
1192 			kfree_skb(skb);
1193 			return;
1194 		}
1195 		/* if this packet passes the active filter, record the time */
1196 		if (!(ppp->active_filter &&
1197 		      sk_run_filter(skb, ppp->active_filter) == 0))
1198 			ppp->last_xmit = jiffies;
1199 		skb_pull(skb, 2);
1200 #else
1201 		/* for data packets, record the time */
1202 		ppp->last_xmit = jiffies;
1203 #endif /* CONFIG_PPP_FILTER */
1204 	}
1205 
1206 	++ppp->stats64.tx_packets;
1207 	ppp->stats64.tx_bytes += skb->len - 2;
1208 
1209 	switch (proto) {
1210 	case PPP_IP:
1211 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1212 			break;
1213 		/* try to do VJ TCP header compression */
1214 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1215 				    GFP_ATOMIC);
1216 		if (!new_skb) {
1217 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1218 			goto drop;
1219 		}
1220 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1221 		cp = skb->data + 2;
1222 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1223 				    new_skb->data + 2, &cp,
1224 				    !(ppp->flags & SC_NO_TCP_CCID));
1225 		if (cp == skb->data + 2) {
1226 			/* didn't compress */
1227 			consume_skb(new_skb);
1228 		} else {
1229 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1230 				proto = PPP_VJC_COMP;
1231 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1232 			} else {
1233 				proto = PPP_VJC_UNCOMP;
1234 				cp[0] = skb->data[2];
1235 			}
1236 			consume_skb(skb);
1237 			skb = new_skb;
1238 			cp = skb_put(skb, len + 2);
1239 			cp[0] = 0;
1240 			cp[1] = proto;
1241 		}
1242 		break;
1243 
1244 	case PPP_CCP:
1245 		/* peek at outbound CCP frames */
1246 		ppp_ccp_peek(ppp, skb, 0);
1247 		break;
1248 	}
1249 
1250 	/* try to do packet compression */
1251 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1252 	    proto != PPP_LCP && proto != PPP_CCP) {
1253 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1254 			if (net_ratelimit())
1255 				netdev_err(ppp->dev,
1256 					   "ppp: compression required but "
1257 					   "down - pkt dropped.\n");
1258 			goto drop;
1259 		}
1260 		skb = pad_compress_skb(ppp, skb);
1261 		if (!skb)
1262 			goto drop;
1263 	}
1264 
1265 	/*
1266 	 * If we are waiting for traffic (demand dialling),
1267 	 * queue it up for pppd to receive.
1268 	 */
1269 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1270 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1271 			goto drop;
1272 		skb_queue_tail(&ppp->file.rq, skb);
1273 		wake_up_interruptible(&ppp->file.rwait);
1274 		return;
1275 	}
1276 
1277 	ppp->xmit_pending = skb;
1278 	ppp_push(ppp);
1279 	return;
1280 
1281  drop:
1282 	kfree_skb(skb);
1283 	++ppp->dev->stats.tx_errors;
1284 }
1285 
1286 /*
1287  * Try to send the frame in xmit_pending.
1288  * The caller should have the xmit path locked.
1289  */
1290 static void
1291 ppp_push(struct ppp *ppp)
1292 {
1293 	struct list_head *list;
1294 	struct channel *pch;
1295 	struct sk_buff *skb = ppp->xmit_pending;
1296 
1297 	if (!skb)
1298 		return;
1299 
1300 	list = &ppp->channels;
1301 	if (list_empty(list)) {
1302 		/* nowhere to send the packet, just drop it */
1303 		ppp->xmit_pending = NULL;
1304 		kfree_skb(skb);
1305 		return;
1306 	}
1307 
1308 	if ((ppp->flags & SC_MULTILINK) == 0) {
1309 		/* not doing multilink: send it down the first channel */
1310 		list = list->next;
1311 		pch = list_entry(list, struct channel, clist);
1312 
1313 		spin_lock_bh(&pch->downl);
1314 		if (pch->chan) {
1315 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1316 				ppp->xmit_pending = NULL;
1317 		} else {
1318 			/* channel got unregistered */
1319 			kfree_skb(skb);
1320 			ppp->xmit_pending = NULL;
1321 		}
1322 		spin_unlock_bh(&pch->downl);
1323 		return;
1324 	}
1325 
1326 #ifdef CONFIG_PPP_MULTILINK
1327 	/* Multilink: fragment the packet over as many links
1328 	   as can take the packet at the moment. */
1329 	if (!ppp_mp_explode(ppp, skb))
1330 		return;
1331 #endif /* CONFIG_PPP_MULTILINK */
1332 
1333 	ppp->xmit_pending = NULL;
1334 	kfree_skb(skb);
1335 }
1336 
1337 #ifdef CONFIG_PPP_MULTILINK
1338 static bool mp_protocol_compress __read_mostly = true;
1339 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1340 MODULE_PARM_DESC(mp_protocol_compress,
1341 		 "compress protocol id in multilink fragments");
1342 
1343 /*
1344  * Divide a packet to be transmitted into fragments and
1345  * send them out the individual links.
1346  */
1347 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1348 {
1349 	int len, totlen;
1350 	int i, bits, hdrlen, mtu;
1351 	int flen;
1352 	int navail, nfree, nzero;
1353 	int nbigger;
1354 	int totspeed;
1355 	int totfree;
1356 	unsigned char *p, *q;
1357 	struct list_head *list;
1358 	struct channel *pch;
1359 	struct sk_buff *frag;
1360 	struct ppp_channel *chan;
1361 
1362 	totspeed = 0; /*total bitrate of the bundle*/
1363 	nfree = 0; /* # channels which have no packet already queued */
1364 	navail = 0; /* total # of usable channels (not deregistered) */
1365 	nzero = 0; /* number of channels with zero speed associated*/
1366 	totfree = 0; /*total # of channels available and
1367 				  *having no queued packets before
1368 				  *starting the fragmentation*/
1369 
1370 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1371 	i = 0;
1372 	list_for_each_entry(pch, &ppp->channels, clist) {
1373 		if (pch->chan) {
1374 			pch->avail = 1;
1375 			navail++;
1376 			pch->speed = pch->chan->speed;
1377 		} else {
1378 			pch->avail = 0;
1379 		}
1380 		if (pch->avail) {
1381 			if (skb_queue_empty(&pch->file.xq) ||
1382 				!pch->had_frag) {
1383 					if (pch->speed == 0)
1384 						nzero++;
1385 					else
1386 						totspeed += pch->speed;
1387 
1388 					pch->avail = 2;
1389 					++nfree;
1390 					++totfree;
1391 				}
1392 			if (!pch->had_frag && i < ppp->nxchan)
1393 				ppp->nxchan = i;
1394 		}
1395 		++i;
1396 	}
1397 	/*
1398 	 * Don't start sending this packet unless at least half of
1399 	 * the channels are free.  This gives much better TCP
1400 	 * performance if we have a lot of channels.
