xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision 93d90ad7)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
273 static void init_ppp_file(struct ppp_file *pf, int kind);
274 static void ppp_shutdown_interface(struct ppp *ppp);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static struct class *ppp_class;
287 
288 /* per net-namespace data */
289 static inline struct ppp_net *ppp_pernet(struct net *net)
290 {
291 	BUG_ON(!net);
292 
293 	return net_generic(net, ppp_net_id);
294 }
295 
296 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
297 static inline int proto_to_npindex(int proto)
298 {
299 	switch (proto) {
300 	case PPP_IP:
301 		return NP_IP;
302 	case PPP_IPV6:
303 		return NP_IPV6;
304 	case PPP_IPX:
305 		return NP_IPX;
306 	case PPP_AT:
307 		return NP_AT;
308 	case PPP_MPLS_UC:
309 		return NP_MPLS_UC;
310 	case PPP_MPLS_MC:
311 		return NP_MPLS_MC;
312 	}
313 	return -EINVAL;
314 }
315 
316 /* Translates an NP index into a PPP protocol number */
317 static const int npindex_to_proto[NUM_NP] = {
318 	PPP_IP,
319 	PPP_IPV6,
320 	PPP_IPX,
321 	PPP_AT,
322 	PPP_MPLS_UC,
323 	PPP_MPLS_MC,
324 };
325 
326 /* Translates an ethertype into an NP index */
327 static inline int ethertype_to_npindex(int ethertype)
328 {
329 	switch (ethertype) {
330 	case ETH_P_IP:
331 		return NP_IP;
332 	case ETH_P_IPV6:
333 		return NP_IPV6;
334 	case ETH_P_IPX:
335 		return NP_IPX;
336 	case ETH_P_PPPTALK:
337 	case ETH_P_ATALK:
338 		return NP_AT;
339 	case ETH_P_MPLS_UC:
340 		return NP_MPLS_UC;
341 	case ETH_P_MPLS_MC:
342 		return NP_MPLS_MC;
343 	}
344 	return -1;
345 }
346 
347 /* Translates an NP index into an ethertype */
348 static const int npindex_to_ethertype[NUM_NP] = {
349 	ETH_P_IP,
350 	ETH_P_IPV6,
351 	ETH_P_IPX,
352 	ETH_P_PPPTALK,
353 	ETH_P_MPLS_UC,
354 	ETH_P_MPLS_MC,
355 };
356 
357 /*
358  * Locking shorthand.
359  */
360 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
361 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
362 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
363 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
364 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
365 				     ppp_recv_lock(ppp); } while (0)
366 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
367 				     ppp_xmit_unlock(ppp); } while (0)
368 
369 /*
370  * /dev/ppp device routines.
371  * The /dev/ppp device is used by pppd to control the ppp unit.
372  * It supports the read, write, ioctl and poll functions.
373  * Open instances of /dev/ppp can be in one of three states:
374  * unattached, attached to a ppp unit, or attached to a ppp channel.
375  */
376 static int ppp_open(struct inode *inode, struct file *file)
377 {
378 	/*
379 	 * This could (should?) be enforced by the permissions on /dev/ppp.
380 	 */
381 	if (!capable(CAP_NET_ADMIN))
382 		return -EPERM;
383 	return 0;
384 }
385 
386 static int ppp_release(struct inode *unused, struct file *file)
387 {
388 	struct ppp_file *pf = file->private_data;
389 	struct ppp *ppp;
390 
391 	if (pf) {
392 		file->private_data = NULL;
393 		if (pf->kind == INTERFACE) {
394 			ppp = PF_TO_PPP(pf);
395 			if (file == ppp->owner)
396 				ppp_shutdown_interface(ppp);
397 		}
398 		if (atomic_dec_and_test(&pf->refcnt)) {
399 			switch (pf->kind) {
400 			case INTERFACE:
401 				ppp_destroy_interface(PF_TO_PPP(pf));
402 				break;
403 			case CHANNEL:
404 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
405 				break;
406 			}
407 		}
408 	}
409 	return 0;
410 }
411 
412 static ssize_t ppp_read(struct file *file, char __user *buf,
413 			size_t count, loff_t *ppos)
414 {
415 	struct ppp_file *pf = file->private_data;
416 	DECLARE_WAITQUEUE(wait, current);
417 	ssize_t ret;
418 	struct sk_buff *skb = NULL;
419 	struct iovec iov;
420 	struct iov_iter to;
421 
422 	ret = count;
423 
424 	if (!pf)
425 		return -ENXIO;
426 	add_wait_queue(&pf->rwait, &wait);
427 	for (;;) {
428 		set_current_state(TASK_INTERRUPTIBLE);
429 		skb = skb_dequeue(&pf->rq);
430 		if (skb)
431 			break;
432 		ret = 0;
433 		if (pf->dead)
434 			break;
435 		if (pf->kind == INTERFACE) {
436 			/*
437 			 * Return 0 (EOF) on an interface that has no
438 			 * channels connected, unless it is looping
439 			 * network traffic (demand mode).
440 			 */
441 			struct ppp *ppp = PF_TO_PPP(pf);
442 			if (ppp->n_channels == 0 &&
443 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
444 				break;
445 		}
446 		ret = -EAGAIN;
447 		if (file->f_flags & O_NONBLOCK)
448 			break;
449 		ret = -ERESTARTSYS;
450 		if (signal_pending(current))
451 			break;
452 		schedule();
453 	}
454 	set_current_state(TASK_RUNNING);
455 	remove_wait_queue(&pf->rwait, &wait);
456 
457 	if (!skb)
458 		goto out;
459 
460 	ret = -EOVERFLOW;
461 	if (skb->len > count)
462 		goto outf;
463 	ret = -EFAULT;
464 	iov.iov_base = buf;
465 	iov.iov_len = count;
466 	iov_iter_init(&to, READ, &iov, 1, count);
467 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
468 		goto outf;
469 	ret = skb->len;
470 
471  outf:
472 	kfree_skb(skb);
473  out:
474 	return ret;
475 }
476 
477 static ssize_t ppp_write(struct file *file, const char __user *buf,
478 			 size_t count, loff_t *ppos)
479 {
480 	struct ppp_file *pf = file->private_data;
481 	struct sk_buff *skb;
482 	ssize_t ret;
483 
484 	if (!pf)
485 		return -ENXIO;
486 	ret = -ENOMEM;
487 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
488 	if (!skb)
489 		goto out;
490 	skb_reserve(skb, pf->hdrlen);
491 	ret = -EFAULT;
492 	if (copy_from_user(skb_put(skb, count), buf, count)) {
493 		kfree_skb(skb);
494 		goto out;
495 	}
496 
497 	skb_queue_tail(&pf->xq, skb);
498 
499 	switch (pf->kind) {
500 	case INTERFACE:
501 		ppp_xmit_process(PF_TO_PPP(pf));
502 		break;
503 	case CHANNEL:
504 		ppp_channel_push(PF_TO_CHANNEL(pf));
505 		break;
506 	}
507 
508 	ret = count;
509 
510  out:
511 	return ret;
512 }
513 
514 /* No kernel lock - fine */
515 static unsigned int ppp_poll(struct file *file, poll_table *wait)
516 {
517 	struct ppp_file *pf = file->private_data;
518 	unsigned int mask;
519 
520 	if (!pf)
521 		return 0;
522 	poll_wait(file, &pf->rwait, wait);
523 	mask = POLLOUT | POLLWRNORM;
524 	if (skb_peek(&pf->rq))
525 		mask |= POLLIN | POLLRDNORM;
526 	if (pf->dead)
527 		mask |= POLLHUP;
528 	else if (pf->kind == INTERFACE) {
529 		/* see comment in ppp_read */
530 		struct ppp *ppp = PF_TO_PPP(pf);
531 		if (ppp->n_channels == 0 &&
532 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
533 			mask |= POLLIN | POLLRDNORM;
534 	}
535 
536 	return mask;
537 }
538 
539 #ifdef CONFIG_PPP_FILTER
540 static int get_filter(void __user *arg, struct sock_filter **p)
541 {
542 	struct sock_fprog uprog;
543 	struct sock_filter *code = NULL;
544 	int len;
545 
546 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
547 		return -EFAULT;
548 
549 	if (!uprog.len) {
550 		*p = NULL;
551 		return 0;
552 	}
553 
554 	len = uprog.len * sizeof(struct sock_filter);
555 	code = memdup_user(uprog.filter, len);
556 	if (IS_ERR(code))
557 		return PTR_ERR(code);
558 
559 	*p = code;
560 	return uprog.len;
561 }
562 #endif /* CONFIG_PPP_FILTER */
563 
564 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
565 {
566 	struct ppp_file *pf = file->private_data;
567 	struct ppp *ppp;
568 	int err = -EFAULT, val, val2, i;
569 	struct ppp_idle idle;
570 	struct npioctl npi;
571 	int unit, cflags;
572 	struct slcompress *vj;
573 	void __user *argp = (void __user *)arg;
574 	int __user *p = argp;
575 
576 	if (!pf)
577 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
578 					pf, file, cmd, arg);
579 
580 	if (cmd == PPPIOCDETACH) {
581 		/*
582 		 * We have to be careful here... if the file descriptor
583 		 * has been dup'd, we could have another process in the
584 		 * middle of a poll using the same file *, so we had
585 		 * better not free the interface data structures -
586 		 * instead we fail the ioctl.  Even in this case, we
587 		 * shut down the interface if we are the owner of it.
588 		 * Actually, we should get rid of PPPIOCDETACH, userland
589 		 * (i.e. pppd) could achieve the same effect by closing
590 		 * this fd and reopening /dev/ppp.
