1 /* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/kmod.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/idr.h> 31 #include <linux/netdevice.h> 32 #include <linux/poll.h> 33 #include <linux/ppp_defs.h> 34 #include <linux/filter.h> 35 #include <linux/ppp-ioctl.h> 36 #include <linux/ppp_channel.h> 37 #include <linux/ppp-comp.h> 38 #include <linux/skbuff.h> 39 #include <linux/rtnetlink.h> 40 #include <linux/if_arp.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/spinlock.h> 44 #include <linux/rwsem.h> 45 #include <linux/stddef.h> 46 #include <linux/device.h> 47 #include <linux/mutex.h> 48 #include <linux/slab.h> 49 #include <linux/file.h> 50 #include <asm/unaligned.h> 51 #include <net/slhc_vj.h> 52 #include <linux/atomic.h> 53 54 #include <linux/nsproxy.h> 55 #include <net/net_namespace.h> 56 #include <net/netns/generic.h> 57 58 #define PPP_VERSION "2.4.2" 59 60 /* 61 * Network protocols we support. 62 */ 63 #define NP_IP 0 /* Internet Protocol V4 */ 64 #define NP_IPV6 1 /* Internet Protocol V6 */ 65 #define NP_IPX 2 /* IPX protocol */ 66 #define NP_AT 3 /* Appletalk protocol */ 67 #define NP_MPLS_UC 4 /* MPLS unicast */ 68 #define NP_MPLS_MC 5 /* MPLS multicast */ 69 #define NUM_NP 6 /* Number of NPs. */ 70 71 #define MPHDRLEN 6 /* multilink protocol header length */ 72 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 73 74 /* 75 * An instance of /dev/ppp can be associated with either a ppp 76 * interface unit or a ppp channel. In both cases, file->private_data 77 * points to one of these. 78 */ 79 struct ppp_file { 80 enum { 81 INTERFACE=1, CHANNEL 82 } kind; 83 struct sk_buff_head xq; /* pppd transmit queue */ 84 struct sk_buff_head rq; /* receive queue for pppd */ 85 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 86 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 87 int hdrlen; /* space to leave for headers */ 88 int index; /* interface unit / channel number */ 89 int dead; /* unit/channel has been shut down */ 90 }; 91 92 #define PF_TO_X(pf, X) container_of(pf, X, file) 93 94 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 95 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 96 97 /* 98 * Data structure to hold primary network stats for which 99 * we want to use 64 bit storage. Other network stats 100 * are stored in dev->stats of the ppp strucute. 101 */ 102 struct ppp_link_stats { 103 u64 rx_packets; 104 u64 tx_packets; 105 u64 rx_bytes; 106 u64 tx_bytes; 107 }; 108 109 /* 110 * Data structure describing one ppp unit. 111 * A ppp unit corresponds to a ppp network interface device 112 * and represents a multilink bundle. 113 * It can have 0 or more ppp channels connected to it. 114 */ 115 struct ppp { 116 struct ppp_file file; /* stuff for read/write/poll 0 */ 117 struct file *owner; /* file that owns this unit 48 */ 118 struct list_head channels; /* list of attached channels 4c */ 119 int n_channels; /* how many channels are attached 54 */ 120 spinlock_t rlock; /* lock for receive side 58 */ 121 spinlock_t wlock; /* lock for transmit side 5c */ 122 int mru; /* max receive unit 60 */ 123 unsigned int flags; /* control bits 64 */ 124 unsigned int xstate; /* transmit state bits 68 */ 125 unsigned int rstate; /* receive state bits 6c */ 126 int debug; /* debug flags 70 */ 127 struct slcompress *vj; /* state for VJ header compression */ 128 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 129 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 130 struct compressor *xcomp; /* transmit packet compressor 8c */ 131 void *xc_state; /* its internal state 90 */ 132 struct compressor *rcomp; /* receive decompressor 94 */ 133 void *rc_state; /* its internal state 98 */ 134 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 135 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 136 struct net_device *dev; /* network interface device a4 */ 137 int closing; /* is device closing down? a8 */ 138 #ifdef CONFIG_PPP_MULTILINK 139 int nxchan; /* next channel to send something on */ 140 u32 nxseq; /* next sequence number to send */ 141 int mrru; /* MP: max reconst. receive unit */ 142 u32 nextseq; /* MP: seq no of next packet */ 143 u32 minseq; /* MP: min of most recent seqnos */ 144 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 145 #endif /* CONFIG_PPP_MULTILINK */ 146 #ifdef CONFIG_PPP_FILTER 147 struct bpf_prog *pass_filter; /* filter for packets to pass */ 148 struct bpf_prog *active_filter; /* filter for pkts to reset idle */ 149 #endif /* CONFIG_PPP_FILTER */ 150 struct net *ppp_net; /* the net we belong to */ 151 struct ppp_link_stats stats64; /* 64 bit network stats */ 152 }; 153 154 /* 155 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 156 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 157 * SC_MUST_COMP 158 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 159 * Bits in xstate: SC_COMP_RUN 160 */ 161 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 162 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 163 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 164 165 /* 166 * Private data structure for each channel. 167 * This includes the data structure used for multilink. 168 */ 169 struct channel { 170 struct ppp_file file; /* stuff for read/write/poll */ 171 struct list_head list; /* link in all/new_channels list */ 172 struct ppp_channel *chan; /* public channel data structure */ 173 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 174 spinlock_t downl; /* protects `chan', file.xq dequeue */ 175 struct ppp *ppp; /* ppp unit we're connected to */ 176 struct net *chan_net; /* the net channel belongs to */ 177 struct list_head clist; /* link in list of channels per unit */ 178 rwlock_t upl; /* protects `ppp' */ 179 #ifdef CONFIG_PPP_MULTILINK 180 u8 avail; /* flag used in multilink stuff */ 181 u8 had_frag; /* >= 1 fragments have been sent */ 182 u32 lastseq; /* MP: last sequence # received */ 183 int speed; /* speed of the corresponding ppp channel*/ 184 #endif /* CONFIG_PPP_MULTILINK */ 185 }; 186 187 struct ppp_config { 188 struct file *file; 189 s32 unit; 190 bool ifname_is_set; 191 }; 192 193 /* 194 * SMP locking issues: 195 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 196 * list and the ppp.n_channels field, you need to take both locks 197 * before you modify them. 198 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 199 * channel.downl. 200 */ 201 202 static DEFINE_MUTEX(ppp_mutex); 203 static atomic_t ppp_unit_count = ATOMIC_INIT(0); 204 static atomic_t channel_count = ATOMIC_INIT(0); 205 206 /* per-net private data for this module */ 207 static int ppp_net_id __read_mostly; 208 struct ppp_net { 209 /* units to ppp mapping */ 210 struct idr units_idr; 211 212 /* 213 * all_ppp_mutex protects the units_idr mapping. 214 * It also ensures that finding a ppp unit in the units_idr 215 * map and updating its file.refcnt field is atomic. 216 */ 217 struct mutex all_ppp_mutex; 218 219 /* channels */ 220 struct list_head all_channels; 221 struct list_head new_channels; 222 int last_channel_index; 223 224 /* 225 * all_channels_lock protects all_channels and 226 * last_channel_index, and the atomicity of find 227 * a channel and updating its file.refcnt field. 228 */ 229 spinlock_t all_channels_lock; 230 }; 231 232 /* Get the PPP protocol number from a skb */ 233 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data) 234 235 /* We limit the length of ppp->file.rq to this (arbitrary) value */ 236 #define PPP_MAX_RQLEN 32 237 238 /* 239 * Maximum number of multilink fragments queued up. 240 * This has to be large enough to cope with the maximum latency of 241 * the slowest channel relative to the others. Strictly it should 242 * depend on the number of channels and their characteristics. 243 */ 244 #define PPP_MP_MAX_QLEN 128 245 246 /* Multilink header bits. */ 247 #define B 0x80 /* this fragment begins a packet */ 248 #define E 0x40 /* this fragment ends a packet */ 249 250 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 251 #define seq_before(a, b) ((s32)((a) - (b)) < 0) 252 #define seq_after(a, b) ((s32)((a) - (b)) > 0) 253 254 /* Prototypes. */ 255 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, 256 struct file *file, unsigned int cmd, unsigned long arg); 257 static void ppp_xmit_process(struct ppp *ppp); 258 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 259 static void ppp_push(struct ppp *ppp); 260 static void ppp_channel_push(struct channel *pch); 261 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 262 struct channel *pch); 263 static void ppp_receive_error(struct ppp *ppp); 264 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 265 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 266 struct sk_buff *skb); 267 #ifdef CONFIG_PPP_MULTILINK 268 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 269 struct channel *pch); 270 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 271 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 272 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 273 #endif /* CONFIG_PPP_MULTILINK */ 274 static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 275 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 276 static void ppp_ccp_closed(struct ppp *ppp); 277 static struct compressor *find_compressor(int type); 278 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 279 static int ppp_create_interface(struct net *net, struct file *file, int *unit); 280 static void init_ppp_file(struct ppp_file *pf, int kind); 281 static void ppp_destroy_interface(struct ppp *ppp); 282 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit); 283 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit); 284 static int ppp_connect_channel(struct channel *pch, int unit); 285 static int ppp_disconnect_channel(struct channel *pch); 286 static void ppp_destroy_channel(struct channel *pch); 287 static int unit_get(struct idr *p, void *ptr); 288 static int unit_set(struct idr *p, void *ptr, int n); 289 static void unit_put(struct idr *p, int n); 290 static void *unit_find(struct idr *p, int n); 291 static void ppp_setup(struct net_device *dev); 292 293 static const struct net_device_ops ppp_netdev_ops; 294 295 static struct class *ppp_class; 296 297 /* per net-namespace data */ 298 static inline struct ppp_net *ppp_pernet(struct net *net) 299 { 300 BUG_ON(!net); 301 302 return net_generic(net, ppp_net_id); 303 } 304 305 /* Translates a PPP protocol number to a NP index (NP == network protocol) */ 306 static inline int proto_to_npindex(int proto) 307 { 308 switch (proto) { 309 case PPP_IP: 310 return NP_IP; 311 case PPP_IPV6: 312 return NP_IPV6; 313 case PPP_IPX: 314 return NP_IPX; 315 case PPP_AT: 316 return NP_AT; 317 case PPP_MPLS_UC: 318 return NP_MPLS_UC; 319 case PPP_MPLS_MC: 320 return NP_MPLS_MC; 321 } 322 return -EINVAL; 323 } 324 325 /* Translates an NP index into a PPP protocol number */ 326 static const int npindex_to_proto[NUM_NP] = { 327 PPP_IP, 328 PPP_IPV6, 329 PPP_IPX, 330 PPP_AT, 331 PPP_MPLS_UC, 332 PPP_MPLS_MC, 333 }; 334 335 /* Translates an ethertype into an NP index */ 336 static inline int ethertype_to_npindex(int ethertype) 337 { 338 switch (ethertype) { 339 case ETH_P_IP: 340 return NP_IP; 341 case ETH_P_IPV6: 342 return NP_IPV6; 343 case ETH_P_IPX: 344 return NP_IPX; 345 case ETH_P_PPPTALK: 346 case ETH_P_ATALK: 347 return NP_AT; 348 case ETH_P_MPLS_UC: 349 return NP_MPLS_UC; 350 case ETH_P_MPLS_MC: 351 return NP_MPLS_MC; 352 } 353 return -1; 354 } 355 356 /* Translates an NP index into an ethertype */ 357 static const int npindex_to_ethertype[NUM_NP] = { 358 ETH_P_IP, 359 ETH_P_IPV6, 360 ETH_P_IPX, 361 ETH_P_PPPTALK, 362 ETH_P_MPLS_UC, 363 ETH_P_MPLS_MC, 364 }; 365 366 /* 367 * Locking shorthand. 