xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision afb46f79)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct sk_filter *pass_filter;	/* filter for packets to pass */
147 	struct sk_filter *active_filter;/* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
273 static void init_ppp_file(struct ppp_file *pf, int kind);
274 static void ppp_shutdown_interface(struct ppp *ppp);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static struct class *ppp_class;
287 
288 /* per net-namespace data */
289 static inline struct ppp_net *ppp_pernet(struct net *net)
290 {
291 	BUG_ON(!net);
292 
293 	return net_generic(net, ppp_net_id);
294 }
295 
296 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
297 static inline int proto_to_npindex(int proto)
298 {
299 	switch (proto) {
300 	case PPP_IP:
301 		return NP_IP;
302 	case PPP_IPV6:
303 		return NP_IPV6;
304 	case PPP_IPX:
305 		return NP_IPX;
306 	case PPP_AT:
307 		return NP_AT;
308 	case PPP_MPLS_UC:
309 		return NP_MPLS_UC;
310 	case PPP_MPLS_MC:
311 		return NP_MPLS_MC;
312 	}
313 	return -EINVAL;
314 }
315 
316 /* Translates an NP index into a PPP protocol number */
317 static const int npindex_to_proto[NUM_NP] = {
318 	PPP_IP,
319 	PPP_IPV6,
320 	PPP_IPX,
321 	PPP_AT,
322 	PPP_MPLS_UC,
323 	PPP_MPLS_MC,
324 };
325 
326 /* Translates an ethertype into an NP index */
327 static inline int ethertype_to_npindex(int ethertype)
328 {
329 	switch (ethertype) {
330 	case ETH_P_IP:
331 		return NP_IP;
332 	case ETH_P_IPV6:
333 		return NP_IPV6;
334 	case ETH_P_IPX:
335 		return NP_IPX;
336 	case ETH_P_PPPTALK:
337 	case ETH_P_ATALK:
338 		return NP_AT;
339 	case ETH_P_MPLS_UC:
340 		return NP_MPLS_UC;
341 	case ETH_P_MPLS_MC:
342 		return NP_MPLS_MC;
343 	}
344 	return -1;
345 }
346 
347 /* Translates an NP index into an ethertype */
348 static const int npindex_to_ethertype[NUM_NP] = {
349 	ETH_P_IP,
350 	ETH_P_IPV6,
351 	ETH_P_IPX,
352 	ETH_P_PPPTALK,
353 	ETH_P_MPLS_UC,
354 	ETH_P_MPLS_MC,
355 };
356 
357 /*
358  * Locking shorthand.
359  */
360 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
361 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
362 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
363 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
364 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
365 				     ppp_recv_lock(ppp); } while (0)
366 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
367 				     ppp_xmit_unlock(ppp); } while (0)
368 
369 /*
370  * /dev/ppp device routines.
371  * The /dev/ppp device is used by pppd to control the ppp unit.
372  * It supports the read, write, ioctl and poll functions.
373  * Open instances of /dev/ppp can be in one of three states:
374  * unattached, attached to a ppp unit, or attached to a ppp channel.
375  */
376 static int ppp_open(struct inode *inode, struct file *file)
377 {
378 	/*
379 	 * This could (should?) be enforced by the permissions on /dev/ppp.
380 	 */
381 	if (!capable(CAP_NET_ADMIN))
382 		return -EPERM;
383 	return 0;
384 }
385 
386 static int ppp_release(struct inode *unused, struct file *file)
387 {
388 	struct ppp_file *pf = file->private_data;
389 	struct ppp *ppp;
390 
391 	if (pf) {
392 		file->private_data = NULL;
393 		if (pf->kind == INTERFACE) {
394 			ppp = PF_TO_PPP(pf);
395 			if (file == ppp->owner)
396 				ppp_shutdown_interface(ppp);
397 		}
398 		if (atomic_dec_and_test(&pf->refcnt)) {
399 			switch (pf->kind) {
400 			case INTERFACE:
401 				ppp_destroy_interface(PF_TO_PPP(pf));
402 				break;
403 			case CHANNEL:
404 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
405 				break;
406 			}
407 		}
408 	}
409 	return 0;
410 }
411 
412 static ssize_t ppp_read(struct file *file, char __user *buf,
413 			size_t count, loff_t *ppos)
414 {
415 	struct ppp_file *pf = file->private_data;
416 	DECLARE_WAITQUEUE(wait, current);
417 	ssize_t ret;
418 	struct sk_buff *skb = NULL;
419 	struct iovec iov;
420 
421 	ret = count;
422 
423 	if (!pf)
424 		return -ENXIO;
425 	add_wait_queue(&pf->rwait, &wait);
426 	for (;;) {
427 		set_current_state(TASK_INTERRUPTIBLE);
428 		skb = skb_dequeue(&pf->rq);
429 		if (skb)
430 			break;
431 		ret = 0;
432 		if (pf->dead)
433 			break;
434 		if (pf->kind == INTERFACE) {
435 			/*
436 			 * Return 0 (EOF) on an interface that has no
437 			 * channels connected, unless it is looping
438 			 * network traffic (demand mode).
439 			 */
440 			struct ppp *ppp = PF_TO_PPP(pf);
441 			if (ppp->n_channels == 0 &&
442 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
443 				break;
444 		}
445 		ret = -EAGAIN;
446 		if (file->f_flags & O_NONBLOCK)
447 			break;
448 		ret = -ERESTARTSYS;
449 		if (signal_pending(current))
450 			break;
451 		schedule();
452 	}
453 	set_current_state(TASK_RUNNING);
454 	remove_wait_queue(&pf->rwait, &wait);
455 
456 	if (!skb)
457 		goto out;
458 
459 	ret = -EOVERFLOW;
460 	if (skb->len > count)
461 		goto outf;
462 	ret = -EFAULT;
463 	iov.iov_base = buf;
464 	iov.iov_len = count;
465 	if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
466 		goto outf;
467 	ret = skb->len;
468 
469  outf:
470 	kfree_skb(skb);
471  out:
472 	return ret;
473 }
474 
475 static ssize_t ppp_write(struct file *file, const char __user *buf,
476 			 size_t count, loff_t *ppos)
477 {
478 	struct ppp_file *pf = file->private_data;
479 	struct sk_buff *skb;
480 	ssize_t ret;
481 
482 	if (!pf)
483 		return -ENXIO;
484 	ret = -ENOMEM;
485 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
486 	if (!skb)
487 		goto out;
488 	skb_reserve(skb, pf->hdrlen);
489 	ret = -EFAULT;
490 	if (copy_from_user(skb_put(skb, count), buf, count)) {
491 		kfree_skb(skb);
492 		goto out;
493 	}
494 
495 	skb_queue_tail(&pf->xq, skb);
496 
497 	switch (pf->kind) {
498 	case INTERFACE:
499 		ppp_xmit_process(PF_TO_PPP(pf));
500 		break;
501 	case CHANNEL:
502 		ppp_channel_push(PF_TO_CHANNEL(pf));
503 		break;
504 	}
505 
506 	ret = count;
507 
508  out:
509 	return ret;
510 }
511 
512 /* No kernel lock - fine */
513 static unsigned int ppp_poll(struct file *file, poll_table *wait)
514 {
515 	struct ppp_file *pf = file->private_data;
516 	unsigned int mask;
517 
518 	if (!pf)
519 		return 0;
520 	poll_wait(file, &pf->rwait, wait);
521 	mask = POLLOUT | POLLWRNORM;
522 	if (skb_peek(&pf->rq))
523 		mask |= POLLIN | POLLRDNORM;
524 	if (pf->dead)
525 		mask |= POLLHUP;
526 	else if (pf->kind == INTERFACE) {
527 		/* see comment in ppp_read */
528 		struct ppp *ppp = PF_TO_PPP(pf);
529 		if (ppp->n_channels == 0 &&
530 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
531 			mask |= POLLIN | POLLRDNORM;
532 	}
533 
534 	return mask;
535 }
536 
537 #ifdef CONFIG_PPP_FILTER
538 static int get_filter(void __user *arg, struct sock_filter **p)
539 {
540 	struct sock_fprog uprog;
541 	struct sock_filter *code = NULL;
542 	int len, err;
543 
544 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
545 		return -EFAULT;
546 
547 	if (!uprog.len) {
548 		*p = NULL;
549 		return 0;
550 	}
551 
552 	len = uprog.len * sizeof(struct sock_filter);
553 	code = memdup_user(uprog.filter, len);
554 	if (IS_ERR(code))
555 		return PTR_ERR(code);
556 
557 	err = sk_chk_filter(code, uprog.len);
558 	if (err) {
559 		kfree(code);
560 		return err;
561 	}
562 
563 	*p = code;
564 	return uprog.len;
565 }
566 #endif /* CONFIG_PPP_FILTER */
567 
568 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570 	struct ppp_file *pf = file->private_data;
571 	struct ppp *ppp;
572 	int err = -EFAULT, val, val2, i;
573 	struct ppp_idle idle;
574 	struct npioctl npi;
575 	int unit, cflags;
576 	struct slcompress *vj;
577 	void __user *argp = (void __user *)arg;
578 	int __user *p = argp;
579 
580 	if (!pf)
581 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
582 					pf, file, cmd, arg);
583 
584 	if (cmd == PPPIOCDETACH) {
585 		/*
586 		 * We have to be careful here... if the file descriptor
587 		 * has been dup'd, we could have another process in the
588 		 * middle of a poll using the same file *, so we had
589 		 * better not free the interface data structures -
590 		 * instead we fail the ioctl.  Even in this case, we
591 		 * shut down the interface if we are the owner of it.
592 		 * Actually, we should get rid of PPPIOCDETACH, userland
593 		 * (i.e. pppd) could achieve the same effect by closing
594 		 * this fd and reopening /dev/ppp.