591 		 */
592 		err = -EINVAL;
593 		mutex_lock(&ppp_mutex);
594 		if (pf->kind == INTERFACE) {
595 			ppp = PF_TO_PPP(pf);
596 			if (file == ppp->owner)
597 				ppp_shutdown_interface(ppp);
598 		}
599 		if (atomic_long_read(&file->f_count) < 2) {
600 			ppp_release(NULL, file);
601 			err = 0;
602 		} else
603 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
604 				atomic_long_read(&file->f_count));
605 		mutex_unlock(&ppp_mutex);
606 		return err;
607 	}
608 
609 	if (pf->kind == CHANNEL) {
610 		struct channel *pch;
611 		struct ppp_channel *chan;
612 
613 		mutex_lock(&ppp_mutex);
614 		pch = PF_TO_CHANNEL(pf);
615 
616 		switch (cmd) {
617 		case PPPIOCCONNECT:
618 			if (get_user(unit, p))
619 				break;
620 			err = ppp_connect_channel(pch, unit);
621 			break;
622 
623 		case PPPIOCDISCONN:
624 			err = ppp_disconnect_channel(pch);
625 			break;
626 
627 		default:
628 			down_read(&pch->chan_sem);
629 			chan = pch->chan;
630 			err = -ENOTTY;
631 			if (chan && chan->ops->ioctl)
632 				err = chan->ops->ioctl(chan, cmd, arg);
633 			up_read(&pch->chan_sem);
634 		}
635 		mutex_unlock(&ppp_mutex);
636 		return err;
637 	}
638 
639 	if (pf->kind != INTERFACE) {
640 		/* can't happen */
641 		pr_err("PPP: not interface or channel??\n");
642 		return -EINVAL;
643 	}
644 
645 	mutex_lock(&ppp_mutex);
646 	ppp = PF_TO_PPP(pf);
647 	switch (cmd) {
648 	case PPPIOCSMRU:
649 		if (get_user(val, p))
650 			break;
651 		ppp->mru = val;
652 		err = 0;
653 		break;
654 
655 	case PPPIOCSFLAGS:
656 		if (get_user(val, p))
657 			break;
658 		ppp_lock(ppp);
659 		cflags = ppp->flags & ~val;
660 #ifdef CONFIG_PPP_MULTILINK
661 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
662 			ppp->nextseq = 0;
663 #endif
664 		ppp->flags = val & SC_FLAG_BITS;
665 		ppp_unlock(ppp);
666 		if (cflags & SC_CCP_OPEN)
667 			ppp_ccp_closed(ppp);
668 		err = 0;
669 		break;
670 
671 	case PPPIOCGFLAGS:
672 		val = ppp->flags | ppp->xstate | ppp->rstate;
673 		if (put_user(val, p))
674 			break;
675 		err = 0;
676 		break;
677 
678 	case PPPIOCSCOMPRESS:
679 		err = ppp_set_compress(ppp, arg);
680 		break;
681 
682 	case PPPIOCGUNIT:
683 		if (put_user(ppp->file.index, p))
684 			break;
685 		err = 0;
686 		break;
687 
688 	case PPPIOCSDEBUG:
689 		if (get_user(val, p))
690 			break;
691 		ppp->debug = val;
692 		err = 0;
693 		break;
694 
695 	case PPPIOCGDEBUG:
696 		if (put_user(ppp->debug, p))
697 			break;
698 		err = 0;
699 		break;
700 
701 	case PPPIOCGIDLE:
702 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
703 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
704 		if (copy_to_user(argp, &idle, sizeof(idle)))
705 			break;
706 		err = 0;
707 		break;
708 
709 	case PPPIOCSMAXCID:
710 		if (get_user(val, p))
711 			break;
712 		val2 = 15;
713 		if ((val >> 16) != 0) {
714 			val2 = val >> 16;
715 			val &= 0xffff;
716 		}
717 		vj = slhc_init(val2+1, val+1);
718 		if (!vj) {
719 			netdev_err(ppp->dev,
720 				   "PPP: no memory (VJ compressor)\n");
721 			err = -ENOMEM;
722 			break;
723 		}
724 		ppp_lock(ppp);
725 		if (ppp->vj)
726 			slhc_free(ppp->vj);
727 		ppp->vj = vj;
728 		ppp_unlock(ppp);
729 		err = 0;
730 		break;
731 
732 	case PPPIOCGNPMODE:
733 	case PPPIOCSNPMODE:
734 		if (copy_from_user(&npi, argp, sizeof(npi)))
735 			break;
736 		err = proto_to_npindex(npi.protocol);
737 		if (err < 0)
738 			break;
739 		i = err;
740 		if (cmd == PPPIOCGNPMODE) {
741 			err = -EFAULT;
742 			npi.mode = ppp->npmode[i];
743 			if (copy_to_user(argp, &npi, sizeof(npi)))
744 				break;
745 		} else {
746 			ppp->npmode[i] = npi.mode;
747 			/* we may be able to transmit more packets now (??) */
748 			netif_wake_queue(ppp->dev);
749 		}
750 		err = 0;
751 		break;
752 
753 #ifdef CONFIG_PPP_FILTER
754 	case PPPIOCSPASS:
755 	{
756 		struct sock_filter *code;
757 
758 		err = get_filter(argp, &code);
759 		if (err >= 0) {
760 			struct bpf_prog *pass_filter = NULL;
761 			struct sock_fprog_kern fprog = {
762 				.len = err,
763 				.filter = code,
764 			};
765 
766 			err = 0;
767 			if (fprog.filter)
768 				err = bpf_prog_create(&pass_filter, &fprog);
769 			if (!err) {
770 				ppp_lock(ppp);
771 				if (ppp->pass_filter)
772 					bpf_prog_destroy(ppp->pass_filter);
773 				ppp->pass_filter = pass_filter;
774 				ppp_unlock(ppp);
775 			}
776 			kfree(code);
777 		}
778 		break;
779 	}
780 	case PPPIOCSACTIVE:
781 	{
782 		struct sock_filter *code;
783 
784 		err = get_filter(argp, &code);
785 		if (err >= 0) {
786 			struct bpf_prog *active_filter = NULL;
787 			struct sock_fprog_kern fprog = {
788 				.len = err,
789 				.filter = code,
790 			};
791 
792 			err = 0;
793 			if (fprog.filter)
794 				err = bpf_prog_create(&active_filter, &fprog);
795 			if (!err) {
796 				ppp_lock(ppp);
797 				if (ppp->active_filter)
798 					bpf_prog_destroy(ppp->active_filter);
799 				ppp->active_filter = active_filter;
800 				ppp_unlock(ppp);
801 			}
802 			kfree(code);
803 		}
804 		break;
805 	}
806 #endif /* CONFIG_PPP_FILTER */
807 
808 #ifdef CONFIG_PPP_MULTILINK
809 	case PPPIOCSMRRU:
810 		if (get_user(val, p))
811 			break;
812 		ppp_recv_lock(ppp);
813 		ppp->mrru = val;
814 		ppp_recv_unlock(ppp);
815 		err = 0;
816 		break;
817 #endif /* CONFIG_PPP_MULTILINK */
818 
819 	default:
820 		err = -ENOTTY;
821 	}
822 	mutex_unlock(&ppp_mutex);
823 	return err;
824 }
825 
826 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
827 			struct file *file, unsigned int cmd, unsigned long arg)
828 {
829 	int unit, err = -EFAULT;
830 	struct ppp *ppp;
831 	struct channel *chan;
832 	struct ppp_net *pn;
833 	int __user *p = (int __user *)arg;
834 
835 	mutex_lock(&ppp_mutex);
836 	switch (cmd) {
837 	case PPPIOCNEWUNIT:
838 		/* Create a new ppp unit */
839 		if (get_user(unit, p))
840 			break;
841 		ppp = ppp_create_interface(net, unit, &err);
842 		if (!ppp)
843 			break;
844 		file->private_data = &ppp->file;
845 		ppp->owner = file;
846 		err = -EFAULT;
847 		if (put_user(ppp->file.index, p))
848 			break;
849 		err = 0;
850 		break;
851 
852 	case PPPIOCATTACH:
853 		/* Attach to an existing ppp unit */
854 		if (get_user(unit, p))
855 			break;
856 		err = -ENXIO;
857 		pn = ppp_pernet(net);
858 		mutex_lock(&pn->all_ppp_mutex);
859 		ppp = ppp_find_unit(pn, unit);
860 		if (ppp) {
861 			atomic_inc(&ppp->file.refcnt);
862 			file->private_data = &ppp->file;
863 			err = 0;
864 		}
865 		mutex_unlock(&pn->all_ppp_mutex);
866 		break;
867 
868 	case PPPIOCATTCHAN:
869 		if (get_user(unit, p))
870 			break;
871 		err = -ENXIO;
872 		pn = ppp_pernet(net);
873 		spin_lock_bh(&pn->all_channels_lock);
874 		chan = ppp_find_channel(pn, unit);
875 		if (chan) {
876 			atomic_inc(&chan->file.refcnt);
877 			file->private_data = &chan->file;
878 			err = 0;
879 		}
880 		spin_unlock_bh(&pn->all_channels_lock);
881 		break;
882 
883 	default:
884 		err = -ENOTTY;
885 	}
886 	mutex_unlock(&ppp_mutex);
887 	return err;
888 }
889 
890 static const struct file_operations ppp_device_fops = {
891 	.owner		= THIS_MODULE,
892 	.read		= ppp_read,
893 	.write		= ppp_write,
894 	.poll		= ppp_poll,
895 	.unlocked_ioctl	= ppp_ioctl,
896 	.open		= ppp_open,
897 	.release	= ppp_release,
898 	.llseek		= noop_llseek,
899 };
900 
901 static __net_init int ppp_init_net(struct net *net)
902 {
903 	struct ppp_net *pn = net_generic(net, ppp_net_id);
904 
905 	idr_init(&pn->units_idr);
906 	mutex_init(&pn->all_ppp_mutex);
907 
908 	INIT_LIST_HEAD(&pn->all_channels);
909 	INIT_LIST_HEAD(&pn->new_channels);
910 
911 	spin_lock_init(&pn->all_channels_lock);
912 
913 	return 0;
914 }
915 
916 static __net_exit void ppp_exit_net(struct net *net)
917 {
918 	struct ppp_net *pn = net_generic(net, ppp_net_id);
919 
920 	idr_destroy(&pn->units_idr);
921 }
922 
923 static struct pernet_operations ppp_net_ops = {
924 	.init = ppp_init_net,
925 	.exit = ppp_exit_net,
926 	.id   = &ppp_net_id,
927 	.size = sizeof(struct ppp_net),
928 };
929 
930 #define PPP_MAJOR	108
931 
932 /* Called at boot time if ppp is compiled into the kernel,
933    or at module load time (from init_module) if compiled as a module. */
934 static int __init ppp_init(void)
935 {
936 	int err;
937 
938 	pr_info("PPP generic driver version " PPP_VERSION "\n");
939 
940 	err = register_pernet_device(&ppp_net_ops);
941 	if (err) {
942 		pr_err("failed to register PPP pernet device (%d)\n", err);
943 		goto out;
944 	}
945 
946 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
947 	if (err) {
948 		pr_err("failed to register PPP device (%d)\n", err);
949 		goto out_net;
950 	}
951 
952 	ppp_class = class_create(THIS_MODULE, "ppp");
953 	if (IS_ERR(ppp_class)) {
954 		err = PTR_ERR(ppp_class);
955 		goto out_chrdev;
956 	}
957 
958 	/* not a big deal if we fail here :-) */
959 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
960 
961 	return 0;
962 
963 out_chrdev:
964 	unregister_chrdev(PPP_MAJOR, "ppp");
965 out_net:
966 	unregister_pernet_device(&ppp_net_ops);
967 out:
968 	return err;
969 }
970 
971 /*
972  * Network interface unit routines.