368 */ 369 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 370 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 371 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 372 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 373 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 374 ppp_recv_lock(ppp); } while (0) 375 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 376 ppp_xmit_unlock(ppp); } while (0) 377 378 /* 379 * /dev/ppp device routines. 380 * The /dev/ppp device is used by pppd to control the ppp unit. 381 * It supports the read, write, ioctl and poll functions. 382 * Open instances of /dev/ppp can be in one of three states: 383 * unattached, attached to a ppp unit, or attached to a ppp channel. 384 */ 385 static int ppp_open(struct inode *inode, struct file *file) 386 { 387 /* 388 * This could (should?) be enforced by the permissions on /dev/ppp. 389 */ 390 if (!capable(CAP_NET_ADMIN)) 391 return -EPERM; 392 return 0; 393 } 394 395 static int ppp_release(struct inode *unused, struct file *file) 396 { 397 struct ppp_file *pf = file->private_data; 398 struct ppp *ppp; 399 400 if (pf) { 401 file->private_data = NULL; 402 if (pf->kind == INTERFACE) { 403 ppp = PF_TO_PPP(pf); 404 rtnl_lock(); 405 if (file == ppp->owner) 406 unregister_netdevice(ppp->dev); 407 rtnl_unlock(); 408 } 409 if (atomic_dec_and_test(&pf->refcnt)) { 410 switch (pf->kind) { 411 case INTERFACE: 412 ppp_destroy_interface(PF_TO_PPP(pf)); 413 break; 414 case CHANNEL: 415 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 416 break; 417 } 418 } 419 } 420 return 0; 421 } 422 423 static ssize_t ppp_read(struct file *file, char __user *buf, 424 size_t count, loff_t *ppos) 425 { 426 struct ppp_file *pf = file->private_data; 427 DECLARE_WAITQUEUE(wait, current); 428 ssize_t ret; 429 struct sk_buff *skb = NULL; 430 struct iovec iov; 431 struct iov_iter to; 432 433 ret = count; 434 435 if (!pf) 436 return -ENXIO; 437 add_wait_queue(&pf->rwait, &wait); 438 for (;;) { 439 set_current_state(TASK_INTERRUPTIBLE); 440 skb = skb_dequeue(&pf->rq); 441 if (skb) 442 break; 443 ret = 0; 444 if (pf->dead) 445 break; 446 if (pf->kind == INTERFACE) { 447 /* 448 * Return 0 (EOF) on an interface that has no 449 * channels connected, unless it is looping 450 * network traffic (demand mode). 451 */ 452 struct ppp *ppp = PF_TO_PPP(pf); 453 454 ppp_recv_lock(ppp); 455 if (ppp->n_channels == 0 && 456 (ppp->flags & SC_LOOP_TRAFFIC) == 0) { 457 ppp_recv_unlock(ppp); 458 break; 459 } 460 ppp_recv_unlock(ppp); 461 } 462 ret = -EAGAIN; 463 if (file->f_flags & O_NONBLOCK) 464 break; 465 ret = -ERESTARTSYS; 466 if (signal_pending(current)) 467 break; 468 schedule(); 469 } 470 set_current_state(TASK_RUNNING); 471 remove_wait_queue(&pf->rwait, &wait); 472 473 if (!skb) 474 goto out; 475 476 ret = -EOVERFLOW; 477 if (skb->len > count) 478 goto outf; 479 ret = -EFAULT; 480 iov.iov_base = buf; 481 iov.iov_len = count; 482 iov_iter_init(&to, READ, &iov, 1, count); 483 if (skb_copy_datagram_iter(skb, 0, &to, skb->len)) 484 goto outf; 485 ret = skb->len; 486 487 outf: 488 kfree_skb(skb); 489 out: 490 return ret; 491 } 492 493 static ssize_t ppp_write(struct file *file, const char __user *buf, 494 size_t count, loff_t *ppos) 495 { 496 struct ppp_file *pf = file->private_data; 497 struct sk_buff *skb; 498 ssize_t ret; 499 500 if (!pf) 501 return -ENXIO; 502 ret = -ENOMEM; 503 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 504 if (!skb) 505 goto out; 506 skb_reserve(skb, pf->hdrlen); 507 ret = -EFAULT; 508 if (copy_from_user(skb_put(skb, count), buf, count)) { 509 kfree_skb(skb); 510 goto out; 511 } 512 513 skb_queue_tail(&pf->xq, skb); 514 515 switch (pf->kind) { 516 case INTERFACE: 517 ppp_xmit_process(PF_TO_PPP(pf)); 518 break; 519 case CHANNEL: 520 ppp_channel_push(PF_TO_CHANNEL(pf)); 521 break; 522 } 523 524 ret = count; 525 526 out: 527 return ret; 528 } 529 530 /* No kernel lock - fine */ 531 static unsigned int ppp_poll(struct file *file, poll_table *wait) 532 { 533 struct ppp_file *pf = file->private_data; 534 unsigned int mask; 535 536 if (!pf) 537 return 0; 538 poll_wait(file, &pf->rwait, wait); 539 mask = POLLOUT | POLLWRNORM; 540 if (skb_peek(&pf->rq)) 541 mask |= POLLIN | POLLRDNORM; 542 if (pf->dead) 543 mask |= POLLHUP; 544 else if (pf->kind == INTERFACE) { 545 /* see comment in ppp_read */ 546 struct ppp *ppp = PF_TO_PPP(pf); 547 548 ppp_recv_lock(ppp); 549 if (ppp->n_channels == 0 && 550 (ppp->flags & SC_LOOP_TRAFFIC) == 0) 551 mask |= POLLIN | POLLRDNORM; 552 ppp_recv_unlock(ppp); 553 } 554 555 return mask; 556 } 557 558 #ifdef CONFIG_PPP_FILTER 559 static int get_filter(void __user *arg, struct sock_filter **p) 560 { 561 struct sock_fprog uprog; 562 struct sock_filter *code = NULL; 563 int len; 564 565 if (copy_from_user(&uprog, arg, sizeof(uprog))) 566 return -EFAULT; 567 568 if (!uprog.len) { 569 *p = NULL; 570 return 0; 571 } 572 573 len = uprog.len * sizeof(struct sock_filter); 574 code = memdup_user(uprog.filter, len); 575 if (IS_ERR(code)) 576 return PTR_ERR(code); 577 578 *p = code; 579 return uprog.len; 580 } 581 #endif /* CONFIG_PPP_FILTER */ 582 583 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 584 { 585 struct ppp_file *pf; 586 struct ppp *ppp; 587 int err = -EFAULT, val, val2, i; 588 struct ppp_idle idle; 589 struct npioctl npi; 590 int unit, cflags; 591 struct slcompress *vj; 592 void __user *argp = (void __user *)arg; 593 int __user *p = argp; 594 595 mutex_lock(&ppp_mutex); 596 597 pf = file->private_data; 598 if (!pf) { 599 err = ppp_unattached_ioctl(current->nsproxy->net_ns, 600 pf, file, cmd, arg); 601 goto out; 602 } 603 604 if (cmd == PPPIOCDETACH) { 605 /* 606 * We have to be careful here... if the file descriptor 607 * has been dup'd, we could have another process in the 608 * middle of a poll using the same file *, so we had 609 * better not free the interface data structures - 610 * instead we fail the ioctl. Even in this case, we 611 * shut down the interface if we are the owner of it. 612 * Actually, we should get rid of PPPIOCDETACH, userland 613 * (i.e. pppd) could achieve the same effect by closing 614 * this fd and reopening /dev/ppp. 615 */ 616 err = -EINVAL; 617 if (pf->kind == INTERFACE) { 618 ppp = PF_TO_PPP(pf); 619 rtnl_lock(); 620 if (file == ppp->owner) 621 unregister_netdevice(ppp->dev); 622 rtnl_unlock(); 623 } 624 if (atomic_long_read(&file->f_count) < 2) { 625 ppp_release(NULL, file); 626 err = 0; 627 } else 628 pr_warn("PPPIOCDETACH file->f_count=%ld\n", 629 atomic_long_read(&file->f_count)); 630 goto out; 631 } 632 633 if (pf->kind == CHANNEL) { 634 struct channel *pch; 635 struct ppp_channel *chan; 636 637 pch = PF_TO_CHANNEL(pf); 638 639 switch (cmd) { 640 case PPPIOCCONNECT: 641 if (get_user(unit, p)) 642 break; 643 err = ppp_connect_channel(pch, unit); 644 break; 645 646 case PPPIOCDISCONN: 647 err = ppp_disconnect_channel(pch); 648 break; 649 650 default: 651 down_read(&pch->chan_sem); 652 chan = pch->chan; 653 err = -ENOTTY; 654 if (chan && chan->ops->ioctl) 655 err = chan->ops->ioctl(chan, cmd, arg); 656 up_read(&pch->chan_sem); 657 } 658 goto out; 659 } 660 661 if (pf->kind != INTERFACE) { 662 /* can't happen */ 663 pr_err("PPP: not interface or channel??\n"); 664 err = -EINVAL; 665 goto out; 666 } 667 668 ppp = PF_TO_PPP(pf); 669 switch (cmd) { 670 case PPPIOCSMRU: 671 if (get_user(val, p)) 672 break; 673 ppp->mru = val; 674 err = 0; 675 break; 676 677 case PPPIOCSFLAGS: 678 if (get_user(val, p)) 679 break; 680 ppp_lock(ppp); 681 cflags = ppp->flags & ~val; 682 #ifdef CONFIG_PPP_MULTILINK 683 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK)) 684 ppp->nextseq = 0; 685 #endif 686 ppp->flags = val & SC_FLAG_BITS; 687 ppp_unlock(ppp); 688 if (cflags & SC_CCP_OPEN) 689 ppp_ccp_closed(ppp); 690 err = 0; 691 break; 692 693 case PPPIOCGFLAGS: 694 val = ppp->flags | ppp->xstate | ppp->rstate; 695 if (put_user(val, p)) 696 break; 697 err = 0; 698 break; 699 700 case PPPIOCSCOMPRESS: 701 err = ppp_set_compress(ppp, arg); 702 break; 703 704 case PPPIOCGUNIT: 705 if (put_user(ppp->file.index, p)) 706 break; 707 err = 0; 708 break; 709 710 case PPPIOCSDEBUG: 711 if (get_user(val, p)) 712 break; 713 ppp->debug = val; 714 err = 0; 715 break; 716 717 case PPPIOCGDEBUG: 718 if (put_user(ppp->debug, p)) 719 break; 720 err = 0; 721 break; 722 723 case PPPIOCGIDLE: 724 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 725 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 726 if (copy_to_user(argp, &idle, sizeof(idle))) 727 break; 728 err = 0; 729 break; 730 731 case PPPIOCSMAXCID: 732 if (get_user(val, p)) 733 break; 734 val2 = 15; 735 if ((val >> 16) != 0) { 736 val2 = val >> 16; 737 val &= 0xffff; 738 } 739 vj = slhc_init(val2+1, val+1); 740 if (IS_ERR(vj)) { 741 err = PTR_ERR(vj); 742 break; 743 } 744 ppp_lock(ppp); 745 if (ppp->vj) 746 slhc_free(ppp->vj); 747 ppp->vj = vj; 748 ppp_unlock(ppp); 749 err = 0; 750 break; 751 752 case PPPIOCGNPMODE: 753 case PPPIOCSNPMODE: 754 if (copy_from_user(&npi, argp, sizeof(npi))) 755 break; 756 err = proto_to_npindex(npi.protocol); 757 if (err < 0) 758 break; 759 i = err; 760 if (cmd == PPPIOCGNPMODE) { 761 err = -EFAULT; 762 npi.mode = ppp->npmode[i]; 763 if (copy_to_user(argp, &npi, sizeof(npi))) 764 break; 765 } else { 766 ppp->npmode[i] = npi.mode; 767 /* we may be able to transmit more packets now (??) */ 768 netif_wake_queue(ppp->dev); 769 } 770 err = 0; 771 break; 772 773 #ifdef CONFIG_PPP_FILTER 774 case PPPIOCSPASS: 775 { 776 struct sock_filter *code; 777 778 err = get_filter(argp, &code); 779 if (err >= 0) { 780 struct bpf_prog *pass_filter = NULL; 781 struct sock_fprog_kern fprog = { 782 .len = err, 783 .filter = code, 784 }; 785 786 err = 0; 787 if (fprog.filter) 788 err = bpf_prog_create(&pass_filter, &fprog); 789 if (!err) { 790 ppp_lock(ppp); 791 if (ppp->pass_filter) 792 bpf_prog_destroy(ppp->pass_filter); 793 ppp->pass_filter = pass_filter; 794 ppp_unlock(ppp); 795 } 796 kfree(code); 797 } 798 break; 799 } 800 case PPPIOCSACTIVE: 801 { 802 struct sock_filter *code; 803 804 err = get_filter(argp, &code); 805 if (err >= 0) { 806 struct bpf_prog *active_filter = NULL; 807 struct sock_fprog_kern fprog = { 808 .len = err, 809 .filter = code, 810 }; 811 812 err = 0; 813 if (fprog.filter) 814 err = bpf_prog_create(&active_filter, &fprog); 815 if (!err) { 816 ppp_lock(ppp); 817 if (ppp->active_filter) 818 bpf_prog_destroy(ppp->active_filter); 819 ppp->active_filter = active_filter; 820 ppp_unlock(ppp); 821 } 822 kfree(code); 823 } 824 break; 825 } 826 #endif /* CONFIG_PPP_FILTER */ 827 828 #ifdef CONFIG_PPP_MULTILINK 829 case PPPIOCSMRRU: 830 if (get_user(val, p)) 831 break; 832 ppp_recv_lock(ppp); 833 ppp->mrru = val; 834 ppp_recv_unlock(ppp); 835 err = 0; 836 break; 837 #endif /* CONFIG_PPP_MULTILINK */ 838 839 default: 840 err = -ENOTTY; 841 } 842 843 out: 844 mutex_unlock(&ppp_mutex); 845 846 return err; 847 } 848 849 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, 850 struct file *file, unsigned int cmd, unsigned long arg) 851 { 852 int unit, err = -EFAULT; 853 struct ppp *ppp; 854 struct channel *chan; 855 struct ppp_net *pn; 856 int __user *p = (int __user *)arg; 857 858 switch (cmd) { 859 case PPPIOCNEWUNIT: 860 /* Create a new ppp unit */ 861 if (get_user(unit, p)) 862 break; 863 err = ppp_create_interface(net, file, &unit); 864 if (err < 0) 865 break; 866 867 err = -EFAULT; 868 if (put_user(unit, p)) 869 break; 870 err = 0; 871 break; 872 873 case PPPIOCATTACH: 874 /* Attach to an existing ppp unit */ 875 if (get_user(unit, p)) 876 break; 877 err = -ENXIO; 878 pn = ppp_pernet(net); 879 mutex_lock(&pn->all_ppp_mutex); 880 ppp = ppp_find_unit(pn, unit); 881 if (ppp) { 882 atomic_inc(&ppp->file.refcnt); 883 file->private_data = &ppp->file; 884 err = 0; 885 } 886 mutex_unlock(&pn->all_ppp_mutex); 887 break; 888 889 case PPPIOCATTCHAN: 890 if (get_user(unit, p)) 891 break; 892 err = -ENXIO; 893 pn = ppp_pernet(net); 894 spin_lock_bh(&pn->all_channels_lock); 895 chan = ppp_find_channel(pn, unit); 896 if (chan) { 897 atomic_inc(&chan->file.refcnt); 898 file->private_data = &chan->file; 899 err = 0; 900 } 901 spin_unlock_bh(&pn->all_channels_lock); 902 break; 903 904 default: 905 err = -ENOTTY; 906 } 907 908 return err; 909 } 910 911 static const struct file_operations ppp_device_fops = { 912 .owner = THIS_MODULE, 913 .read = ppp_read, 914 .write = ppp_write, 915 .poll = ppp_poll, 916 .unlocked_ioctl = ppp_ioctl, 917 .open = ppp_open, 918 .release = ppp_release, 919 .llseek = noop_llseek, 920 }; 921 922 static __net_init int ppp_init_net(struct net *net) 923 { 924 struct ppp_net *pn = net_generic(net, ppp_net_id); 925 926 idr_init(&pn->units_idr); 927 mutex_init(&pn->all_ppp_mutex); 928 929 INIT_LIST_HEAD(&pn->all_channels); 930 INIT_LIST_HEAD(&pn->new_channels); 931 932 spin_lock_init(&pn->all_channels_lock); 933 934 return 0; 935 } 936 937 static __net_exit void ppp_exit_net(struct net *net) 938 { 939 struct ppp_net *pn = net_generic(net, ppp_net_id); 940 struct net_device *dev; 941 struct net_device *aux; 942 struct ppp *ppp; 943 LIST_HEAD(list); 944 int id; 945 946 rtnl_lock(); 947 for_each_netdev_safe(net, dev, aux) { 948 if (dev->netdev_ops == &ppp_netdev_ops) 949 unregister_netdevice_queue(dev, &list); 950 } 951 952 idr_for_each_entry(&pn->units_idr, ppp, id) 953 /* Skip devices already unregistered by previous loop */ 954 if (!net_eq(dev_net(ppp->dev), net)) 955 unregister_netdevice_queue(ppp->dev, &list); 956 957 unregister_netdevice_many(&list); 958 rtnl_unlock(); 959 960 idr_destroy(&pn->units_idr); 961 } 962 963 static struct pernet_operations ppp_net_ops = { 964 .init = ppp_init_net, 965 .exit = ppp_exit_net, 966 .id = &ppp_net_id, 967 .size = sizeof(struct ppp_net), 968 }; 969 970 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set) 971 { 972 struct ppp_net *pn = ppp_pernet(ppp->ppp_net); 973 int ret; 974 975 mutex_lock(&pn->all_ppp_mutex); 976 977 if (unit < 0) { 978 ret = unit_get(&pn->units_idr, ppp); 979 if (ret < 0) 980 goto err; 981 } else { 982 /* Caller asked for a specific unit number. Fail with -EEXIST 983 * if unavailable. For backward compatibility, return -EEXIST 984 * too if idr allocation fails; this makes pppd retry without 985 * requesting a specific unit number. 986 */ 987 if (unit_find(&pn->units_idr, unit)) { 988 ret = -EEXIST; 989 goto err; 990 } 991 ret = unit_set(&pn->units_idr, ppp, unit); 992 if (ret < 0) { 993 /* Rewrite error for backward compatibility */ 994 ret = -EEXIST; 995 goto err; 996 } 997 } 998 ppp->file.index = ret; 999 1000 if (!ifname_is_set) 1001 snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index); 1002 1003 ret = register_netdevice(ppp->dev); 1004 if (ret < 0) 1005 goto err_unit; 1006 1007 atomic_inc(&ppp_unit_count); 1008 1009 mutex_unlock(&pn->all_ppp_mutex); 1010 1011 return 0; 1012 1013 err_unit: 1014 unit_put(&pn->units_idr, ppp->file.index); 1015 err: 1016 mutex_unlock(&pn->all_ppp_mutex); 1017 1018 return ret; 1019 } 1020 1021 static int ppp_dev_configure(struct net *src_net, struct net_device *dev, 1022 const struct ppp_config *conf) 1023 { 1024 struct ppp *ppp = netdev_priv(dev); 1025 int indx; 1026 int err; 1027 1028 ppp->dev = dev; 1029 ppp->ppp_net = src_net; 1030 ppp->mru = PPP_MRU; 1031 ppp->owner = conf->file; 1032 1033 init_ppp_file(&ppp->file, INTERFACE); 1034 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 1035 1036 for (indx = 0; indx < NUM_NP; ++indx) 1037 ppp->npmode[indx] = NPMODE_PASS; 1038 INIT_LIST_HEAD(&ppp->channels); 1039 spin_lock_init(&ppp->rlock); 1040 spin_lock_init(&ppp->wlock); 1041 #ifdef CONFIG_PPP_MULTILINK 1042 ppp->minseq = -1; 1043 skb_queue_head_init(&ppp->mrq); 1044 #endif /* CONFIG_PPP_MULTILINK */ 1045 #ifdef CONFIG_PPP_FILTER 1046 ppp->pass_filter = NULL; 1047 ppp->active_filter = NULL; 1048 #endif /* CONFIG_PPP_FILTER */ 1049 1050 err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set); 1051 if (err < 0) 1052 return err; 1053 1054 conf->file->private_data = &ppp->file; 1055 1056 return 0; 1057 } 1058 1059 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = { 1060 [IFLA_PPP_DEV_FD] = { .type = NLA_S32 }, 1061 }; 1062 1063 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[]) 1064 { 1065 if (!data) 1066 return -EINVAL; 1067 1068 if (!data[IFLA_PPP_DEV_FD]) 1069 return -EINVAL; 1070 if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0) 1071 return -EBADF; 1072 1073 return 0; 1074 } 1075 1076 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev, 1077 struct nlattr *tb[], struct nlattr *data[]) 1078 { 1079 struct ppp_config conf = { 1080 .unit = -1, 1081 .ifname_is_set = true, 1082 }; 1083 struct file *file; 1084 int err; 1085 1086 file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD])); 1087 if (!file) 1088 return -EBADF; 1089 1090 /* rtnl_lock is already held here, but ppp_create_interface() locks 1091 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids 1092 * possible deadlock due to lock order inversion, at the cost of 1093 * pushing the problem back to userspace. 1094 */ 1095 if (!mutex_trylock(&ppp_mutex)) { 1096 err = -EBUSY; 1097 goto out; 1098 } 1099 1100 if (file->f_op != &ppp_device_fops || file->private_data) { 1101 err = -EBADF; 1102 goto out_unlock; 1103 } 1104 1105 conf.file = file; 1106 1107 /* Don't use device name generated by the rtnetlink layer when ifname 1108 * isn't specified. Let ppp_dev_configure() set the device name using 1109 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows 1110 * userspace to infer the device name using to the PPPIOCGUNIT ioctl. 1111 */ 1112 if (!tb[IFLA_IFNAME]) 1113 conf.ifname_is_set = false; 1114 1115 err = ppp_dev_configure(src_net, dev, &conf); 1116 1117 out_unlock: 1118 mutex_unlock(&ppp_mutex); 1119 out: 1120 fput(file); 1121 1122 return err; 1123 } 1124 1125 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head) 1126 { 1127 unregister_netdevice_queue(dev, head); 1128 } 1129 1130 static size_t ppp_nl_get_size(const struct net_device *dev) 1131 { 1132 return 0; 1133 } 1134 1135 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev) 1136 { 1137 return 0; 1138 } 1139 1140 static struct net *ppp_nl_get_link_net(const struct net_device *dev) 1141 { 1142 struct ppp *ppp = netdev_priv(dev); 1143 1144 return ppp->ppp_net; 1145 } 1146 1147 static struct rtnl_link_ops ppp_link_ops __read_mostly = { 1148 .kind = "ppp", 1149 .maxtype = IFLA_PPP_MAX, 1150 .policy = ppp_nl_policy, 1151 .priv_size = sizeof(struct ppp), 1152 .setup = ppp_setup, 1153 .validate = ppp_nl_validate, 1154 .newlink = ppp_nl_newlink, 1155 .dellink = ppp_nl_dellink, 1156 .get_size = ppp_nl_get_size, 1157 .fill_info = ppp_nl_fill_info, 1158 .get_link_net = ppp_nl_get_link_net, 1159 }; 1160 1161 #define PPP_MAJOR 108 1162 1163 /* Called at boot time if ppp is compiled into the kernel, 1164 or at module load time (from init_module) if compiled as a module. */ 1165 static int __init ppp_init(void) 1166 { 1167 int err; 1168 1169 pr_info("PPP generic driver version " PPP_VERSION "\n"); 1170 1171 err = register_pernet_device(&ppp_net_ops); 1172 if (err) { 1173 pr_err("failed to register PPP pernet device (%d)\n", err); 1174 goto out; 1175 } 1176 1177 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 1178 if (err) { 1179 pr_err("failed to register PPP device (%d)\n", err); 1180 goto out_net; 1181 } 1182 1183 ppp_class = class_create(THIS_MODULE, "ppp"); 1184 if (IS_ERR(ppp_class)) { 1185 err = PTR_ERR(ppp_class); 1186 goto out_chrdev; 1187 } 1188 1189 err = rtnl_link_register(&ppp_link_ops); 1190 if (err) { 1191 pr_err("failed to register rtnetlink PPP handler\n"); 1192 goto out_class; 1193 } 1194 1195 /* not a big deal if we fail here :-) */ 1196 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 1197 1198 return 0; 1199 1200 out_class: 1201 class_destroy(ppp_class); 1202 out_chrdev: 1203 unregister_chrdev(PPP_MAJOR, "ppp"); 1204 out_net: 1205 unregister_pernet_device(&ppp_net_ops); 1206 out: 1207 return err; 1208 } 1209 1210 /* 1211 * Network interface unit routines. 