xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision 92a76f6d)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static const struct net_device_ops ppp_netdev_ops;
287 
288 static struct class *ppp_class;
289 
290 /* per net-namespace data */
291 static inline struct ppp_net *ppp_pernet(struct net *net)
292 {
293 	BUG_ON(!net);
294 
295 	return net_generic(net, ppp_net_id);
296 }
297 
298 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
299 static inline int proto_to_npindex(int proto)
300 {
301 	switch (proto) {
302 	case PPP_IP:
303 		return NP_IP;
304 	case PPP_IPV6:
305 		return NP_IPV6;
306 	case PPP_IPX:
307 		return NP_IPX;
308 	case PPP_AT:
309 		return NP_AT;
310 	case PPP_MPLS_UC:
311 		return NP_MPLS_UC;
312 	case PPP_MPLS_MC:
313 		return NP_MPLS_MC;
314 	}
315 	return -EINVAL;
316 }
317 
318 /* Translates an NP index into a PPP protocol number */
319 static const int npindex_to_proto[NUM_NP] = {
320 	PPP_IP,
321 	PPP_IPV6,
322 	PPP_IPX,
323 	PPP_AT,
324 	PPP_MPLS_UC,
325 	PPP_MPLS_MC,
326 };
327 
328 /* Translates an ethertype into an NP index */
329 static inline int ethertype_to_npindex(int ethertype)
330 {
331 	switch (ethertype) {
332 	case ETH_P_IP:
333 		return NP_IP;
334 	case ETH_P_IPV6:
335 		return NP_IPV6;
336 	case ETH_P_IPX:
337 		return NP_IPX;
338 	case ETH_P_PPPTALK:
339 	case ETH_P_ATALK:
340 		return NP_AT;
341 	case ETH_P_MPLS_UC:
342 		return NP_MPLS_UC;
343 	case ETH_P_MPLS_MC:
344 		return NP_MPLS_MC;
345 	}
346 	return -1;
347 }
348 
349 /* Translates an NP index into an ethertype */
350 static const int npindex_to_ethertype[NUM_NP] = {
351 	ETH_P_IP,
352 	ETH_P_IPV6,
353 	ETH_P_IPX,
354 	ETH_P_PPPTALK,
355 	ETH_P_MPLS_UC,
356 	ETH_P_MPLS_MC,
357 };
358 
359 /*
360  * Locking shorthand.
361  */
362 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
363 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
364 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
365 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
366 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
367 				     ppp_recv_lock(ppp); } while (0)
368 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
369 				     ppp_xmit_unlock(ppp); } while (0)
370 
371 /*
372  * /dev/ppp device routines.
373  * The /dev/ppp device is used by pppd to control the ppp unit.
374  * It supports the read, write, ioctl and poll functions.
375  * Open instances of /dev/ppp can be in one of three states:
376  * unattached, attached to a ppp unit, or attached to a ppp channel.
377  */
378 static int ppp_open(struct inode *inode, struct file *file)
379 {
380 	/*
381 	 * This could (should?) be enforced by the permissions on /dev/ppp.
382 	 */
383 	if (!capable(CAP_NET_ADMIN))
384 		return -EPERM;
385 	return 0;
386 }
387 
388 static int ppp_release(struct inode *unused, struct file *file)
389 {
390 	struct ppp_file *pf = file->private_data;
391 	struct ppp *ppp;
392 
393 	if (pf) {
394 		file->private_data = NULL;
395 		if (pf->kind == INTERFACE) {
396 			ppp = PF_TO_PPP(pf);
397 			rtnl_lock();
398 			if (file == ppp->owner)
399 				unregister_netdevice(ppp->dev);
400 			rtnl_unlock();
401 		}
402 		if (atomic_dec_and_test(&pf->refcnt)) {
403 			switch (pf->kind) {
404 			case INTERFACE:
405 				ppp_destroy_interface(PF_TO_PPP(pf));
406 				break;
407 			case CHANNEL:
408 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
409 				break;
410 			}
411 		}
412 	}
413 	return 0;
414 }
415 
416 static ssize_t ppp_read(struct file *file, char __user *buf,
417 			size_t count, loff_t *ppos)
418 {
419 	struct ppp_file *pf = file->private_data;
420 	DECLARE_WAITQUEUE(wait, current);
421 	ssize_t ret;
422 	struct sk_buff *skb = NULL;
423 	struct iovec iov;
424 	struct iov_iter to;
425 
426 	ret = count;
427 
428 	if (!pf)
429 		return -ENXIO;
430 	add_wait_queue(&pf->rwait, &wait);
431 	for (;;) {
432 		set_current_state(TASK_INTERRUPTIBLE);
433 		skb = skb_dequeue(&pf->rq);
434 		if (skb)
435 			break;
436 		ret = 0;
437 		if (pf->dead)
438 			break;
439 		if (pf->kind == INTERFACE) {
440 			/*
441 			 * Return 0 (EOF) on an interface that has no
442 			 * channels connected, unless it is looping
443 			 * network traffic (demand mode).