973  */
974 static netdev_tx_t
975 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
976 {
977 	struct ppp *ppp = netdev_priv(dev);
978 	int npi, proto;
979 	unsigned char *pp;
980 
981 	npi = ethertype_to_npindex(ntohs(skb->protocol));
982 	if (npi < 0)
983 		goto outf;
984 
985 	/* Drop, accept or reject the packet */
986 	switch (ppp->npmode[npi]) {
987 	case NPMODE_PASS:
988 		break;
989 	case NPMODE_QUEUE:
990 		/* it would be nice to have a way to tell the network
991 		   system to queue this one up for later. */
992 		goto outf;
993 	case NPMODE_DROP:
994 	case NPMODE_ERROR:
995 		goto outf;
996 	}
997 
998 	/* Put the 2-byte PPP protocol number on the front,
999 	   making sure there is room for the address and control fields. */
1000 	if (skb_cow_head(skb, PPP_HDRLEN))
1001 		goto outf;
1002 
1003 	pp = skb_push(skb, 2);
1004 	proto = npindex_to_proto[npi];
1005 	put_unaligned_be16(proto, pp);
1006 
1007 	skb_queue_tail(&ppp->file.xq, skb);
1008 	ppp_xmit_process(ppp);
1009 	return NETDEV_TX_OK;
1010 
1011  outf:
1012 	kfree_skb(skb);
1013 	++dev->stats.tx_dropped;
1014 	return NETDEV_TX_OK;
1015 }
1016 
1017 static int
1018 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1019 {
1020 	struct ppp *ppp = netdev_priv(dev);
1021 	int err = -EFAULT;
1022 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1023 	struct ppp_stats stats;
1024 	struct ppp_comp_stats cstats;
1025 	char *vers;
1026 
1027 	switch (cmd) {
1028 	case SIOCGPPPSTATS:
1029 		ppp_get_stats(ppp, &stats);
1030 		if (copy_to_user(addr, &stats, sizeof(stats)))
1031 			break;
1032 		err = 0;
1033 		break;
1034 
1035 	case SIOCGPPPCSTATS:
1036 		memset(&cstats, 0, sizeof(cstats));
1037 		if (ppp->xc_state)
1038 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1039 		if (ppp->rc_state)
1040 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1041 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1042 			break;
1043 		err = 0;
1044 		break;
1045 
1046 	case SIOCGPPPVER:
1047 		vers = PPP_VERSION;
1048 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1049 			break;
1050 		err = 0;
1051 		break;
1052 
1053 	default:
1054 		err = -EINVAL;
1055 	}
1056 
1057 	return err;
1058 }
1059 
1060 static struct rtnl_link_stats64*
1061 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1062 {
1063 	struct ppp *ppp = netdev_priv(dev);
1064 
1065 	ppp_recv_lock(ppp);
1066 	stats64->rx_packets = ppp->stats64.rx_packets;
1067 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1068 	ppp_recv_unlock(ppp);
1069 
1070 	ppp_xmit_lock(ppp);
1071 	stats64->tx_packets = ppp->stats64.tx_packets;
1072 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1073 	ppp_xmit_unlock(ppp);
1074 
1075 	stats64->rx_errors        = dev->stats.rx_errors;
1076 	stats64->tx_errors        = dev->stats.tx_errors;
1077 	stats64->rx_dropped       = dev->stats.rx_dropped;
1078 	stats64->tx_dropped       = dev->stats.tx_dropped;
1079 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1080 
1081 	return stats64;
1082 }
1083 
1084 static struct lock_class_key ppp_tx_busylock;
1085 static int ppp_dev_init(struct net_device *dev)
1086 {
1087 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1088 	return 0;
1089 }
1090 
1091 static const struct net_device_ops ppp_netdev_ops = {
1092 	.ndo_init	 = ppp_dev_init,
1093 	.ndo_start_xmit  = ppp_start_xmit,
1094 	.ndo_do_ioctl    = ppp_net_ioctl,
1095 	.ndo_get_stats64 = ppp_get_stats64,
1096 };
1097 
1098 static void ppp_setup(struct net_device *dev)
1099 {
1100 	dev->netdev_ops = &ppp_netdev_ops;
1101 	dev->hard_header_len = PPP_HDRLEN;
1102 	dev->mtu = PPP_MRU;
1103 	dev->addr_len = 0;
1104 	dev->tx_queue_len = 3;
1105 	dev->type = ARPHRD_PPP;
1106 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1107 	dev->features |= NETIF_F_NETNS_LOCAL;
1108 	netif_keep_dst(dev);
1109 }
1110 
1111 /*
1112  * Transmit-side routines.
1113  */
1114 
1115 /*
1116  * Called to do any work queued up on the transmit side
1117  * that can now be done.
1118  */
1119 static void
1120 ppp_xmit_process(struct ppp *ppp)
1121 {
1122 	struct sk_buff *skb;
1123 
1124 	ppp_xmit_lock(ppp);
1125 	if (!ppp->closing) {
1126 		ppp_push(ppp);
1127 		while (!ppp->xmit_pending &&
1128 		       (skb = skb_dequeue(&ppp->file.xq)))
1129 			ppp_send_frame(ppp, skb);
1130 		/* If there's no work left to do, tell the core net
1131 		   code that we can accept some more. */
1132 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1133 			netif_wake_queue(ppp->dev);
1134 		else
1135 			netif_stop_queue(ppp->dev);
1136 	}
1137 	ppp_xmit_unlock(ppp);
1138 }
1139 
1140 static inline struct sk_buff *
1141 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1142 {
1143 	struct sk_buff *new_skb;
1144 	int len;
1145 	int new_skb_size = ppp->dev->mtu +
1146 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1147 	int compressor_skb_size = ppp->dev->mtu +
1148 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1149 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1150 	if (!new_skb) {
1151 		if (net_ratelimit())
1152 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1153 		return NULL;
1154 	}
1155 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1156 		skb_reserve(new_skb,
1157 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1158 
1159 	/* compressor still expects A/C bytes in hdr */
1160 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1161 				   new_skb->data, skb->len + 2,
1162 				   compressor_skb_size);
1163 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1164 		consume_skb(skb);
1165 		skb = new_skb;
1166 		skb_put(skb, len);
1167 		skb_pull(skb, 2);	/* pull off A/C bytes */
1168 	} else if (len == 0) {
1169 		/* didn't compress, or CCP not up yet */
1170 		consume_skb(new_skb);
1171 		new_skb = skb;
1172 	} else {
1173 		/*
1174 		 * (len < 0)
1175 		 * MPPE requires that we do not send unencrypted
1176 		 * frames.  The compressor will return -1 if we
1177 		 * should drop the frame.  We cannot simply test
1178 		 * the compress_proto because MPPE and MPPC share
1179 		 * the same number.
1180 		 */
1181 		if (net_ratelimit())
1182 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1183 		kfree_skb(skb);
1184 		consume_skb(new_skb);
1185 		new_skb = NULL;
1186 	}
1187 	return new_skb;
1188 }
1189 
1190 /*
1191  * Compress and send a frame.
1192  * The caller should have locked the xmit path,
1193  * and xmit_pending should be 0.
1194  */
1195 static void
1196 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1197 {
1198 	int proto = PPP_PROTO(skb);
1199 	struct sk_buff *new_skb;
1200 	int len;
1201 	unsigned char *cp;
1202 
1203 	if (proto < 0x8000) {
1204 #ifdef CONFIG_PPP_FILTER
1205 		/* check if we should pass this packet */
1206 		/* the filter instructions are constructed assuming
1207 		   a four-byte PPP header on each packet */
1208 		*skb_push(skb, 2) = 1;
1209 		if (ppp->pass_filter &&
1210 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1211 			if (ppp->debug & 1)
1212 				netdev_printk(KERN_DEBUG, ppp->dev,
1213 					      "PPP: outbound frame "
1214 					      "not passed\n");
1215 			kfree_skb(skb);
1216 			return;
1217 		}
1218 		/* if this packet passes the active filter, record the time */
1219 		if (!(ppp->active_filter &&
1220 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1221 			ppp->last_xmit = jiffies;
1222 		skb_pull(skb, 2);
1223 #else
1224 		/* for data packets, record the time */
1225 		ppp->last_xmit = jiffies;
1226 #endif /* CONFIG_PPP_FILTER */
1227 	}
1228 
1229 	++ppp->stats64.tx_packets;
1230 	ppp->stats64.tx_bytes += skb->len - 2;
1231 
1232 	switch (proto) {
1233 	case PPP_IP:
1234 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1235 			break;
1236 		/* try to do VJ TCP header compression */
1237 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1238 				    GFP_ATOMIC);
1239 		if (!new_skb) {
1240 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1241 			goto drop;
1242 		}
1243 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1244 		cp = skb->data + 2;
1245 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1246 				    new_skb->data + 2, &cp,
1247 				    !(ppp->flags & SC_NO_TCP_CCID));
1248 		if (cp == skb->data + 2) {
1249 			/* didn't compress */
1250 			consume_skb(new_skb);
1251 		} else {
1252 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1253 				proto = PPP_VJC_COMP;
1254 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1255 			} else {
1256 				proto = PPP_VJC_UNCOMP;
1257 				cp[0] = skb->data[2];
1258 			}
1259 			consume_skb(skb);
1260 			skb = new_skb;
1261 			cp = skb_put(skb, len + 2);
1262 			cp[0] = 0;
1263 			cp[1] = proto;
1264 		}
1265 		break;
1266 
1267 	case PPP_CCP:
1268 		/* peek at outbound CCP frames */
1269 		ppp_ccp_peek(ppp, skb, 0);
1270 		break;
1271 	}
1272 
1273 	/* try to do packet compression */
1274 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1275 	    proto != PPP_LCP && proto != PPP_CCP) {
1276 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1277 			if (net_ratelimit())
1278 				netdev_err(ppp->dev,
1279 					   "ppp: compression required but "
1280 					   "down - pkt dropped.\n");
1281 			goto drop;
1282 		}
1283 		skb = pad_compress_skb(ppp, skb);
1284 		if (!skb)
1285 			goto drop;
1286 	}
1287 
1288 	/*
1289 	 * If we are waiting for traffic (demand dialling),
1290 	 * queue it up for pppd to receive.
1291 	 */
1292 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1293 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1294 			goto drop;
1295 		skb_queue_tail(&ppp->file.rq, skb);
1296 		wake_up_interruptible(&ppp->file.rwait);
1297 		return;
1298 	}
1299 
1300 	ppp->xmit_pending = skb;
1301 	ppp_push(ppp);
1302 	return;
1303 
1304  drop:
1305 	kfree_skb(skb);
1306 	++ppp->dev->stats.tx_errors;
1307 }
1308 
1309 /*
1310  * Try to send the frame in xmit_pending.
1311  * The caller should have the xmit path locked.
1312  */
1313 static void
1314 ppp_push(struct ppp *ppp)
1315 {
1316 	struct list_head *list;
1317 	struct channel *pch;
1318 	struct sk_buff *skb = ppp->xmit_pending;
1319 
1320 	if (!skb)
1321 		return;
1322 
1323 	list = &ppp->channels;
1324 	if (list_empty(list)) {
1325 		/* nowhere to send the packet, just drop it */
1326 		ppp->xmit_pending = NULL;
1327 		kfree_skb(skb);
1328 		return;
1329 	}
1330 
1331 	if ((ppp->flags & SC_MULTILINK) == 0) {
1332 		/* not doing multilink: send it down the first channel */
1333 		list = list->next;
1334 		pch = list_entry(list, struct channel, clist);
1335 
1336 		spin_lock_bh(&pch->downl);
1337 		if (pch->chan) {
1338 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1339 				ppp->xmit_pending = NULL;
1340 		} else {
1341 			/* channel got unregistered */
1342 			kfree_skb(skb);
1343 			ppp->xmit_pending = NULL;
1344 		}
1345 		spin_unlock_bh(&pch->downl);
1346 		return;
1347 	}
1348 
1349 #ifdef CONFIG_PPP_MULTILINK
1350 	/* Multilink: fragment the packet over as many links
1351 	   as can take the packet at the moment. */
1352 	if (!ppp_mp_explode(ppp, skb))
1353 		return;
1354 #endif /* CONFIG_PPP_MULTILINK */
1355 
1356 	ppp->xmit_pending = NULL;
1357 	kfree_skb(skb);
1358 }
1359 
1360 #ifdef CONFIG_PPP_MULTILINK
1361 static bool mp_protocol_compress __read_mostly = true;
1362 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1363 MODULE_PARM_DESC(mp_protocol_compress,
1364 		 "compress protocol id in multilink fragments");
1365 
1366 /*
1367  * Divide a packet to be transmitted into fragments and
1368  * send them out the individual links.