595 		 */
596 		err = -EINVAL;
597 		mutex_lock(&ppp_mutex);
598 		if (pf->kind == INTERFACE) {
599 			ppp = PF_TO_PPP(pf);
600 			if (file == ppp->owner)
601 				ppp_shutdown_interface(ppp);
602 		}
603 		if (atomic_long_read(&file->f_count) <= 2) {
604 			ppp_release(NULL, file);
605 			err = 0;
606 		} else
607 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
608 				atomic_long_read(&file->f_count));
609 		mutex_unlock(&ppp_mutex);
610 		return err;
611 	}
612 
613 	if (pf->kind == CHANNEL) {
614 		struct channel *pch;
615 		struct ppp_channel *chan;
616 
617 		mutex_lock(&ppp_mutex);
618 		pch = PF_TO_CHANNEL(pf);
619 
620 		switch (cmd) {
621 		case PPPIOCCONNECT:
622 			if (get_user(unit, p))
623 				break;
624 			err = ppp_connect_channel(pch, unit);
625 			break;
626 
627 		case PPPIOCDISCONN:
628 			err = ppp_disconnect_channel(pch);
629 			break;
630 
631 		default:
632 			down_read(&pch->chan_sem);
633 			chan = pch->chan;
634 			err = -ENOTTY;
635 			if (chan && chan->ops->ioctl)
636 				err = chan->ops->ioctl(chan, cmd, arg);
637 			up_read(&pch->chan_sem);
638 		}
639 		mutex_unlock(&ppp_mutex);
640 		return err;
641 	}
642 
643 	if (pf->kind != INTERFACE) {
644 		/* can't happen */
645 		pr_err("PPP: not interface or channel??\n");
646 		return -EINVAL;
647 	}
648 
649 	mutex_lock(&ppp_mutex);
650 	ppp = PF_TO_PPP(pf);
651 	switch (cmd) {
652 	case PPPIOCSMRU:
653 		if (get_user(val, p))
654 			break;
655 		ppp->mru = val;
656 		err = 0;
657 		break;
658 
659 	case PPPIOCSFLAGS:
660 		if (get_user(val, p))
661 			break;
662 		ppp_lock(ppp);
663 		cflags = ppp->flags & ~val;
664 		ppp->flags = val & SC_FLAG_BITS;
665 		ppp_unlock(ppp);
666 		if (cflags & SC_CCP_OPEN)
667 			ppp_ccp_closed(ppp);
668 		err = 0;
669 		break;
670 
671 	case PPPIOCGFLAGS:
672 		val = ppp->flags | ppp->xstate | ppp->rstate;
673 		if (put_user(val, p))
674 			break;
675 		err = 0;
676 		break;
677 
678 	case PPPIOCSCOMPRESS:
679 		err = ppp_set_compress(ppp, arg);
680 		break;
681 
682 	case PPPIOCGUNIT:
683 		if (put_user(ppp->file.index, p))
684 			break;
685 		err = 0;
686 		break;
687 
688 	case PPPIOCSDEBUG:
689 		if (get_user(val, p))
690 			break;
691 		ppp->debug = val;
692 		err = 0;
693 		break;
694 
695 	case PPPIOCGDEBUG:
696 		if (put_user(ppp->debug, p))
697 			break;
698 		err = 0;
699 		break;
700 
701 	case PPPIOCGIDLE:
702 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
703 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
704 		if (copy_to_user(argp, &idle, sizeof(idle)))
705 			break;
706 		err = 0;
707 		break;
708 
709 	case PPPIOCSMAXCID:
710 		if (get_user(val, p))
711 			break;
712 		val2 = 15;
713 		if ((val >> 16) != 0) {
714 			val2 = val >> 16;
715 			val &= 0xffff;
716 		}
717 		vj = slhc_init(val2+1, val+1);
718 		if (!vj) {
719 			netdev_err(ppp->dev,
720 				   "PPP: no memory (VJ compressor)\n");
721 			err = -ENOMEM;
722 			break;
723 		}
724 		ppp_lock(ppp);
725 		if (ppp->vj)
726 			slhc_free(ppp->vj);
727 		ppp->vj = vj;
728 		ppp_unlock(ppp);
729 		err = 0;
730 		break;
731 
732 	case PPPIOCGNPMODE:
733 	case PPPIOCSNPMODE:
734 		if (copy_from_user(&npi, argp, sizeof(npi)))
735 			break;
736 		err = proto_to_npindex(npi.protocol);
737 		if (err < 0)
738 			break;
739 		i = err;
740 		if (cmd == PPPIOCGNPMODE) {
741 			err = -EFAULT;
742 			npi.mode = ppp->npmode[i];
743 			if (copy_to_user(argp, &npi, sizeof(npi)))
744 				break;
745 		} else {
746 			ppp->npmode[i] = npi.mode;
747 			/* we may be able to transmit more packets now (??) */
748 			netif_wake_queue(ppp->dev);
749 		}
750 		err = 0;
751 		break;
752 
753 #ifdef CONFIG_PPP_FILTER
754 	case PPPIOCSPASS:
755 	{
756 		struct sock_filter *code;
757 
758 		err = get_filter(argp, &code);
759 		if (err >= 0) {
760 			struct sock_fprog fprog = {
761 				.len = err,
762 				.filter = code,
763 			};
764 
765 			ppp_lock(ppp);
766 			if (ppp->pass_filter)
767 				sk_unattached_filter_destroy(ppp->pass_filter);
768 			err = sk_unattached_filter_create(&ppp->pass_filter,
769 							  &fprog);
770 			kfree(code);
771 			ppp_unlock(ppp);
772 		}
773 		break;
774 	}
775 	case PPPIOCSACTIVE:
776 	{
777 		struct sock_filter *code;
778 
779 		err = get_filter(argp, &code);
780 		if (err >= 0) {
781 			struct sock_fprog fprog = {
782 				.len = err,
783 				.filter = code,
784 			};
785 
786 			ppp_lock(ppp);
787 			if (ppp->active_filter)
788 				sk_unattached_filter_destroy(ppp->active_filter);
789 			err = sk_unattached_filter_create(&ppp->active_filter,
790 							  &fprog);
791 			kfree(code);
792 			ppp_unlock(ppp);
793 		}
794 		break;
795 	}
796 #endif /* CONFIG_PPP_FILTER */
797 
798 #ifdef CONFIG_PPP_MULTILINK
799 	case PPPIOCSMRRU:
800 		if (get_user(val, p))
801 			break;
802 		ppp_recv_lock(ppp);
803 		ppp->mrru = val;
804 		ppp_recv_unlock(ppp);
805 		err = 0;
806 		break;
807 #endif /* CONFIG_PPP_MULTILINK */
808 
809 	default:
810 		err = -ENOTTY;
811 	}
812 	mutex_unlock(&ppp_mutex);
813 	return err;
814 }
815 
816 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
817 			struct file *file, unsigned int cmd, unsigned long arg)
818 {
819 	int unit, err = -EFAULT;
820 	struct ppp *ppp;
821 	struct channel *chan;
822 	struct ppp_net *pn;
823 	int __user *p = (int __user *)arg;
824 
825 	mutex_lock(&ppp_mutex);
826 	switch (cmd) {
827 	case PPPIOCNEWUNIT:
828 		/* Create a new ppp unit */
829 		if (get_user(unit, p))
830 			break;
831 		ppp = ppp_create_interface(net, unit, &err);
832 		if (!ppp)
833 			break;
834 		file->private_data = &ppp->file;
835 		ppp->owner = file;
836 		err = -EFAULT;
837 		if (put_user(ppp->file.index, p))
838 			break;
839 		err = 0;
840 		break;
841 
842 	case PPPIOCATTACH:
843 		/* Attach to an existing ppp unit */
844 		if (get_user(unit, p))
845 			break;
846 		err = -ENXIO;
847 		pn = ppp_pernet(net);
848 		mutex_lock(&pn->all_ppp_mutex);
849 		ppp = ppp_find_unit(pn, unit);
850 		if (ppp) {
851 			atomic_inc(&ppp->file.refcnt);
852 			file->private_data = &ppp->file;
853 			err = 0;
854 		}
855 		mutex_unlock(&pn->all_ppp_mutex);
856 		break;
857 
858 	case PPPIOCATTCHAN:
859 		if (get_user(unit, p))
860 			break;
861 		err = -ENXIO;
862 		pn = ppp_pernet(net);
863 		spin_lock_bh(&pn->all_channels_lock);
864 		chan = ppp_find_channel(pn, unit);
865 		if (chan) {
866 			atomic_inc(&chan->file.refcnt);
867 			file->private_data = &chan->file;
868 			err = 0;
869 		}
870 		spin_unlock_bh(&pn->all_channels_lock);
871 		break;
872 
873 	default:
874 		err = -ENOTTY;
875 	}
876 	mutex_unlock(&ppp_mutex);
877 	return err;
878 }
879 
880 static const struct file_operations ppp_device_fops = {
881 	.owner		= THIS_MODULE,
882 	.read		= ppp_read,
883 	.write		= ppp_write,
884 	.poll		= ppp_poll,
885 	.unlocked_ioctl	= ppp_ioctl,
886 	.open		= ppp_open,
887 	.release	= ppp_release,
888 	.llseek		= noop_llseek,
889 };
890 
891 static __net_init int ppp_init_net(struct net *net)
892 {
893 	struct ppp_net *pn = net_generic(net, ppp_net_id);
894 
895 	idr_init(&pn->units_idr);
896 	mutex_init(&pn->all_ppp_mutex);
897 
898 	INIT_LIST_HEAD(&pn->all_channels);
899 	INIT_LIST_HEAD(&pn->new_channels);
900 
901 	spin_lock_init(&pn->all_channels_lock);
902 
903 	return 0;
904 }
905 
906 static __net_exit void ppp_exit_net(struct net *net)
907 {
908 	struct ppp_net *pn = net_generic(net, ppp_net_id);
909 
910 	idr_destroy(&pn->units_idr);
911 }
912 
913 static struct pernet_operations ppp_net_ops = {
914 	.init = ppp_init_net,
915 	.exit = ppp_exit_net,
916 	.id   = &ppp_net_id,
917 	.size = sizeof(struct ppp_net),
918 };
919 
920 #define PPP_MAJOR	108
921 
922 /* Called at boot time if ppp is compiled into the kernel,
923    or at module load time (from init_module) if compiled as a module. */
924 static int __init ppp_init(void)
925 {
926 	int err;
927 
928 	pr_info("PPP generic driver version " PPP_VERSION "\n");
929 
930 	err = register_pernet_device(&ppp_net_ops);
931 	if (err) {
932 		pr_err("failed to register PPP pernet device (%d)\n", err);
933 		goto out;
934 	}
935 
936 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
937 	if (err) {
938 		pr_err("failed to register PPP device (%d)\n", err);
939 		goto out_net;
940 	}
941 
942 	ppp_class = class_create(THIS_MODULE, "ppp");
943 	if (IS_ERR(ppp_class)) {
944 		err = PTR_ERR(ppp_class);
945 		goto out_chrdev;
946 	}
947 
948 	/* not a big deal if we fail here :-) */
949 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
950 
951 	return 0;
952 
953 out_chrdev:
954 	unregister_chrdev(PPP_MAJOR, "ppp");
955 out_net:
956 	unregister_pernet_device(&ppp_net_ops);
957 out:
958 	return err;
959 }
960 
961 /*
962  * Network interface unit routines.