444 			 */
445 			struct ppp *ppp = PF_TO_PPP(pf);
446 
447 			ppp_recv_lock(ppp);
448 			if (ppp->n_channels == 0 &&
449 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
450 				ppp_recv_unlock(ppp);
451 				break;
452 			}
453 			ppp_recv_unlock(ppp);
454 		}
455 		ret = -EAGAIN;
456 		if (file->f_flags & O_NONBLOCK)
457 			break;
458 		ret = -ERESTARTSYS;
459 		if (signal_pending(current))
460 			break;
461 		schedule();
462 	}
463 	set_current_state(TASK_RUNNING);
464 	remove_wait_queue(&pf->rwait, &wait);
465 
466 	if (!skb)
467 		goto out;
468 
469 	ret = -EOVERFLOW;
470 	if (skb->len > count)
471 		goto outf;
472 	ret = -EFAULT;
473 	iov.iov_base = buf;
474 	iov.iov_len = count;
475 	iov_iter_init(&to, READ, &iov, 1, count);
476 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
477 		goto outf;
478 	ret = skb->len;
479 
480  outf:
481 	kfree_skb(skb);
482  out:
483 	return ret;
484 }
485 
486 static ssize_t ppp_write(struct file *file, const char __user *buf,
487 			 size_t count, loff_t *ppos)
488 {
489 	struct ppp_file *pf = file->private_data;
490 	struct sk_buff *skb;
491 	ssize_t ret;
492 
493 	if (!pf)
494 		return -ENXIO;
495 	ret = -ENOMEM;
496 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
497 	if (!skb)
498 		goto out;
499 	skb_reserve(skb, pf->hdrlen);
500 	ret = -EFAULT;
501 	if (copy_from_user(skb_put(skb, count), buf, count)) {
502 		kfree_skb(skb);
503 		goto out;
504 	}
505 
506 	skb_queue_tail(&pf->xq, skb);
507 
508 	switch (pf->kind) {
509 	case INTERFACE:
510 		ppp_xmit_process(PF_TO_PPP(pf));
511 		break;
512 	case CHANNEL:
513 		ppp_channel_push(PF_TO_CHANNEL(pf));
514 		break;
515 	}
516 
517 	ret = count;
518 
519  out:
520 	return ret;
521 }
522 
523 /* No kernel lock - fine */
524 static unsigned int ppp_poll(struct file *file, poll_table *wait)
525 {
526 	struct ppp_file *pf = file->private_data;
527 	unsigned int mask;
528 
529 	if (!pf)
530 		return 0;
531 	poll_wait(file, &pf->rwait, wait);
532 	mask = POLLOUT | POLLWRNORM;
533 	if (skb_peek(&pf->rq))
534 		mask |= POLLIN | POLLRDNORM;
535 	if (pf->dead)
536 		mask |= POLLHUP;
537 	else if (pf->kind == INTERFACE) {
538 		/* see comment in ppp_read */
539 		struct ppp *ppp = PF_TO_PPP(pf);
540 
541 		ppp_recv_lock(ppp);
542 		if (ppp->n_channels == 0 &&
543 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
544 			mask |= POLLIN | POLLRDNORM;
545 		ppp_recv_unlock(ppp);
546 	}
547 
548 	return mask;
549 }
550 
551 #ifdef CONFIG_PPP_FILTER
552 static int get_filter(void __user *arg, struct sock_filter **p)
553 {
554 	struct sock_fprog uprog;
555 	struct sock_filter *code = NULL;
556 	int len;
557 
558 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
559 		return -EFAULT;
560 
561 	if (!uprog.len) {
562 		*p = NULL;
563 		return 0;
564 	}
565 
566 	len = uprog.len * sizeof(struct sock_filter);
567 	code = memdup_user(uprog.filter, len);
568 	if (IS_ERR(code))
569 		return PTR_ERR(code);
570 
571 	*p = code;
572 	return uprog.len;
573 }
574 #endif /* CONFIG_PPP_FILTER */
575 
576 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
577 {
578 	struct ppp_file *pf;
579 	struct ppp *ppp;
580 	int err = -EFAULT, val, val2, i;
581 	struct ppp_idle idle;
582 	struct npioctl npi;
583 	int unit, cflags;
584 	struct slcompress *vj;
585 	void __user *argp = (void __user *)arg;
586 	int __user *p = argp;
587 
588 	mutex_lock(&ppp_mutex);
589 
590 	pf = file->private_data;
591 	if (!pf) {
592 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
593 					   pf, file, cmd, arg);
594 		goto out;
595 	}
596 
597 	if (cmd == PPPIOCDETACH) {
598 		/*
599 		 * We have to be careful here... if the file descriptor
600 		 * has been dup'd, we could have another process in the
601 		 * middle of a poll using the same file *, so we had
602 		 * better not free the interface data structures -
603 		 * instead we fail the ioctl.  Even in this case, we
604 		 * shut down the interface if we are the owner of it.