1401 	 */
1402 	if (nfree == 0 || nfree < navail / 2)
1403 		return 0; /* can't take now, leave it in xmit_pending */
1404 
1405 	/* Do protocol field compression */
1406 	p = skb->data;
1407 	len = skb->len;
1408 	if (*p == 0 && mp_protocol_compress) {
1409 		++p;
1410 		--len;
1411 	}
1412 
1413 	totlen = len;
1414 	nbigger = len % nfree;
1415 
1416 	/* skip to the channel after the one we last used
1417 	   and start at that one */
1418 	list = &ppp->channels;
1419 	for (i = 0; i < ppp->nxchan; ++i) {
1420 		list = list->next;
1421 		if (list == &ppp->channels) {
1422 			i = 0;
1423 			break;
1424 		}
1425 	}
1426 
1427 	/* create a fragment for each channel */
1428 	bits = B;
1429 	while (len > 0) {
1430 		list = list->next;
1431 		if (list == &ppp->channels) {
1432 			i = 0;
1433 			continue;
1434 		}
1435 		pch = list_entry(list, struct channel, clist);
1436 		++i;
1437 		if (!pch->avail)
1438 			continue;
1439 
1440 		/*
1441 		 * Skip this channel if it has a fragment pending already and
1442 		 * we haven't given a fragment to all of the free channels.
1443 		 */
1444 		if (pch->avail == 1) {
1445 			if (nfree > 0)
1446 				continue;
1447 		} else {
1448 			pch->avail = 1;
1449 		}
1450 
1451 		/* check the channel's mtu and whether it is still attached. */
1452 		spin_lock_bh(&pch->downl);
1453 		if (pch->chan == NULL) {
1454 			/* can't use this channel, it's being deregistered */
1455 			if (pch->speed == 0)
1456 				nzero--;
1457 			else
1458 				totspeed -= pch->speed;
1459 
1460 			spin_unlock_bh(&pch->downl);
1461 			pch->avail = 0;
1462 			totlen = len;
1463 			totfree--;
1464 			nfree--;
1465 			if (--navail == 0)
1466 				break;
1467 			continue;
1468 		}
1469 
1470 		/*
1471 		*if the channel speed is not set divide
1472 		*the packet evenly among the free channels;
1473 		*otherwise divide it according to the speed
1474 		*of the channel we are going to transmit on
1475 		*/
1476 		flen = len;
1477 		if (nfree > 0) {
1478 			if (pch->speed == 0) {
1479 				flen = len/nfree;
1480 				if (nbigger > 0) {
1481 					flen++;
1482 					nbigger--;
1483 				}
1484 			} else {
1485 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1486 					((totspeed*totfree)/pch->speed)) - hdrlen;
1487 				if (nbigger > 0) {
1488 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1489 					nbigger -= ((totfree - nzero)*pch->speed)/
1490 							totspeed;
1491 				}
1492 			}
1493 			nfree--;
1494 		}
1495 
1496 		/*
1497 		 *check if we are on the last channel or
1498 		 *we exceded the length of the data to
1499 		 *fragment
1500 		 */
1501 		if ((nfree <= 0) || (flen > len))
1502 			flen = len;
1503 		/*
1504 		 *it is not worth to tx on slow channels:
1505 		 *in that case from the resulting flen according to the
1506 		 *above formula will be equal or less than zero.
1507 		 *Skip the channel in this case
1508 		 */
1509 		if (flen <= 0) {
1510 			pch->avail = 2;
1511 			spin_unlock_bh(&pch->downl);
1512 			continue;
1513 		}
1514 
1515 		/*
1516 		 * hdrlen includes the 2-byte PPP protocol field, but the
1517 		 * MTU counts only the payload excluding the protocol field.
1518 		 * (RFC1661 Section 2)
1519 		 */
1520 		mtu = pch->chan->mtu - (hdrlen - 2);
1521 		if (mtu < 4)
1522 			mtu = 4;
1523 		if (flen > mtu)
1524 			flen = mtu;
1525 		if (flen == len)
1526 			bits |= E;
1527 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1528 		if (!frag)
1529 			goto noskb;
1530 		q = skb_put(frag, flen + hdrlen);
1531 
1532 		/* make the MP header */
1533 		put_unaligned_be16(PPP_MP, q);
1534 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1535 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1536 			q[3] = ppp->nxseq;
1537 		} else {
1538 			q[2] = bits;
1539 			q[3] = ppp->nxseq >> 16;
1540 			q[4] = ppp->nxseq >> 8;
1541 			q[5] = ppp->nxseq;
1542 		}
1543 
1544 		memcpy(q + hdrlen, p, flen);
1545 
1546 		/* try to send it down the channel */
1547 		chan = pch->chan;
1548 		if (!skb_queue_empty(&pch->file.xq) ||
1549 			!chan->ops->start_xmit(chan, frag))
1550 			skb_queue_tail(&pch->file.xq, frag);
1551 		pch->had_frag = 1;
1552 		p += flen;
1553 		len -= flen;
1554 		++ppp->nxseq;
1555 		bits = 0;
1556 		spin_unlock_bh(&pch->downl);
1557 	}
1558 	ppp->nxchan = i;
1559 
1560 	return 1;
1561 
1562  noskb:
1563 	spin_unlock_bh(&pch->downl);
1564 	if (ppp->debug & 1)
1565 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1566 	++ppp->dev->stats.tx_errors;
1567 	++ppp->nxseq;
1568 	return 1;	/* abandon the frame */
1569 }
1570 #endif /* CONFIG_PPP_MULTILINK */
1571 
1572 /*
1573  * Try to send data out on a channel.
1574  */
1575 static void
1576 ppp_channel_push(struct channel *pch)
1577 {
1578 	struct sk_buff *skb;
1579 	struct ppp *ppp;
1580 
1581 	spin_lock_bh(&pch->downl);
1582 	if (pch->chan) {
1583 		while (!skb_queue_empty(&pch->file.xq)) {
1584 			skb = skb_dequeue(&pch->file.xq);
1585 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1586 				/* put the packet back and try again later */
1587 				skb_queue_head(&pch->file.xq, skb);
1588 				break;
1589 			}
1590 		}
1591 	} else {
1592 		/* channel got deregistered */
1593 		skb_queue_purge(&pch->file.xq);
1594 	}
1595 	spin_unlock_bh(&pch->downl);
1596 	/* see if there is anything from the attached unit to be sent */
1597 	if (skb_queue_empty(&pch->file.xq)) {
1598 		read_lock_bh(&pch->upl);
1599 		ppp = pch->ppp;
1600 		if (ppp)
1601 			ppp_xmit_process(ppp);
1602 		read_unlock_bh(&pch->upl);
1603 	}
1604 }
1605 
1606 /*
1607  * Receive-side routines.
1608  */
1609 
1610 struct ppp_mp_skb_parm {
1611 	u32		sequence;
1612 	u8		BEbits;
1613 };
1614 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1615 
1616 static inline void
1617 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1618 {
1619 	ppp_recv_lock(ppp);
1620 	if (!ppp->closing)
1621 		ppp_receive_frame(ppp, skb, pch);
1622 	else
1623 		kfree_skb(skb);
1624 	ppp_recv_unlock(ppp);
1625 }
1626 
1627 void
1628 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1629 {
1630 	struct channel *pch = chan->ppp;
1631 	int proto;
1632 
1633 	if (!pch) {
1634 		kfree_skb(skb);
1635 		return;
1636 	}
1637 
1638 	read_lock_bh(&pch->upl);
1639 	if (!pskb_may_pull(skb, 2)) {
1640 		kfree_skb(skb);
1641 		if (pch->ppp) {
1642 			++pch->ppp->dev->stats.rx_length_errors;
1643 			ppp_receive_error(pch->ppp);
1644 		}
1645 		goto done;
1646 	}
1647 
1648 	proto = PPP_PROTO(skb);
1649 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1650 		/* put it on the channel queue */
1651 		skb_queue_tail(&pch->file.rq, skb);
1652 		/* drop old frames if queue too long */
1653 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1654 		       (skb = skb_dequeue(&pch->file.rq)))
1655 			kfree_skb(skb);
1656 		wake_up_interruptible(&pch->file.rwait);
1657 	} else {
1658 		ppp_do_recv(pch->ppp, skb, pch);
1659 	}
1660 
1661 done:
1662 	read_unlock_bh(&pch->upl);
1663 }
1664 
1665 /* Put a 0-length skb in the receive queue as an error indication */
1666 void
1667 ppp_input_error(struct ppp_channel *chan, int code)
1668 {
1669 	struct channel *pch = chan->ppp;
1670 	struct sk_buff *skb;
1671 
1672 	if (!pch)
1673 		return;
1674 
1675 	read_lock_bh(&pch->upl);
1676 	if (pch->ppp) {
1677 		skb = alloc_skb(0, GFP_ATOMIC);
1678 		if (skb) {
1679 			skb->len = 0;		/* probably unnecessary */
1680 			skb->cb[0] = code;
1681 			ppp_do_recv(pch->ppp, skb, pch);
1682 		}
1683 	}
1684 	read_unlock_bh(&pch->upl);
1685 }
1686 
1687 /*
1688  * We come in here to process a received frame.