963  */
964 static netdev_tx_t
965 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
966 {
967 	struct ppp *ppp = netdev_priv(dev);
968 	int npi, proto;
969 	unsigned char *pp;
970 
971 	npi = ethertype_to_npindex(ntohs(skb->protocol));
972 	if (npi < 0)
973 		goto outf;
974 
975 	/* Drop, accept or reject the packet */
976 	switch (ppp->npmode[npi]) {
977 	case NPMODE_PASS:
978 		break;
979 	case NPMODE_QUEUE:
980 		/* it would be nice to have a way to tell the network
981 		   system to queue this one up for later. */
982 		goto outf;
983 	case NPMODE_DROP:
984 	case NPMODE_ERROR:
985 		goto outf;
986 	}
987 
988 	/* Put the 2-byte PPP protocol number on the front,
989 	   making sure there is room for the address and control fields. */
990 	if (skb_cow_head(skb, PPP_HDRLEN))
991 		goto outf;
992 
993 	pp = skb_push(skb, 2);
994 	proto = npindex_to_proto[npi];
995 	put_unaligned_be16(proto, pp);
996 
997 	skb_queue_tail(&ppp->file.xq, skb);
998 	ppp_xmit_process(ppp);
999 	return NETDEV_TX_OK;
1000 
1001  outf:
1002 	kfree_skb(skb);
1003 	++dev->stats.tx_dropped;
1004 	return NETDEV_TX_OK;
1005 }
1006 
1007 static int
1008 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1009 {
1010 	struct ppp *ppp = netdev_priv(dev);
1011 	int err = -EFAULT;
1012 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1013 	struct ppp_stats stats;
1014 	struct ppp_comp_stats cstats;
1015 	char *vers;
1016 
1017 	switch (cmd) {
1018 	case SIOCGPPPSTATS:
1019 		ppp_get_stats(ppp, &stats);
1020 		if (copy_to_user(addr, &stats, sizeof(stats)))
1021 			break;
1022 		err = 0;
1023 		break;
1024 
1025 	case SIOCGPPPCSTATS:
1026 		memset(&cstats, 0, sizeof(cstats));
1027 		if (ppp->xc_state)
1028 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1029 		if (ppp->rc_state)
1030 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1031 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1032 			break;
1033 		err = 0;
1034 		break;
1035 
1036 	case SIOCGPPPVER:
1037 		vers = PPP_VERSION;
1038 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1039 			break;
1040 		err = 0;
1041 		break;
1042 
1043 	default:
1044 		err = -EINVAL;
1045 	}
1046 
1047 	return err;
1048 }
1049 
1050 static struct rtnl_link_stats64*
1051 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1052 {
1053 	struct ppp *ppp = netdev_priv(dev);
1054 
1055 	ppp_recv_lock(ppp);
1056 	stats64->rx_packets = ppp->stats64.rx_packets;
1057 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1058 	ppp_recv_unlock(ppp);
1059 
1060 	ppp_xmit_lock(ppp);
1061 	stats64->tx_packets = ppp->stats64.tx_packets;
1062 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1063 	ppp_xmit_unlock(ppp);
1064 
1065 	stats64->rx_errors        = dev->stats.rx_errors;
1066 	stats64->tx_errors        = dev->stats.tx_errors;
1067 	stats64->rx_dropped       = dev->stats.rx_dropped;
1068 	stats64->tx_dropped       = dev->stats.tx_dropped;
1069 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1070 
1071 	return stats64;
1072 }
1073 
1074 static struct lock_class_key ppp_tx_busylock;
1075 static int ppp_dev_init(struct net_device *dev)
1076 {
1077 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1078 	return 0;
1079 }
1080 
1081 static const struct net_device_ops ppp_netdev_ops = {
1082 	.ndo_init	 = ppp_dev_init,
1083 	.ndo_start_xmit  = ppp_start_xmit,
1084 	.ndo_do_ioctl    = ppp_net_ioctl,
1085 	.ndo_get_stats64 = ppp_get_stats64,
1086 };
1087 
1088 static void ppp_setup(struct net_device *dev)
1089 {
1090 	dev->netdev_ops = &ppp_netdev_ops;
1091 	dev->hard_header_len = PPP_HDRLEN;
1092 	dev->mtu = PPP_MRU;
1093 	dev->addr_len = 0;
1094 	dev->tx_queue_len = 3;
1095 	dev->type = ARPHRD_PPP;
1096 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1097 	dev->features |= NETIF_F_NETNS_LOCAL;
1098 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
1099 }
1100 
1101 /*
1102  * Transmit-side routines.
1103  */
1104 
1105 /*
1106  * Called to do any work queued up on the transmit side
1107  * that can now be done.
1108  */
1109 static void
1110 ppp_xmit_process(struct ppp *ppp)
1111 {
1112 	struct sk_buff *skb;
1113 
1114 	ppp_xmit_lock(ppp);
1115 	if (!ppp->closing) {
1116 		ppp_push(ppp);
1117 		while (!ppp->xmit_pending &&
1118 		       (skb = skb_dequeue(&ppp->file.xq)))
1119 			ppp_send_frame(ppp, skb);
1120 		/* If there's no work left to do, tell the core net
1121 		   code that we can accept some more. */
1122 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1123 			netif_wake_queue(ppp->dev);
1124 		else
1125 			netif_stop_queue(ppp->dev);
1126 	}
1127 	ppp_xmit_unlock(ppp);
1128 }
1129 
1130 static inline struct sk_buff *
1131 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1132 {
1133 	struct sk_buff *new_skb;
1134 	int len;
1135 	int new_skb_size = ppp->dev->mtu +
1136 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1137 	int compressor_skb_size = ppp->dev->mtu +
1138 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1139 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1140 	if (!new_skb) {
1141 		if (net_ratelimit())
1142 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1143 		return NULL;
1144 	}
1145 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1146 		skb_reserve(new_skb,
1147 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1148 
1149 	/* compressor still expects A/C bytes in hdr */
1150 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1151 				   new_skb->data, skb->len + 2,
1152 				   compressor_skb_size);
1153 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1154 		consume_skb(skb);
1155 		skb = new_skb;
1156 		skb_put(skb, len);
1157 		skb_pull(skb, 2);	/* pull off A/C bytes */
1158 	} else if (len == 0) {
1159 		/* didn't compress, or CCP not up yet */
1160 		consume_skb(new_skb);
1161 		new_skb = skb;
1162 	} else {
1163 		/*
1164 		 * (len < 0)
1165 		 * MPPE requires that we do not send unencrypted
1166 		 * frames.  The compressor will return -1 if we
1167 		 * should drop the frame.  We cannot simply test
1168 		 * the compress_proto because MPPE and MPPC share
1169 		 * the same number.
1170 		 */
1171 		if (net_ratelimit())
1172 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1173 		kfree_skb(skb);
1174 		consume_skb(new_skb);
1175 		new_skb = NULL;
1176 	}
1177 	return new_skb;
1178 }
1179 
1180 /*
1181  * Compress and send a frame.
1182  * The caller should have locked the xmit path,
1183  * and xmit_pending should be 0.
1184  */
1185 static void
1186 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1187 {
1188 	int proto = PPP_PROTO(skb);
1189 	struct sk_buff *new_skb;
1190 	int len;
1191 	unsigned char *cp;
1192 
1193 	if (proto < 0x8000) {
1194 #ifdef CONFIG_PPP_FILTER
1195 		/* check if we should pass this packet */
1196 		/* the filter instructions are constructed assuming
1197 		   a four-byte PPP header on each packet */
1198 		*skb_push(skb, 2) = 1;
1199 		if (ppp->pass_filter &&
1200 		    SK_RUN_FILTER(ppp->pass_filter, skb) == 0) {
1201 			if (ppp->debug & 1)
1202 				netdev_printk(KERN_DEBUG, ppp->dev,
1203 					      "PPP: outbound frame "
1204 					      "not passed\n");
1205 			kfree_skb(skb);
1206 			return;
1207 		}
1208 		/* if this packet passes the active filter, record the time */
1209 		if (!(ppp->active_filter &&
1210 		      SK_RUN_FILTER(ppp->active_filter, skb) == 0))
1211 			ppp->last_xmit = jiffies;
1212 		skb_pull(skb, 2);
1213 #else
1214 		/* for data packets, record the time */
1215 		ppp->last_xmit = jiffies;
1216 #endif /* CONFIG_PPP_FILTER */
1217 	}
1218 
1219 	++ppp->stats64.tx_packets;
1220 	ppp->stats64.tx_bytes += skb->len - 2;
1221 
1222 	switch (proto) {
1223 	case PPP_IP:
1224 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1225 			break;
1226 		/* try to do VJ TCP header compression */
1227 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1228 				    GFP_ATOMIC);
1229 		if (!new_skb) {
1230 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1231 			goto drop;
1232 		}
1233 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1234 		cp = skb->data + 2;
1235 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1236 				    new_skb->data + 2, &cp,
1237 				    !(ppp->flags & SC_NO_TCP_CCID));
1238 		if (cp == skb->data + 2) {
1239 			/* didn't compress */
1240 			consume_skb(new_skb);
1241 		} else {
1242 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1243 				proto = PPP_VJC_COMP;
1244 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1245 			} else {
1246 				proto = PPP_VJC_UNCOMP;
1247 				cp[0] = skb->data[2];
1248 			}
1249 			consume_skb(skb);
1250 			skb = new_skb;
1251 			cp = skb_put(skb, len + 2);
1252 			cp[0] = 0;
1253 			cp[1] = proto;
1254 		}
1255 		break;
1256 
1257 	case PPP_CCP:
1258 		/* peek at outbound CCP frames */
1259 		ppp_ccp_peek(ppp, skb, 0);
1260 		break;
1261 	}
1262 
1263 	/* try to do packet compression */
1264 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1265 	    proto != PPP_LCP && proto != PPP_CCP) {
1266 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1267 			if (net_ratelimit())
1268 				netdev_err(ppp->dev,
1269 					   "ppp: compression required but "
1270 					   "down - pkt dropped.\n");
1271 			goto drop;
1272 		}
1273 		skb = pad_compress_skb(ppp, skb);
1274 		if (!skb)
1275 			goto drop;
1276 	}
1277 
1278 	/*
1279 	 * If we are waiting for traffic (demand dialling),
1280 	 * queue it up for pppd to receive.
1281 	 */
1282 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1283 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1284 			goto drop;
1285 		skb_queue_tail(&ppp->file.rq, skb);
1286 		wake_up_interruptible(&ppp->file.rwait);
1287 		return;
1288 	}
1289 
1290 	ppp->xmit_pending = skb;
1291 	ppp_push(ppp);
1292 	return;
1293 
1294  drop:
1295 	kfree_skb(skb);
1296 	++ppp->dev->stats.tx_errors;
1297 }
1298 
1299 /*
1300  * Try to send the frame in xmit_pending.
1301  * The caller should have the xmit path locked.
1302  */
1303 static void
1304 ppp_push(struct ppp *ppp)
1305 {
1306 	struct list_head *list;
1307 	struct channel *pch;
1308 	struct sk_buff *skb = ppp->xmit_pending;
1309 
1310 	if (!skb)
1311 		return;
1312 
1313 	list = &ppp->channels;
1314 	if (list_empty(list)) {
1315 		/* nowhere to send the packet, just drop it */
1316 		ppp->xmit_pending = NULL;
1317 		kfree_skb(skb);
1318 		return;
1319 	}
1320 
1321 	if ((ppp->flags & SC_MULTILINK) == 0) {
1322 		/* not doing multilink: send it down the first channel */
1323 		list = list->next;
1324 		pch = list_entry(list, struct channel, clist);
1325 
1326 		spin_lock_bh(&pch->downl);
1327 		if (pch->chan) {
1328 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1329 				ppp->xmit_pending = NULL;
1330 		} else {
1331 			/* channel got unregistered */
1332 			kfree_skb(skb);
1333 			ppp->xmit_pending = NULL;
1334 		}
1335 		spin_unlock_bh(&pch->downl);
1336 		return;
1337 	}
1338 
1339 #ifdef CONFIG_PPP_MULTILINK
1340 	/* Multilink: fragment the packet over as many links
1341 	   as can take the packet at the moment. */
1342 	if (!ppp_mp_explode(ppp, skb))
1343 		return;
1344 #endif /* CONFIG_PPP_MULTILINK */
1345 
1346 	ppp->xmit_pending = NULL;
1347 	kfree_skb(skb);
1348 }
1349 
1350 #ifdef CONFIG_PPP_MULTILINK
1351 static bool mp_protocol_compress __read_mostly = true;
1352 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1353 MODULE_PARM_DESC(mp_protocol_compress,
1354 		 "compress protocol id in multilink fragments");
1355 
1356 /*
1357  * Divide a packet to be transmitted into fragments and
1358  * send them out the individual links.