1369  */
1370 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1371 {
1372 	int len, totlen;
1373 	int i, bits, hdrlen, mtu;
1374 	int flen;
1375 	int navail, nfree, nzero;
1376 	int nbigger;
1377 	int totspeed;
1378 	int totfree;
1379 	unsigned char *p, *q;
1380 	struct list_head *list;
1381 	struct channel *pch;
1382 	struct sk_buff *frag;
1383 	struct ppp_channel *chan;
1384 
1385 	totspeed = 0; /*total bitrate of the bundle*/
1386 	nfree = 0; /* # channels which have no packet already queued */
1387 	navail = 0; /* total # of usable channels (not deregistered) */
1388 	nzero = 0; /* number of channels with zero speed associated*/
1389 	totfree = 0; /*total # of channels available and
1390 				  *having no queued packets before
1391 				  *starting the fragmentation*/
1392 
1393 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1394 	i = 0;
1395 	list_for_each_entry(pch, &ppp->channels, clist) {
1396 		if (pch->chan) {
1397 			pch->avail = 1;
1398 			navail++;
1399 			pch->speed = pch->chan->speed;
1400 		} else {
1401 			pch->avail = 0;
1402 		}
1403 		if (pch->avail) {
1404 			if (skb_queue_empty(&pch->file.xq) ||
1405 				!pch->had_frag) {
1406 					if (pch->speed == 0)
1407 						nzero++;
1408 					else
1409 						totspeed += pch->speed;
1410 
1411 					pch->avail = 2;
1412 					++nfree;
1413 					++totfree;
1414 				}
1415 			if (!pch->had_frag && i < ppp->nxchan)
1416 				ppp->nxchan = i;
1417 		}
1418 		++i;
1419 	}
1420 	/*
1421 	 * Don't start sending this packet unless at least half of
1422 	 * the channels are free.  This gives much better TCP
1423 	 * performance if we have a lot of channels.
1424 	 */
1425 	if (nfree == 0 || nfree < navail / 2)
1426 		return 0; /* can't take now, leave it in xmit_pending */
1427 
1428 	/* Do protocol field compression */
1429 	p = skb->data;
1430 	len = skb->len;
1431 	if (*p == 0 && mp_protocol_compress) {
1432 		++p;
1433 		--len;
1434 	}
1435 
1436 	totlen = len;
1437 	nbigger = len % nfree;
1438 
1439 	/* skip to the channel after the one we last used
1440 	   and start at that one */
1441 	list = &ppp->channels;
1442 	for (i = 0; i < ppp->nxchan; ++i) {
1443 		list = list->next;
1444 		if (list == &ppp->channels) {
1445 			i = 0;
1446 			break;
1447 		}
1448 	}
1449 
1450 	/* create a fragment for each channel */
1451 	bits = B;
1452 	while (len > 0) {
1453 		list = list->next;
1454 		if (list == &ppp->channels) {
1455 			i = 0;
1456 			continue;
1457 		}
1458 		pch = list_entry(list, struct channel, clist);
1459 		++i;
1460 		if (!pch->avail)
1461 			continue;
1462 
1463 		/*
1464 		 * Skip this channel if it has a fragment pending already and
1465 		 * we haven't given a fragment to all of the free channels.
1466 		 */
1467 		if (pch->avail == 1) {
1468 			if (nfree > 0)
1469 				continue;
1470 		} else {
1471 			pch->avail = 1;
1472 		}
1473 
1474 		/* check the channel's mtu and whether it is still attached. */
1475 		spin_lock_bh(&pch->downl);
1476 		if (pch->chan == NULL) {
1477 			/* can't use this channel, it's being deregistered */
1478 			if (pch->speed == 0)
1479 				nzero--;
1480 			else
1481 				totspeed -= pch->speed;
1482 
1483 			spin_unlock_bh(&pch->downl);
1484 			pch->avail = 0;
1485 			totlen = len;
1486 			totfree--;
1487 			nfree--;
1488 			if (--navail == 0)
1489 				break;
1490 			continue;
1491 		}
1492 
1493 		/*
1494 		*if the channel speed is not set divide
1495 		*the packet evenly among the free channels;
1496 		*otherwise divide it according to the speed
1497 		*of the channel we are going to transmit on
1498 		*/
1499 		flen = len;
1500 		if (nfree > 0) {
1501 			if (pch->speed == 0) {
1502 				flen = len/nfree;
1503 				if (nbigger > 0) {
1504 					flen++;
1505 					nbigger--;
1506 				}
1507 			} else {
1508 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1509 					((totspeed*totfree)/pch->speed)) - hdrlen;
1510 				if (nbigger > 0) {
1511 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1512 					nbigger -= ((totfree - nzero)*pch->speed)/
1513 							totspeed;
1514 				}
1515 			}
1516 			nfree--;
1517 		}
1518 
1519 		/*
1520 		 *check if we are on the last channel or
1521 		 *we exceded the length of the data to
1522 		 *fragment
1523 		 */
1524 		if ((nfree <= 0) || (flen > len))
1525 			flen = len;
1526 		/*
1527 		 *it is not worth to tx on slow channels:
1528 		 *in that case from the resulting flen according to the
1529 		 *above formula will be equal or less than zero.
1530 		 *Skip the channel in this case
1531 		 */
1532 		if (flen <= 0) {
1533 			pch->avail = 2;
1534 			spin_unlock_bh(&pch->downl);
1535 			continue;
1536 		}
1537 
1538 		/*
1539 		 * hdrlen includes the 2-byte PPP protocol field, but the
1540 		 * MTU counts only the payload excluding the protocol field.
1541 		 * (RFC1661 Section 2)
1542 		 */
1543 		mtu = pch->chan->mtu - (hdrlen - 2);
1544 		if (mtu < 4)
1545 			mtu = 4;
1546 		if (flen > mtu)
1547 			flen = mtu;
1548 		if (flen == len)
1549 			bits |= E;
1550 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1551 		if (!frag)
1552 			goto noskb;
1553 		q = skb_put(frag, flen + hdrlen);
1554 
1555 		/* make the MP header */
1556 		put_unaligned_be16(PPP_MP, q);
1557 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1558 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1559 			q[3] = ppp->nxseq;
1560 		} else {
1561 			q[2] = bits;
1562 			q[3] = ppp->nxseq >> 16;
1563 			q[4] = ppp->nxseq >> 8;
1564 			q[5] = ppp->nxseq;
1565 		}
1566 
1567 		memcpy(q + hdrlen, p, flen);
1568 
1569 		/* try to send it down the channel */
1570 		chan = pch->chan;
1571 		if (!skb_queue_empty(&pch->file.xq) ||
1572 			!chan->ops->start_xmit(chan, frag))
1573 			skb_queue_tail(&pch->file.xq, frag);
1574 		pch->had_frag = 1;
1575 		p += flen;
1576 		len -= flen;
1577 		++ppp->nxseq;
1578 		bits = 0;
1579 		spin_unlock_bh(&pch->downl);
1580 	}
1581 	ppp->nxchan = i;
1582 
1583 	return 1;
1584 
1585  noskb:
1586 	spin_unlock_bh(&pch->downl);
1587 	if (ppp->debug & 1)
1588 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1589 	++ppp->dev->stats.tx_errors;
1590 	++ppp->nxseq;
1591 	return 1;	/* abandon the frame */
1592 }
1593 #endif /* CONFIG_PPP_MULTILINK */
1594 
1595 /*
1596  * Try to send data out on a channel.
1597  */
1598 static void
1599 ppp_channel_push(struct channel *pch)
1600 {
1601 	struct sk_buff *skb;
1602 	struct ppp *ppp;
1603 
1604 	spin_lock_bh(&pch->downl);
1605 	if (pch->chan) {
1606 		while (!skb_queue_empty(&pch->file.xq)) {
1607 			skb = skb_dequeue(&pch->file.xq);
1608 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1609 				/* put the packet back and try again later */
1610 				skb_queue_head(&pch->file.xq, skb);
1611 				break;
1612 			}
1613 		}
1614 	} else {
1615 		/* channel got deregistered */
1616 		skb_queue_purge(&pch->file.xq);
1617 	}
1618 	spin_unlock_bh(&pch->downl);
1619 	/* see if there is anything from the attached unit to be sent */
1620 	if (skb_queue_empty(&pch->file.xq)) {
1621 		read_lock_bh(&pch->upl);
1622 		ppp = pch->ppp;
1623 		if (ppp)
1624 			ppp_xmit_process(ppp);
1625 		read_unlock_bh(&pch->upl);
1626 	}
1627 }
1628 
1629 /*
1630  * Receive-side routines.
1631  */
1632 
1633 struct ppp_mp_skb_parm {
1634 	u32		sequence;
1635 	u8		BEbits;
1636 };
1637 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1638 
1639 static inline void
1640 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1641 {
1642 	ppp_recv_lock(ppp);
1643 	if (!ppp->closing)
1644 		ppp_receive_frame(ppp, skb, pch);
1645 	else
1646 		kfree_skb(skb);
1647 	ppp_recv_unlock(ppp);
1648 }
1649 
1650 void
1651 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1652 {
1653 	struct channel *pch = chan->ppp;
1654 	int proto;
1655 
1656 	if (!pch) {
1657 		kfree_skb(skb);
1658 		return;
1659 	}
1660 
1661 	read_lock_bh(&pch->upl);
1662 	if (!pskb_may_pull(skb, 2)) {
1663 		kfree_skb(skb);
1664 		if (pch->ppp) {
1665 			++pch->ppp->dev->stats.rx_length_errors;
1666 			ppp_receive_error(pch->ppp);
1667 		}
1668 		goto done;
1669 	}
1670 
1671 	proto = PPP_PROTO(skb);
1672 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1673 		/* put it on the channel queue */
1674 		skb_queue_tail(&pch->file.rq, skb);
1675 		/* drop old frames if queue too long */
1676 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1677 		       (skb = skb_dequeue(&pch->file.rq)))
1678 			kfree_skb(skb);
1679 		wake_up_interruptible(&pch->file.rwait);
1680 	} else {
1681 		ppp_do_recv(pch->ppp, skb, pch);
1682 	}
1683 
1684 done:
1685 	read_unlock_bh(&pch->upl);
1686 }
1687 
1688 /* Put a 0-length skb in the receive queue as an error indication */
1689 void
1690 ppp_input_error(struct ppp_channel *chan, int code)
1691 {
1692 	struct channel *pch = chan->ppp;
1693 	struct sk_buff *skb;
1694 
1695 	if (!pch)
1696 		return;
1697 
1698 	read_lock_bh(&pch->upl);
1699 	if (pch->ppp) {
1700 		skb = alloc_skb(0, GFP_ATOMIC);
1701 		if (skb) {
1702 			skb->len = 0;		/* probably unnecessary */
1703 			skb->cb[0] = code;
1704 			ppp_do_recv(pch->ppp, skb, pch);
1705 		}
1706 	}
1707 	read_unlock_bh(&pch->upl);
1708 }
1709 
1710 /*
1711  * We come in here to process a received frame.