1212 */ 1213 static netdev_tx_t 1214 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 1215 { 1216 struct ppp *ppp = netdev_priv(dev); 1217 int npi, proto; 1218 unsigned char *pp; 1219 1220 npi = ethertype_to_npindex(ntohs(skb->protocol)); 1221 if (npi < 0) 1222 goto outf; 1223 1224 /* Drop, accept or reject the packet */ 1225 switch (ppp->npmode[npi]) { 1226 case NPMODE_PASS: 1227 break; 1228 case NPMODE_QUEUE: 1229 /* it would be nice to have a way to tell the network 1230 system to queue this one up for later. */ 1231 goto outf; 1232 case NPMODE_DROP: 1233 case NPMODE_ERROR: 1234 goto outf; 1235 } 1236 1237 /* Put the 2-byte PPP protocol number on the front, 1238 making sure there is room for the address and control fields. */ 1239 if (skb_cow_head(skb, PPP_HDRLEN)) 1240 goto outf; 1241 1242 pp = skb_push(skb, 2); 1243 proto = npindex_to_proto[npi]; 1244 put_unaligned_be16(proto, pp); 1245 1246 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev))); 1247 skb_queue_tail(&ppp->file.xq, skb); 1248 ppp_xmit_process(ppp); 1249 return NETDEV_TX_OK; 1250 1251 outf: 1252 kfree_skb(skb); 1253 ++dev->stats.tx_dropped; 1254 return NETDEV_TX_OK; 1255 } 1256 1257 static int 1258 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1259 { 1260 struct ppp *ppp = netdev_priv(dev); 1261 int err = -EFAULT; 1262 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 1263 struct ppp_stats stats; 1264 struct ppp_comp_stats cstats; 1265 char *vers; 1266 1267 switch (cmd) { 1268 case SIOCGPPPSTATS: 1269 ppp_get_stats(ppp, &stats); 1270 if (copy_to_user(addr, &stats, sizeof(stats))) 1271 break; 1272 err = 0; 1273 break; 1274 1275 case SIOCGPPPCSTATS: 1276 memset(&cstats, 0, sizeof(cstats)); 1277 if (ppp->xc_state) 1278 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 1279 if (ppp->rc_state) 1280 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 1281 if (copy_to_user(addr, &cstats, sizeof(cstats))) 1282 break; 1283 err = 0; 1284 break; 1285 1286 case SIOCGPPPVER: 1287 vers = PPP_VERSION; 1288 if (copy_to_user(addr, vers, strlen(vers) + 1)) 1289 break; 1290 err = 0; 1291 break; 1292 1293 default: 1294 err = -EINVAL; 1295 } 1296 1297 return err; 1298 } 1299 1300 static struct rtnl_link_stats64* 1301 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64) 1302 { 1303 struct ppp *ppp = netdev_priv(dev); 1304 1305 ppp_recv_lock(ppp); 1306 stats64->rx_packets = ppp->stats64.rx_packets; 1307 stats64->rx_bytes = ppp->stats64.rx_bytes; 1308 ppp_recv_unlock(ppp); 1309 1310 ppp_xmit_lock(ppp); 1311 stats64->tx_packets = ppp->stats64.tx_packets; 1312 stats64->tx_bytes = ppp->stats64.tx_bytes; 1313 ppp_xmit_unlock(ppp); 1314 1315 stats64->rx_errors = dev->stats.rx_errors; 1316 stats64->tx_errors = dev->stats.tx_errors; 1317 stats64->rx_dropped = dev->stats.rx_dropped; 1318 stats64->tx_dropped = dev->stats.tx_dropped; 1319 stats64->rx_length_errors = dev->stats.rx_length_errors; 1320 1321 return stats64; 1322 } 1323 1324 static int ppp_dev_init(struct net_device *dev) 1325 { 1326 netdev_lockdep_set_classes(dev); 1327 return 0; 1328 } 1329 1330 static void ppp_dev_uninit(struct net_device *dev) 1331 { 1332 struct ppp *ppp = netdev_priv(dev); 1333 struct ppp_net *pn = ppp_pernet(ppp->ppp_net); 1334 1335 ppp_lock(ppp); 1336 ppp->closing = 1; 1337 ppp_unlock(ppp); 1338 1339 mutex_lock(&pn->all_ppp_mutex); 1340 unit_put(&pn->units_idr, ppp->file.index); 1341 mutex_unlock(&pn->all_ppp_mutex); 1342 1343 ppp->owner = NULL; 1344 1345 ppp->file.dead = 1; 1346 wake_up_interruptible(&ppp->file.rwait); 1347 } 1348 1349 static const struct net_device_ops ppp_netdev_ops = { 1350 .ndo_init = ppp_dev_init, 1351 .ndo_uninit = ppp_dev_uninit, 1352 .ndo_start_xmit = ppp_start_xmit, 1353 .ndo_do_ioctl = ppp_net_ioctl, 1354 .ndo_get_stats64 = ppp_get_stats64, 1355 }; 1356 1357 static struct device_type ppp_type = { 1358 .name = "ppp", 1359 }; 1360 1361 static void ppp_setup(struct net_device *dev) 1362 { 1363 dev->netdev_ops = &ppp_netdev_ops; 1364 SET_NETDEV_DEVTYPE(dev, &ppp_type); 1365 1366 dev->features |= NETIF_F_LLTX; 1367 1368 dev->hard_header_len = PPP_HDRLEN; 1369 dev->mtu = PPP_MRU; 1370 dev->addr_len = 0; 1371 dev->tx_queue_len = 3; 1372 dev->type = ARPHRD_PPP; 1373 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1374 netif_keep_dst(dev); 1375 } 1376 1377 /* 1378 * Transmit-side routines. 1379 */ 1380 1381 /* Called to do any work queued up on the transmit side that can now be done */ 1382 static void __ppp_xmit_process(struct ppp *ppp) 1383 { 1384 struct sk_buff *skb; 1385 1386 ppp_xmit_lock(ppp); 1387 if (!ppp->closing) { 1388 ppp_push(ppp); 1389 while (!ppp->xmit_pending && 1390 (skb = skb_dequeue(&ppp->file.xq))) 1391 ppp_send_frame(ppp, skb); 1392 /* If there's no work left to do, tell the core net 1393 code that we can accept some more. */ 1394 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) 1395 netif_wake_queue(ppp->dev); 1396 else 1397 netif_stop_queue(ppp->dev); 1398 } 1399 ppp_xmit_unlock(ppp); 1400 } 1401 1402 static DEFINE_PER_CPU(int, ppp_xmit_recursion); 1403 1404 static void ppp_xmit_process(struct ppp *ppp) 1405 { 1406 local_bh_disable(); 1407 1408 if (unlikely(__this_cpu_read(ppp_xmit_recursion))) 1409 goto err; 1410 1411 __this_cpu_inc(ppp_xmit_recursion); 1412 __ppp_xmit_process(ppp); 1413 __this_cpu_dec(ppp_xmit_recursion); 1414 1415 local_bh_enable(); 1416 1417 return; 1418 1419 err: 1420 local_bh_enable(); 1421 1422 if (net_ratelimit()) 1423 netdev_err(ppp->dev, "recursion detected\n"); 1424 } 1425 1426 static inline struct sk_buff * 1427 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1428 { 1429 struct sk_buff *new_skb; 1430 int len; 1431 int new_skb_size = ppp->dev->mtu + 1432 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1433 int compressor_skb_size = ppp->dev->mtu + 1434 ppp->xcomp->comp_extra + PPP_HDRLEN; 1435 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1436 if (!new_skb) { 1437 if (net_ratelimit()) 1438 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n"); 1439 return NULL; 1440 } 1441 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1442 skb_reserve(new_skb, 1443 ppp->dev->hard_header_len - PPP_HDRLEN); 1444 1445 /* compressor still expects A/C bytes in hdr */ 1446 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1447 new_skb->data, skb->len + 2, 1448 compressor_skb_size); 1449 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1450 consume_skb(skb); 1451 skb = new_skb; 1452 skb_put(skb, len); 1453 skb_pull(skb, 2); /* pull off A/C bytes */ 1454 } else if (len == 0) { 1455 /* didn't compress, or CCP not up yet */ 1456 consume_skb(new_skb); 1457 new_skb = skb; 1458 } else { 1459 /* 1460 * (len < 0) 1461 * MPPE requires that we do not send unencrypted 1462 * frames. The compressor will return -1 if we 1463 * should drop the frame. We cannot simply test 1464 * the compress_proto because MPPE and MPPC share 1465 * the same number. 1466 */ 1467 if (net_ratelimit()) 1468 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n"); 1469 kfree_skb(skb); 1470 consume_skb(new_skb); 1471 new_skb = NULL; 1472 } 1473 return new_skb; 1474 } 1475 1476 /* 1477 * Compress and send a frame. 1478 * The caller should have locked the xmit path, 1479 * and xmit_pending should be 0. 1480 */ 1481 static void 1482 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1483 { 1484 int proto = PPP_PROTO(skb); 1485 struct sk_buff *new_skb; 1486 int len; 1487 unsigned char *cp; 1488 1489 if (proto < 0x8000) { 1490 #ifdef CONFIG_PPP_FILTER 1491 /* check if we should pass this packet */ 1492 /* the filter instructions are constructed assuming 1493 a four-byte PPP header on each packet */ 1494 *skb_push(skb, 2) = 1; 1495 if (ppp->pass_filter && 1496 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { 1497 if (ppp->debug & 1) 1498 netdev_printk(KERN_DEBUG, ppp->dev, 1499 "PPP: outbound frame " 1500 "not passed\n"); 1501 kfree_skb(skb); 1502 return; 1503 } 1504 /* if this packet passes the active filter, record the time */ 1505 if (!(ppp->active_filter && 1506 BPF_PROG_RUN(ppp->active_filter, skb) == 0)) 1507 ppp->last_xmit = jiffies; 1508 skb_pull(skb, 2); 1509 #else 1510 /* for data packets, record the time */ 1511 ppp->last_xmit = jiffies; 1512 #endif /* CONFIG_PPP_FILTER */ 1513 } 1514 1515 ++ppp->stats64.tx_packets; 1516 ppp->stats64.tx_bytes += skb->len - 2; 1517 1518 switch (proto) { 1519 case PPP_IP: 1520 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) 1521 break; 1522 /* try to do VJ TCP header compression */ 1523 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1524 GFP_ATOMIC); 1525 if (!new_skb) { 1526 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n"); 1527 goto drop; 1528 } 1529 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1530 cp = skb->data + 2; 1531 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1532 new_skb->data + 2, &cp, 1533 !(ppp->flags & SC_NO_TCP_CCID)); 1534 if (cp == skb->data + 2) { 1535 /* didn't compress */ 1536 consume_skb(new_skb); 1537 } else { 1538 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1539 proto = PPP_VJC_COMP; 1540 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1541 } else { 1542 proto = PPP_VJC_UNCOMP; 1543 cp[0] = skb->data[2]; 1544 } 1545 consume_skb(skb); 1546 skb = new_skb; 1547 cp = skb_put(skb, len + 2); 1548 cp[0] = 0; 1549 cp[1] = proto; 1550 } 1551 break; 1552 1553 case PPP_CCP: 1554 /* peek at outbound CCP frames */ 1555 ppp_ccp_peek(ppp, skb, 0); 1556 break; 1557 } 1558 1559 /* try to do packet compression */ 1560 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state && 1561 proto != PPP_LCP && proto != PPP_CCP) { 1562 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1563 if (net_ratelimit()) 1564 netdev_err(ppp->dev, 1565 "ppp: compression required but " 1566 "down - pkt dropped.\n"); 1567 goto drop; 1568 } 1569 skb = pad_compress_skb(ppp, skb); 1570 if (!skb) 1571 goto drop; 1572 } 1573 1574 /* 1575 * If we are waiting for traffic (demand dialling), 1576 * queue it up for pppd to receive. 1577 */ 1578 if (ppp->flags & SC_LOOP_TRAFFIC) { 1579 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1580 goto drop; 1581 skb_queue_tail(&ppp->file.rq, skb); 1582 wake_up_interruptible(&ppp->file.rwait); 1583 return; 1584 } 1585 1586 ppp->xmit_pending = skb; 1587 ppp_push(ppp); 1588 return; 1589 1590 drop: 1591 kfree_skb(skb); 1592 ++ppp->dev->stats.tx_errors; 1593 } 1594 1595 /* 1596 * Try to send the frame in xmit_pending. 1597 * The caller should have the xmit path locked. 