1359  */
1360 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1361 {
1362 	int len, totlen;
1363 	int i, bits, hdrlen, mtu;
1364 	int flen;
1365 	int navail, nfree, nzero;
1366 	int nbigger;
1367 	int totspeed;
1368 	int totfree;
1369 	unsigned char *p, *q;
1370 	struct list_head *list;
1371 	struct channel *pch;
1372 	struct sk_buff *frag;
1373 	struct ppp_channel *chan;
1374 
1375 	totspeed = 0; /*total bitrate of the bundle*/
1376 	nfree = 0; /* # channels which have no packet already queued */
1377 	navail = 0; /* total # of usable channels (not deregistered) */
1378 	nzero = 0; /* number of channels with zero speed associated*/
1379 	totfree = 0; /*total # of channels available and
1380 				  *having no queued packets before
1381 				  *starting the fragmentation*/
1382 
1383 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1384 	i = 0;
1385 	list_for_each_entry(pch, &ppp->channels, clist) {
1386 		if (pch->chan) {
1387 			pch->avail = 1;
1388 			navail++;
1389 			pch->speed = pch->chan->speed;
1390 		} else {
1391 			pch->avail = 0;
1392 		}
1393 		if (pch->avail) {
1394 			if (skb_queue_empty(&pch->file.xq) ||
1395 				!pch->had_frag) {
1396 					if (pch->speed == 0)
1397 						nzero++;
1398 					else
1399 						totspeed += pch->speed;
1400 
1401 					pch->avail = 2;
1402 					++nfree;
1403 					++totfree;
1404 				}
1405 			if (!pch->had_frag && i < ppp->nxchan)
1406 				ppp->nxchan = i;
1407 		}
1408 		++i;
1409 	}
1410 	/*
1411 	 * Don't start sending this packet unless at least half of
1412 	 * the channels are free.  This gives much better TCP
1413 	 * performance if we have a lot of channels.
1414 	 */
1415 	if (nfree == 0 || nfree < navail / 2)
1416 		return 0; /* can't take now, leave it in xmit_pending */
1417 
1418 	/* Do protocol field compression */
1419 	p = skb->data;
1420 	len = skb->len;
1421 	if (*p == 0 && mp_protocol_compress) {
1422 		++p;
1423 		--len;
1424 	}
1425 
1426 	totlen = len;
1427 	nbigger = len % nfree;
1428 
1429 	/* skip to the channel after the one we last used
1430 	   and start at that one */
1431 	list = &ppp->channels;
1432 	for (i = 0; i < ppp->nxchan; ++i) {
1433 		list = list->next;
1434 		if (list == &ppp->channels) {
1435 			i = 0;
1436 			break;
1437 		}
1438 	}
1439 
1440 	/* create a fragment for each channel */
1441 	bits = B;
1442 	while (len > 0) {
1443 		list = list->next;
1444 		if (list == &ppp->channels) {
1445 			i = 0;
1446 			continue;
1447 		}
1448 		pch = list_entry(list, struct channel, clist);
1449 		++i;
1450 		if (!pch->avail)
1451 			continue;
1452 
1453 		/*
1454 		 * Skip this channel if it has a fragment pending already and
1455 		 * we haven't given a fragment to all of the free channels.
1456 		 */
1457 		if (pch->avail == 1) {
1458 			if (nfree > 0)
1459 				continue;
1460 		} else {
1461 			pch->avail = 1;
1462 		}
1463 
1464 		/* check the channel's mtu and whether it is still attached. */
1465 		spin_lock_bh(&pch->downl);
1466 		if (pch->chan == NULL) {
1467 			/* can't use this channel, it's being deregistered */
1468 			if (pch->speed == 0)
1469 				nzero--;
1470 			else
1471 				totspeed -= pch->speed;
1472 
1473 			spin_unlock_bh(&pch->downl);
1474 			pch->avail = 0;
1475 			totlen = len;
1476 			totfree--;
1477 			nfree--;
1478 			if (--navail == 0)
1479 				break;
1480 			continue;
1481 		}
1482 
1483 		/*
1484 		*if the channel speed is not set divide
1485 		*the packet evenly among the free channels;
1486 		*otherwise divide it according to the speed
1487 		*of the channel we are going to transmit on
1488 		*/
1489 		flen = len;
1490 		if (nfree > 0) {
1491 			if (pch->speed == 0) {
1492 				flen = len/nfree;
1493 				if (nbigger > 0) {
1494 					flen++;
1495 					nbigger--;
1496 				}
1497 			} else {
1498 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1499 					((totspeed*totfree)/pch->speed)) - hdrlen;
1500 				if (nbigger > 0) {
1501 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1502 					nbigger -= ((totfree - nzero)*pch->speed)/
1503 							totspeed;
1504 				}
1505 			}
1506 			nfree--;
1507 		}
1508 
1509 		/*
1510 		 *check if we are on the last channel or
1511 		 *we exceded the length of the data to
1512 		 *fragment
1513 		 */
1514 		if ((nfree <= 0) || (flen > len))
1515 			flen = len;
1516 		/*
1517 		 *it is not worth to tx on slow channels:
1518 		 *in that case from the resulting flen according to the
1519 		 *above formula will be equal or less than zero.
1520 		 *Skip the channel in this case
1521 		 */
1522 		if (flen <= 0) {
1523 			pch->avail = 2;
1524 			spin_unlock_bh(&pch->downl);
1525 			continue;
1526 		}
1527 
1528 		/*
1529 		 * hdrlen includes the 2-byte PPP protocol field, but the
1530 		 * MTU counts only the payload excluding the protocol field.
1531 		 * (RFC1661 Section 2)
1532 		 */
1533 		mtu = pch->chan->mtu - (hdrlen - 2);
1534 		if (mtu < 4)
1535 			mtu = 4;
1536 		if (flen > mtu)
1537 			flen = mtu;
1538 		if (flen == len)
1539 			bits |= E;
1540 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1541 		if (!frag)
1542 			goto noskb;
1543 		q = skb_put(frag, flen + hdrlen);
1544 
1545 		/* make the MP header */
1546 		put_unaligned_be16(PPP_MP, q);
1547 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1548 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1549 			q[3] = ppp->nxseq;
1550 		} else {
1551 			q[2] = bits;
1552 			q[3] = ppp->nxseq >> 16;
1553 			q[4] = ppp->nxseq >> 8;
1554 			q[5] = ppp->nxseq;
1555 		}
1556 
1557 		memcpy(q + hdrlen, p, flen);
1558 
1559 		/* try to send it down the channel */
1560 		chan = pch->chan;
1561 		if (!skb_queue_empty(&pch->file.xq) ||
1562 			!chan->ops->start_xmit(chan, frag))
1563 			skb_queue_tail(&pch->file.xq, frag);
1564 		pch->had_frag = 1;
1565 		p += flen;
1566 		len -= flen;
1567 		++ppp->nxseq;
1568 		bits = 0;
1569 		spin_unlock_bh(&pch->downl);
1570 	}
1571 	ppp->nxchan = i;
1572 
1573 	return 1;
1574 
1575  noskb:
1576 	spin_unlock_bh(&pch->downl);
1577 	if (ppp->debug & 1)
1578 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1579 	++ppp->dev->stats.tx_errors;
1580 	++ppp->nxseq;
1581 	return 1;	/* abandon the frame */
1582 }
1583 #endif /* CONFIG_PPP_MULTILINK */
1584 
1585 /*
1586  * Try to send data out on a channel.
1587  */
1588 static void
1589 ppp_channel_push(struct channel *pch)
1590 {
1591 	struct sk_buff *skb;
1592 	struct ppp *ppp;
1593 
1594 	spin_lock_bh(&pch->downl);
1595 	if (pch->chan) {
1596 		while (!skb_queue_empty(&pch->file.xq)) {
1597 			skb = skb_dequeue(&pch->file.xq);
1598 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1599 				/* put the packet back and try again later */
1600 				skb_queue_head(&pch->file.xq, skb);
1601 				break;
1602 			}
1603 		}
1604 	} else {
1605 		/* channel got deregistered */
1606 		skb_queue_purge(&pch->file.xq);
1607 	}
1608 	spin_unlock_bh(&pch->downl);
1609 	/* see if there is anything from the attached unit to be sent */
1610 	if (skb_queue_empty(&pch->file.xq)) {
1611 		read_lock_bh(&pch->upl);
1612 		ppp = pch->ppp;
1613 		if (ppp)
1614 			ppp_xmit_process(ppp);
1615 		read_unlock_bh(&pch->upl);
1616 	}
1617 }
1618 
1619 /*
1620  * Receive-side routines.
1621  */
1622 
1623 struct ppp_mp_skb_parm {
1624 	u32		sequence;
1625 	u8		BEbits;
1626 };
1627 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1628 
1629 static inline void
1630 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1631 {
1632 	ppp_recv_lock(ppp);
1633 	if (!ppp->closing)
1634 		ppp_receive_frame(ppp, skb, pch);
1635 	else
1636 		kfree_skb(skb);
1637 	ppp_recv_unlock(ppp);
1638 }
1639 
1640 void
1641 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1642 {
1643 	struct channel *pch = chan->ppp;
1644 	int proto;
1645 
1646 	if (!pch) {
1647 		kfree_skb(skb);
1648 		return;
1649 	}
1650 
1651 	read_lock_bh(&pch->upl);
1652 	if (!pskb_may_pull(skb, 2)) {
1653 		kfree_skb(skb);
1654 		if (pch->ppp) {
1655 			++pch->ppp->dev->stats.rx_length_errors;
1656 			ppp_receive_error(pch->ppp);
1657 		}
1658 		goto done;
1659 	}
1660 
1661 	proto = PPP_PROTO(skb);
1662 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1663 		/* put it on the channel queue */
1664 		skb_queue_tail(&pch->file.rq, skb);
1665 		/* drop old frames if queue too long */
1666 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1667 		       (skb = skb_dequeue(&pch->file.rq)))
1668 			kfree_skb(skb);
1669 		wake_up_interruptible(&pch->file.rwait);
1670 	} else {
1671 		ppp_do_recv(pch->ppp, skb, pch);
1672 	}
1673 
1674 done:
1675 	read_unlock_bh(&pch->upl);
1676 }
1677 
1678 /* Put a 0-length skb in the receive queue as an error indication */
1679 void
1680 ppp_input_error(struct ppp_channel *chan, int code)
1681 {
1682 	struct channel *pch = chan->ppp;
1683 	struct sk_buff *skb;
1684 
1685 	if (!pch)
1686 		return;
1687 
1688 	read_lock_bh(&pch->upl);
1689 	if (pch->ppp) {
1690 		skb = alloc_skb(0, GFP_ATOMIC);
1691 		if (skb) {
1692 			skb->len = 0;		/* probably unnecessary */
1693 			skb->cb[0] = code;
1694 			ppp_do_recv(pch->ppp, skb, pch);
1695 		}
1696 	}
1697 	read_unlock_bh(&pch->upl);
1698 }
1699 
1700 /*
1701  * We come in here to process a received frame.