1689  * The receive side of the ppp unit is locked.
1690  */
1691 static void
1692 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1693 {
1694 	/* note: a 0-length skb is used as an error indication */
1695 	if (skb->len > 0) {
1696 #ifdef CONFIG_PPP_MULTILINK
1697 		/* XXX do channel-level decompression here */
1698 		if (PPP_PROTO(skb) == PPP_MP)
1699 			ppp_receive_mp_frame(ppp, skb, pch);
1700 		else
1701 #endif /* CONFIG_PPP_MULTILINK */
1702 			ppp_receive_nonmp_frame(ppp, skb);
1703 	} else {
1704 		kfree_skb(skb);
1705 		ppp_receive_error(ppp);
1706 	}
1707 }
1708 
1709 static void
1710 ppp_receive_error(struct ppp *ppp)
1711 {
1712 	++ppp->dev->stats.rx_errors;
1713 	if (ppp->vj)
1714 		slhc_toss(ppp->vj);
1715 }
1716 
1717 static void
1718 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1719 {
1720 	struct sk_buff *ns;
1721 	int proto, len, npi;
1722 
1723 	/*
1724 	 * Decompress the frame, if compressed.
1725 	 * Note that some decompressors need to see uncompressed frames
1726 	 * that come in as well as compressed frames.
1727 	 */
1728 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1729 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1730 		skb = ppp_decompress_frame(ppp, skb);
1731 
1732 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1733 		goto err;
1734 
1735 	proto = PPP_PROTO(skb);
1736 	switch (proto) {
1737 	case PPP_VJC_COMP:
1738 		/* decompress VJ compressed packets */
1739 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1740 			goto err;
1741 
1742 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1743 			/* copy to a new sk_buff with more tailroom */
1744 			ns = dev_alloc_skb(skb->len + 128);
1745 			if (!ns) {
1746 				netdev_err(ppp->dev, "PPP: no memory "
1747 					   "(VJ decomp)\n");
1748 				goto err;
1749 			}
1750 			skb_reserve(ns, 2);
1751 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1752 			consume_skb(skb);
1753 			skb = ns;
1754 		}
1755 		else
1756 			skb->ip_summed = CHECKSUM_NONE;
1757 
1758 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1759 		if (len <= 0) {
1760 			netdev_printk(KERN_DEBUG, ppp->dev,
1761 				      "PPP: VJ decompression error\n");
1762 			goto err;
1763 		}
1764 		len += 2;
1765 		if (len > skb->len)
1766 			skb_put(skb, len - skb->len);
1767 		else if (len < skb->len)
1768 			skb_trim(skb, len);
1769 		proto = PPP_IP;
1770 		break;
1771 
1772 	case PPP_VJC_UNCOMP:
1773 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1774 			goto err;
1775 
1776 		/* Until we fix the decompressor need to make sure
1777 		 * data portion is linear.
1778 		 */
1779 		if (!pskb_may_pull(skb, skb->len))
1780 			goto err;
1781 
1782 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1783 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1784 			goto err;
1785 		}
1786 		proto = PPP_IP;
1787 		break;
1788 
1789 	case PPP_CCP:
1790 		ppp_ccp_peek(ppp, skb, 1);
1791 		break;
1792 	}
1793 
1794 	++ppp->stats64.rx_packets;
1795 	ppp->stats64.rx_bytes += skb->len - 2;
1796 
1797 	npi = proto_to_npindex(proto);
1798 	if (npi < 0) {
1799 		/* control or unknown frame - pass it to pppd */
1800 		skb_queue_tail(&ppp->file.rq, skb);
1801 		/* limit queue length by dropping old frames */
1802 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1803 		       (skb = skb_dequeue(&ppp->file.rq)))
1804 			kfree_skb(skb);
1805 		/* wake up any process polling or blocking on read */
1806 		wake_up_interruptible(&ppp->file.rwait);
1807 
1808 	} else {
1809 		/* network protocol frame - give it to the kernel */
1810 
1811 #ifdef CONFIG_PPP_FILTER
1812 		/* check if the packet passes the pass and active filters */
1813 		/* the filter instructions are constructed assuming
1814 		   a four-byte PPP header on each packet */
1815 		if (ppp->pass_filter || ppp->active_filter) {
1816 			if (skb_unclone(skb, GFP_ATOMIC))
1817 				goto err;
1818 
1819 			*skb_push(skb, 2) = 0;
1820 			if (ppp->pass_filter &&
1821 			    sk_run_filter(skb, ppp->pass_filter) == 0) {
1822 				if (ppp->debug & 1)
1823 					netdev_printk(KERN_DEBUG, ppp->dev,
1824 						      "PPP: inbound frame "
1825 						      "not passed\n");
1826 				kfree_skb(skb);
1827 				return;
1828 			}
1829 			if (!(ppp->active_filter &&
1830 			      sk_run_filter(skb, ppp->active_filter) == 0))
1831 				ppp->last_recv = jiffies;
1832 			__skb_pull(skb, 2);
1833 		} else
1834 #endif /* CONFIG_PPP_FILTER */
1835 			ppp->last_recv = jiffies;
1836 
1837 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1838 		    ppp->npmode[npi] != NPMODE_PASS) {
1839 			kfree_skb(skb);
1840 		} else {
1841 			/* chop off protocol */
1842 			skb_pull_rcsum(skb, 2);
1843 			skb->dev = ppp->dev;
1844 			skb->protocol = htons(npindex_to_ethertype[npi]);
1845 			skb_reset_mac_header(skb);
1846 			netif_rx(skb);
1847 		}
1848 	}
1849 	return;
1850 
1851  err:
1852 	kfree_skb(skb);
1853 	ppp_receive_error(ppp);
1854 }
1855 
1856 static struct sk_buff *
1857 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1858 {
1859 	int proto = PPP_PROTO(skb);
1860 	struct sk_buff *ns;
1861 	int len;
1862 
1863 	/* Until we fix all the decompressor's need to make sure
1864 	 * data portion is linear.