1712  * The receive side of the ppp unit is locked.
1713  */
1714 static void
1715 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1716 {
1717 	/* note: a 0-length skb is used as an error indication */
1718 	if (skb->len > 0) {
1719 #ifdef CONFIG_PPP_MULTILINK
1720 		/* XXX do channel-level decompression here */
1721 		if (PPP_PROTO(skb) == PPP_MP)
1722 			ppp_receive_mp_frame(ppp, skb, pch);
1723 		else
1724 #endif /* CONFIG_PPP_MULTILINK */
1725 			ppp_receive_nonmp_frame(ppp, skb);
1726 	} else {
1727 		kfree_skb(skb);
1728 		ppp_receive_error(ppp);
1729 	}
1730 }
1731 
1732 static void
1733 ppp_receive_error(struct ppp *ppp)
1734 {
1735 	++ppp->dev->stats.rx_errors;
1736 	if (ppp->vj)
1737 		slhc_toss(ppp->vj);
1738 }
1739 
1740 static void
1741 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1742 {
1743 	struct sk_buff *ns;
1744 	int proto, len, npi;
1745 
1746 	/*
1747 	 * Decompress the frame, if compressed.
1748 	 * Note that some decompressors need to see uncompressed frames
1749 	 * that come in as well as compressed frames.
1750 	 */
1751 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1752 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1753 		skb = ppp_decompress_frame(ppp, skb);
1754 
1755 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1756 		goto err;
1757 
1758 	proto = PPP_PROTO(skb);
1759 	switch (proto) {
1760 	case PPP_VJC_COMP:
1761 		/* decompress VJ compressed packets */
1762 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1763 			goto err;
1764 
1765 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1766 			/* copy to a new sk_buff with more tailroom */
1767 			ns = dev_alloc_skb(skb->len + 128);
1768 			if (!ns) {
1769 				netdev_err(ppp->dev, "PPP: no memory "
1770 					   "(VJ decomp)\n");
1771 				goto err;
1772 			}
1773 			skb_reserve(ns, 2);
1774 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1775 			consume_skb(skb);
1776 			skb = ns;
1777 		}
1778 		else
1779 			skb->ip_summed = CHECKSUM_NONE;
1780 
1781 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1782 		if (len <= 0) {
1783 			netdev_printk(KERN_DEBUG, ppp->dev,
1784 				      "PPP: VJ decompression error\n");
1785 			goto err;
1786 		}
1787 		len += 2;
1788 		if (len > skb->len)
1789 			skb_put(skb, len - skb->len);
1790 		else if (len < skb->len)
1791 			skb_trim(skb, len);
1792 		proto = PPP_IP;
1793 		break;
1794 
1795 	case PPP_VJC_UNCOMP:
1796 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1797 			goto err;
1798 
1799 		/* Until we fix the decompressor need to make sure
1800 		 * data portion is linear.
1801 		 */
1802 		if (!pskb_may_pull(skb, skb->len))
1803 			goto err;
1804 
1805 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1806 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1807 			goto err;
1808 		}
1809 		proto = PPP_IP;
1810 		break;
1811 
1812 	case PPP_CCP:
1813 		ppp_ccp_peek(ppp, skb, 1);
1814 		break;
1815 	}
1816 
1817 	++ppp->stats64.rx_packets;
1818 	ppp->stats64.rx_bytes += skb->len - 2;
1819 
1820 	npi = proto_to_npindex(proto);
1821 	if (npi < 0) {
1822 		/* control or unknown frame - pass it to pppd */
1823 		skb_queue_tail(&ppp->file.rq, skb);
1824 		/* limit queue length by dropping old frames */
1825 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1826 		       (skb = skb_dequeue(&ppp->file.rq)))
1827 			kfree_skb(skb);
1828 		/* wake up any process polling or blocking on read */
1829 		wake_up_interruptible(&ppp->file.rwait);
1830 
1831 	} else {
1832 		/* network protocol frame - give it to the kernel */
1833 
1834 #ifdef CONFIG_PPP_FILTER
1835 		/* check if the packet passes the pass and active filters */
1836 		/* the filter instructions are constructed assuming
1837 		   a four-byte PPP header on each packet */
1838 		if (ppp->pass_filter || ppp->active_filter) {
1839 			if (skb_unclone(skb, GFP_ATOMIC))
1840 				goto err;
1841 
1842 			*skb_push(skb, 2) = 0;
1843 			if (ppp->pass_filter &&
1844 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1845 				if (ppp->debug & 1)
1846 					netdev_printk(KERN_DEBUG, ppp->dev,
1847 						      "PPP: inbound frame "
1848 						      "not passed\n");
1849 				kfree_skb(skb);
1850 				return;
1851 			}
1852 			if (!(ppp->active_filter &&
1853 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1854 				ppp->last_recv = jiffies;
1855 			__skb_pull(skb, 2);
1856 		} else
1857 #endif /* CONFIG_PPP_FILTER */
1858 			ppp->last_recv = jiffies;
1859 
1860 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1861 		    ppp->npmode[npi] != NPMODE_PASS) {
1862 			kfree_skb(skb);
1863 		} else {
1864 			/* chop off protocol */
1865 			skb_pull_rcsum(skb, 2);
1866 			skb->dev = ppp->dev;
1867 			skb->protocol = htons(npindex_to_ethertype[npi]);
1868 			skb_reset_mac_header(skb);
1869 			netif_rx(skb);
1870 		}
1871 	}
1872 	return;
1873 
1874  err:
1875 	kfree_skb(skb);
1876 	ppp_receive_error(ppp);
1877 }
1878 
1879 static struct sk_buff *
1880 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1881 {
1882 	int proto = PPP_PROTO(skb);
1883 	struct sk_buff *ns;
1884 	int len;
1885 
1886 	/* Until we fix all the decompressor's need to make sure
1887 	 * data portion is linear.
1888 	 */
1889 	if (!pskb_may_pull(skb, skb->len))
1890 		goto err;
1891 
1892 	if (proto == PPP_COMP) {
1893 		int obuff_size;
1894 
1895 		switch(ppp->rcomp->compress_proto) {
1896 		case CI_MPPE:
1897 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1898 			break;
1899 		default:
1900 			obuff_size = ppp->mru + PPP_HDRLEN;
1901 			break;
1902 		}
1903 
1904 		ns = dev_alloc_skb(obuff_size);
1905 		if (!ns) {
1906 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1907 				   "no memory\n");
1908 			goto err;
1909 		}
1910 		/* the decompressor still expects the A/C bytes in the hdr */
1911 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1912 				skb->len + 2, ns->data, obuff_size);
1913 		if (len < 0) {
1914 			/* Pass the compressed frame to pppd as an
1915 			   error indication. */
1916 			if (len == DECOMP_FATALERROR)
1917 				ppp->rstate |= SC_DC_FERROR;
1918 			kfree_skb(ns);
1919 			goto err;
1920 		}
1921 
1922 		consume_skb(skb);
1923 		skb = ns;
1924 		skb_put(skb, len);
1925 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1926 
1927 	} else {
1928 		/* Uncompressed frame - pass to decompressor so it
1929 		   can update its dictionary if necessary. */
1930 		if (ppp->rcomp->incomp)
1931 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1932 					   skb->len + 2);
1933 	}
1934 
1935 	return skb;
1936 
1937  err:
1938 	ppp->rstate |= SC_DC_ERROR;
1939 	ppp_receive_error(ppp);
1940 	return skb;
1941 }
1942 
1943 #ifdef CONFIG_PPP_MULTILINK
1944 /*
1945  * Receive a multilink frame.
1946  * We put it on the reconstruction queue and then pull off
1947  * as many completed frames as we can.
1948  */
1949 static void
1950 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1951 {
1952 	u32 mask, seq;
1953 	struct channel *ch;
1954 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1955 
1956 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1957 		goto err;		/* no good, throw it away */
1958 
1959 	/* Decode sequence number and begin/end bits */
1960 	if (ppp->flags & SC_MP_SHORTSEQ) {
1961 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1962 		mask = 0xfff;
1963 	} else {
1964 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1965 		mask = 0xffffff;
1966 	}
1967 	PPP_MP_CB(skb)->BEbits = skb->data[2];
1968 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1969 
1970 	/*
1971 	 * Do protocol ID decompression on the first fragment of each packet.
1972 	 */
1973 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1974 		*skb_push(skb, 1) = 0;
1975 
1976 	/*
1977 	 * Expand sequence number to 32 bits, making it as close
1978 	 * as possible to ppp->minseq.
1979 	 */
1980 	seq |= ppp->minseq & ~mask;
1981 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1982 		seq += mask + 1;
1983 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1984 		seq -= mask + 1;	/* should never happen */
1985 	PPP_MP_CB(skb)->sequence = seq;
1986 	pch->lastseq = seq;
1987 
1988 	/*
1989 	 * If this packet comes before the next one we were expecting,
1990 	 * drop it.
1991 	 */
1992 	if (seq_before(seq, ppp->nextseq)) {
1993 		kfree_skb(skb);
1994 		++ppp->dev->stats.rx_dropped;
1995 		ppp_receive_error(ppp);
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Reevaluate minseq, the minimum over all channels of the
2001 	 * last sequence number received on each channel.  Because of
2002 	 * the increasing sequence number rule, we know that any fragment
2003 	 * before `minseq' which hasn't arrived is never going to arrive.
2004 	 * The list of channels can't change because we have the receive
2005 	 * side of the ppp unit locked.
2006 	 */
2007 	list_for_each_entry(ch, &ppp->channels, clist) {
2008 		if (seq_before(ch->lastseq, seq))
2009 			seq = ch->lastseq;
2010 	}
2011 	if (seq_before(ppp->minseq, seq))
2012 		ppp->minseq = seq;
2013 
2014 	/* Put the fragment on the reconstruction queue */
2015 	ppp_mp_insert(ppp, skb);
2016 
2017 	/* If the queue is getting long, don't wait any longer for packets
2018 	   before the start of the queue. */
2019 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2020 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2021 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2022 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2023 	}
2024 
2025 	/* Pull completed packets off the queue and receive them. */
2026 	while ((skb = ppp_mp_reconstruct(ppp))) {
2027 		if (pskb_may_pull(skb, 2))
2028 			ppp_receive_nonmp_frame(ppp, skb);
2029 		else {
2030 			++ppp->dev->stats.rx_length_errors;
2031 			kfree_skb(skb);
2032 			ppp_receive_error(ppp);
2033 		}
2034 	}
2035 
2036 	return;
2037 
2038  err:
2039 	kfree_skb(skb);
2040 	ppp_receive_error(ppp);
2041 }
2042 
2043 /*
2044  * Insert a fragment on the MP reconstruction queue.