1598 */ 1599 static void 1600 ppp_push(struct ppp *ppp) 1601 { 1602 struct list_head *list; 1603 struct channel *pch; 1604 struct sk_buff *skb = ppp->xmit_pending; 1605 1606 if (!skb) 1607 return; 1608 1609 list = &ppp->channels; 1610 if (list_empty(list)) { 1611 /* nowhere to send the packet, just drop it */ 1612 ppp->xmit_pending = NULL; 1613 kfree_skb(skb); 1614 return; 1615 } 1616 1617 if ((ppp->flags & SC_MULTILINK) == 0) { 1618 /* not doing multilink: send it down the first channel */ 1619 list = list->next; 1620 pch = list_entry(list, struct channel, clist); 1621 1622 spin_lock_bh(&pch->downl); 1623 if (pch->chan) { 1624 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1625 ppp->xmit_pending = NULL; 1626 } else { 1627 /* channel got unregistered */ 1628 kfree_skb(skb); 1629 ppp->xmit_pending = NULL; 1630 } 1631 spin_unlock_bh(&pch->downl); 1632 return; 1633 } 1634 1635 #ifdef CONFIG_PPP_MULTILINK 1636 /* Multilink: fragment the packet over as many links 1637 as can take the packet at the moment. */ 1638 if (!ppp_mp_explode(ppp, skb)) 1639 return; 1640 #endif /* CONFIG_PPP_MULTILINK */ 1641 1642 ppp->xmit_pending = NULL; 1643 kfree_skb(skb); 1644 } 1645 1646 #ifdef CONFIG_PPP_MULTILINK 1647 static bool mp_protocol_compress __read_mostly = true; 1648 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR); 1649 MODULE_PARM_DESC(mp_protocol_compress, 1650 "compress protocol id in multilink fragments"); 1651 1652 /* 1653 * Divide a packet to be transmitted into fragments and 1654 * send them out the individual links. 1655 */ 1656 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1657 { 1658 int len, totlen; 1659 int i, bits, hdrlen, mtu; 1660 int flen; 1661 int navail, nfree, nzero; 1662 int nbigger; 1663 int totspeed; 1664 int totfree; 1665 unsigned char *p, *q; 1666 struct list_head *list; 1667 struct channel *pch; 1668 struct sk_buff *frag; 1669 struct ppp_channel *chan; 1670 1671 totspeed = 0; /*total bitrate of the bundle*/ 1672 nfree = 0; /* # channels which have no packet already queued */ 1673 navail = 0; /* total # of usable channels (not deregistered) */ 1674 nzero = 0; /* number of channels with zero speed associated*/ 1675 totfree = 0; /*total # of channels available and 1676 *having no queued packets before 1677 *starting the fragmentation*/ 1678 1679 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1680 i = 0; 1681 list_for_each_entry(pch, &ppp->channels, clist) { 1682 if (pch->chan) { 1683 pch->avail = 1; 1684 navail++; 1685 pch->speed = pch->chan->speed; 1686 } else { 1687 pch->avail = 0; 1688 } 1689 if (pch->avail) { 1690 if (skb_queue_empty(&pch->file.xq) || 1691 !pch->had_frag) { 1692 if (pch->speed == 0) 1693 nzero++; 1694 else 1695 totspeed += pch->speed; 1696 1697 pch->avail = 2; 1698 ++nfree; 1699 ++totfree; 1700 } 1701 if (!pch->had_frag && i < ppp->nxchan) 1702 ppp->nxchan = i; 1703 } 1704 ++i; 1705 } 1706 /* 1707 * Don't start sending this packet unless at least half of 1708 * the channels are free. This gives much better TCP 1709 * performance if we have a lot of channels. 1710 */ 1711 if (nfree == 0 || nfree < navail / 2) 1712 return 0; /* can't take now, leave it in xmit_pending */ 1713 1714 /* Do protocol field compression */ 1715 p = skb->data; 1716 len = skb->len; 1717 if (*p == 0 && mp_protocol_compress) { 1718 ++p; 1719 --len; 1720 } 1721 1722 totlen = len; 1723 nbigger = len % nfree; 1724 1725 /* skip to the channel after the one we last used 1726 and start at that one */ 1727 list = &ppp->channels; 1728 for (i = 0; i < ppp->nxchan; ++i) { 1729 list = list->next; 1730 if (list == &ppp->channels) { 1731 i = 0; 1732 break; 1733 } 1734 } 1735 1736 /* create a fragment for each channel */ 1737 bits = B; 1738 while (len > 0) { 1739 list = list->next; 1740 if (list == &ppp->channels) { 1741 i = 0; 1742 continue; 1743 } 1744 pch = list_entry(list, struct channel, clist); 1745 ++i; 1746 if (!pch->avail) 1747 continue; 1748 1749 /* 1750 * Skip this channel if it has a fragment pending already and 1751 * we haven't given a fragment to all of the free channels. 1752 */ 1753 if (pch->avail == 1) { 1754 if (nfree > 0) 1755 continue; 1756 } else { 1757 pch->avail = 1; 1758 } 1759 1760 /* check the channel's mtu and whether it is still attached. */ 1761 spin_lock_bh(&pch->downl); 1762 if (pch->chan == NULL) { 1763 /* can't use this channel, it's being deregistered */ 1764 if (pch->speed == 0) 1765 nzero--; 1766 else 1767 totspeed -= pch->speed; 1768 1769 spin_unlock_bh(&pch->downl); 1770 pch->avail = 0; 1771 totlen = len; 1772 totfree--; 1773 nfree--; 1774 if (--navail == 0) 1775 break; 1776 continue; 1777 } 1778 1779 /* 1780 *if the channel speed is not set divide 1781 *the packet evenly among the free channels; 1782 *otherwise divide it according to the speed 1783 *of the channel we are going to transmit on 1784 */ 1785 flen = len; 1786 if (nfree > 0) { 1787 if (pch->speed == 0) { 1788 flen = len/nfree; 1789 if (nbigger > 0) { 1790 flen++; 1791 nbigger--; 1792 } 1793 } else { 1794 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) / 1795 ((totspeed*totfree)/pch->speed)) - hdrlen; 1796 if (nbigger > 0) { 1797 flen += ((totfree - nzero)*pch->speed)/totspeed; 1798 nbigger -= ((totfree - nzero)*pch->speed)/ 1799 totspeed; 1800 } 1801 } 1802 nfree--; 1803 } 1804 1805 /* 1806 *check if we are on the last channel or 1807 *we exceded the length of the data to 1808 *fragment 1809 */ 1810 if ((nfree <= 0) || (flen > len)) 1811 flen = len; 1812 /* 1813 *it is not worth to tx on slow channels: 1814 *in that case from the resulting flen according to the 1815 *above formula will be equal or less than zero. 1816 *Skip the channel in this case 1817 */ 1818 if (flen <= 0) { 1819 pch->avail = 2; 1820 spin_unlock_bh(&pch->downl); 1821 continue; 1822 } 1823 1824 /* 1825 * hdrlen includes the 2-byte PPP protocol field, but the 1826 * MTU counts only the payload excluding the protocol field. 1827 * (RFC1661 Section 2) 1828 */ 1829 mtu = pch->chan->mtu - (hdrlen - 2); 1830 if (mtu < 4) 1831 mtu = 4; 1832 if (flen > mtu) 1833 flen = mtu; 1834 if (flen == len) 1835 bits |= E; 1836 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1837 if (!frag) 1838 goto noskb; 1839 q = skb_put(frag, flen + hdrlen); 1840 1841 /* make the MP header */ 1842 put_unaligned_be16(PPP_MP, q); 1843 if (ppp->flags & SC_MP_XSHORTSEQ) { 1844 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1845 q[3] = ppp->nxseq; 1846 } else { 1847 q[2] = bits; 1848 q[3] = ppp->nxseq >> 16; 1849 q[4] = ppp->nxseq >> 8; 1850 q[5] = ppp->nxseq; 1851 } 1852 1853 memcpy(q + hdrlen, p, flen); 1854 1855 /* try to send it down the channel */ 1856 chan = pch->chan; 1857 if (!skb_queue_empty(&pch->file.xq) || 1858 !chan->ops->start_xmit(chan, frag)) 1859 skb_queue_tail(&pch->file.xq, frag); 1860 pch->had_frag = 1; 1861 p += flen; 1862 len -= flen; 1863 ++ppp->nxseq; 1864 bits = 0; 1865 spin_unlock_bh(&pch->downl); 1866 } 1867 ppp->nxchan = i; 1868 1869 return 1; 1870 1871 noskb: 1872 spin_unlock_bh(&pch->downl); 1873 if (ppp->debug & 1) 1874 netdev_err(ppp->dev, "PPP: no memory (fragment)\n"); 1875 ++ppp->dev->stats.tx_errors; 1876 ++ppp->nxseq; 1877 return 1; /* abandon the frame */ 1878 } 1879 #endif /* CONFIG_PPP_MULTILINK */ 1880 1881 /* Try to send data out on a channel */ 1882 static void __ppp_channel_push(struct channel *pch) 1883 { 1884 struct sk_buff *skb; 1885 struct ppp *ppp; 1886 1887 spin_lock_bh(&pch->downl); 1888 if (pch->chan) { 1889 while (!skb_queue_empty(&pch->file.xq)) { 1890 skb = skb_dequeue(&pch->file.xq); 1891 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1892 /* put the packet back and try again later */ 1893 skb_queue_head(&pch->file.xq, skb); 1894 break; 1895 } 1896 } 1897 } else { 1898 /* channel got deregistered */ 1899 skb_queue_purge(&pch->file.xq); 1900 } 1901 spin_unlock_bh(&pch->downl); 1902 /* see if there is anything from the attached unit to be sent */ 1903 if (skb_queue_empty(&pch->file.xq)) { 1904 read_lock_bh(&pch->upl); 1905 ppp = pch->ppp; 1906 if (ppp) 1907 __ppp_xmit_process(ppp); 1908 read_unlock_bh(&pch->upl); 1909 } 1910 } 1911 1912 static void ppp_channel_push(struct channel *pch) 1913 { 1914 local_bh_disable(); 1915 1916 __this_cpu_inc(ppp_xmit_recursion); 1917 __ppp_channel_push(pch); 1918 __this_cpu_dec(ppp_xmit_recursion); 1919 1920 local_bh_enable(); 1921 } 1922 1923 /* 1924 * Receive-side routines. 1925 */ 1926 1927 struct ppp_mp_skb_parm { 1928 u32 sequence; 1929 u8 BEbits; 1930 }; 1931 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb)) 1932 1933 static inline void 1934 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1935 { 1936 ppp_recv_lock(ppp); 1937 if (!ppp->closing) 1938 ppp_receive_frame(ppp, skb, pch); 1939 else 1940 kfree_skb(skb); 1941 ppp_recv_unlock(ppp); 1942 } 1943 1944 void 1945 ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1946 { 1947 struct channel *pch = chan->ppp; 1948 int proto; 1949 1950 if (!pch) { 1951 kfree_skb(skb); 1952 return; 1953 } 1954 1955 read_lock_bh(&pch->upl); 1956 if (!pskb_may_pull(skb, 2)) { 1957 kfree_skb(skb); 1958 if (pch->ppp) { 1959 ++pch->ppp->dev->stats.rx_length_errors; 1960 ppp_receive_error(pch->ppp); 1961 } 1962 goto done; 1963 } 1964 1965 proto = PPP_PROTO(skb); 1966 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1967 /* put it on the channel queue */ 1968 skb_queue_tail(&pch->file.rq, skb); 1969 /* drop old frames if queue too long */ 1970 while (pch->file.rq.qlen > PPP_MAX_RQLEN && 1971 (skb = skb_dequeue(&pch->file.rq))) 1972 kfree_skb(skb); 1973 wake_up_interruptible(&pch->file.rwait); 1974 } else { 1975 ppp_do_recv(pch->ppp, skb, pch); 1976 } 1977 1978 done: 1979 read_unlock_bh(&pch->upl); 1980 } 1981 1982 /* Put a 0-length skb in the receive queue as an error indication */ 1983 void 1984 ppp_input_error(struct ppp_channel *chan, int code) 1985 { 1986 struct channel *pch = chan->ppp; 1987 struct sk_buff *skb; 1988 1989 if (!pch) 1990 return; 1991 1992 read_lock_bh(&pch->upl); 1993 if (pch->ppp) { 1994 skb = alloc_skb(0, GFP_ATOMIC); 1995 if (skb) { 1996 skb->len = 0; /* probably unnecessary */ 1997 skb->cb[0] = code; 1998 ppp_do_recv(pch->ppp, skb, pch); 1999 } 2000 } 2001 read_unlock_bh(&pch->upl); 2002 } 2003 2004 /* 2005 * We come in here to process a received frame. 2006 * The receive side of the ppp unit is locked. 2007 */ 2008 static void 2009 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 2010 { 2011 /* note: a 0-length skb is used as an error indication */ 2012 if (skb->len > 0) { 2013 skb_checksum_complete_unset(skb); 2014 #ifdef CONFIG_PPP_MULTILINK 2015 /* XXX do channel-level decompression here */ 2016 if (PPP_PROTO(skb) == PPP_MP) 2017 ppp_receive_mp_frame(ppp, skb, pch); 2018 else 2019 #endif /* CONFIG_PPP_MULTILINK */ 2020 ppp_receive_nonmp_frame(ppp, skb); 2021 } else { 2022 kfree_skb(skb); 2023 ppp_receive_error(ppp); 2024 } 2025 } 2026 2027 static void 2028 ppp_receive_error(struct ppp *ppp) 2029 { 2030 ++ppp->dev->stats.rx_errors; 2031 if (ppp->vj) 2032 slhc_toss(ppp->vj); 2033 } 2034 2035 static void 2036 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 2037 { 2038 struct sk_buff *ns; 2039 int proto, len, npi; 2040 2041 /* 2042 * Decompress the frame, if compressed. 2043 * Note that some decompressors need to see uncompressed frames 2044 * that come in as well as compressed frames. 