1702  * The receive side of the ppp unit is locked.
1703  */
1704 static void
1705 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1706 {
1707 	/* note: a 0-length skb is used as an error indication */
1708 	if (skb->len > 0) {
1709 #ifdef CONFIG_PPP_MULTILINK
1710 		/* XXX do channel-level decompression here */
1711 		if (PPP_PROTO(skb) == PPP_MP)
1712 			ppp_receive_mp_frame(ppp, skb, pch);
1713 		else
1714 #endif /* CONFIG_PPP_MULTILINK */
1715 			ppp_receive_nonmp_frame(ppp, skb);
1716 	} else {
1717 		kfree_skb(skb);
1718 		ppp_receive_error(ppp);
1719 	}
1720 }
1721 
1722 static void
1723 ppp_receive_error(struct ppp *ppp)
1724 {
1725 	++ppp->dev->stats.rx_errors;
1726 	if (ppp->vj)
1727 		slhc_toss(ppp->vj);
1728 }
1729 
1730 static void
1731 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1732 {
1733 	struct sk_buff *ns;
1734 	int proto, len, npi;
1735 
1736 	/*
1737 	 * Decompress the frame, if compressed.
1738 	 * Note that some decompressors need to see uncompressed frames
1739 	 * that come in as well as compressed frames.
1740 	 */
1741 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1742 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1743 		skb = ppp_decompress_frame(ppp, skb);
1744 
1745 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1746 		goto err;
1747 
1748 	proto = PPP_PROTO(skb);
1749 	switch (proto) {
1750 	case PPP_VJC_COMP:
1751 		/* decompress VJ compressed packets */
1752 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1753 			goto err;
1754 
1755 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1756 			/* copy to a new sk_buff with more tailroom */
1757 			ns = dev_alloc_skb(skb->len + 128);
1758 			if (!ns) {
1759 				netdev_err(ppp->dev, "PPP: no memory "
1760 					   "(VJ decomp)\n");
1761 				goto err;
1762 			}
1763 			skb_reserve(ns, 2);
1764 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1765 			consume_skb(skb);
1766 			skb = ns;
1767 		}
1768 		else
1769 			skb->ip_summed = CHECKSUM_NONE;
1770 
1771 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1772 		if (len <= 0) {
1773 			netdev_printk(KERN_DEBUG, ppp->dev,
1774 				      "PPP: VJ decompression error\n");
1775 			goto err;
1776 		}
1777 		len += 2;
1778 		if (len > skb->len)
1779 			skb_put(skb, len - skb->len);
1780 		else if (len < skb->len)
1781 			skb_trim(skb, len);
1782 		proto = PPP_IP;
1783 		break;
1784 
1785 	case PPP_VJC_UNCOMP:
1786 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1787 			goto err;
1788 
1789 		/* Until we fix the decompressor need to make sure
1790 		 * data portion is linear.
1791 		 */
1792 		if (!pskb_may_pull(skb, skb->len))
1793 			goto err;
1794 
1795 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1796 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1797 			goto err;
1798 		}
1799 		proto = PPP_IP;
1800 		break;
1801 
1802 	case PPP_CCP:
1803 		ppp_ccp_peek(ppp, skb, 1);
1804 		break;
1805 	}
1806 
1807 	++ppp->stats64.rx_packets;
1808 	ppp->stats64.rx_bytes += skb->len - 2;
1809 
1810 	npi = proto_to_npindex(proto);
1811 	if (npi < 0) {
1812 		/* control or unknown frame - pass it to pppd */
1813 		skb_queue_tail(&ppp->file.rq, skb);
1814 		/* limit queue length by dropping old frames */
1815 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1816 		       (skb = skb_dequeue(&ppp->file.rq)))
1817 			kfree_skb(skb);
1818 		/* wake up any process polling or blocking on read */
1819 		wake_up_interruptible(&ppp->file.rwait);
1820 
1821 	} else {
1822 		/* network protocol frame - give it to the kernel */
1823 
1824 #ifdef CONFIG_PPP_FILTER
1825 		/* check if the packet passes the pass and active filters */
1826 		/* the filter instructions are constructed assuming
1827 		   a four-byte PPP header on each packet */
1828 		if (ppp->pass_filter || ppp->active_filter) {
1829 			if (skb_unclone(skb, GFP_ATOMIC))
1830 				goto err;
1831 
1832 			*skb_push(skb, 2) = 0;
1833 			if (ppp->pass_filter &&
1834 			    SK_RUN_FILTER(ppp->pass_filter, skb) == 0) {
1835 				if (ppp->debug & 1)
1836 					netdev_printk(KERN_DEBUG, ppp->dev,
1837 						      "PPP: inbound frame "
1838 						      "not passed\n");
1839 				kfree_skb(skb);
1840 				return;
1841 			}
1842 			if (!(ppp->active_filter &&
1843 			      SK_RUN_FILTER(ppp->active_filter, skb) == 0))
1844 				ppp->last_recv = jiffies;
1845 			__skb_pull(skb, 2);
1846 		} else
1847 #endif /* CONFIG_PPP_FILTER */
1848 			ppp->last_recv = jiffies;
1849 
1850 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1851 		    ppp->npmode[npi] != NPMODE_PASS) {
1852 			kfree_skb(skb);
1853 		} else {
1854 			/* chop off protocol */
1855 			skb_pull_rcsum(skb, 2);
1856 			skb->dev = ppp->dev;
1857 			skb->protocol = htons(npindex_to_ethertype[npi]);
1858 			skb_reset_mac_header(skb);
1859 			netif_rx(skb);
1860 		}
1861 	}
1862 	return;
1863 
1864  err:
1865 	kfree_skb(skb);
1866 	ppp_receive_error(ppp);
1867 }
1868 
1869 static struct sk_buff *
1870 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1871 {
1872 	int proto = PPP_PROTO(skb);
1873 	struct sk_buff *ns;
1874 	int len;
1875 
1876 	/* Until we fix all the decompressor's need to make sure
1877 	 * data portion is linear.
1878 	 */
1879 	if (!pskb_may_pull(skb, skb->len))
1880 		goto err;
1881 
1882 	if (proto == PPP_COMP) {
1883 		int obuff_size;
1884 
1885 		switch(ppp->rcomp->compress_proto) {
1886 		case CI_MPPE:
1887 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1888 			break;
1889 		default:
1890 			obuff_size = ppp->mru + PPP_HDRLEN;
1891 			break;
1892 		}
1893 
1894 		ns = dev_alloc_skb(obuff_size);
1895 		if (!ns) {
1896 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1897 				   "no memory\n");
1898 			goto err;
1899 		}
1900 		/* the decompressor still expects the A/C bytes in the hdr */
1901 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1902 				skb->len + 2, ns->data, obuff_size);
1903 		if (len < 0) {
1904 			/* Pass the compressed frame to pppd as an
1905 			   error indication. */
1906 			if (len == DECOMP_FATALERROR)
1907 				ppp->rstate |= SC_DC_FERROR;
1908 			kfree_skb(ns);
1909 			goto err;
1910 		}
1911 
1912 		consume_skb(skb);
1913 		skb = ns;
1914 		skb_put(skb, len);
1915 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1916 
1917 	} else {
1918 		/* Uncompressed frame - pass to decompressor so it
1919 		   can update its dictionary if necessary. */
1920 		if (ppp->rcomp->incomp)
1921 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1922 					   skb->len + 2);
1923 	}
1924 
1925 	return skb;
1926 
1927  err:
1928 	ppp->rstate |= SC_DC_ERROR;
1929 	ppp_receive_error(ppp);
1930 	return skb;
1931 }
1932 
1933 #ifdef CONFIG_PPP_MULTILINK
1934 /*
1935  * Receive a multilink frame.
1936  * We put it on the reconstruction queue and then pull off
1937  * as many completed frames as we can.
1938  */
1939 static void
1940 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1941 {
1942 	u32 mask, seq;
1943 	struct channel *ch;
1944 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1945 
1946 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1947 		goto err;		/* no good, throw it away */
1948 
1949 	/* Decode sequence number and begin/end bits */
1950 	if (ppp->flags & SC_MP_SHORTSEQ) {
1951 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1952 		mask = 0xfff;
1953 	} else {
1954 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1955 		mask = 0xffffff;
1956 	}
1957 	PPP_MP_CB(skb)->BEbits = skb->data[2];
1958 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1959 
1960 	/*
1961 	 * Do protocol ID decompression on the first fragment of each packet.
1962 	 */
1963 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1964 		*skb_push(skb, 1) = 0;
1965 
1966 	/*
1967 	 * Expand sequence number to 32 bits, making it as close
1968 	 * as possible to ppp->minseq.
1969 	 */
1970 	seq |= ppp->minseq & ~mask;
1971 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1972 		seq += mask + 1;
1973 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1974 		seq -= mask + 1;	/* should never happen */
1975 	PPP_MP_CB(skb)->sequence = seq;
1976 	pch->lastseq = seq;
1977 
1978 	/*
1979 	 * If this packet comes before the next one we were expecting,
1980 	 * drop it.
1981 	 */
1982 	if (seq_before(seq, ppp->nextseq)) {
1983 		kfree_skb(skb);
1984 		++ppp->dev->stats.rx_dropped;
1985 		ppp_receive_error(ppp);
1986 		return;
1987 	}
1988 
1989 	/*
1990 	 * Reevaluate minseq, the minimum over all channels of the
1991 	 * last sequence number received on each channel.  Because of
1992 	 * the increasing sequence number rule, we know that any fragment
1993 	 * before `minseq' which hasn't arrived is never going to arrive.
1994 	 * The list of channels can't change because we have the receive
1995 	 * side of the ppp unit locked.
1996 	 */
1997 	list_for_each_entry(ch, &ppp->channels, clist) {
1998 		if (seq_before(ch->lastseq, seq))
1999 			seq = ch->lastseq;
2000 	}
2001 	if (seq_before(ppp->minseq, seq))
2002 		ppp->minseq = seq;
2003 
2004 	/* Put the fragment on the reconstruction queue */
2005 	ppp_mp_insert(ppp, skb);
2006 
2007 	/* If the queue is getting long, don't wait any longer for packets
2008 	   before the start of the queue. */
2009 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2010 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2011 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2012 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2013 	}
2014 
2015 	/* Pull completed packets off the queue and receive them. */
2016 	while ((skb = ppp_mp_reconstruct(ppp))) {
2017 		if (pskb_may_pull(skb, 2))
2018 			ppp_receive_nonmp_frame(ppp, skb);
2019 		else {
2020 			++ppp->dev->stats.rx_length_errors;
2021 			kfree_skb(skb);
2022 			ppp_receive_error(ppp);
2023 		}
2024 	}
2025 
2026 	return;
2027 
2028  err:
2029 	kfree_skb(skb);
2030 	ppp_receive_error(ppp);
2031 }
2032 
2033 /*
2034  * Insert a fragment on the MP reconstruction queue.