1865 	 */
1866 	if (!pskb_may_pull(skb, skb->len))
1867 		goto err;
1868 
1869 	if (proto == PPP_COMP) {
1870 		int obuff_size;
1871 
1872 		switch(ppp->rcomp->compress_proto) {
1873 		case CI_MPPE:
1874 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1875 			break;
1876 		default:
1877 			obuff_size = ppp->mru + PPP_HDRLEN;
1878 			break;
1879 		}
1880 
1881 		ns = dev_alloc_skb(obuff_size);
1882 		if (!ns) {
1883 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1884 				   "no memory\n");
1885 			goto err;
1886 		}
1887 		/* the decompressor still expects the A/C bytes in the hdr */
1888 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1889 				skb->len + 2, ns->data, obuff_size);
1890 		if (len < 0) {
1891 			/* Pass the compressed frame to pppd as an
1892 			   error indication. */
1893 			if (len == DECOMP_FATALERROR)
1894 				ppp->rstate |= SC_DC_FERROR;
1895 			kfree_skb(ns);
1896 			goto err;
1897 		}
1898 
1899 		consume_skb(skb);
1900 		skb = ns;
1901 		skb_put(skb, len);
1902 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1903 
1904 	} else {
1905 		/* Uncompressed frame - pass to decompressor so it
1906 		   can update its dictionary if necessary. */
1907 		if (ppp->rcomp->incomp)
1908 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1909 					   skb->len + 2);
1910 	}
1911 
1912 	return skb;
1913 
1914  err:
1915 	ppp->rstate |= SC_DC_ERROR;
1916 	ppp_receive_error(ppp);
1917 	return skb;
1918 }
1919 
1920 #ifdef CONFIG_PPP_MULTILINK
1921 /*
1922  * Receive a multilink frame.
1923  * We put it on the reconstruction queue and then pull off
1924  * as many completed frames as we can.
1925  */
1926 static void
1927 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1928 {
1929 	u32 mask, seq;
1930 	struct channel *ch;
1931 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1932 
1933 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1934 		goto err;		/* no good, throw it away */
1935 
1936 	/* Decode sequence number and begin/end bits */
1937 	if (ppp->flags & SC_MP_SHORTSEQ) {
1938 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1939 		mask = 0xfff;
1940 	} else {
1941 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1942 		mask = 0xffffff;
1943 	}
1944 	PPP_MP_CB(skb)->BEbits = skb->data[2];
1945 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1946 
1947 	/*
1948 	 * Do protocol ID decompression on the first fragment of each packet.
1949 	 */
1950 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1951 		*skb_push(skb, 1) = 0;
1952 
1953 	/*
1954 	 * Expand sequence number to 32 bits, making it as close
1955 	 * as possible to ppp->minseq.
1956 	 */
1957 	seq |= ppp->minseq & ~mask;
1958 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1959 		seq += mask + 1;
1960 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1961 		seq -= mask + 1;	/* should never happen */
1962 	PPP_MP_CB(skb)->sequence = seq;
1963 	pch->lastseq = seq;
1964 
1965 	/*
1966 	 * If this packet comes before the next one we were expecting,
1967 	 * drop it.
1968 	 */
1969 	if (seq_before(seq, ppp->nextseq)) {
1970 		kfree_skb(skb);
1971 		++ppp->dev->stats.rx_dropped;
1972 		ppp_receive_error(ppp);
1973 		return;
1974 	}
1975 
1976 	/*
1977 	 * Reevaluate minseq, the minimum over all channels of the
1978 	 * last sequence number received on each channel.  Because of
1979 	 * the increasing sequence number rule, we know that any fragment
1980 	 * before `minseq' which hasn't arrived is never going to arrive.
1981 	 * The list of channels can't change because we have the receive
1982 	 * side of the ppp unit locked.
1983 	 */
1984 	list_for_each_entry(ch, &ppp->channels, clist) {
1985 		if (seq_before(ch->lastseq, seq))
1986 			seq = ch->lastseq;
1987 	}
1988 	if (seq_before(ppp->minseq, seq))
1989 		ppp->minseq = seq;
1990 
1991 	/* Put the fragment on the reconstruction queue */
1992 	ppp_mp_insert(ppp, skb);
1993 
1994 	/* If the queue is getting long, don't wait any longer for packets
1995 	   before the start of the queue. */
1996 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1997 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
1998 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
1999 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2000 	}
2001 
2002 	/* Pull completed packets off the queue and receive them. */
2003 	while ((skb = ppp_mp_reconstruct(ppp))) {
2004 		if (pskb_may_pull(skb, 2))
2005 			ppp_receive_nonmp_frame(ppp, skb);
2006 		else {
2007 			++ppp->dev->stats.rx_length_errors;
2008 			kfree_skb(skb);
2009 			ppp_receive_error(ppp);
2010 		}
2011 	}
2012 
2013 	return;
2014 
2015  err:
2016 	kfree_skb(skb);
2017 	ppp_receive_error(ppp);
2018 }
2019 
2020 /*
2021  * Insert a fragment on the MP reconstruction queue.
2022  * The queue is ordered by increasing sequence number.
2023  */
2024 static void
2025 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2026 {
2027 	struct sk_buff *p;
2028 	struct sk_buff_head *list = &ppp->mrq;
2029 	u32 seq = PPP_MP_CB(skb)->sequence;
2030 
2031 	/* N.B. we don't need to lock the list lock because we have the
2032 	   ppp unit receive-side lock. */
2033 	skb_queue_walk(list, p) {
2034 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2035 			break;
2036 	}
2037 	__skb_queue_before(list, p, skb);
2038 }
2039 
2040 /*
2041  * Reconstruct a packet from the MP fragment queue.
2042  * We go through increasing sequence numbers until we find a
2043  * complete packet, or we get to the sequence number for a fragment
2044  * which hasn't arrived but might still do so.
2045  */
2046 static struct sk_buff *
2047 ppp_mp_reconstruct(struct ppp *ppp)
2048 {
2049 	u32 seq = ppp->nextseq;
2050 	u32 minseq = ppp->minseq;
2051 	struct sk_buff_head *list = &ppp->mrq;
2052 	struct sk_buff *p, *tmp;
2053 	struct sk_buff *head, *tail;
2054 	struct sk_buff *skb = NULL;
2055 	int lost = 0, len = 0;
2056 
2057 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2058 		return NULL;
2059 	head = list->next;
2060 	tail = NULL;
2061 	skb_queue_walk_safe(list, p, tmp) {
2062 	again:
2063 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2064 			/* this can't happen, anyway ignore the skb */
2065 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2066 				   "seq %u < %u\n",
2067 				   PPP_MP_CB(p)->sequence, seq);
2068 			__skb_unlink(p, list);
2069 			kfree_skb(p);
2070 			continue;
2071 		}
2072 		if (PPP_MP_CB(p)->sequence != seq) {
2073 			u32 oldseq;
2074 			/* Fragment `seq' is missing.  If it is after
2075 			   minseq, it might arrive later, so stop here. */
2076 			if (seq_after(seq, minseq))
2077 				break;
2078 			/* Fragment `seq' is lost, keep going. */
2079 			lost = 1;
2080 			oldseq = seq;
2081 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2082 				minseq + 1: PPP_MP_CB(p)->sequence;
2083 
2084 			if (ppp->debug & 1)
2085 				netdev_printk(KERN_DEBUG, ppp->dev,
2086 					      "lost frag %u..%u\n",
2087 					      oldseq, seq-1);
2088 
2089 			goto again;
2090 		}
2091 
2092 		/*
2093 		 * At this point we know that all the fragments from
2094 		 * ppp->nextseq to seq are either present or lost.
2095 		 * Also, there are no complete packets in the queue
2096 		 * that have no missing fragments and end before this
2097 		 * fragment.