605 		 * Actually, we should get rid of PPPIOCDETACH, userland
606 		 * (i.e. pppd) could achieve the same effect by closing
607 		 * this fd and reopening /dev/ppp.
608 		 */
609 		err = -EINVAL;
610 		if (pf->kind == INTERFACE) {
611 			ppp = PF_TO_PPP(pf);
612 			rtnl_lock();
613 			if (file == ppp->owner)
614 				unregister_netdevice(ppp->dev);
615 			rtnl_unlock();
616 		}
617 		if (atomic_long_read(&file->f_count) < 2) {
618 			ppp_release(NULL, file);
619 			err = 0;
620 		} else
621 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
622 				atomic_long_read(&file->f_count));
623 		goto out;
624 	}
625 
626 	if (pf->kind == CHANNEL) {
627 		struct channel *pch;
628 		struct ppp_channel *chan;
629 
630 		pch = PF_TO_CHANNEL(pf);
631 
632 		switch (cmd) {
633 		case PPPIOCCONNECT:
634 			if (get_user(unit, p))
635 				break;
636 			err = ppp_connect_channel(pch, unit);
637 			break;
638 
639 		case PPPIOCDISCONN:
640 			err = ppp_disconnect_channel(pch);
641 			break;
642 
643 		default:
644 			down_read(&pch->chan_sem);
645 			chan = pch->chan;
646 			err = -ENOTTY;
647 			if (chan && chan->ops->ioctl)
648 				err = chan->ops->ioctl(chan, cmd, arg);
649 			up_read(&pch->chan_sem);
650 		}
651 		goto out;
652 	}
653 
654 	if (pf->kind != INTERFACE) {
655 		/* can't happen */
656 		pr_err("PPP: not interface or channel??\n");
657 		err = -EINVAL;
658 		goto out;
659 	}
660 
661 	ppp = PF_TO_PPP(pf);
662 	switch (cmd) {
663 	case PPPIOCSMRU:
664 		if (get_user(val, p))
665 			break;
666 		ppp->mru = val;
667 		err = 0;
668 		break;
669 
670 	case PPPIOCSFLAGS:
671 		if (get_user(val, p))
672 			break;
673 		ppp_lock(ppp);
674 		cflags = ppp->flags & ~val;
675 #ifdef CONFIG_PPP_MULTILINK
676 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
677 			ppp->nextseq = 0;
678 #endif
679 		ppp->flags = val & SC_FLAG_BITS;
680 		ppp_unlock(ppp);
681 		if (cflags & SC_CCP_OPEN)
682 			ppp_ccp_closed(ppp);
683 		err = 0;
684 		break;
685 
686 	case PPPIOCGFLAGS:
687 		val = ppp->flags | ppp->xstate | ppp->rstate;
688 		if (put_user(val, p))
689 			break;
690 		err = 0;
691 		break;
692 
693 	case PPPIOCSCOMPRESS:
694 		err = ppp_set_compress(ppp, arg);
695 		break;
696 
697 	case PPPIOCGUNIT:
698 		if (put_user(ppp->file.index, p))
699 			break;
700 		err = 0;
701 		break;
702 
703 	case PPPIOCSDEBUG:
704 		if (get_user(val, p))
705 			break;
706 		ppp->debug = val;
707 		err = 0;
708 		break;
709 
710 	case PPPIOCGDEBUG:
711 		if (put_user(ppp->debug, p))
712 			break;
713 		err = 0;
714 		break;
715 
716 	case PPPIOCGIDLE:
717 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
718 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
719 		if (copy_to_user(argp, &idle, sizeof(idle)))
720 			break;
721 		err = 0;
722 		break;
723 
724 	case PPPIOCSMAXCID:
725 		if (get_user(val, p))
726 			break;
727 		val2 = 15;
728 		if ((val >> 16) != 0) {
729 			val2 = val >> 16;
730 			val &= 0xffff;
731 		}
732 		vj = slhc_init(val2+1, val+1);
733 		if (IS_ERR(vj)) {
734 			err = PTR_ERR(vj);
735 			break;
736 		}
737 		ppp_lock(ppp);
738 		if (ppp->vj)
739 			slhc_free(ppp->vj);
740 		ppp->vj = vj;
741 		ppp_unlock(ppp);
742 		err = 0;