2045 */ 2046 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) && 2047 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 2048 skb = ppp_decompress_frame(ppp, skb); 2049 2050 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 2051 goto err; 2052 2053 proto = PPP_PROTO(skb); 2054 switch (proto) { 2055 case PPP_VJC_COMP: 2056 /* decompress VJ compressed packets */ 2057 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 2058 goto err; 2059 2060 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { 2061 /* copy to a new sk_buff with more tailroom */ 2062 ns = dev_alloc_skb(skb->len + 128); 2063 if (!ns) { 2064 netdev_err(ppp->dev, "PPP: no memory " 2065 "(VJ decomp)\n"); 2066 goto err; 2067 } 2068 skb_reserve(ns, 2); 2069 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 2070 consume_skb(skb); 2071 skb = ns; 2072 } 2073 else 2074 skb->ip_summed = CHECKSUM_NONE; 2075 2076 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 2077 if (len <= 0) { 2078 netdev_printk(KERN_DEBUG, ppp->dev, 2079 "PPP: VJ decompression error\n"); 2080 goto err; 2081 } 2082 len += 2; 2083 if (len > skb->len) 2084 skb_put(skb, len - skb->len); 2085 else if (len < skb->len) 2086 skb_trim(skb, len); 2087 proto = PPP_IP; 2088 break; 2089 2090 case PPP_VJC_UNCOMP: 2091 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 2092 goto err; 2093 2094 /* Until we fix the decompressor need to make sure 2095 * data portion is linear. 2096 */ 2097 if (!pskb_may_pull(skb, skb->len)) 2098 goto err; 2099 2100 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 2101 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n"); 2102 goto err; 2103 } 2104 proto = PPP_IP; 2105 break; 2106 2107 case PPP_CCP: 2108 ppp_ccp_peek(ppp, skb, 1); 2109 break; 2110 } 2111 2112 ++ppp->stats64.rx_packets; 2113 ppp->stats64.rx_bytes += skb->len - 2; 2114 2115 npi = proto_to_npindex(proto); 2116 if (npi < 0) { 2117 /* control or unknown frame - pass it to pppd */ 2118 skb_queue_tail(&ppp->file.rq, skb); 2119 /* limit queue length by dropping old frames */ 2120 while (ppp->file.rq.qlen > PPP_MAX_RQLEN && 2121 (skb = skb_dequeue(&ppp->file.rq))) 2122 kfree_skb(skb); 2123 /* wake up any process polling or blocking on read */ 2124 wake_up_interruptible(&ppp->file.rwait); 2125 2126 } else { 2127 /* network protocol frame - give it to the kernel */ 2128 2129 #ifdef CONFIG_PPP_FILTER 2130 /* check if the packet passes the pass and active filters */ 2131 /* the filter instructions are constructed assuming 2132 a four-byte PPP header on each packet */ 2133 if (ppp->pass_filter || ppp->active_filter) { 2134 if (skb_unclone(skb, GFP_ATOMIC)) 2135 goto err; 2136 2137 *skb_push(skb, 2) = 0; 2138 if (ppp->pass_filter && 2139 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { 2140 if (ppp->debug & 1) 2141 netdev_printk(KERN_DEBUG, ppp->dev, 2142 "PPP: inbound frame " 2143 "not passed\n"); 2144 kfree_skb(skb); 2145 return; 2146 } 2147 if (!(ppp->active_filter && 2148 BPF_PROG_RUN(ppp->active_filter, skb) == 0)) 2149 ppp->last_recv = jiffies; 2150 __skb_pull(skb, 2); 2151 } else 2152 #endif /* CONFIG_PPP_FILTER */ 2153 ppp->last_recv = jiffies; 2154 2155 if ((ppp->dev->flags & IFF_UP) == 0 || 2156 ppp->npmode[npi] != NPMODE_PASS) { 2157 kfree_skb(skb); 2158 } else { 2159 /* chop off protocol */ 2160 skb_pull_rcsum(skb, 2); 2161 skb->dev = ppp->dev; 2162 skb->protocol = htons(npindex_to_ethertype[npi]); 2163 skb_reset_mac_header(skb); 2164 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, 2165 dev_net(ppp->dev))); 2166 netif_rx(skb); 2167 } 2168 } 2169 return; 2170 2171 err: 2172 kfree_skb(skb); 2173 ppp_receive_error(ppp); 2174 } 2175 2176 static struct sk_buff * 2177 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 2178 { 2179 int proto = PPP_PROTO(skb); 2180 struct sk_buff *ns; 2181 int len; 2182 2183 /* Until we fix all the decompressor's need to make sure 2184 * data portion is linear. 2185 */ 2186 if (!pskb_may_pull(skb, skb->len)) 2187 goto err; 2188 2189 if (proto == PPP_COMP) { 2190 int obuff_size; 2191 2192 switch(ppp->rcomp->compress_proto) { 2193 case CI_MPPE: 2194 obuff_size = ppp->mru + PPP_HDRLEN + 1; 2195 break; 2196 default: 2197 obuff_size = ppp->mru + PPP_HDRLEN; 2198 break; 2199 } 2200 2201 ns = dev_alloc_skb(obuff_size); 2202 if (!ns) { 2203 netdev_err(ppp->dev, "ppp_decompress_frame: " 2204 "no memory\n"); 2205 goto err; 2206 } 2207 /* the decompressor still expects the A/C bytes in the hdr */ 2208 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 2209 skb->len + 2, ns->data, obuff_size); 2210 if (len < 0) { 2211 /* Pass the compressed frame to pppd as an 2212 error indication. */ 2213 if (len == DECOMP_FATALERROR) 2214 ppp->rstate |= SC_DC_FERROR; 2215 kfree_skb(ns); 2216 goto err; 2217 } 2218 2219 consume_skb(skb); 2220 skb = ns; 2221 skb_put(skb, len); 2222 skb_pull(skb, 2); /* pull off the A/C bytes */ 2223 2224 } else { 2225 /* Uncompressed frame - pass to decompressor so it 2226 can update its dictionary if necessary. */ 2227 if (ppp->rcomp->incomp) 2228 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 2229 skb->len + 2); 2230 } 2231 2232 return skb; 2233 2234 err: 2235 ppp->rstate |= SC_DC_ERROR; 2236 ppp_receive_error(ppp); 2237 return skb; 2238 } 2239 2240 #ifdef CONFIG_PPP_MULTILINK 2241 /* 2242 * Receive a multilink frame. 2243 * We put it on the reconstruction queue and then pull off 2244 * as many completed frames as we can. 2245 */ 2246 static void 2247 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 2248 { 2249 u32 mask, seq; 2250 struct channel *ch; 2251 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 2252 2253 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 2254 goto err; /* no good, throw it away */ 2255 2256 /* Decode sequence number and begin/end bits */ 2257 if (ppp->flags & SC_MP_SHORTSEQ) { 2258 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 2259 mask = 0xfff; 2260 } else { 2261 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 2262 mask = 0xffffff; 2263 } 2264 PPP_MP_CB(skb)->BEbits = skb->data[2]; 2265 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 2266 2267 /* 2268 * Do protocol ID decompression on the first fragment of each packet. 2269 */ 2270 if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1)) 2271 *skb_push(skb, 1) = 0; 2272 2273 /* 2274 * Expand sequence number to 32 bits, making it as close 2275 * as possible to ppp->minseq. 2276 */ 2277 seq |= ppp->minseq & ~mask; 2278 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 2279 seq += mask + 1; 2280 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 2281 seq -= mask + 1; /* should never happen */ 2282 PPP_MP_CB(skb)->sequence = seq; 2283 pch->lastseq = seq; 2284 2285 /* 2286 * If this packet comes before the next one we were expecting, 2287 * drop it. 2288 */ 2289 if (seq_before(seq, ppp->nextseq)) { 2290 kfree_skb(skb); 2291 ++ppp->dev->stats.rx_dropped; 2292 ppp_receive_error(ppp); 2293 return; 2294 } 2295 2296 /* 2297 * Reevaluate minseq, the minimum over all channels of the 2298 * last sequence number received on each channel. Because of 2299 * the increasing sequence number rule, we know that any fragment 2300 * before `minseq' which hasn't arrived is never going to arrive. 2301 * The list of channels can't change because we have the receive 2302 * side of the ppp unit locked. 2303 */ 2304 list_for_each_entry(ch, &ppp->channels, clist) { 2305 if (seq_before(ch->lastseq, seq)) 2306 seq = ch->lastseq; 2307 } 2308 if (seq_before(ppp->minseq, seq)) 2309 ppp->minseq = seq; 2310 2311 /* Put the fragment on the reconstruction queue */ 2312 ppp_mp_insert(ppp, skb); 2313 2314 /* If the queue is getting long, don't wait any longer for packets 2315 before the start of the queue. */ 2316 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) { 2317 struct sk_buff *mskb = skb_peek(&ppp->mrq); 2318 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence)) 2319 ppp->minseq = PPP_MP_CB(mskb)->sequence; 2320 } 2321 2322 /* Pull completed packets off the queue and receive them. */ 2323 while ((skb = ppp_mp_reconstruct(ppp))) { 2324 if (pskb_may_pull(skb, 2)) 2325 ppp_receive_nonmp_frame(ppp, skb); 2326 else { 2327 ++ppp->dev->stats.rx_length_errors; 2328 kfree_skb(skb); 2329 ppp_receive_error(ppp); 2330 } 2331 } 2332 2333 return; 2334 2335 err: 2336 kfree_skb(skb); 2337 ppp_receive_error(ppp); 2338 } 2339 2340 /* 2341 * Insert a fragment on the MP reconstruction queue. 2342 * The queue is ordered by increasing sequence number. 2343 */ 2344 static void 2345 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 2346 { 2347 struct sk_buff *p; 2348 struct sk_buff_head *list = &ppp->mrq; 2349 u32 seq = PPP_MP_CB(skb)->sequence; 2350 2351 /* N.B. we don't need to lock the list lock because we have the 2352 ppp unit receive-side lock. */ 2353 skb_queue_walk(list, p) { 2354 if (seq_before(seq, PPP_MP_CB(p)->sequence)) 2355 break; 2356 } 2357 __skb_queue_before(list, p, skb); 2358 } 2359 2360 /* 2361 * Reconstruct a packet from the MP fragment queue. 2362 * We go through increasing sequence numbers until we find a 2363 * complete packet, or we get to the sequence number for a fragment 2364 * which hasn't arrived but might still do so. 2365 */ 2366 static struct sk_buff * 2367 ppp_mp_reconstruct(struct ppp *ppp) 2368 { 2369 u32 seq = ppp->nextseq; 2370 u32 minseq = ppp->minseq; 2371 struct sk_buff_head *list = &ppp->mrq; 2372 struct sk_buff *p, *tmp; 2373 struct sk_buff *head, *tail; 2374 struct sk_buff *skb = NULL; 2375 int lost = 0, len = 0; 2376 2377 if (ppp->mrru == 0) /* do nothing until mrru is set */ 2378 return NULL; 2379 head = list->next; 2380 tail = NULL; 2381 skb_queue_walk_safe(list, p, tmp) { 2382 again: 2383 if (seq_before(PPP_MP_CB(p)->sequence, seq)) { 2384 /* this can't happen, anyway ignore the skb */ 2385 netdev_err(ppp->dev, "ppp_mp_reconstruct bad " 2386 "seq %u < %u\n", 2387 PPP_MP_CB(p)->sequence, seq); 2388 __skb_unlink(p, list); 2389 kfree_skb(p); 2390 continue; 2391 } 2392 if (PPP_MP_CB(p)->sequence != seq) { 2393 u32 oldseq; 2394 /* Fragment `seq' is missing. If it is after 2395 minseq, it might arrive later, so stop here. */ 2396 if (seq_after(seq, minseq)) 2397 break; 2398 /* Fragment `seq' is lost, keep going. */ 2399 lost = 1; 2400 oldseq = seq; 2401 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)? 2402 minseq + 1: PPP_MP_CB(p)->sequence; 2403 2404 if (ppp->debug & 1) 2405 netdev_printk(KERN_DEBUG, ppp->dev, 2406 "lost frag %u..%u\n", 2407 oldseq, seq-1); 2408 2409 goto again; 2410 } 2411 2412 /* 2413 * At this point we know that all the fragments from 2414 * ppp->nextseq to seq are either present or lost. 2415 * Also, there are no complete packets in the queue 2416 * that have no missing fragments and end before this 2417 * fragment. 