2098 		 */
2099 
2100 		/* B bit set indicates this fragment starts a packet */
2101 		if (PPP_MP_CB(p)->BEbits & B) {
2102 			head = p;
2103 			lost = 0;
2104 			len = 0;
2105 		}
2106 
2107 		len += p->len;
2108 
2109 		/* Got a complete packet yet? */
2110 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2111 		    (PPP_MP_CB(head)->BEbits & B)) {
2112 			if (len > ppp->mrru + 2) {
2113 				++ppp->dev->stats.rx_length_errors;
2114 				netdev_printk(KERN_DEBUG, ppp->dev,
2115 					      "PPP: reconstructed packet"
2116 					      " is too long (%d)\n", len);
2117 			} else {
2118 				tail = p;
2119 				break;
2120 			}
2121 			ppp->nextseq = seq + 1;
2122 		}
2123 
2124 		/*
2125 		 * If this is the ending fragment of a packet,
2126 		 * and we haven't found a complete valid packet yet,
2127 		 * we can discard up to and including this fragment.
2128 		 */
2129 		if (PPP_MP_CB(p)->BEbits & E) {
2130 			struct sk_buff *tmp2;
2131 
2132 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2133 				if (ppp->debug & 1)
2134 					netdev_printk(KERN_DEBUG, ppp->dev,
2135 						      "discarding frag %u\n",
2136 						      PPP_MP_CB(p)->sequence);
2137 				__skb_unlink(p, list);
2138 				kfree_skb(p);
2139 			}
2140 			head = skb_peek(list);
2141 			if (!head)
2142 				break;
2143 		}
2144 		++seq;
2145 	}
2146 
2147 	/* If we have a complete packet, copy it all into one skb. */
2148 	if (tail != NULL) {
2149 		/* If we have discarded any fragments,
2150 		   signal a receive error. */
2151 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2152 			skb_queue_walk_safe(list, p, tmp) {
2153 				if (p == head)
2154 					break;
2155 				if (ppp->debug & 1)
2156 					netdev_printk(KERN_DEBUG, ppp->dev,
2157 						      "discarding frag %u\n",
2158 						      PPP_MP_CB(p)->sequence);
2159 				__skb_unlink(p, list);
2160 				kfree_skb(p);
2161 			}
2162 
2163 			if (ppp->debug & 1)
2164 				netdev_printk(KERN_DEBUG, ppp->dev,
2165 					      "  missed pkts %u..%u\n",
2166 					      ppp->nextseq,
2167 					      PPP_MP_CB(head)->sequence-1);
2168 			++ppp->dev->stats.rx_dropped;
2169 			ppp_receive_error(ppp);
2170 		}
2171 
2172 		skb = head;
2173 		if (head != tail) {
2174 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2175 			p = skb_queue_next(list, head);
2176 			__skb_unlink(skb, list);
2177 			skb_queue_walk_from_safe(list, p, tmp) {
2178 				__skb_unlink(p, list);
2179 				*fragpp = p;
2180 				p->next = NULL;
2181 				fragpp = &p->next;
2182 
2183 				skb->len += p->len;
2184 				skb->data_len += p->len;
2185 				skb->truesize += p->truesize;
2186 
2187 				if (p == tail)
2188 					break;
2189 			}
2190 		} else {
2191 			__skb_unlink(skb, list);
2192 		}
2193 
2194 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2195 	}
2196 
2197 	return skb;
2198 }
2199 #endif /* CONFIG_PPP_MULTILINK */
2200 
2201 /*
2202  * Channel interface.
2203  */
2204 
2205 /* Create a new, unattached ppp channel. */
2206 int ppp_register_channel(struct ppp_channel *chan)
2207 {
2208 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2209 }
2210 
2211 /* Create a new, unattached ppp channel for specified net. */
2212 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2213 {
2214 	struct channel *pch;
2215 	struct ppp_net *pn;
2216 
2217 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2218 	if (!pch)
2219 		return -ENOMEM;
2220 
2221 	pn = ppp_pernet(net);
2222 
2223 	pch->ppp = NULL;
2224 	pch->chan = chan;
2225 	pch->chan_net = net;
2226 	chan->ppp = pch;
2227 	init_ppp_file(&pch->file, CHANNEL);
2228 	pch->file.hdrlen = chan->hdrlen;
2229 #ifdef CONFIG_PPP_MULTILINK
2230 	pch->lastseq = -1;
2231 #endif /* CONFIG_PPP_MULTILINK */
2232 	init_rwsem(&pch->chan_sem);
2233 	spin_lock_init(&pch->downl);
2234 	rwlock_init(&pch->upl);
2235 
2236 	spin_lock_bh(&pn->all_channels_lock);
2237 	pch->file.index = ++pn->last_channel_index;
2238 	list_add(&pch->list, &pn->new_channels);
2239 	atomic_inc(&channel_count);
2240 	spin_unlock_bh(&pn->all_channels_lock);
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * Return the index of a channel.
2247  */
2248 int ppp_channel_index(struct ppp_channel *chan)
2249 {
2250 	struct channel *pch = chan->ppp;
2251 
2252 	if (pch)
2253 		return pch->file.index;
2254 	return -1;
2255 }
2256 
2257 /*
2258  * Return the PPP unit number to which a channel is connected.
2259  */
2260 int ppp_unit_number(struct ppp_channel *chan)
2261 {
2262 	struct channel *pch = chan->ppp;
2263 	int unit = -1;
2264 
2265 	if (pch) {
2266 		read_lock_bh(&pch->upl);
2267 		if (pch->ppp)
2268 			unit = pch->ppp->file.index;
2269 		read_unlock_bh(&pch->upl);
2270 	}
2271 	return unit;
2272 }
2273 
2274 /*
2275  * Return the PPP device interface name of a channel.
2276  */
2277 char *ppp_dev_name(struct ppp_channel *chan)
2278 {
2279 	struct channel *pch = chan->ppp;
2280 	char *name = NULL;
2281 
2282 	if (pch) {
2283 		read_lock_bh(&pch->upl);
2284 		if (pch->ppp && pch->ppp->dev)
2285 			name = pch->ppp->dev->name;
2286 		read_unlock_bh(&pch->upl);
2287 	}
2288 	return name;
2289 }
2290 
2291 
2292 /*
2293  * Disconnect a channel from the generic layer.
2294  * This must be called in process context.
2295  */
2296 void
2297 ppp_unregister_channel(struct ppp_channel *chan)
2298 {
2299 	struct channel *pch = chan->ppp;
2300 	struct ppp_net *pn;
2301 
2302 	if (!pch)
2303 		return;		/* should never happen */
2304 
2305 	chan->ppp = NULL;
2306 
2307 	/*
2308 	 * This ensures that we have returned from any calls into the
2309 	 * the channel's start_xmit or ioctl routine before we proceed.
2310 	 */
2311 	down_write(&pch->chan_sem);
2312 	spin_lock_bh(&pch->downl);
2313 	pch->chan = NULL;
2314 	spin_unlock_bh(&pch->downl);
2315 	up_write(&pch->chan_sem);
2316 	ppp_disconnect_channel(pch);
2317 
2318 	pn = ppp_pernet(pch->chan_net);
2319 	spin_lock_bh(&pn->all_channels_lock);
2320 	list_del(&pch->list);
2321 	spin_unlock_bh(&pn->all_channels_lock);
2322 
2323 	pch->file.dead = 1;
2324 	wake_up_interruptible(&pch->file.rwait);
2325 	if (atomic_dec_and_test(&pch->file.refcnt))
2326 		ppp_destroy_channel(pch);
2327 }
2328 
2329 /*
2330  * Callback from a channel when it can accept more to transmit.