743 		break;
744 
745 	case PPPIOCGNPMODE:
746 	case PPPIOCSNPMODE:
747 		if (copy_from_user(&npi, argp, sizeof(npi)))
748 			break;
749 		err = proto_to_npindex(npi.protocol);
750 		if (err < 0)
751 			break;
752 		i = err;
753 		if (cmd == PPPIOCGNPMODE) {
754 			err = -EFAULT;
755 			npi.mode = ppp->npmode[i];
756 			if (copy_to_user(argp, &npi, sizeof(npi)))
757 				break;
758 		} else {
759 			ppp->npmode[i] = npi.mode;
760 			/* we may be able to transmit more packets now (??) */
761 			netif_wake_queue(ppp->dev);
762 		}
763 		err = 0;
764 		break;
765 
766 #ifdef CONFIG_PPP_FILTER
767 	case PPPIOCSPASS:
768 	{
769 		struct sock_filter *code;
770 
771 		err = get_filter(argp, &code);
772 		if (err >= 0) {
773 			struct bpf_prog *pass_filter = NULL;
774 			struct sock_fprog_kern fprog = {
775 				.len = err,
776 				.filter = code,
777 			};
778 
779 			err = 0;
780 			if (fprog.filter)
781 				err = bpf_prog_create(&pass_filter, &fprog);
782 			if (!err) {
783 				ppp_lock(ppp);
784 				if (ppp->pass_filter)
785 					bpf_prog_destroy(ppp->pass_filter);
786 				ppp->pass_filter = pass_filter;
787 				ppp_unlock(ppp);
788 			}
789 			kfree(code);
790 		}
791 		break;
792 	}
793 	case PPPIOCSACTIVE:
794 	{
795 		struct sock_filter *code;
796 
797 		err = get_filter(argp, &code);
798 		if (err >= 0) {
799 			struct bpf_prog *active_filter = NULL;
800 			struct sock_fprog_kern fprog = {
801 				.len = err,
802 				.filter = code,
803 			};
804 
805 			err = 0;
806 			if (fprog.filter)
807 				err = bpf_prog_create(&active_filter, &fprog);
808 			if (!err) {
809 				ppp_lock(ppp);
810 				if (ppp->active_filter)
811 					bpf_prog_destroy(ppp->active_filter);
812 				ppp->active_filter = active_filter;
813 				ppp_unlock(ppp);
814 			}
815 			kfree(code);
816 		}
817 		break;
818 	}
819 #endif /* CONFIG_PPP_FILTER */
820 
821 #ifdef CONFIG_PPP_MULTILINK
822 	case PPPIOCSMRRU:
823 		if (get_user(val, p))
824 			break;
825 		ppp_recv_lock(ppp);
826 		ppp->mrru = val;
827 		ppp_recv_unlock(ppp);
828 		err = 0;
829 		break;
830 #endif /* CONFIG_PPP_MULTILINK */
831 
832 	default:
833 		err = -ENOTTY;
834 	}
835 
836 out:
837 	mutex_unlock(&ppp_mutex);
838 
839 	return err;
840 }
841 
842 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
843 			struct file *file, unsigned int cmd, unsigned long arg)
844 {
845 	int unit, err = -EFAULT;
846 	struct ppp *ppp;
847 	struct channel *chan;
848 	struct ppp_net *pn;
849 	int __user *p = (int __user *)arg;
850 
851 	switch (cmd) {
852 	case PPPIOCNEWUNIT:
853 		/* Create a new ppp unit */
854 		if (get_user(unit, p))
855 			break;
856 		ppp = ppp_create_interface(net, unit, file, &err);
857 		if (!ppp)
858 			break;
859 		file->private_data = &ppp->file;
860 		err = -EFAULT;
861 		if (put_user(ppp->file.index, p))
862 			break;
863 		err = 0;
864 		break;
865 
866 	case PPPIOCATTACH:
867 		/* Attach to an existing ppp unit */
868 		if (get_user(unit, p))
869 			break;
870 		err = -ENXIO;
871 		pn = ppp_pernet(net);
872 		mutex_lock(&pn->all_ppp_mutex);
873 		ppp = ppp_find_unit(pn, unit);
874 		if (ppp) {
875 			atomic_inc(&ppp->file.refcnt);
876 			file->private_data = &ppp->file;
877 			err = 0;