2035  * The queue is ordered by increasing sequence number.
2036  */
2037 static void
2038 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2039 {
2040 	struct sk_buff *p;
2041 	struct sk_buff_head *list = &ppp->mrq;
2042 	u32 seq = PPP_MP_CB(skb)->sequence;
2043 
2044 	/* N.B. we don't need to lock the list lock because we have the
2045 	   ppp unit receive-side lock. */
2046 	skb_queue_walk(list, p) {
2047 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2048 			break;
2049 	}
2050 	__skb_queue_before(list, p, skb);
2051 }
2052 
2053 /*
2054  * Reconstruct a packet from the MP fragment queue.
2055  * We go through increasing sequence numbers until we find a
2056  * complete packet, or we get to the sequence number for a fragment
2057  * which hasn't arrived but might still do so.
2058  */
2059 static struct sk_buff *
2060 ppp_mp_reconstruct(struct ppp *ppp)
2061 {
2062 	u32 seq = ppp->nextseq;
2063 	u32 minseq = ppp->minseq;
2064 	struct sk_buff_head *list = &ppp->mrq;
2065 	struct sk_buff *p, *tmp;
2066 	struct sk_buff *head, *tail;
2067 	struct sk_buff *skb = NULL;
2068 	int lost = 0, len = 0;
2069 
2070 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2071 		return NULL;
2072 	head = list->next;
2073 	tail = NULL;
2074 	skb_queue_walk_safe(list, p, tmp) {
2075 	again:
2076 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2077 			/* this can't happen, anyway ignore the skb */
2078 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2079 				   "seq %u < %u\n",
2080 				   PPP_MP_CB(p)->sequence, seq);
2081 			__skb_unlink(p, list);
2082 			kfree_skb(p);
2083 			continue;
2084 		}
2085 		if (PPP_MP_CB(p)->sequence != seq) {
2086 			u32 oldseq;
2087 			/* Fragment `seq' is missing.  If it is after
2088 			   minseq, it might arrive later, so stop here. */
2089 			if (seq_after(seq, minseq))
2090 				break;
2091 			/* Fragment `seq' is lost, keep going. */
2092 			lost = 1;
2093 			oldseq = seq;
2094 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2095 				minseq + 1: PPP_MP_CB(p)->sequence;
2096 
2097 			if (ppp->debug & 1)
2098 				netdev_printk(KERN_DEBUG, ppp->dev,
2099 					      "lost frag %u..%u\n",
2100 					      oldseq, seq-1);
2101 
2102 			goto again;
2103 		}
2104 
2105 		/*
2106 		 * At this point we know that all the fragments from
2107 		 * ppp->nextseq to seq are either present or lost.
2108 		 * Also, there are no complete packets in the queue
2109 		 * that have no missing fragments and end before this
2110 		 * fragment.
2111 		 */
2112 
2113 		/* B bit set indicates this fragment starts a packet */
2114 		if (PPP_MP_CB(p)->BEbits & B) {
2115 			head = p;
2116 			lost = 0;
2117 			len = 0;
2118 		}
2119 
2120 		len += p->len;
2121 
2122 		/* Got a complete packet yet? */
2123 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2124 		    (PPP_MP_CB(head)->BEbits & B)) {
2125 			if (len > ppp->mrru + 2) {
2126 				++ppp->dev->stats.rx_length_errors;
2127 				netdev_printk(KERN_DEBUG, ppp->dev,
2128 					      "PPP: reconstructed packet"
2129 					      " is too long (%d)\n", len);
2130 			} else {
2131 				tail = p;
2132 				break;
2133 			}
2134 			ppp->nextseq = seq + 1;
2135 		}
2136 
2137 		/*
2138 		 * If this is the ending fragment of a packet,
2139 		 * and we haven't found a complete valid packet yet,
2140 		 * we can discard up to and including this fragment.
2141 		 */
2142 		if (PPP_MP_CB(p)->BEbits & E) {
2143 			struct sk_buff *tmp2;
2144 
2145 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2146 				if (ppp->debug & 1)
2147 					netdev_printk(KERN_DEBUG, ppp->dev,
2148 						      "discarding frag %u\n",
2149 						      PPP_MP_CB(p)->sequence);
2150 				__skb_unlink(p, list);
2151 				kfree_skb(p);
2152 			}
2153 			head = skb_peek(list);
2154 			if (!head)
2155 				break;
2156 		}
2157 		++seq;
2158 	}
2159 
2160 	/* If we have a complete packet, copy it all into one skb. */
2161 	if (tail != NULL) {
2162 		/* If we have discarded any fragments,
2163 		   signal a receive error. */
2164 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2165 			skb_queue_walk_safe(list, p, tmp) {
2166 				if (p == head)
2167 					break;
2168 				if (ppp->debug & 1)
2169 					netdev_printk(KERN_DEBUG, ppp->dev,
2170 						      "discarding frag %u\n",
2171 						      PPP_MP_CB(p)->sequence);
2172 				__skb_unlink(p, list);
2173 				kfree_skb(p);
2174 			}
2175 
2176 			if (ppp->debug & 1)
2177 				netdev_printk(KERN_DEBUG, ppp->dev,
2178 					      "  missed pkts %u..%u\n",
2179 					      ppp->nextseq,
2180 					      PPP_MP_CB(head)->sequence-1);
2181 			++ppp->dev->stats.rx_dropped;
2182 			ppp_receive_error(ppp);
2183 		}
2184 
2185 		skb = head;
2186 		if (head != tail) {
2187 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2188 			p = skb_queue_next(list, head);
2189 			__skb_unlink(skb, list);
2190 			skb_queue_walk_from_safe(list, p, tmp) {
2191 				__skb_unlink(p, list);
2192 				*fragpp = p;
2193 				p->next = NULL;
2194 				fragpp = &p->next;
2195 
2196 				skb->len += p->len;
2197 				skb->data_len += p->len;
2198 				skb->truesize += p->truesize;
2199 
2200 				if (p == tail)
2201 					break;
2202 			}
2203 		} else {
2204 			__skb_unlink(skb, list);
2205 		}
2206 
2207 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2208 	}
2209 
2210 	return skb;
2211 }
2212 #endif /* CONFIG_PPP_MULTILINK */
2213 
2214 /*
2215  * Channel interface.
2216  */
2217 
2218 /* Create a new, unattached ppp channel. */
2219 int ppp_register_channel(struct ppp_channel *chan)
2220 {
2221 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2222 }
2223 
2224 /* Create a new, unattached ppp channel for specified net. */
2225 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2226 {
2227 	struct channel *pch;
2228 	struct ppp_net *pn;
2229 
2230 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2231 	if (!pch)
2232 		return -ENOMEM;
2233 
2234 	pn = ppp_pernet(net);
2235 
2236 	pch->ppp = NULL;
2237 	pch->chan = chan;
2238 	pch->chan_net = net;
2239 	chan->ppp = pch;
2240 	init_ppp_file(&pch->file, CHANNEL);
2241 	pch->file.hdrlen = chan->hdrlen;
2242 #ifdef CONFIG_PPP_MULTILINK
2243 	pch->lastseq = -1;
2244 #endif /* CONFIG_PPP_MULTILINK */
2245 	init_rwsem(&pch->chan_sem);
2246 	spin_lock_init(&pch->downl);
2247 	rwlock_init(&pch->upl);
2248 
2249 	spin_lock_bh(&pn->all_channels_lock);
2250 	pch->file.index = ++pn->last_channel_index;
2251 	list_add(&pch->list, &pn->new_channels);
2252 	atomic_inc(&channel_count);
2253 	spin_unlock_bh(&pn->all_channels_lock);
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Return the index of a channel.
2260  */
2261 int ppp_channel_index(struct ppp_channel *chan)
2262 {
2263 	struct channel *pch = chan->ppp;
2264 
2265 	if (pch)
2266 		return pch->file.index;
2267 	return -1;
2268 }
2269 
2270 /*
2271  * Return the PPP unit number to which a channel is connected.
2272  */
2273 int ppp_unit_number(struct ppp_channel *chan)
2274 {
2275 	struct channel *pch = chan->ppp;
2276 	int unit = -1;
2277 
2278 	if (pch) {
2279 		read_lock_bh(&pch->upl);
2280 		if (pch->ppp)
2281 			unit = pch->ppp->file.index;
2282 		read_unlock_bh(&pch->upl);
2283 	}
2284 	return unit;
2285 }
2286 
2287 /*
2288  * Return the PPP device interface name of a channel.
2289  */
2290 char *ppp_dev_name(struct ppp_channel *chan)
2291 {
2292 	struct channel *pch = chan->ppp;
2293 	char *name = NULL;
2294 
2295 	if (pch) {
2296 		read_lock_bh(&pch->upl);
2297 		if (pch->ppp && pch->ppp->dev)
2298 			name = pch->ppp->dev->name;
2299 		read_unlock_bh(&pch->upl);
2300 	}
2301 	return name;
2302 }
2303 
2304 
2305 /*
2306  * Disconnect a channel from the generic layer.
2307  * This must be called in process context.
2308  */
2309 void
2310 ppp_unregister_channel(struct ppp_channel *chan)
2311 {
2312 	struct channel *pch = chan->ppp;
2313 	struct ppp_net *pn;
2314 
2315 	if (!pch)
2316 		return;		/* should never happen */
2317 
2318 	chan->ppp = NULL;
2319 
2320 	/*
2321 	 * This ensures that we have returned from any calls into the
2322 	 * the channel's start_xmit or ioctl routine before we proceed.
2323 	 */
2324 	down_write(&pch->chan_sem);
2325 	spin_lock_bh(&pch->downl);
2326 	pch->chan = NULL;
2327 	spin_unlock_bh(&pch->downl);
2328 	up_write(&pch->chan_sem);
2329 	ppp_disconnect_channel(pch);
2330 
2331 	pn = ppp_pernet(pch->chan_net);
2332 	spin_lock_bh(&pn->all_channels_lock);
2333 	list_del(&pch->list);
2334 	spin_unlock_bh(&pn->all_channels_lock);
2335 
2336 	pch->file.dead = 1;
2337 	wake_up_interruptible(&pch->file.rwait);
2338 	if (atomic_dec_and_test(&pch->file.refcnt))
2339 		ppp_destroy_channel(pch);
2340 }
2341 
2342 /*
2343  * Callback from a channel when it can accept more to transmit.
2344  * This should be called at BH/softirq level, not interrupt level.
2345  */
2346 void
2347 ppp_output_wakeup(struct ppp_channel *chan)
2348 {
2349 	struct channel *pch = chan->ppp;
2350 
2351 	if (!pch)
2352 		return;
2353 	ppp_channel_push(pch);
2354 }
2355 
2356 /*
2357  * Compression control.