2331  * This should be called at BH/softirq level, not interrupt level.
2332  */
2333 void
2334 ppp_output_wakeup(struct ppp_channel *chan)
2335 {
2336 	struct channel *pch = chan->ppp;
2337 
2338 	if (!pch)
2339 		return;
2340 	ppp_channel_push(pch);
2341 }
2342 
2343 /*
2344  * Compression control.
2345  */
2346 
2347 /* Process the PPPIOCSCOMPRESS ioctl. */
2348 static int
2349 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2350 {
2351 	int err;
2352 	struct compressor *cp, *ocomp;
2353 	struct ppp_option_data data;
2354 	void *state, *ostate;
2355 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2356 
2357 	err = -EFAULT;
2358 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2359 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2360 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2361 		goto out;
2362 	err = -EINVAL;
2363 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2364 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2365 		goto out;
2366 
2367 	cp = try_then_request_module(
2368 		find_compressor(ccp_option[0]),
2369 		"ppp-compress-%d", ccp_option[0]);
2370 	if (!cp)
2371 		goto out;
2372 
2373 	err = -ENOBUFS;
2374 	if (data.transmit) {
2375 		state = cp->comp_alloc(ccp_option, data.length);
2376 		if (state) {
2377 			ppp_xmit_lock(ppp);
2378 			ppp->xstate &= ~SC_COMP_RUN;
2379 			ocomp = ppp->xcomp;
2380 			ostate = ppp->xc_state;
2381 			ppp->xcomp = cp;
2382 			ppp->xc_state = state;
2383 			ppp_xmit_unlock(ppp);
2384 			if (ostate) {
2385 				ocomp->comp_free(ostate);
2386 				module_put(ocomp->owner);
2387 			}
2388 			err = 0;
2389 		} else
2390 			module_put(cp->owner);
2391 
2392 	} else {
2393 		state = cp->decomp_alloc(ccp_option, data.length);
2394 		if (state) {
2395 			ppp_recv_lock(ppp);
2396 			ppp->rstate &= ~SC_DECOMP_RUN;
2397 			ocomp = ppp->rcomp;
2398 			ostate = ppp->rc_state;
2399 			ppp->rcomp = cp;
2400 			ppp->rc_state = state;
2401 			ppp_recv_unlock(ppp);
2402 			if (ostate) {
2403 				ocomp->decomp_free(ostate);
2404 				module_put(ocomp->owner);
2405 			}
2406 			err = 0;
2407 		} else
2408 			module_put(cp->owner);
2409 	}
2410 
2411  out:
2412 	return err;
2413 }
2414 
2415 /*
2416  * Look at a CCP packet and update our state accordingly.
2417  * We assume the caller has the xmit or recv path locked.
2418  */
2419 static void
2420 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2421 {
2422 	unsigned char *dp;
2423 	int len;
2424 
2425 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2426 		return;	/* no header */
2427 	dp = skb->data + 2;
2428 
2429 	switch (CCP_CODE(dp)) {
2430 	case CCP_CONFREQ:
2431 
2432 		/* A ConfReq starts negotiation of compression
2433 		 * in one direction of transmission,
2434 		 * and hence brings it down...but which way?
2435 		 *
2436 		 * Remember:
2437 		 * A ConfReq indicates what the sender would like to receive
2438 		 */
2439 		if(inbound)
2440 			/* He is proposing what I should send */
2441 			ppp->xstate &= ~SC_COMP_RUN;
2442 		else
2443 			/* I am proposing to what he should send */
2444 			ppp->rstate &= ~SC_DECOMP_RUN;
2445 
2446 		break;
2447 
2448 	case CCP_TERMREQ:
2449 	case CCP_TERMACK:
2450 		/*
2451 		 * CCP is going down, both directions of transmission
2452 		 */
2453 		ppp->rstate &= ~SC_DECOMP_RUN;
2454 		ppp->xstate &= ~SC_COMP_RUN;
2455 		break;
2456 
2457 	case CCP_CONFACK:
2458 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2459 			break;
2460 		len = CCP_LENGTH(dp);
2461 		if (!pskb_may_pull(skb, len + 2))
2462 			return;		/* too short */
2463 		dp += CCP_HDRLEN;
2464 		len -= CCP_HDRLEN;
2465 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2466 			break;
2467 		if (inbound) {
2468 			/* we will start receiving compressed packets */
2469 			if (!ppp->rc_state)
2470 				break;
2471 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2472 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2473 				ppp->rstate |= SC_DECOMP_RUN;
2474 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2475 			}
2476 		} else {
2477 			/* we will soon start sending compressed packets */
2478 			if (!ppp->xc_state)
2479 				break;
2480 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2481 					ppp->file.index, 0, ppp->debug))
2482 				ppp->xstate |= SC_COMP_RUN;
2483 		}
2484 		break;
2485 
2486 	case CCP_RESETACK:
2487 		/* reset the [de]compressor */
2488 		if ((ppp->flags & SC_CCP_UP) == 0)
2489 			break;
2490 		if (inbound) {
2491 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2492 				ppp->rcomp->decomp_reset(ppp->rc_state);
2493 				ppp->rstate &= ~SC_DC_ERROR;
2494 			}
2495 		} else {
2496 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2497 				ppp->xcomp->comp_reset(ppp->xc_state);
2498 		}
2499 		break;
2500 	}
2501 }
2502 
2503 /* Free up compression resources. */
2504 static void
2505 ppp_ccp_closed(struct ppp *ppp)
2506 {
2507 	void *xstate, *rstate;
2508 	struct compressor *xcomp, *rcomp;
2509 
2510 	ppp_lock(ppp);
2511 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2512 	ppp->xstate = 0;
2513 	xcomp = ppp->xcomp;
2514 	xstate = ppp->xc_state;
2515 	ppp->xc_state = NULL;
2516 	ppp->rstate = 0;
2517 	rcomp = ppp->rcomp;
2518 	rstate = ppp->rc_state;
2519 	ppp->rc_state = NULL;
2520 	ppp_unlock(ppp);
2521 
2522 	if (xstate) {
2523 		xcomp->comp_free(xstate);
2524 		module_put(xcomp->owner);
2525 	}
2526 	if (rstate) {
2527 		rcomp->decomp_free(rstate);
2528 		module_put(rcomp->owner);
2529 	}
2530 }
2531 
2532 /* List of compressors. */
2533 static LIST_HEAD(compressor_list);
2534 static DEFINE_SPINLOCK(compressor_list_lock);
2535 
2536 struct compressor_entry {
2537 	struct list_head list;
2538 	struct compressor *comp;
2539 };
2540 
2541 static struct compressor_entry *
2542 find_comp_entry(int proto)
2543 {
2544 	struct compressor_entry *ce;
2545 
2546 	list_for_each_entry(ce, &compressor_list, list) {
2547 		if (ce->comp->compress_proto == proto)
2548 			return ce;
2549 	}
2550 	return NULL;
2551 }
2552 
2553 /* Register a compressor */
2554 int
2555 ppp_register_compressor(struct compressor *cp)
2556 {
2557 	struct compressor_entry *ce;
2558 	int ret;
2559 	spin_lock(&compressor_list_lock);
2560 	ret = -EEXIST;
2561 	if (find_comp_entry(cp->compress_proto))
2562 		goto out;
2563 	ret = -ENOMEM;
2564 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2565 	if (!ce)
2566 		goto out;
2567 	ret = 0;
2568 	ce->comp = cp;
2569 	list_add(&ce->list, &compressor_list);
2570  out:
2571 	spin_unlock(&compressor_list_lock);
2572 	return ret;
2573 }
2574 
2575 /* Unregister a compressor */
2576 void
2577 ppp_unregister_compressor(struct compressor *cp)
2578 {
2579 	struct compressor_entry *ce;
2580 
2581 	spin_lock(&compressor_list_lock);
2582 	ce = find_comp_entry(cp->compress_proto);
2583 	if (ce && ce->comp == cp) {
2584 		list_del(&ce->list);
2585 		kfree(ce);
2586 	}
2587 	spin_unlock(&compressor_list_lock);
2588 }
2589 
2590 /* Find a compressor. */
2591 static struct compressor *
2592 find_compressor(int type)
2593 {
2594 	struct compressor_entry *ce;
2595 	struct compressor *cp = NULL;
2596 
2597 	spin_lock(&compressor_list_lock);
2598 	ce = find_comp_entry(type);
2599 	if (ce) {
2600 		cp = ce->comp;
2601 		if (!try_module_get(cp->owner))
2602 			cp = NULL;
2603 	}
2604 	spin_unlock(&compressor_list_lock);
2605 	return cp;
2606 }
2607 
2608 /*
2609  * Miscelleneous stuff.