2045  * The queue is ordered by increasing sequence number.
2046  */
2047 static void
2048 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2049 {
2050 	struct sk_buff *p;
2051 	struct sk_buff_head *list = &ppp->mrq;
2052 	u32 seq = PPP_MP_CB(skb)->sequence;
2053 
2054 	/* N.B. we don't need to lock the list lock because we have the
2055 	   ppp unit receive-side lock. */
2056 	skb_queue_walk(list, p) {
2057 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2058 			break;
2059 	}
2060 	__skb_queue_before(list, p, skb);
2061 }
2062 
2063 /*
2064  * Reconstruct a packet from the MP fragment queue.
2065  * We go through increasing sequence numbers until we find a
2066  * complete packet, or we get to the sequence number for a fragment
2067  * which hasn't arrived but might still do so.
2068  */
2069 static struct sk_buff *
2070 ppp_mp_reconstruct(struct ppp *ppp)
2071 {
2072 	u32 seq = ppp->nextseq;
2073 	u32 minseq = ppp->minseq;
2074 	struct sk_buff_head *list = &ppp->mrq;
2075 	struct sk_buff *p, *tmp;
2076 	struct sk_buff *head, *tail;
2077 	struct sk_buff *skb = NULL;
2078 	int lost = 0, len = 0;
2079 
2080 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2081 		return NULL;
2082 	head = list->next;
2083 	tail = NULL;
2084 	skb_queue_walk_safe(list, p, tmp) {
2085 	again:
2086 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2087 			/* this can't happen, anyway ignore the skb */
2088 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2089 				   "seq %u < %u\n",
2090 				   PPP_MP_CB(p)->sequence, seq);
2091 			__skb_unlink(p, list);
2092 			kfree_skb(p);
2093 			continue;
2094 		}
2095 		if (PPP_MP_CB(p)->sequence != seq) {
2096 			u32 oldseq;
2097 			/* Fragment `seq' is missing.  If it is after
2098 			   minseq, it might arrive later, so stop here. */
2099 			if (seq_after(seq, minseq))
2100 				break;
2101 			/* Fragment `seq' is lost, keep going. */
2102 			lost = 1;
2103 			oldseq = seq;
2104 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2105 				minseq + 1: PPP_MP_CB(p)->sequence;
2106 
2107 			if (ppp->debug & 1)
2108 				netdev_printk(KERN_DEBUG, ppp->dev,
2109 					      "lost frag %u..%u\n",
2110 					      oldseq, seq-1);
2111 
2112 			goto again;
2113 		}
2114 
2115 		/*
2116 		 * At this point we know that all the fragments from
2117 		 * ppp->nextseq to seq are either present or lost.
2118 		 * Also, there are no complete packets in the queue
2119 		 * that have no missing fragments and end before this
2120 		 * fragment.
2121 		 */
2122 
2123 		/* B bit set indicates this fragment starts a packet */
2124 		if (PPP_MP_CB(p)->BEbits & B) {
2125 			head = p;
2126 			lost = 0;
2127 			len = 0;
2128 		}
2129 
2130 		len += p->len;
2131 
2132 		/* Got a complete packet yet? */
2133 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2134 		    (PPP_MP_CB(head)->BEbits & B)) {
2135 			if (len > ppp->mrru + 2) {
2136 				++ppp->dev->stats.rx_length_errors;
2137 				netdev_printk(KERN_DEBUG, ppp->dev,
2138 					      "PPP: reconstructed packet"
2139 					      " is too long (%d)\n", len);
2140 			} else {
2141 				tail = p;
2142 				break;
2143 			}
2144 			ppp->nextseq = seq + 1;
2145 		}
2146 
2147 		/*
2148 		 * If this is the ending fragment of a packet,
2149 		 * and we haven't found a complete valid packet yet,
2150 		 * we can discard up to and including this fragment.
2151 		 */
2152 		if (PPP_MP_CB(p)->BEbits & E) {
2153 			struct sk_buff *tmp2;
2154 
2155 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2156 				if (ppp->debug & 1)
2157 					netdev_printk(KERN_DEBUG, ppp->dev,
2158 						      "discarding frag %u\n",
2159 						      PPP_MP_CB(p)->sequence);
2160 				__skb_unlink(p, list);
2161 				kfree_skb(p);
2162 			}
2163 			head = skb_peek(list);
2164 			if (!head)
2165 				break;
2166 		}
2167 		++seq;
2168 	}
2169 
2170 	/* If we have a complete packet, copy it all into one skb. */
2171 	if (tail != NULL) {
2172 		/* If we have discarded any fragments,
2173 		   signal a receive error. */
2174 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2175 			skb_queue_walk_safe(list, p, tmp) {
2176 				if (p == head)
2177 					break;
2178 				if (ppp->debug & 1)
2179 					netdev_printk(KERN_DEBUG, ppp->dev,
2180 						      "discarding frag %u\n",
2181 						      PPP_MP_CB(p)->sequence);
2182 				__skb_unlink(p, list);
2183 				kfree_skb(p);
2184 			}
2185 
2186 			if (ppp->debug & 1)
2187 				netdev_printk(KERN_DEBUG, ppp->dev,
2188 					      "  missed pkts %u..%u\n",
2189 					      ppp->nextseq,
2190 					      PPP_MP_CB(head)->sequence-1);
2191 			++ppp->dev->stats.rx_dropped;
2192 			ppp_receive_error(ppp);
2193 		}
2194 
2195 		skb = head;
2196 		if (head != tail) {
2197 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2198 			p = skb_queue_next(list, head);
2199 			__skb_unlink(skb, list);
2200 			skb_queue_walk_from_safe(list, p, tmp) {
2201 				__skb_unlink(p, list);
2202 				*fragpp = p;
2203 				p->next = NULL;
2204 				fragpp = &p->next;
2205 
2206 				skb->len += p->len;
2207 				skb->data_len += p->len;
2208 				skb->truesize += p->truesize;
2209 
2210 				if (p == tail)
2211 					break;
2212 			}
2213 		} else {
2214 			__skb_unlink(skb, list);
2215 		}
2216 
2217 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2218 	}
2219 
2220 	return skb;
2221 }
2222 #endif /* CONFIG_PPP_MULTILINK */
2223 
2224 /*
2225  * Channel interface.
2226  */
2227 
2228 /* Create a new, unattached ppp channel. */
2229 int ppp_register_channel(struct ppp_channel *chan)
2230 {
2231 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2232 }
2233 
2234 /* Create a new, unattached ppp channel for specified net. */
2235 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2236 {
2237 	struct channel *pch;
2238 	struct ppp_net *pn;
2239 
2240 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2241 	if (!pch)
2242 		return -ENOMEM;
2243 
2244 	pn = ppp_pernet(net);
2245 
2246 	pch->ppp = NULL;
2247 	pch->chan = chan;
2248 	pch->chan_net = net;
2249 	chan->ppp = pch;
2250 	init_ppp_file(&pch->file, CHANNEL);
2251 	pch->file.hdrlen = chan->hdrlen;
2252 #ifdef CONFIG_PPP_MULTILINK
2253 	pch->lastseq = -1;
2254 #endif /* CONFIG_PPP_MULTILINK */
2255 	init_rwsem(&pch->chan_sem);
2256 	spin_lock_init(&pch->downl);
2257 	rwlock_init(&pch->upl);
2258 
2259 	spin_lock_bh(&pn->all_channels_lock);
2260 	pch->file.index = ++pn->last_channel_index;
2261 	list_add(&pch->list, &pn->new_channels);
2262 	atomic_inc(&channel_count);
2263 	spin_unlock_bh(&pn->all_channels_lock);
2264 
2265 	return 0;
2266 }
2267 
2268 /*
2269  * Return the index of a channel.
2270  */
2271 int ppp_channel_index(struct ppp_channel *chan)
2272 {
2273 	struct channel *pch = chan->ppp;
2274 
2275 	if (pch)
2276 		return pch->file.index;
2277 	return -1;
2278 }
2279 
2280 /*
2281  * Return the PPP unit number to which a channel is connected.
2282  */
2283 int ppp_unit_number(struct ppp_channel *chan)
2284 {
2285 	struct channel *pch = chan->ppp;
2286 	int unit = -1;
2287 
2288 	if (pch) {
2289 		read_lock_bh(&pch->upl);
2290 		if (pch->ppp)
2291 			unit = pch->ppp->file.index;
2292 		read_unlock_bh(&pch->upl);
2293 	}
2294 	return unit;
2295 }
2296 
2297 /*
2298  * Return the PPP device interface name of a channel.
2299  */
2300 char *ppp_dev_name(struct ppp_channel *chan)
2301 {
2302 	struct channel *pch = chan->ppp;
2303 	char *name = NULL;
2304 
2305 	if (pch) {
2306 		read_lock_bh(&pch->upl);
2307 		if (pch->ppp && pch->ppp->dev)
2308 			name = pch->ppp->dev->name;
2309 		read_unlock_bh(&pch->upl);
2310 	}
2311 	return name;
2312 }
2313 
2314 
2315 /*
2316  * Disconnect a channel from the generic layer.
2317  * This must be called in process context.
2318  */
2319 void
2320 ppp_unregister_channel(struct ppp_channel *chan)
2321 {
2322 	struct channel *pch = chan->ppp;
2323 	struct ppp_net *pn;
2324 
2325 	if (!pch)
2326 		return;		/* should never happen */
2327 
2328 	chan->ppp = NULL;
2329 
2330 	/*
2331 	 * This ensures that we have returned from any calls into the
2332 	 * the channel's start_xmit or ioctl routine before we proceed.
2333 	 */
2334 	down_write(&pch->chan_sem);
2335 	spin_lock_bh(&pch->downl);
2336 	pch->chan = NULL;
2337 	spin_unlock_bh(&pch->downl);
2338 	up_write(&pch->chan_sem);
2339 	ppp_disconnect_channel(pch);
2340 
2341 	pn = ppp_pernet(pch->chan_net);
2342 	spin_lock_bh(&pn->all_channels_lock);
2343 	list_del(&pch->list);
2344 	spin_unlock_bh(&pn->all_channels_lock);
2345 
2346 	pch->file.dead = 1;
2347 	wake_up_interruptible(&pch->file.rwait);
2348 	if (atomic_dec_and_test(&pch->file.refcnt))
2349 		ppp_destroy_channel(pch);
2350 }
2351 
2352 /*
2353  * Callback from a channel when it can accept more to transmit.
2354  * This should be called at BH/softirq level, not interrupt level.
2355  */
2356 void
2357 ppp_output_wakeup(struct ppp_channel *chan)
2358 {
2359 	struct channel *pch = chan->ppp;
2360 
2361 	if (!pch)
2362 		return;
2363 	ppp_channel_push(pch);
2364 }
2365 
2366 /*
2367  * Compression control.