2358  */
2359 
2360 /* Process the PPPIOCSCOMPRESS ioctl. */
2361 static int
2362 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2363 {
2364 	int err;
2365 	struct compressor *cp, *ocomp;
2366 	struct ppp_option_data data;
2367 	void *state, *ostate;
2368 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2369 
2370 	err = -EFAULT;
2371 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2372 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2373 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2374 		goto out;
2375 	err = -EINVAL;
2376 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2377 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2378 		goto out;
2379 
2380 	cp = try_then_request_module(
2381 		find_compressor(ccp_option[0]),
2382 		"ppp-compress-%d", ccp_option[0]);
2383 	if (!cp)
2384 		goto out;
2385 
2386 	err = -ENOBUFS;
2387 	if (data.transmit) {
2388 		state = cp->comp_alloc(ccp_option, data.length);
2389 		if (state) {
2390 			ppp_xmit_lock(ppp);
2391 			ppp->xstate &= ~SC_COMP_RUN;
2392 			ocomp = ppp->xcomp;
2393 			ostate = ppp->xc_state;
2394 			ppp->xcomp = cp;
2395 			ppp->xc_state = state;
2396 			ppp_xmit_unlock(ppp);
2397 			if (ostate) {
2398 				ocomp->comp_free(ostate);
2399 				module_put(ocomp->owner);
2400 			}
2401 			err = 0;
2402 		} else
2403 			module_put(cp->owner);
2404 
2405 	} else {
2406 		state = cp->decomp_alloc(ccp_option, data.length);
2407 		if (state) {
2408 			ppp_recv_lock(ppp);
2409 			ppp->rstate &= ~SC_DECOMP_RUN;
2410 			ocomp = ppp->rcomp;
2411 			ostate = ppp->rc_state;
2412 			ppp->rcomp = cp;
2413 			ppp->rc_state = state;
2414 			ppp_recv_unlock(ppp);
2415 			if (ostate) {
2416 				ocomp->decomp_free(ostate);
2417 				module_put(ocomp->owner);
2418 			}
2419 			err = 0;
2420 		} else
2421 			module_put(cp->owner);
2422 	}
2423 
2424  out:
2425 	return err;
2426 }
2427 
2428 /*
2429  * Look at a CCP packet and update our state accordingly.
2430  * We assume the caller has the xmit or recv path locked.
2431  */
2432 static void
2433 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2434 {
2435 	unsigned char *dp;
2436 	int len;
2437 
2438 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2439 		return;	/* no header */
2440 	dp = skb->data + 2;
2441 
2442 	switch (CCP_CODE(dp)) {
2443 	case CCP_CONFREQ:
2444 
2445 		/* A ConfReq starts negotiation of compression
2446 		 * in one direction of transmission,
2447 		 * and hence brings it down...but which way?
2448 		 *
2449 		 * Remember:
2450 		 * A ConfReq indicates what the sender would like to receive
2451 		 */
2452 		if(inbound)
2453 			/* He is proposing what I should send */
2454 			ppp->xstate &= ~SC_COMP_RUN;
2455 		else
2456 			/* I am proposing to what he should send */
2457 			ppp->rstate &= ~SC_DECOMP_RUN;
2458 
2459 		break;
2460 
2461 	case CCP_TERMREQ:
2462 	case CCP_TERMACK:
2463 		/*
2464 		 * CCP is going down, both directions of transmission
2465 		 */
2466 		ppp->rstate &= ~SC_DECOMP_RUN;
2467 		ppp->xstate &= ~SC_COMP_RUN;
2468 		break;
2469 
2470 	case CCP_CONFACK:
2471 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2472 			break;
2473 		len = CCP_LENGTH(dp);
2474 		if (!pskb_may_pull(skb, len + 2))
2475 			return;		/* too short */
2476 		dp += CCP_HDRLEN;
2477 		len -= CCP_HDRLEN;
2478 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2479 			break;
2480 		if (inbound) {
2481 			/* we will start receiving compressed packets */
2482 			if (!ppp->rc_state)
2483 				break;
2484 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2485 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2486 				ppp->rstate |= SC_DECOMP_RUN;
2487 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2488 			}
2489 		} else {
2490 			/* we will soon start sending compressed packets */
2491 			if (!ppp->xc_state)
2492 				break;
2493 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2494 					ppp->file.index, 0, ppp->debug))
2495 				ppp->xstate |= SC_COMP_RUN;
2496 		}
2497 		break;
2498 
2499 	case CCP_RESETACK:
2500 		/* reset the [de]compressor */
2501 		if ((ppp->flags & SC_CCP_UP) == 0)
2502 			break;
2503 		if (inbound) {
2504 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2505 				ppp->rcomp->decomp_reset(ppp->rc_state);
2506 				ppp->rstate &= ~SC_DC_ERROR;
2507 			}
2508 		} else {
2509 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2510 				ppp->xcomp->comp_reset(ppp->xc_state);
2511 		}
2512 		break;
2513 	}
2514 }
2515 
2516 /* Free up compression resources. */
2517 static void
2518 ppp_ccp_closed(struct ppp *ppp)
2519 {
2520 	void *xstate, *rstate;
2521 	struct compressor *xcomp, *rcomp;
2522 
2523 	ppp_lock(ppp);
2524 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2525 	ppp->xstate = 0;
2526 	xcomp = ppp->xcomp;
2527 	xstate = ppp->xc_state;
2528 	ppp->xc_state = NULL;
2529 	ppp->rstate = 0;
2530 	rcomp = ppp->rcomp;
2531 	rstate = ppp->rc_state;
2532 	ppp->rc_state = NULL;
2533 	ppp_unlock(ppp);
2534 
2535 	if (xstate) {
2536 		xcomp->comp_free(xstate);
2537 		module_put(xcomp->owner);
2538 	}
2539 	if (rstate) {
2540 		rcomp->decomp_free(rstate);
2541 		module_put(rcomp->owner);
2542 	}
2543 }
2544 
2545 /* List of compressors. */
2546 static LIST_HEAD(compressor_list);
2547 static DEFINE_SPINLOCK(compressor_list_lock);
2548 
2549 struct compressor_entry {
2550 	struct list_head list;
2551 	struct compressor *comp;
2552 };
2553 
2554 static struct compressor_entry *
2555 find_comp_entry(int proto)
2556 {
2557 	struct compressor_entry *ce;
2558 
2559 	list_for_each_entry(ce, &compressor_list, list) {
2560 		if (ce->comp->compress_proto == proto)
2561 			return ce;
2562 	}
2563 	return NULL;
2564 }
2565 
2566 /* Register a compressor */
2567 int
2568 ppp_register_compressor(struct compressor *cp)
2569 {
2570 	struct compressor_entry *ce;
2571 	int ret;
2572 	spin_lock(&compressor_list_lock);
2573 	ret = -EEXIST;
2574 	if (find_comp_entry(cp->compress_proto))
2575 		goto out;
2576 	ret = -ENOMEM;
2577 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2578 	if (!ce)
2579 		goto out;
2580 	ret = 0;
2581 	ce->comp = cp;
2582 	list_add(&ce->list, &compressor_list);
2583  out:
2584 	spin_unlock(&compressor_list_lock);
2585 	return ret;
2586 }
2587 
2588 /* Unregister a compressor */
2589 void
2590 ppp_unregister_compressor(struct compressor *cp)
2591 {
2592 	struct compressor_entry *ce;
2593 
2594 	spin_lock(&compressor_list_lock);
2595 	ce = find_comp_entry(cp->compress_proto);
2596 	if (ce && ce->comp == cp) {
2597 		list_del(&ce->list);
2598 		kfree(ce);
2599 	}
2600 	spin_unlock(&compressor_list_lock);
2601 }
2602 
2603 /* Find a compressor. */
2604 static struct compressor *
2605 find_compressor(int type)
2606 {
2607 	struct compressor_entry *ce;
2608 	struct compressor *cp = NULL;
2609 
2610 	spin_lock(&compressor_list_lock);
2611 	ce = find_comp_entry(type);
2612 	if (ce) {
2613 		cp = ce->comp;
2614 		if (!try_module_get(cp->owner))
2615 			cp = NULL;
2616 	}
2617 	spin_unlock(&compressor_list_lock);
2618 	return cp;
2619 }
2620 
2621 /*
2622  * Miscelleneous stuff.
2623  */
2624 
2625 static void
2626 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2627 {
2628 	struct slcompress *vj = ppp->vj;
2629 
2630 	memset(st, 0, sizeof(*st));
2631 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2632 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2633 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2634 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2635 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2636 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2637 	if (!vj)
2638 		return;
2639 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2640 	st->vj.vjs_compressed = vj->sls_o_compressed;
2641 	st->vj.vjs_searches = vj->sls_o_searches;
2642 	st->vj.vjs_misses = vj->sls_o_misses;
2643 	st->vj.vjs_errorin = vj->sls_i_error;
2644 	st->vj.vjs_tossed = vj->sls_i_tossed;
2645 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2646 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2647 }
2648 
2649 /*
2650  * Stuff for handling the lists of ppp units and channels
2651  * and for initialization.
2652  */
2653 
2654 /*
2655  * Create a new ppp interface unit.  Fails if it can't allocate memory
2656  * or if there is already a unit with the requested number.
2657  * unit == -1 means allocate a new number.
2658  */
2659 static struct ppp *
2660 ppp_create_interface(struct net *net, int unit, int *retp)
2661 {
2662 	struct ppp *ppp;
2663 	struct ppp_net *pn;
2664 	struct net_device *dev = NULL;
2665 	int ret = -ENOMEM;
2666 	int i;
2667 
2668 	dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2669 	if (!dev)
2670 		goto out1;
2671 
2672 	pn = ppp_pernet(net);
2673 
2674 	ppp = netdev_priv(dev);
2675 	ppp->dev = dev;
2676 	ppp->mru = PPP_MRU;
2677 	init_ppp_file(&ppp->file, INTERFACE);
2678 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2679 	for (i = 0; i < NUM_NP; ++i)
2680 		ppp->npmode[i] = NPMODE_PASS;
2681 	INIT_LIST_HEAD(&ppp->channels);
2682 	spin_lock_init(&ppp->rlock);
2683 	spin_lock_init(&ppp->wlock);
2684 #ifdef CONFIG_PPP_MULTILINK
2685 	ppp->minseq = -1;
2686 	skb_queue_head_init(&ppp->mrq);
2687 #endif /* CONFIG_PPP_MULTILINK */
2688 #ifdef CONFIG_PPP_FILTER
2689 	ppp->pass_filter = NULL;
2690 	ppp->active_filter = NULL;
2691 #endif /* CONFIG_PPP_FILTER */
2692 
2693 	/*
2694 	 * drum roll: don't forget to set
2695 	 * the net device is belong to
2696 	 */
2697 	dev_net_set(dev, net);
2698 
2699 	mutex_lock(&pn->all_ppp_mutex);
2700 
2701 	if (unit < 0) {
2702 		unit = unit_get(&pn->units_idr, ppp);
2703 		if (unit < 0) {
2704 			ret = unit;
2705 			goto out2;
2706 		}
2707 	} else {
2708 		ret = -EEXIST;
2709 		if (unit_find(&pn->units_idr, unit))
2710 			goto out2; /* unit already exists */
2711 		/*
2712 		 * if caller need a specified unit number
2713 		 * lets try to satisfy him, otherwise --
2714 		 * he should better ask us for new unit number
2715 		 *
2716 		 * NOTE: yes I know that returning EEXIST it's not
2717 		 * fair but at least pppd will ask us to allocate
2718 		 * new unit in this case so user is happy :)
2719 		 */
2720 		unit = unit_set(&pn->units_idr, ppp, unit);
2721 		if (unit < 0)
2722 			goto out2;
2723 	}
2724 
2725 	/* Initialize the new ppp unit */
2726 	ppp->file.index = unit;
2727 	sprintf(dev->name, "ppp%d", unit);
2728 
2729 	ret = register_netdev(dev);
2730 	if (ret != 0) {
2731 		unit_put(&pn->units_idr, unit);
2732 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2733 			   dev->name, ret);
2734 		goto out2;
2735 	}
2736 
2737 	ppp->ppp_net = net;
2738 
2739 	atomic_inc(&ppp_unit_count);
2740 	mutex_unlock(&pn->all_ppp_mutex);
2741 
2742 	*retp = 0;
2743 	return ppp;
2744 
2745 out2:
2746 	mutex_unlock(&pn->all_ppp_mutex);
2747 	free_netdev(dev);
2748 out1:
2749 	*retp = ret;
2750 	return NULL;
2751 }
2752 
2753 /*
2754  * Initialize a ppp_file structure.