2610  */
2611 
2612 static void
2613 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2614 {
2615 	struct slcompress *vj = ppp->vj;
2616 
2617 	memset(st, 0, sizeof(*st));
2618 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2619 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2620 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2621 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2622 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2623 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2624 	if (!vj)
2625 		return;
2626 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2627 	st->vj.vjs_compressed = vj->sls_o_compressed;
2628 	st->vj.vjs_searches = vj->sls_o_searches;
2629 	st->vj.vjs_misses = vj->sls_o_misses;
2630 	st->vj.vjs_errorin = vj->sls_i_error;
2631 	st->vj.vjs_tossed = vj->sls_i_tossed;
2632 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2633 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2634 }
2635 
2636 /*
2637  * Stuff for handling the lists of ppp units and channels
2638  * and for initialization.
2639  */
2640 
2641 /*
2642  * Create a new ppp interface unit.  Fails if it can't allocate memory
2643  * or if there is already a unit with the requested number.
2644  * unit == -1 means allocate a new number.
2645  */
2646 static struct ppp *
2647 ppp_create_interface(struct net *net, int unit, int *retp)
2648 {
2649 	struct ppp *ppp;
2650 	struct ppp_net *pn;
2651 	struct net_device *dev = NULL;
2652 	int ret = -ENOMEM;
2653 	int i;
2654 
2655 	dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2656 	if (!dev)
2657 		goto out1;
2658 
2659 	pn = ppp_pernet(net);
2660 
2661 	ppp = netdev_priv(dev);
2662 	ppp->dev = dev;
2663 	ppp->mru = PPP_MRU;
2664 	init_ppp_file(&ppp->file, INTERFACE);
2665 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2666 	for (i = 0; i < NUM_NP; ++i)
2667 		ppp->npmode[i] = NPMODE_PASS;
2668 	INIT_LIST_HEAD(&ppp->channels);
2669 	spin_lock_init(&ppp->rlock);
2670 	spin_lock_init(&ppp->wlock);
2671 #ifdef CONFIG_PPP_MULTILINK
2672 	ppp->minseq = -1;
2673 	skb_queue_head_init(&ppp->mrq);
2674 #endif /* CONFIG_PPP_MULTILINK */
2675 
2676 	/*
2677 	 * drum roll: don't forget to set
2678 	 * the net device is belong to
2679 	 */
2680 	dev_net_set(dev, net);
2681 
2682 	mutex_lock(&pn->all_ppp_mutex);
2683 
2684 	if (unit < 0) {
2685 		unit = unit_get(&pn->units_idr, ppp);
2686 		if (unit < 0) {
2687 			ret = unit;
2688 			goto out2;
2689 		}
2690 	} else {
2691 		ret = -EEXIST;
2692 		if (unit_find(&pn->units_idr, unit))
2693 			goto out2; /* unit already exists */
2694 		/*
2695 		 * if caller need a specified unit number
2696 		 * lets try to satisfy him, otherwise --
2697 		 * he should better ask us for new unit number
2698 		 *
2699 		 * NOTE: yes I know that returning EEXIST it's not
2700 		 * fair but at least pppd will ask us to allocate
2701 		 * new unit in this case so user is happy :)
2702 		 */
2703 		unit = unit_set(&pn->units_idr, ppp, unit);
2704 		if (unit < 0)
2705 			goto out2;
2706 	}
2707 
2708 	/* Initialize the new ppp unit */
2709 	ppp->file.index = unit;
2710 	sprintf(dev->name, "ppp%d", unit);
2711 
2712 	ret = register_netdev(dev);
2713 	if (ret != 0) {
2714 		unit_put(&pn->units_idr, unit);
2715 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2716 			   dev->name, ret);
2717 		goto out2;
2718 	}
2719 
2720 	ppp->ppp_net = net;
2721 
2722 	atomic_inc(&ppp_unit_count);
2723 	mutex_unlock(&pn->all_ppp_mutex);
2724 
2725 	*retp = 0;
2726 	return ppp;
2727 
2728 out2:
2729 	mutex_unlock(&pn->all_ppp_mutex);
2730 	free_netdev(dev);
2731 out1:
2732 	*retp = ret;
2733 	return NULL;
2734 }
2735 
2736 /*
2737  * Initialize a ppp_file structure.
2738  */
2739 static void
2740 init_ppp_file(struct ppp_file *pf, int kind)
2741 {
2742 	pf->kind = kind;
2743 	skb_queue_head_init(&pf->xq);
2744 	skb_queue_head_init(&pf->rq);
2745 	atomic_set(&pf->refcnt, 1);
2746 	init_waitqueue_head(&pf->rwait);
2747 }
2748 
2749 /*
2750  * Take down a ppp interface unit - called when the owning file
2751  * (the one that created the unit) is closed or detached.
2752  */
2753 static void ppp_shutdown_interface(struct ppp *ppp)
2754 {
2755 	struct ppp_net *pn;
2756 
2757 	pn = ppp_pernet(ppp->ppp_net);
2758 	mutex_lock(&pn->all_ppp_mutex);
2759 
2760 	/* This will call dev_close() for us. */
2761 	ppp_lock(ppp);
2762 	if (!ppp->closing) {
2763 		ppp->closing = 1;
2764 		ppp_unlock(ppp);
2765 		unregister_netdev(ppp->dev);
2766 		unit_put(&pn->units_idr, ppp->file.index);
2767 	} else
2768 		ppp_unlock(ppp);
2769 
2770 	ppp->file.dead = 1;
2771 	ppp->owner = NULL;
2772 	wake_up_interruptible(&ppp->file.rwait);
2773 
2774 	mutex_unlock(&pn->all_ppp_mutex);
2775 }
2776 
2777 /*
2778  * Free the memory used by a ppp unit.  This is only called once
2779  * there are no channels connected to the unit and no file structs
2780  * that reference the unit.