2368  */
2369 
2370 /* Process the PPPIOCSCOMPRESS ioctl. */
2371 static int
2372 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2373 {
2374 	int err;
2375 	struct compressor *cp, *ocomp;
2376 	struct ppp_option_data data;
2377 	void *state, *ostate;
2378 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2379 
2380 	err = -EFAULT;
2381 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2382 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2383 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2384 		goto out;
2385 	err = -EINVAL;
2386 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2387 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2388 		goto out;
2389 
2390 	cp = try_then_request_module(
2391 		find_compressor(ccp_option[0]),
2392 		"ppp-compress-%d", ccp_option[0]);
2393 	if (!cp)
2394 		goto out;
2395 
2396 	err = -ENOBUFS;
2397 	if (data.transmit) {
2398 		state = cp->comp_alloc(ccp_option, data.length);
2399 		if (state) {
2400 			ppp_xmit_lock(ppp);
2401 			ppp->xstate &= ~SC_COMP_RUN;
2402 			ocomp = ppp->xcomp;
2403 			ostate = ppp->xc_state;
2404 			ppp->xcomp = cp;
2405 			ppp->xc_state = state;
2406 			ppp_xmit_unlock(ppp);
2407 			if (ostate) {
2408 				ocomp->comp_free(ostate);
2409 				module_put(ocomp->owner);
2410 			}
2411 			err = 0;
2412 		} else
2413 			module_put(cp->owner);
2414 
2415 	} else {
2416 		state = cp->decomp_alloc(ccp_option, data.length);
2417 		if (state) {
2418 			ppp_recv_lock(ppp);
2419 			ppp->rstate &= ~SC_DECOMP_RUN;
2420 			ocomp = ppp->rcomp;
2421 			ostate = ppp->rc_state;
2422 			ppp->rcomp = cp;
2423 			ppp->rc_state = state;
2424 			ppp_recv_unlock(ppp);
2425 			if (ostate) {
2426 				ocomp->decomp_free(ostate);
2427 				module_put(ocomp->owner);
2428 			}
2429 			err = 0;
2430 		} else
2431 			module_put(cp->owner);
2432 	}
2433 
2434  out:
2435 	return err;
2436 }
2437 
2438 /*
2439  * Look at a CCP packet and update our state accordingly.
2440  * We assume the caller has the xmit or recv path locked.
2441  */
2442 static void
2443 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2444 {
2445 	unsigned char *dp;
2446 	int len;
2447 
2448 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2449 		return;	/* no header */
2450 	dp = skb->data + 2;
2451 
2452 	switch (CCP_CODE(dp)) {
2453 	case CCP_CONFREQ:
2454 
2455 		/* A ConfReq starts negotiation of compression
2456 		 * in one direction of transmission,
2457 		 * and hence brings it down...but which way?
2458 		 *
2459 		 * Remember:
2460 		 * A ConfReq indicates what the sender would like to receive
2461 		 */
2462 		if(inbound)
2463 			/* He is proposing what I should send */
2464 			ppp->xstate &= ~SC_COMP_RUN;
2465 		else
2466 			/* I am proposing to what he should send */
2467 			ppp->rstate &= ~SC_DECOMP_RUN;
2468 
2469 		break;
2470 
2471 	case CCP_TERMREQ:
2472 	case CCP_TERMACK:
2473 		/*
2474 		 * CCP is going down, both directions of transmission
2475 		 */
2476 		ppp->rstate &= ~SC_DECOMP_RUN;
2477 		ppp->xstate &= ~SC_COMP_RUN;
2478 		break;
2479 
2480 	case CCP_CONFACK:
2481 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2482 			break;
2483 		len = CCP_LENGTH(dp);
2484 		if (!pskb_may_pull(skb, len + 2))
2485 			return;		/* too short */
2486 		dp += CCP_HDRLEN;
2487 		len -= CCP_HDRLEN;
2488 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2489 			break;
2490 		if (inbound) {
2491 			/* we will start receiving compressed packets */
2492 			if (!ppp->rc_state)
2493 				break;
2494 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2495 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2496 				ppp->rstate |= SC_DECOMP_RUN;
2497 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2498 			}
2499 		} else {
2500 			/* we will soon start sending compressed packets */
2501 			if (!ppp->xc_state)
2502 				break;
2503 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2504 					ppp->file.index, 0, ppp->debug))
2505 				ppp->xstate |= SC_COMP_RUN;
2506 		}
2507 		break;
2508 
2509 	case CCP_RESETACK:
2510 		/* reset the [de]compressor */
2511 		if ((ppp->flags & SC_CCP_UP) == 0)
2512 			break;
2513 		if (inbound) {
2514 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2515 				ppp->rcomp->decomp_reset(ppp->rc_state);
2516 				ppp->rstate &= ~SC_DC_ERROR;
2517 			}
2518 		} else {
2519 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2520 				ppp->xcomp->comp_reset(ppp->xc_state);
2521 		}
2522 		break;
2523 	}
2524 }
2525 
2526 /* Free up compression resources. */
2527 static void
2528 ppp_ccp_closed(struct ppp *ppp)
2529 {
2530 	void *xstate, *rstate;
2531 	struct compressor *xcomp, *rcomp;
2532 
2533 	ppp_lock(ppp);
2534 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2535 	ppp->xstate = 0;
2536 	xcomp = ppp->xcomp;
2537 	xstate = ppp->xc_state;
2538 	ppp->xc_state = NULL;
2539 	ppp->rstate = 0;
2540 	rcomp = ppp->rcomp;
2541 	rstate = ppp->rc_state;
2542 	ppp->rc_state = NULL;
2543 	ppp_unlock(ppp);
2544 
2545 	if (xstate) {
2546 		xcomp->comp_free(xstate);
2547 		module_put(xcomp->owner);
2548 	}
2549 	if (rstate) {
2550 		rcomp->decomp_free(rstate);
2551 		module_put(rcomp->owner);
2552 	}
2553 }
2554 
2555 /* List of compressors. */
2556 static LIST_HEAD(compressor_list);
2557 static DEFINE_SPINLOCK(compressor_list_lock);
2558 
2559 struct compressor_entry {
2560 	struct list_head list;
2561 	struct compressor *comp;
2562 };
2563 
2564 static struct compressor_entry *
2565 find_comp_entry(int proto)
2566 {
2567 	struct compressor_entry *ce;
2568 
2569 	list_for_each_entry(ce, &compressor_list, list) {
2570 		if (ce->comp->compress_proto == proto)
2571 			return ce;
2572 	}
2573 	return NULL;
2574 }
2575 
2576 /* Register a compressor */
2577 int
2578 ppp_register_compressor(struct compressor *cp)
2579 {
2580 	struct compressor_entry *ce;
2581 	int ret;
2582 	spin_lock(&compressor_list_lock);
2583 	ret = -EEXIST;
2584 	if (find_comp_entry(cp->compress_proto))
2585 		goto out;
2586 	ret = -ENOMEM;
2587 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2588 	if (!ce)
2589 		goto out;
2590 	ret = 0;
2591 	ce->comp = cp;
2592 	list_add(&ce->list, &compressor_list);
2593  out:
2594 	spin_unlock(&compressor_list_lock);
2595 	return ret;
2596 }
2597 
2598 /* Unregister a compressor */
2599 void
2600 ppp_unregister_compressor(struct compressor *cp)
2601 {
2602 	struct compressor_entry *ce;
2603 
2604 	spin_lock(&compressor_list_lock);
2605 	ce = find_comp_entry(cp->compress_proto);
2606 	if (ce && ce->comp == cp) {
2607 		list_del(&ce->list);
2608 		kfree(ce);
2609 	}
2610 	spin_unlock(&compressor_list_lock);
2611 }
2612 
2613 /* Find a compressor. */
2614 static struct compressor *
2615 find_compressor(int type)
2616 {
2617 	struct compressor_entry *ce;
2618 	struct compressor *cp = NULL;
2619 
2620 	spin_lock(&compressor_list_lock);
2621 	ce = find_comp_entry(type);
2622 	if (ce) {
2623 		cp = ce->comp;
2624 		if (!try_module_get(cp->owner))
2625 			cp = NULL;
2626 	}
2627 	spin_unlock(&compressor_list_lock);
2628 	return cp;
2629 }
2630 
2631 /*
2632  * Miscelleneous stuff.
2633  */
2634 
2635 static void
2636 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2637 {
2638 	struct slcompress *vj = ppp->vj;
2639 
2640 	memset(st, 0, sizeof(*st));
2641 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2642 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2643 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2644 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2645 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2646 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2647 	if (!vj)
2648 		return;
2649 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2650 	st->vj.vjs_compressed = vj->sls_o_compressed;
2651 	st->vj.vjs_searches = vj->sls_o_searches;
2652 	st->vj.vjs_misses = vj->sls_o_misses;
2653 	st->vj.vjs_errorin = vj->sls_i_error;
2654 	st->vj.vjs_tossed = vj->sls_i_tossed;
2655 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2656 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2657 }
2658 
2659 /*
2660  * Stuff for handling the lists of ppp units and channels
2661  * and for initialization.
2662  */
2663 
2664 /*
2665  * Create a new ppp interface unit.  Fails if it can't allocate memory
2666  * or if there is already a unit with the requested number.
2667  * unit == -1 means allocate a new number.
2668  */
2669 static struct ppp *
2670 ppp_create_interface(struct net *net, int unit, int *retp)
2671 {
2672 	struct ppp *ppp;
2673 	struct ppp_net *pn;
2674 	struct net_device *dev = NULL;
2675 	int ret = -ENOMEM;
2676 	int i;
2677 
2678 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2679 			   ppp_setup);
2680 	if (!dev)
2681 		goto out1;
2682 
2683 	pn = ppp_pernet(net);
2684 
2685 	ppp = netdev_priv(dev);
2686 	ppp->dev = dev;
2687 	ppp->mru = PPP_MRU;
2688 	init_ppp_file(&ppp->file, INTERFACE);
2689 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2690 	for (i = 0; i < NUM_NP; ++i)
2691 		ppp->npmode[i] = NPMODE_PASS;
2692 	INIT_LIST_HEAD(&ppp->channels);
2693 	spin_lock_init(&ppp->rlock);
2694 	spin_lock_init(&ppp->wlock);
2695 #ifdef CONFIG_PPP_MULTILINK
2696 	ppp->minseq = -1;
2697 	skb_queue_head_init(&ppp->mrq);
2698 #endif /* CONFIG_PPP_MULTILINK */
2699 #ifdef CONFIG_PPP_FILTER
2700 	ppp->pass_filter = NULL;
2701 	ppp->active_filter = NULL;
2702 #endif /* CONFIG_PPP_FILTER */
2703 
2704 	/*
2705 	 * drum roll: don't forget to set
2706 	 * the net device is belong to
2707 	 */
2708 	dev_net_set(dev, net);
2709 
2710 	mutex_lock(&pn->all_ppp_mutex);
2711 
2712 	if (unit < 0) {
2713 		unit = unit_get(&pn->units_idr, ppp);
2714 		if (unit < 0) {
2715 			ret = unit;
2716 			goto out2;
2717 		}
2718 	} else {
2719 		ret = -EEXIST;
2720 		if (unit_find(&pn->units_idr, unit))
2721 			goto out2; /* unit already exists */
2722 		/*
2723 		 * if caller need a specified unit number
2724 		 * lets try to satisfy him, otherwise --
2725 		 * he should better ask us for new unit number
2726 		 *
2727 		 * NOTE: yes I know that returning EEXIST it's not
2728 		 * fair but at least pppd will ask us to allocate
2729 		 * new unit in this case so user is happy :)
2730 		 */
2731 		unit = unit_set(&pn->units_idr, ppp, unit);
2732 		if (unit < 0)
2733 			goto out2;
2734 	}
2735 
2736 	/* Initialize the new ppp unit */
2737 	ppp->file.index = unit;
2738 	sprintf(dev->name, "ppp%d", unit);
2739 
2740 	ret = register_netdev(dev);
2741 	if (ret != 0) {
2742 		unit_put(&pn->units_idr, unit);
2743 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2744 			   dev->name, ret);
2745 		goto out2;
2746 	}
2747 
2748 	ppp->ppp_net = net;
2749 
2750 	atomic_inc(&ppp_unit_count);
2751 	mutex_unlock(&pn->all_ppp_mutex);
2752 
2753 	*retp = 0;
2754 	return ppp;
2755 
2756 out2:
2757 	mutex_unlock(&pn->all_ppp_mutex);
2758 	free_netdev(dev);
2759 out1:
2760 	*retp = ret;
2761 	return NULL;
2762 }
2763 
2764 /*
2765  * Initialize a ppp_file structure.