2418 */ 2419 2420 /* B bit set indicates this fragment starts a packet */ 2421 if (PPP_MP_CB(p)->BEbits & B) { 2422 head = p; 2423 lost = 0; 2424 len = 0; 2425 } 2426 2427 len += p->len; 2428 2429 /* Got a complete packet yet? */ 2430 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) && 2431 (PPP_MP_CB(head)->BEbits & B)) { 2432 if (len > ppp->mrru + 2) { 2433 ++ppp->dev->stats.rx_length_errors; 2434 netdev_printk(KERN_DEBUG, ppp->dev, 2435 "PPP: reconstructed packet" 2436 " is too long (%d)\n", len); 2437 } else { 2438 tail = p; 2439 break; 2440 } 2441 ppp->nextseq = seq + 1; 2442 } 2443 2444 /* 2445 * If this is the ending fragment of a packet, 2446 * and we haven't found a complete valid packet yet, 2447 * we can discard up to and including this fragment. 2448 */ 2449 if (PPP_MP_CB(p)->BEbits & E) { 2450 struct sk_buff *tmp2; 2451 2452 skb_queue_reverse_walk_from_safe(list, p, tmp2) { 2453 if (ppp->debug & 1) 2454 netdev_printk(KERN_DEBUG, ppp->dev, 2455 "discarding frag %u\n", 2456 PPP_MP_CB(p)->sequence); 2457 __skb_unlink(p, list); 2458 kfree_skb(p); 2459 } 2460 head = skb_peek(list); 2461 if (!head) 2462 break; 2463 } 2464 ++seq; 2465 } 2466 2467 /* If we have a complete packet, copy it all into one skb. */ 2468 if (tail != NULL) { 2469 /* If we have discarded any fragments, 2470 signal a receive error. */ 2471 if (PPP_MP_CB(head)->sequence != ppp->nextseq) { 2472 skb_queue_walk_safe(list, p, tmp) { 2473 if (p == head) 2474 break; 2475 if (ppp->debug & 1) 2476 netdev_printk(KERN_DEBUG, ppp->dev, 2477 "discarding frag %u\n", 2478 PPP_MP_CB(p)->sequence); 2479 __skb_unlink(p, list); 2480 kfree_skb(p); 2481 } 2482 2483 if (ppp->debug & 1) 2484 netdev_printk(KERN_DEBUG, ppp->dev, 2485 " missed pkts %u..%u\n", 2486 ppp->nextseq, 2487 PPP_MP_CB(head)->sequence-1); 2488 ++ppp->dev->stats.rx_dropped; 2489 ppp_receive_error(ppp); 2490 } 2491 2492 skb = head; 2493 if (head != tail) { 2494 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list; 2495 p = skb_queue_next(list, head); 2496 __skb_unlink(skb, list); 2497 skb_queue_walk_from_safe(list, p, tmp) { 2498 __skb_unlink(p, list); 2499 *fragpp = p; 2500 p->next = NULL; 2501 fragpp = &p->next; 2502 2503 skb->len += p->len; 2504 skb->data_len += p->len; 2505 skb->truesize += p->truesize; 2506 2507 if (p == tail) 2508 break; 2509 } 2510 } else { 2511 __skb_unlink(skb, list); 2512 } 2513 2514 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1; 2515 } 2516 2517 return skb; 2518 } 2519 #endif /* CONFIG_PPP_MULTILINK */ 2520 2521 /* 2522 * Channel interface. 2523 */ 2524 2525 /* Create a new, unattached ppp channel. */ 2526 int ppp_register_channel(struct ppp_channel *chan) 2527 { 2528 return ppp_register_net_channel(current->nsproxy->net_ns, chan); 2529 } 2530 2531 /* Create a new, unattached ppp channel for specified net. */ 2532 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan) 2533 { 2534 struct channel *pch; 2535 struct ppp_net *pn; 2536 2537 pch = kzalloc(sizeof(struct channel), GFP_KERNEL); 2538 if (!pch) 2539 return -ENOMEM; 2540 2541 pn = ppp_pernet(net); 2542 2543 pch->ppp = NULL; 2544 pch->chan = chan; 2545 pch->chan_net = get_net(net); 2546 chan->ppp = pch; 2547 init_ppp_file(&pch->file, CHANNEL); 2548 pch->file.hdrlen = chan->hdrlen; 2549 #ifdef CONFIG_PPP_MULTILINK 2550 pch->lastseq = -1; 2551 #endif /* CONFIG_PPP_MULTILINK */ 2552 init_rwsem(&pch->chan_sem); 2553 spin_lock_init(&pch->downl); 2554 rwlock_init(&pch->upl); 2555 2556 spin_lock_bh(&pn->all_channels_lock); 2557 pch->file.index = ++pn->last_channel_index; 2558 list_add(&pch->list, &pn->new_channels); 2559 atomic_inc(&channel_count); 2560 spin_unlock_bh(&pn->all_channels_lock); 2561 2562 return 0; 2563 } 2564 2565 /* 2566 * Return the index of a channel. 2567 */ 2568 int ppp_channel_index(struct ppp_channel *chan) 2569 { 2570 struct channel *pch = chan->ppp; 2571 2572 if (pch) 2573 return pch->file.index; 2574 return -1; 2575 } 2576 2577 /* 2578 * Return the PPP unit number to which a channel is connected. 2579 */ 2580 int ppp_unit_number(struct ppp_channel *chan) 2581 { 2582 struct channel *pch = chan->ppp; 2583 int unit = -1; 2584 2585 if (pch) { 2586 read_lock_bh(&pch->upl); 2587 if (pch->ppp) 2588 unit = pch->ppp->file.index; 2589 read_unlock_bh(&pch->upl); 2590 } 2591 return unit; 2592 } 2593 2594 /* 2595 * Return the PPP device interface name of a channel. 2596 */ 2597 char *ppp_dev_name(struct ppp_channel *chan) 2598 { 2599 struct channel *pch = chan->ppp; 2600 char *name = NULL; 2601 2602 if (pch) { 2603 read_lock_bh(&pch->upl); 2604 if (pch->ppp && pch->ppp->dev) 2605 name = pch->ppp->dev->name; 2606 read_unlock_bh(&pch->upl); 2607 } 2608 return name; 2609 } 2610 2611 2612 /* 2613 * Disconnect a channel from the generic layer. 2614 * This must be called in process context. 2615 */ 2616 void 2617 ppp_unregister_channel(struct ppp_channel *chan) 2618 { 2619 struct channel *pch = chan->ppp; 2620 struct ppp_net *pn; 2621 2622 if (!pch) 2623 return; /* should never happen */ 2624 2625 chan->ppp = NULL; 2626 2627 /* 2628 * This ensures that we have returned from any calls into the 2629 * the channel's start_xmit or ioctl routine before we proceed. 2630 */ 2631 down_write(&pch->chan_sem); 2632 spin_lock_bh(&pch->downl); 2633 pch->chan = NULL; 2634 spin_unlock_bh(&pch->downl); 2635 up_write(&pch->chan_sem); 2636 ppp_disconnect_channel(pch); 2637 2638 pn = ppp_pernet(pch->chan_net); 2639 spin_lock_bh(&pn->all_channels_lock); 2640 list_del(&pch->list); 2641 spin_unlock_bh(&pn->all_channels_lock); 2642 2643 pch->file.dead = 1; 2644 wake_up_interruptible(&pch->file.rwait); 2645 if (atomic_dec_and_test(&pch->file.refcnt)) 2646 ppp_destroy_channel(pch); 2647 } 2648 2649 /* 2650 * Callback from a channel when it can accept more to transmit. 2651 * This should be called at BH/softirq level, not interrupt level. 2652 */ 2653 void 2654 ppp_output_wakeup(struct ppp_channel *chan) 2655 { 2656 struct channel *pch = chan->ppp; 2657 2658 if (!pch) 2659 return; 2660 ppp_channel_push(pch); 2661 } 2662 2663 /* 2664 * Compression control. 2665 */ 2666 2667 /* Process the PPPIOCSCOMPRESS ioctl. */ 2668 static int 2669 ppp_set_compress(struct ppp *ppp, unsigned long arg) 2670 { 2671 int err; 2672 struct compressor *cp, *ocomp; 2673 struct ppp_option_data data; 2674 void *state, *ostate; 2675 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2676 2677 err = -EFAULT; 2678 if (copy_from_user(&data, (void __user *) arg, sizeof(data))) 2679 goto out; 2680 if (data.length > CCP_MAX_OPTION_LENGTH) 2681 goto out; 2682 if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length)) 2683 goto out; 2684 2685 err = -EINVAL; 2686 if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2687 goto out; 2688 2689 cp = try_then_request_module( 2690 find_compressor(ccp_option[0]), 2691 "ppp-compress-%d", ccp_option[0]); 2692 if (!cp) 2693 goto out; 2694 2695 err = -ENOBUFS; 2696 if (data.transmit) { 2697 state = cp->comp_alloc(ccp_option, data.length); 2698 if (state) { 2699 ppp_xmit_lock(ppp); 2700 ppp->xstate &= ~SC_COMP_RUN; 2701 ocomp = ppp->xcomp; 2702 ostate = ppp->xc_state; 2703 ppp->xcomp = cp; 2704 ppp->xc_state = state; 2705 ppp_xmit_unlock(ppp); 2706 if (ostate) { 2707 ocomp->comp_free(ostate); 2708 module_put(ocomp->owner); 2709 } 2710 err = 0; 2711 } else 2712 module_put(cp->owner); 2713 2714 } else { 2715 state = cp->decomp_alloc(ccp_option, data.length); 2716 if (state) { 2717 ppp_recv_lock(ppp); 2718 ppp->rstate &= ~SC_DECOMP_RUN; 2719 ocomp = ppp->rcomp; 2720 ostate = ppp->rc_state; 2721 ppp->rcomp = cp; 2722 ppp->rc_state = state; 2723 ppp_recv_unlock(ppp); 2724 if (ostate) { 2725 ocomp->decomp_free(ostate); 2726 module_put(ocomp->owner); 2727 } 2728 err = 0; 2729 } else 2730 module_put(cp->owner); 2731 } 2732 2733 out: 2734 return err; 2735 } 2736 2737 /* 2738 * Look at a CCP packet and update our state accordingly. 2739 * We assume the caller has the xmit or recv path locked. 2740 */ 2741 static void 2742 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2743 { 2744 unsigned char *dp; 2745 int len; 2746 2747 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2748 return; /* no header */ 2749 dp = skb->data + 2; 2750 2751 switch (CCP_CODE(dp)) { 2752 case CCP_CONFREQ: 2753 2754 /* A ConfReq starts negotiation of compression 2755 * in one direction of transmission, 2756 * and hence brings it down...but which way? 2757 * 2758 * Remember: 2759 * A ConfReq indicates what the sender would like to receive 2760 */ 2761 if(inbound) 2762 /* He is proposing what I should send */ 2763 ppp->xstate &= ~SC_COMP_RUN; 2764 else 2765 /* I am proposing to what he should send */ 2766 ppp->rstate &= ~SC_DECOMP_RUN; 2767 2768 break; 2769 2770 case CCP_TERMREQ: 2771 case CCP_TERMACK: 2772 /* 2773 * CCP is going down, both directions of transmission 2774 */ 2775 ppp->rstate &= ~SC_DECOMP_RUN; 2776 ppp->xstate &= ~SC_COMP_RUN; 2777 break; 2778 2779 case CCP_CONFACK: 2780 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2781 break; 2782 len = CCP_LENGTH(dp); 2783 if (!pskb_may_pull(skb, len + 2)) 2784 return; /* too short */ 2785 dp += CCP_HDRLEN; 2786 len -= CCP_HDRLEN; 2787 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2788 break; 2789 if (inbound) { 2790 /* we will start receiving compressed packets */ 2791 if (!ppp->rc_state) 2792 break; 2793 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2794 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2795 ppp->rstate |= SC_DECOMP_RUN; 2796 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2797 } 2798 } else { 2799 /* we will soon start sending compressed packets */ 2800 if (!ppp->xc_state) 2801 break; 2802 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2803 ppp->file.index, 0, ppp->debug)) 2804 ppp->xstate |= SC_COMP_RUN; 2805 } 2806 break; 2807 2808 case CCP_RESETACK: 2809 /* reset the [de]compressor */ 2810 if ((ppp->flags & SC_CCP_UP) == 0) 2811 break; 2812 if (inbound) { 2813 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2814 ppp->rcomp->decomp_reset(ppp->rc_state); 2815 ppp->rstate &= ~SC_DC_ERROR; 2816 } 2817 } else { 2818 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2819 ppp->xcomp->comp_reset(ppp->xc_state); 2820 } 2821 break; 2822 } 2823 } 2824 2825 /* Free up compression resources. */ 2826 static void 2827 ppp_ccp_closed(struct ppp *ppp) 2828 { 2829 void *xstate, *rstate; 2830 struct compressor *xcomp, *rcomp; 2831 2832 ppp_lock(ppp); 2833 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2834 ppp->xstate = 0; 2835 xcomp = ppp->xcomp; 2836 xstate = ppp->xc_state; 2837 ppp->xc_state = NULL; 2838 ppp->rstate = 0; 2839 rcomp = ppp->rcomp; 2840 rstate = ppp->rc_state; 2841 ppp->rc_state = NULL; 