2781  */
2782 static void ppp_destroy_interface(struct ppp *ppp)
2783 {
2784 	atomic_dec(&ppp_unit_count);
2785 
2786 	if (!ppp->file.dead || ppp->n_channels) {
2787 		/* "can't happen" */
2788 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2789 			   "but dead=%d n_channels=%d !\n",
2790 			   ppp, ppp->file.dead, ppp->n_channels);
2791 		return;
2792 	}
2793 
2794 	ppp_ccp_closed(ppp);
2795 	if (ppp->vj) {
2796 		slhc_free(ppp->vj);
2797 		ppp->vj = NULL;
2798 	}
2799 	skb_queue_purge(&ppp->file.xq);
2800 	skb_queue_purge(&ppp->file.rq);
2801 #ifdef CONFIG_PPP_MULTILINK
2802 	skb_queue_purge(&ppp->mrq);
2803 #endif /* CONFIG_PPP_MULTILINK */
2804 #ifdef CONFIG_PPP_FILTER
2805 	kfree(ppp->pass_filter);
2806 	ppp->pass_filter = NULL;
2807 	kfree(ppp->active_filter);
2808 	ppp->active_filter = NULL;
2809 #endif /* CONFIG_PPP_FILTER */
2810 
2811 	kfree_skb(ppp->xmit_pending);
2812 
2813 	free_netdev(ppp->dev);
2814 }
2815 
2816 /*
2817  * Locate an existing ppp unit.
2818  * The caller should have locked the all_ppp_mutex.
2819  */
2820 static struct ppp *
2821 ppp_find_unit(struct ppp_net *pn, int unit)
2822 {
2823 	return unit_find(&pn->units_idr, unit);
2824 }
2825 
2826 /*
2827  * Locate an existing ppp channel.
2828  * The caller should have locked the all_channels_lock.
2829  * First we look in the new_channels list, then in the
2830  * all_channels list.  If found in the new_channels list,
2831  * we move it to the all_channels list.  This is for speed
2832  * when we have a lot of channels in use.
2833  */
2834 static struct channel *
2835 ppp_find_channel(struct ppp_net *pn, int unit)
2836 {
2837 	struct channel *pch;
2838 
2839 	list_for_each_entry(pch, &pn->new_channels, list) {
2840 		if (pch->file.index == unit) {
2841 			list_move(&pch->list, &pn->all_channels);
2842 			return pch;
2843 		}
2844 	}
2845 
2846 	list_for_each_entry(pch, &pn->all_channels, list) {
2847 		if (pch->file.index == unit)
2848 			return pch;
2849 	}
2850 
2851 	return NULL;
2852 }
2853 
2854 /*
2855  * Connect a PPP channel to a PPP interface unit.
2856  */
2857 static int
2858 ppp_connect_channel(struct channel *pch, int unit)
2859 {
2860 	struct ppp *ppp;
2861 	struct ppp_net *pn;
2862 	int ret = -ENXIO;
2863 	int hdrlen;
2864 
2865 	pn = ppp_pernet(pch->chan_net);
2866 
2867 	mutex_lock(&pn->all_ppp_mutex);
2868 	ppp = ppp_find_unit(pn, unit);
2869 	if (!ppp)
2870 		goto out;
2871 	write_lock_bh(&pch->upl);
2872 	ret = -EINVAL;
2873 	if (pch->ppp)
2874 		goto outl;
2875 
2876 	ppp_lock(ppp);
2877 	if (pch->file.hdrlen > ppp->file.hdrlen)
2878 		ppp->file.hdrlen = pch->file.hdrlen;
2879 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2880 	if (hdrlen > ppp->dev->hard_header_len)
2881 		ppp->dev->hard_header_len = hdrlen;
2882 	list_add_tail(&pch->clist, &ppp->channels);
2883 	++ppp->n_channels;
2884 	pch->ppp = ppp;
2885 	atomic_inc(&ppp->file.refcnt);
2886 	ppp_unlock(ppp);
2887 	ret = 0;
2888 
2889  outl:
2890 	write_unlock_bh(&pch->upl);
2891  out:
2892 	mutex_unlock(&pn->all_ppp_mutex);
2893 	return ret;
2894 }
2895 
2896 /*
2897  * Disconnect a channel from its ppp unit.
2898  */
2899 static int
2900 ppp_disconnect_channel(struct channel *pch)
2901 {
2902 	struct ppp *ppp;
2903 	int err = -EINVAL;
2904 
2905 	write_lock_bh(&pch->upl);
2906 	ppp = pch->ppp;
2907 	pch->ppp = NULL;
2908 	write_unlock_bh(&pch->upl);
2909 	if (ppp) {
2910 		/* remove it from the ppp unit's list */
2911 		ppp_lock(ppp);
2912 		list_del(&pch->clist);
2913 		if (--ppp->n_channels == 0)
2914 			wake_up_interruptible(&ppp->file.rwait);
2915 		ppp_unlock(ppp);
2916 		if (atomic_dec_and_test(&ppp->file.refcnt))
2917 			ppp_destroy_interface(ppp);
2918 		err = 0;
2919 	}
2920 	return err;
2921 }
2922 
2923 /*
2924  * Free up the resources used by a ppp channel.
2925  */
2926 static void ppp_destroy_channel(struct channel *pch)
2927 {
2928 	atomic_dec(&channel_count);
2929 
2930 	if (!pch->file.dead) {
2931 		/* "can't happen" */
2932 		pr_err("ppp: destroying undead channel %p !\n", pch);
2933 		return;
2934 	}
2935 	skb_queue_purge(&pch->file.xq);
2936 	skb_queue_purge(&pch->file.rq);
2937 	kfree(pch);
2938 }
2939 
2940 static void __exit ppp_cleanup(void)
2941 {
2942 	/* should never happen */
2943 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2944 		pr_err("PPP: removing module but units remain!\n");
2945 	unregister_chrdev(PPP_MAJOR, "ppp");
2946 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2947 	class_destroy(ppp_class);
2948 	unregister_pernet_device(&ppp_net_ops);
2949 }
2950 
2951 /*
2952  * Units handling. Caller must protect concurrent access
2953  * by holding all_ppp_mutex
2954  */
2955 
2956 /* associate pointer with specified number */
2957 static int unit_set(struct idr *p, void *ptr, int n)
2958 {
2959 	int unit;
2960 
2961 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2962 	if (unit == -ENOSPC)
2963 		unit = -EINVAL;
2964 	return unit;
2965 }
2966 
2967 /* get new free unit number and associate pointer with it */
2968 static int unit_get(struct idr *p, void *ptr)
2969 {
2970 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
2971 }
2972 
2973 /* put unit number back to a pool */
2974 static void unit_put(struct idr *p, int n)
2975 {
2976 	idr_remove(p, n);
2977 }
2978 
2979 /* get pointer associated with the number */
2980 static void *unit_find(struct idr *p, int n)
2981 {
2982 	return idr_find(p, n);
2983 }
2984 
2985 /* Module/initialization stuff */
2986 
2987 module_init(ppp_init);
2988 module_exit(ppp_cleanup);
2989 
2990 EXPORT_SYMBOL(ppp_register_net_channel);
2991 EXPORT_SYMBOL(ppp_register_channel);
2992 EXPORT_SYMBOL(ppp_unregister_channel);
2993 EXPORT_SYMBOL(ppp_channel_index);
2994 EXPORT_SYMBOL(ppp_unit_number);
2995 EXPORT_SYMBOL(ppp_dev_name);
2996 EXPORT_SYMBOL(ppp_input);
2997 EXPORT_SYMBOL(ppp_input_error);
2998 EXPORT_SYMBOL(ppp_output_wakeup);
2999 EXPORT_SYMBOL(ppp_register_compressor);
3000 EXPORT_SYMBOL(ppp_unregister_compressor);
3001 MODULE_LICENSE("GPL");
3002 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3003 MODULE_ALIAS("devname:ppp");
3004