878 		}
879 		mutex_unlock(&pn->all_ppp_mutex);
880 		break;
881 
882 	case PPPIOCATTCHAN:
883 		if (get_user(unit, p))
884 			break;
885 		err = -ENXIO;
886 		pn = ppp_pernet(net);
887 		spin_lock_bh(&pn->all_channels_lock);
888 		chan = ppp_find_channel(pn, unit);
889 		if (chan) {
890 			atomic_inc(&chan->file.refcnt);
891 			file->private_data = &chan->file;
892 			err = 0;
893 		}
894 		spin_unlock_bh(&pn->all_channels_lock);
895 		break;
896 
897 	default:
898 		err = -ENOTTY;
899 	}
900 
901 	return err;
902 }
903 
904 static const struct file_operations ppp_device_fops = {
905 	.owner		= THIS_MODULE,
906 	.read		= ppp_read,
907 	.write		= ppp_write,
908 	.poll		= ppp_poll,
909 	.unlocked_ioctl	= ppp_ioctl,
910 	.open		= ppp_open,
911 	.release	= ppp_release,
912 	.llseek		= noop_llseek,
913 };
914 
915 static __net_init int ppp_init_net(struct net *net)
916 {
917 	struct ppp_net *pn = net_generic(net, ppp_net_id);
918 
919 	idr_init(&pn->units_idr);
920 	mutex_init(&pn->all_ppp_mutex);
921 
922 	INIT_LIST_HEAD(&pn->all_channels);
923 	INIT_LIST_HEAD(&pn->new_channels);
924 
925 	spin_lock_init(&pn->all_channels_lock);
926 
927 	return 0;
928 }
929 
930 static __net_exit void ppp_exit_net(struct net *net)
931 {
932 	struct ppp_net *pn = net_generic(net, ppp_net_id);
933 	struct net_device *dev;
934 	struct net_device *aux;
935 	struct ppp *ppp;
936 	LIST_HEAD(list);
937 	int id;
938 
939 	rtnl_lock();
940 	for_each_netdev_safe(net, dev, aux) {
941 		if (dev->netdev_ops == &ppp_netdev_ops)
942 			unregister_netdevice_queue(dev, &list);
943 	}
944 
945 	idr_for_each_entry(&pn->units_idr, ppp, id)
946 		/* Skip devices already unregistered by previous loop */
947 		if (!net_eq(dev_net(ppp->dev), net))
948 			unregister_netdevice_queue(ppp->dev, &list);
949 
950 	unregister_netdevice_many(&list);
951 	rtnl_unlock();
952 
953 	idr_destroy(&pn->units_idr);
954 }
955 
956 static struct pernet_operations ppp_net_ops = {
957 	.init = ppp_init_net,
958 	.exit = ppp_exit_net,
959 	.id   = &ppp_net_id,
960 	.size = sizeof(struct ppp_net),
961 };
962 
963 #define PPP_MAJOR	108
964 
965 /* Called at boot time if ppp is compiled into the kernel,
966    or at module load time (from init_module) if compiled as a module. */
967 static int __init ppp_init(void)
968 {
969 	int err;
970 
971 	pr_info("PPP generic driver version " PPP_VERSION "\n");
972 
973 	err = register_pernet_device(&ppp_net_ops);
974 	if (err) {
975 		pr_err("failed to register PPP pernet device (%d)\n", err);
976 		goto out;
977 	}
978 
979 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
980 	if (err) {
981 		pr_err("failed to register PPP device (%d)\n", err);
982 		goto out_net;
983 	}
984 
985 	ppp_class = class_create(THIS_MODULE, "ppp");
986 	if (IS_ERR(ppp_class)) {
987 		err = PTR_ERR(ppp_class);
988 		goto out_chrdev;
989 	}
990 
991 	/* not a big deal if we fail here :-) */
992 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
993 
994 	return 0;
995 
996 out_chrdev:
997 	unregister_chrdev(PPP_MAJOR, "ppp");
998 out_net:
999 	unregister_pernet_device(&ppp_net_ops);
1000 out:
1001 	return err;
1002 }
1003 
1004 /*
1005  * Network interface unit routines.