2842 ppp_unlock(ppp); 2843 2844 if (xstate) { 2845 xcomp->comp_free(xstate); 2846 module_put(xcomp->owner); 2847 } 2848 if (rstate) { 2849 rcomp->decomp_free(rstate); 2850 module_put(rcomp->owner); 2851 } 2852 } 2853 2854 /* List of compressors. */ 2855 static LIST_HEAD(compressor_list); 2856 static DEFINE_SPINLOCK(compressor_list_lock); 2857 2858 struct compressor_entry { 2859 struct list_head list; 2860 struct compressor *comp; 2861 }; 2862 2863 static struct compressor_entry * 2864 find_comp_entry(int proto) 2865 { 2866 struct compressor_entry *ce; 2867 2868 list_for_each_entry(ce, &compressor_list, list) { 2869 if (ce->comp->compress_proto == proto) 2870 return ce; 2871 } 2872 return NULL; 2873 } 2874 2875 /* Register a compressor */ 2876 int 2877 ppp_register_compressor(struct compressor *cp) 2878 { 2879 struct compressor_entry *ce; 2880 int ret; 2881 spin_lock(&compressor_list_lock); 2882 ret = -EEXIST; 2883 if (find_comp_entry(cp->compress_proto)) 2884 goto out; 2885 ret = -ENOMEM; 2886 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2887 if (!ce) 2888 goto out; 2889 ret = 0; 2890 ce->comp = cp; 2891 list_add(&ce->list, &compressor_list); 2892 out: 2893 spin_unlock(&compressor_list_lock); 2894 return ret; 2895 } 2896 2897 /* Unregister a compressor */ 2898 void 2899 ppp_unregister_compressor(struct compressor *cp) 2900 { 2901 struct compressor_entry *ce; 2902 2903 spin_lock(&compressor_list_lock); 2904 ce = find_comp_entry(cp->compress_proto); 2905 if (ce && ce->comp == cp) { 2906 list_del(&ce->list); 2907 kfree(ce); 2908 } 2909 spin_unlock(&compressor_list_lock); 2910 } 2911 2912 /* Find a compressor. */ 2913 static struct compressor * 2914 find_compressor(int type) 2915 { 2916 struct compressor_entry *ce; 2917 struct compressor *cp = NULL; 2918 2919 spin_lock(&compressor_list_lock); 2920 ce = find_comp_entry(type); 2921 if (ce) { 2922 cp = ce->comp; 2923 if (!try_module_get(cp->owner)) 2924 cp = NULL; 2925 } 2926 spin_unlock(&compressor_list_lock); 2927 return cp; 2928 } 2929 2930 /* 2931 * Miscelleneous stuff. 2932 */ 2933 2934 static void 2935 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2936 { 2937 struct slcompress *vj = ppp->vj; 2938 2939 memset(st, 0, sizeof(*st)); 2940 st->p.ppp_ipackets = ppp->stats64.rx_packets; 2941 st->p.ppp_ierrors = ppp->dev->stats.rx_errors; 2942 st->p.ppp_ibytes = ppp->stats64.rx_bytes; 2943 st->p.ppp_opackets = ppp->stats64.tx_packets; 2944 st->p.ppp_oerrors = ppp->dev->stats.tx_errors; 2945 st->p.ppp_obytes = ppp->stats64.tx_bytes; 2946 if (!vj) 2947 return; 2948 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2949 st->vj.vjs_compressed = vj->sls_o_compressed; 2950 st->vj.vjs_searches = vj->sls_o_searches; 2951 st->vj.vjs_misses = vj->sls_o_misses; 2952 st->vj.vjs_errorin = vj->sls_i_error; 2953 st->vj.vjs_tossed = vj->sls_i_tossed; 2954 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2955 st->vj.vjs_compressedin = vj->sls_i_compressed; 2956 } 2957 2958 /* 2959 * Stuff for handling the lists of ppp units and channels 2960 * and for initialization. 2961 */ 2962 2963 /* 2964 * Create a new ppp interface unit. Fails if it can't allocate memory 2965 * or if there is already a unit with the requested number. 2966 * unit == -1 means allocate a new number. 2967 */ 2968 static int ppp_create_interface(struct net *net, struct file *file, int *unit) 2969 { 2970 struct ppp_config conf = { 2971 .file = file, 2972 .unit = *unit, 2973 .ifname_is_set = false, 2974 }; 2975 struct net_device *dev; 2976 struct ppp *ppp; 2977 int err; 2978 2979 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup); 2980 if (!dev) { 2981 err = -ENOMEM; 2982 goto err; 2983 } 2984 dev_net_set(dev, net); 2985 dev->rtnl_link_ops = &ppp_link_ops; 2986 2987 rtnl_lock(); 2988 2989 err = ppp_dev_configure(net, dev, &conf); 2990 if (err < 0) 2991 goto err_dev; 2992 ppp = netdev_priv(dev); 2993 *unit = ppp->file.index; 2994 2995 rtnl_unlock(); 2996 2997 return 0; 2998 2999 err_dev: 3000 rtnl_unlock(); 3001 free_netdev(dev); 3002 err: 3003 return err; 3004 } 3005 3006 /* 3007 * Initialize a ppp_file structure. 3008 */ 3009 static void 3010 init_ppp_file(struct ppp_file *pf, int kind) 3011 { 3012 pf->kind = kind; 3013 skb_queue_head_init(&pf->xq); 3014 skb_queue_head_init(&pf->rq); 3015 atomic_set(&pf->refcnt, 1); 3016 init_waitqueue_head(&pf->rwait); 3017 } 3018 3019 /* 3020 * Free the memory used by a ppp unit. This is only called once 3021 * there are no channels connected to the unit and no file structs 3022 * that reference the unit. 3023 */ 3024 static void ppp_destroy_interface(struct ppp *ppp) 3025 { 3026 atomic_dec(&ppp_unit_count); 3027 3028 if (!ppp->file.dead || ppp->n_channels) { 3029 /* "can't happen" */ 3030 netdev_err(ppp->dev, "ppp: destroying ppp struct %p " 3031 "but dead=%d n_channels=%d !\n", 3032 ppp, ppp->file.dead, ppp->n_channels); 3033 return; 3034 } 3035 3036 ppp_ccp_closed(ppp); 3037 if (ppp->vj) { 3038 slhc_free(ppp->vj); 3039 ppp->vj = NULL; 3040 } 3041 skb_queue_purge(&ppp->file.xq); 3042 skb_queue_purge(&ppp->file.rq); 3043 #ifdef CONFIG_PPP_MULTILINK 3044 skb_queue_purge(&ppp->mrq); 3045 #endif /* CONFIG_PPP_MULTILINK */ 3046 #ifdef CONFIG_PPP_FILTER 3047 if (ppp->pass_filter) { 3048 bpf_prog_destroy(ppp->pass_filter); 3049 ppp->pass_filter = NULL; 3050 } 3051 3052 if (ppp->active_filter) { 3053 bpf_prog_destroy(ppp->active_filter); 3054 ppp->active_filter = NULL; 3055 } 3056 #endif /* CONFIG_PPP_FILTER */ 3057 3058 kfree_skb(ppp->xmit_pending); 3059 3060 free_netdev(ppp->dev); 3061 } 3062 3063 /* 3064 * Locate an existing ppp unit. 3065 * The caller should have locked the all_ppp_mutex. 3066 */ 3067 static struct ppp * 3068 ppp_find_unit(struct ppp_net *pn, int unit) 3069 { 3070 return unit_find(&pn->units_idr, unit); 3071 } 3072 3073 /* 3074 * Locate an existing ppp channel. 3075 * The caller should have locked the all_channels_lock. 3076 * First we look in the new_channels list, then in the 3077 * all_channels list. If found in the new_channels list, 3078 * we move it to the all_channels list. This is for speed 3079 * when we have a lot of channels in use. 3080 */ 3081 static struct channel * 3082 ppp_find_channel(struct ppp_net *pn, int unit) 3083 { 3084 struct channel *pch; 3085 3086 list_for_each_entry(pch, &pn->new_channels, list) { 3087 if (pch->file.index == unit) { 3088 list_move(&pch->list, &pn->all_channels); 3089 return pch; 3090 } 3091 } 3092 3093 list_for_each_entry(pch, &pn->all_channels, list) { 3094 if (pch->file.index == unit) 3095 return pch; 3096 } 3097 3098 return NULL; 3099 } 3100 3101 /* 3102 * Connect a PPP channel to a PPP interface unit. 3103 */ 3104 static int 3105 ppp_connect_channel(struct channel *pch, int unit) 3106 { 3107 struct ppp *ppp; 3108 struct ppp_net *pn; 3109 int ret = -ENXIO; 3110 int hdrlen; 3111 3112 pn = ppp_pernet(pch->chan_net); 3113 3114 mutex_lock(&pn->all_ppp_mutex); 3115 ppp = ppp_find_unit(pn, unit); 3116 if (!ppp) 3117 goto out; 3118 write_lock_bh(&pch->upl); 3119 ret = -EINVAL; 3120 if (pch->ppp) 3121 goto outl; 3122 3123 ppp_lock(ppp); 3124 if (pch->file.hdrlen > ppp->file.hdrlen) 3125 ppp->file.hdrlen = pch->file.hdrlen; 3126 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 3127 if (hdrlen > ppp->dev->hard_header_len) 3128 ppp->dev->hard_header_len = hdrlen; 3129 list_add_tail(&pch->clist, &ppp->channels); 3130 ++ppp->n_channels; 3131 pch->ppp = ppp; 3132 atomic_inc(&ppp->file.refcnt); 3133 ppp_unlock(ppp); 3134 ret = 0; 3135 3136 outl: 3137 write_unlock_bh(&pch->upl); 3138 out: 3139 mutex_unlock(&pn->all_ppp_mutex); 3140 return ret; 3141 } 3142 3143 /* 3144 * Disconnect a channel from its ppp unit. 3145 */ 3146 static int 3147 ppp_disconnect_channel(struct channel *pch) 3148 { 3149 struct ppp *ppp; 3150 int err = -EINVAL; 3151 3152 write_lock_bh(&pch->upl); 3153 ppp = pch->ppp; 3154 pch->ppp = NULL; 3155 write_unlock_bh(&pch->upl); 3156 if (ppp) { 3157 /* remove it from the ppp unit's list */ 3158 ppp_lock(ppp); 3159 list_del(&pch->clist); 3160 if (--ppp->n_channels == 0) 3161 wake_up_interruptible(&ppp->file.rwait); 3162 ppp_unlock(ppp); 3163 if (atomic_dec_and_test(&ppp->file.refcnt)) 3164 ppp_destroy_interface(ppp); 3165 err = 0; 3166 } 3167 return err; 3168 } 3169 3170 /* 3171 * Free up the resources used by a ppp channel. 3172 */ 3173 static void ppp_destroy_channel(struct channel *pch) 3174 { 3175 put_net(pch->chan_net); 3176 pch->chan_net = NULL; 3177 3178 atomic_dec(&channel_count); 3179 3180 if (!pch->file.dead) { 3181 /* "can't happen" */ 3182 pr_err("ppp: destroying undead channel %p !\n", pch); 3183 return; 3184 } 3185 skb_queue_purge(&pch->file.xq); 3186 skb_queue_purge(&pch->file.rq); 3187 kfree(pch); 3188 } 3189 3190 static void __exit ppp_cleanup(void) 3191 { 3192 /* should never happen */ 3193 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 3194 pr_err("PPP: removing module but units remain!\n"); 3195 rtnl_link_unregister(&ppp_link_ops); 3196 unregister_chrdev(PPP_MAJOR, "ppp"); 3197 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 3198 class_destroy(ppp_class); 3199 unregister_pernet_device(&ppp_net_ops); 3200 } 3201 3202 /* 3203 * Units handling. Caller must protect concurrent access 3204 * by holding all_ppp_mutex 3205 */ 3206 3207 /* associate pointer with specified number */ 3208 static int unit_set(struct idr *p, void *ptr, int n) 3209 { 3210 int unit; 3211 3212 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL); 3213 if (unit == -ENOSPC) 3214 unit = -EINVAL; 3215 return unit; 3216 } 3217 3218 /* get new free unit number and associate pointer with it */ 3219 static int unit_get(struct idr *p, void *ptr) 3220 { 3221 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL); 3222 } 3223 3224 /* put unit number back to a pool */ 3225 static void unit_put(struct idr *p, int n) 3226 { 3227 idr_remove(p, n); 3228 } 3229 3230 /* get pointer associated with the number */ 3231 static void *unit_find(struct idr *p, int n) 3232 { 3233 return idr_find(p, n); 3234 } 3235 3236 /* Module/initialization stuff */ 3237 3238 module_init(ppp_init); 3239 module_exit(ppp_cleanup); 3240 3241 EXPORT_SYMBOL(ppp_register_net_channel); 3242 EXPORT_SYMBOL(ppp_register_channel); 3243 EXPORT_SYMBOL(ppp_unregister_channel); 3244 EXPORT_SYMBOL(ppp_channel_index); 3245 EXPORT_SYMBOL(ppp_unit_number); 3246 EXPORT_SYMBOL(ppp_dev_name); 3247 EXPORT_SYMBOL(ppp_input); 3248 EXPORT_SYMBOL(ppp_input_error); 3249 EXPORT_SYMBOL(ppp_output_wakeup); 3250 EXPORT_SYMBOL(ppp_register_compressor); 3251 EXPORT_SYMBOL(ppp_unregister_compressor); 3252 MODULE_LICENSE("GPL"); 3253 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0); 3254 MODULE_ALIAS_RTNL_LINK("ppp"); 3255 MODULE_ALIAS("devname:ppp"); 3256