2755  */
2756 static void
2757 init_ppp_file(struct ppp_file *pf, int kind)
2758 {
2759 	pf->kind = kind;
2760 	skb_queue_head_init(&pf->xq);
2761 	skb_queue_head_init(&pf->rq);
2762 	atomic_set(&pf->refcnt, 1);
2763 	init_waitqueue_head(&pf->rwait);
2764 }
2765 
2766 /*
2767  * Take down a ppp interface unit - called when the owning file
2768  * (the one that created the unit) is closed or detached.
2769  */
2770 static void ppp_shutdown_interface(struct ppp *ppp)
2771 {
2772 	struct ppp_net *pn;
2773 
2774 	pn = ppp_pernet(ppp->ppp_net);
2775 	mutex_lock(&pn->all_ppp_mutex);
2776 
2777 	/* This will call dev_close() for us. */
2778 	ppp_lock(ppp);
2779 	if (!ppp->closing) {
2780 		ppp->closing = 1;
2781 		ppp_unlock(ppp);
2782 		unregister_netdev(ppp->dev);
2783 		unit_put(&pn->units_idr, ppp->file.index);
2784 	} else
2785 		ppp_unlock(ppp);
2786 
2787 	ppp->file.dead = 1;
2788 	ppp->owner = NULL;
2789 	wake_up_interruptible(&ppp->file.rwait);
2790 
2791 	mutex_unlock(&pn->all_ppp_mutex);
2792 }
2793 
2794 /*
2795  * Free the memory used by a ppp unit.  This is only called once
2796  * there are no channels connected to the unit and no file structs
2797  * that reference the unit.
2798  */
2799 static void ppp_destroy_interface(struct ppp *ppp)
2800 {
2801 	atomic_dec(&ppp_unit_count);
2802 
2803 	if (!ppp->file.dead || ppp->n_channels) {
2804 		/* "can't happen" */
2805 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2806 			   "but dead=%d n_channels=%d !\n",
2807 			   ppp, ppp->file.dead, ppp->n_channels);
2808 		return;
2809 	}
2810 
2811 	ppp_ccp_closed(ppp);
2812 	if (ppp->vj) {
2813 		slhc_free(ppp->vj);
2814 		ppp->vj = NULL;
2815 	}
2816 	skb_queue_purge(&ppp->file.xq);
2817 	skb_queue_purge(&ppp->file.rq);
2818 #ifdef CONFIG_PPP_MULTILINK
2819 	skb_queue_purge(&ppp->mrq);
2820 #endif /* CONFIG_PPP_MULTILINK */
2821 #ifdef CONFIG_PPP_FILTER
2822 	if (ppp->pass_filter) {
2823 		sk_unattached_filter_destroy(ppp->pass_filter);
2824 		ppp->pass_filter = NULL;
2825 	}
2826 
2827 	if (ppp->active_filter) {
2828 		sk_unattached_filter_destroy(ppp->active_filter);
2829 		ppp->active_filter = NULL;
2830 	}
2831 #endif /* CONFIG_PPP_FILTER */
2832 
2833 	kfree_skb(ppp->xmit_pending);
2834 
2835 	free_netdev(ppp->dev);
2836 }
2837 
2838 /*
2839  * Locate an existing ppp unit.
2840  * The caller should have locked the all_ppp_mutex.
2841  */
2842 static struct ppp *
2843 ppp_find_unit(struct ppp_net *pn, int unit)
2844 {
2845 	return unit_find(&pn->units_idr, unit);
2846 }
2847 
2848 /*
2849  * Locate an existing ppp channel.
2850  * The caller should have locked the all_channels_lock.
2851  * First we look in the new_channels list, then in the
2852  * all_channels list.  If found in the new_channels list,
2853  * we move it to the all_channels list.  This is for speed
2854  * when we have a lot of channels in use.
2855  */
2856 static struct channel *
2857 ppp_find_channel(struct ppp_net *pn, int unit)
2858 {
2859 	struct channel *pch;
2860 
2861 	list_for_each_entry(pch, &pn->new_channels, list) {
2862 		if (pch->file.index == unit) {
2863 			list_move(&pch->list, &pn->all_channels);
2864 			return pch;
2865 		}
2866 	}
2867 
2868 	list_for_each_entry(pch, &pn->all_channels, list) {
2869 		if (pch->file.index == unit)
2870 			return pch;
2871 	}
2872 
2873 	return NULL;
2874 }
2875 
2876 /*
2877  * Connect a PPP channel to a PPP interface unit.
2878  */
2879 static int
2880 ppp_connect_channel(struct channel *pch, int unit)
2881 {
2882 	struct ppp *ppp;
2883 	struct ppp_net *pn;
2884 	int ret = -ENXIO;
2885 	int hdrlen;
2886 
2887 	pn = ppp_pernet(pch->chan_net);
2888 
2889 	mutex_lock(&pn->all_ppp_mutex);
2890 	ppp = ppp_find_unit(pn, unit);
2891 	if (!ppp)
2892 		goto out;
2893 	write_lock_bh(&pch->upl);
2894 	ret = -EINVAL;
2895 	if (pch->ppp)
2896 		goto outl;
2897 
2898 	ppp_lock(ppp);
2899 	if (pch->file.hdrlen > ppp->file.hdrlen)
2900 		ppp->file.hdrlen = pch->file.hdrlen;
2901 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2902 	if (hdrlen > ppp->dev->hard_header_len)
2903 		ppp->dev->hard_header_len = hdrlen;
2904 	list_add_tail(&pch->clist, &ppp->channels);
2905 	++ppp->n_channels;
2906 	pch->ppp = ppp;
2907 	atomic_inc(&ppp->file.refcnt);
2908 	ppp_unlock(ppp);
2909 	ret = 0;
2910 
2911  outl:
2912 	write_unlock_bh(&pch->upl);
2913  out:
2914 	mutex_unlock(&pn->all_ppp_mutex);
2915 	return ret;
2916 }
2917 
2918 /*
2919  * Disconnect a channel from its ppp unit.
2920  */
2921 static int
2922 ppp_disconnect_channel(struct channel *pch)
2923 {
2924 	struct ppp *ppp;
2925 	int err = -EINVAL;
2926 
2927 	write_lock_bh(&pch->upl);
2928 	ppp = pch->ppp;
2929 	pch->ppp = NULL;
2930 	write_unlock_bh(&pch->upl);
2931 	if (ppp) {
2932 		/* remove it from the ppp unit's list */
2933 		ppp_lock(ppp);
2934 		list_del(&pch->clist);
2935 		if (--ppp->n_channels == 0)
2936 			wake_up_interruptible(&ppp->file.rwait);
2937 		ppp_unlock(ppp);
2938 		if (atomic_dec_and_test(&ppp->file.refcnt))
2939 			ppp_destroy_interface(ppp);
2940 		err = 0;
2941 	}
2942 	return err;
2943 }
2944 
2945 /*
2946  * Free up the resources used by a ppp channel.
2947  */
2948 static void ppp_destroy_channel(struct channel *pch)
2949 {
2950 	atomic_dec(&channel_count);
2951 
2952 	if (!pch->file.dead) {
2953 		/* "can't happen" */
2954 		pr_err("ppp: destroying undead channel %p !\n", pch);
2955 		return;
2956 	}
2957 	skb_queue_purge(&pch->file.xq);
2958 	skb_queue_purge(&pch->file.rq);
2959 	kfree(pch);
2960 }
2961 
2962 static void __exit ppp_cleanup(void)
2963 {
2964 	/* should never happen */
2965 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2966 		pr_err("PPP: removing module but units remain!\n");
2967 	unregister_chrdev(PPP_MAJOR, "ppp");
2968 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2969 	class_destroy(ppp_class);
2970 	unregister_pernet_device(&ppp_net_ops);
2971 }
2972 
2973 /*
2974  * Units handling. Caller must protect concurrent access
2975  * by holding all_ppp_mutex
2976  */
2977 
2978 /* associate pointer with specified number */
2979 static int unit_set(struct idr *p, void *ptr, int n)
2980 {
2981 	int unit;
2982 
2983 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2984 	if (unit == -ENOSPC)
2985 		unit = -EINVAL;
2986 	return unit;
2987 }
2988 
2989 /* get new free unit number and associate pointer with it */
2990 static int unit_get(struct idr *p, void *ptr)
2991 {
2992 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
2993 }
2994 
2995 /* put unit number back to a pool */
2996 static void unit_put(struct idr *p, int n)
2997 {
2998 	idr_remove(p, n);
2999 }
3000 
3001 /* get pointer associated with the number */
3002 static void *unit_find(struct idr *p, int n)
3003 {
3004 	return idr_find(p, n);
3005 }
3006 
3007 /* Module/initialization stuff */
3008 
3009 module_init(ppp_init);
3010 module_exit(ppp_cleanup);
3011 
3012 EXPORT_SYMBOL(ppp_register_net_channel);
3013 EXPORT_SYMBOL(ppp_register_channel);
3014 EXPORT_SYMBOL(ppp_unregister_channel);
3015 EXPORT_SYMBOL(ppp_channel_index);
3016 EXPORT_SYMBOL(ppp_unit_number);
3017 EXPORT_SYMBOL(ppp_dev_name);
3018 EXPORT_SYMBOL(ppp_input);
3019 EXPORT_SYMBOL(ppp_input_error);
3020 EXPORT_SYMBOL(ppp_output_wakeup);
3021 EXPORT_SYMBOL(ppp_register_compressor);
3022 EXPORT_SYMBOL(ppp_unregister_compressor);
3023 MODULE_LICENSE("GPL");
3024 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3025 MODULE_ALIAS("devname:ppp");
3026