2766  */
2767 static void
2768 init_ppp_file(struct ppp_file *pf, int kind)
2769 {
2770 	pf->kind = kind;
2771 	skb_queue_head_init(&pf->xq);
2772 	skb_queue_head_init(&pf->rq);
2773 	atomic_set(&pf->refcnt, 1);
2774 	init_waitqueue_head(&pf->rwait);
2775 }
2776 
2777 /*
2778  * Take down a ppp interface unit - called when the owning file
2779  * (the one that created the unit) is closed or detached.
2780  */
2781 static void ppp_shutdown_interface(struct ppp *ppp)
2782 {
2783 	struct ppp_net *pn;
2784 
2785 	pn = ppp_pernet(ppp->ppp_net);
2786 	mutex_lock(&pn->all_ppp_mutex);
2787 
2788 	/* This will call dev_close() for us. */
2789 	ppp_lock(ppp);
2790 	if (!ppp->closing) {
2791 		ppp->closing = 1;
2792 		ppp_unlock(ppp);
2793 		unregister_netdev(ppp->dev);
2794 		unit_put(&pn->units_idr, ppp->file.index);
2795 	} else
2796 		ppp_unlock(ppp);
2797 
2798 	ppp->file.dead = 1;
2799 	ppp->owner = NULL;
2800 	wake_up_interruptible(&ppp->file.rwait);
2801 
2802 	mutex_unlock(&pn->all_ppp_mutex);
2803 }
2804 
2805 /*
2806  * Free the memory used by a ppp unit.  This is only called once
2807  * there are no channels connected to the unit and no file structs
2808  * that reference the unit.
2809  */
2810 static void ppp_destroy_interface(struct ppp *ppp)
2811 {
2812 	atomic_dec(&ppp_unit_count);
2813 
2814 	if (!ppp->file.dead || ppp->n_channels) {
2815 		/* "can't happen" */
2816 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2817 			   "but dead=%d n_channels=%d !\n",
2818 			   ppp, ppp->file.dead, ppp->n_channels);
2819 		return;
2820 	}
2821 
2822 	ppp_ccp_closed(ppp);
2823 	if (ppp->vj) {
2824 		slhc_free(ppp->vj);
2825 		ppp->vj = NULL;
2826 	}
2827 	skb_queue_purge(&ppp->file.xq);
2828 	skb_queue_purge(&ppp->file.rq);
2829 #ifdef CONFIG_PPP_MULTILINK
2830 	skb_queue_purge(&ppp->mrq);
2831 #endif /* CONFIG_PPP_MULTILINK */
2832 #ifdef CONFIG_PPP_FILTER
2833 	if (ppp->pass_filter) {
2834 		bpf_prog_destroy(ppp->pass_filter);
2835 		ppp->pass_filter = NULL;
2836 	}
2837 
2838 	if (ppp->active_filter) {
2839 		bpf_prog_destroy(ppp->active_filter);
2840 		ppp->active_filter = NULL;
2841 	}
2842 #endif /* CONFIG_PPP_FILTER */
2843 
2844 	kfree_skb(ppp->xmit_pending);
2845 
2846 	free_netdev(ppp->dev);
2847 }
2848 
2849 /*
2850  * Locate an existing ppp unit.
2851  * The caller should have locked the all_ppp_mutex.
2852  */
2853 static struct ppp *
2854 ppp_find_unit(struct ppp_net *pn, int unit)
2855 {
2856 	return unit_find(&pn->units_idr, unit);
2857 }
2858 
2859 /*
2860  * Locate an existing ppp channel.
2861  * The caller should have locked the all_channels_lock.
2862  * First we look in the new_channels list, then in the
2863  * all_channels list.  If found in the new_channels list,
2864  * we move it to the all_channels list.  This is for speed
2865  * when we have a lot of channels in use.
2866  */
2867 static struct channel *
2868 ppp_find_channel(struct ppp_net *pn, int unit)
2869 {
2870 	struct channel *pch;
2871 
2872 	list_for_each_entry(pch, &pn->new_channels, list) {
2873 		if (pch->file.index == unit) {
2874 			list_move(&pch->list, &pn->all_channels);
2875 			return pch;
2876 		}
2877 	}
2878 
2879 	list_for_each_entry(pch, &pn->all_channels, list) {
2880 		if (pch->file.index == unit)
2881 			return pch;
2882 	}
2883 
2884 	return NULL;
2885 }
2886 
2887 /*
2888  * Connect a PPP channel to a PPP interface unit.
2889  */
2890 static int
2891 ppp_connect_channel(struct channel *pch, int unit)
2892 {
2893 	struct ppp *ppp;
2894 	struct ppp_net *pn;
2895 	int ret = -ENXIO;
2896 	int hdrlen;
2897 
2898 	pn = ppp_pernet(pch->chan_net);
2899 
2900 	mutex_lock(&pn->all_ppp_mutex);
2901 	ppp = ppp_find_unit(pn, unit);
2902 	if (!ppp)
2903 		goto out;
2904 	write_lock_bh(&pch->upl);
2905 	ret = -EINVAL;
2906 	if (pch->ppp)
2907 		goto outl;
2908 
2909 	ppp_lock(ppp);
2910 	if (pch->file.hdrlen > ppp->file.hdrlen)
2911 		ppp->file.hdrlen = pch->file.hdrlen;
2912 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2913 	if (hdrlen > ppp->dev->hard_header_len)
2914 		ppp->dev->hard_header_len = hdrlen;
2915 	list_add_tail(&pch->clist, &ppp->channels);
2916 	++ppp->n_channels;
2917 	pch->ppp = ppp;
2918 	atomic_inc(&ppp->file.refcnt);
2919 	ppp_unlock(ppp);
2920 	ret = 0;
2921 
2922  outl:
2923 	write_unlock_bh(&pch->upl);
2924  out:
2925 	mutex_unlock(&pn->all_ppp_mutex);
2926 	return ret;
2927 }
2928 
2929 /*
2930  * Disconnect a channel from its ppp unit.
2931  */
2932 static int
2933 ppp_disconnect_channel(struct channel *pch)
2934 {
2935 	struct ppp *ppp;
2936 	int err = -EINVAL;
2937 
2938 	write_lock_bh(&pch->upl);
2939 	ppp = pch->ppp;
2940 	pch->ppp = NULL;
2941 	write_unlock_bh(&pch->upl);
2942 	if (ppp) {
2943 		/* remove it from the ppp unit's list */
2944 		ppp_lock(ppp);
2945 		list_del(&pch->clist);
2946 		if (--ppp->n_channels == 0)
2947 			wake_up_interruptible(&ppp->file.rwait);
2948 		ppp_unlock(ppp);
2949 		if (atomic_dec_and_test(&ppp->file.refcnt))
2950 			ppp_destroy_interface(ppp);
2951 		err = 0;
2952 	}
2953 	return err;
2954 }
2955 
2956 /*
2957  * Free up the resources used by a ppp channel.
2958  */
2959 static void ppp_destroy_channel(struct channel *pch)
2960 {
2961 	atomic_dec(&channel_count);
2962 
2963 	if (!pch->file.dead) {
2964 		/* "can't happen" */
2965 		pr_err("ppp: destroying undead channel %p !\n", pch);
2966 		return;
2967 	}
2968 	skb_queue_purge(&pch->file.xq);
2969 	skb_queue_purge(&pch->file.rq);
2970 	kfree(pch);
2971 }
2972 
2973 static void __exit ppp_cleanup(void)
2974 {
2975 	/* should never happen */
2976 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2977 		pr_err("PPP: removing module but units remain!\n");
2978 	unregister_chrdev(PPP_MAJOR, "ppp");
2979 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2980 	class_destroy(ppp_class);
2981 	unregister_pernet_device(&ppp_net_ops);
2982 }
2983 
2984 /*
2985  * Units handling. Caller must protect concurrent access
2986  * by holding all_ppp_mutex
2987  */
2988 
2989 /* associate pointer with specified number */
2990 static int unit_set(struct idr *p, void *ptr, int n)
2991 {
2992 	int unit;
2993 
2994 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2995 	if (unit == -ENOSPC)
2996 		unit = -EINVAL;
2997 	return unit;
2998 }
2999 
3000 /* get new free unit number and associate pointer with it */
3001 static int unit_get(struct idr *p, void *ptr)
3002 {
3003 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3004 }
3005 
3006 /* put unit number back to a pool */
3007 static void unit_put(struct idr *p, int n)
3008 {
3009 	idr_remove(p, n);
3010 }
3011 
3012 /* get pointer associated with the number */
3013 static void *unit_find(struct idr *p, int n)
3014 {
3015 	return idr_find(p, n);
3016 }
3017 
3018 /* Module/initialization stuff */
3019 
3020 module_init(ppp_init);
3021 module_exit(ppp_cleanup);
3022 
3023 EXPORT_SYMBOL(ppp_register_net_channel);
3024 EXPORT_SYMBOL(ppp_register_channel);
3025 EXPORT_SYMBOL(ppp_unregister_channel);
3026 EXPORT_SYMBOL(ppp_channel_index);
3027 EXPORT_SYMBOL(ppp_unit_number);
3028 EXPORT_SYMBOL(ppp_dev_name);
3029 EXPORT_SYMBOL(ppp_input);
3030 EXPORT_SYMBOL(ppp_input_error);
3031 EXPORT_SYMBOL(ppp_output_wakeup);
3032 EXPORT_SYMBOL(ppp_register_compressor);
3033 EXPORT_SYMBOL(ppp_unregister_compressor);
3034 MODULE_LICENSE("GPL");
3035 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3036 MODULE_ALIAS("devname:ppp");
3037