1006  */
1007 static netdev_tx_t
1008 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1009 {
1010 	struct ppp *ppp = netdev_priv(dev);
1011 	int npi, proto;
1012 	unsigned char *pp;
1013 
1014 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1015 	if (npi < 0)
1016 		goto outf;
1017 
1018 	/* Drop, accept or reject the packet */
1019 	switch (ppp->npmode[npi]) {
1020 	case NPMODE_PASS:
1021 		break;
1022 	case NPMODE_QUEUE:
1023 		/* it would be nice to have a way to tell the network
1024 		   system to queue this one up for later. */
1025 		goto outf;
1026 	case NPMODE_DROP:
1027 	case NPMODE_ERROR:
1028 		goto outf;
1029 	}
1030 
1031 	/* Put the 2-byte PPP protocol number on the front,
1032 	   making sure there is room for the address and control fields. */
1033 	if (skb_cow_head(skb, PPP_HDRLEN))
1034 		goto outf;
1035 
1036 	pp = skb_push(skb, 2);
1037 	proto = npindex_to_proto[npi];
1038 	put_unaligned_be16(proto, pp);
1039 
1040 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1041 	skb_queue_tail(&ppp->file.xq, skb);
1042 	ppp_xmit_process(ppp);
1043 	return NETDEV_TX_OK;
1044 
1045  outf:
1046 	kfree_skb(skb);
1047 	++dev->stats.tx_dropped;
1048 	return NETDEV_TX_OK;
1049 }
1050 
1051 static int
1052 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1053 {
1054 	struct ppp *ppp = netdev_priv(dev);
1055 	int err = -EFAULT;
1056 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1057 	struct ppp_stats stats;
1058 	struct ppp_comp_stats cstats;
1059 	char *vers;
1060 
1061 	switch (cmd) {
1062 	case SIOCGPPPSTATS:
1063 		ppp_get_stats(ppp, &stats);
1064 		if (copy_to_user(addr, &stats, sizeof(stats)))
1065 			break;
1066 		err = 0;
1067 		break;
1068 
1069 	case SIOCGPPPCSTATS:
1070 		memset(&cstats, 0, sizeof(cstats));
1071 		if (ppp->xc_state)
1072 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1073 		if (ppp->rc_state)
1074 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1075 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1076 			break;
1077 		err = 0;
1078 		break;
1079 
1080 	case SIOCGPPPVER:
1081 		vers = PPP_VERSION;
1082 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1083 			break;
1084 		err = 0;
1085 		break;
1086 
1087 	default:
1088 		err = -EINVAL;
1089 	}
1090 
1091 	return err;
1092 }
1093 
1094 static struct rtnl_link_stats64*
1095 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1096 {
1097 	struct ppp *ppp = netdev_priv(dev);
1098 
1099 	ppp_recv_lock(ppp);
1100 	stats64->rx_packets = ppp->stats64.rx_packets;
1101 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1102 	ppp_recv_unlock(ppp);
1103 
1104 	ppp_xmit_lock(ppp);
1105 	stats64->tx_packets = ppp->stats64.tx_packets;
1106 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1107 	ppp_xmit_unlock(ppp);
1108 
1109 	stats64->rx_errors        = dev->stats.rx_errors;
1110 	stats64->tx_errors        = dev->stats.tx_errors;
1111 	stats64->rx_dropped       = dev->stats.rx_dropped;
1112 	stats64->tx_dropped       = dev->stats.tx_dropped;
1113 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1114 
1115 	return stats64;
1116 }
1117 
1118 static struct lock_class_key ppp_tx_busylock;
1119 static int ppp_dev_init(struct net_device *dev)
1120 {
1121 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1122 	return 0;
1123 }
1124 
1125 static void ppp_dev_uninit(struct net_device *dev)
1126 {
1127 	struct ppp *ppp = netdev_priv(dev);
1128 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1129 
1130 	ppp_lock(ppp);
1131 	ppp->closing = 1;
1132 	ppp_unlock(ppp);
1133 
1134 	mutex_lock(&pn->all_ppp_mutex);
1135 	unit_put(&pn->units_idr, ppp->file.index);
1136 	mutex_unlock(&pn->all_ppp_mutex);
1137 
1138 	ppp->owner = NULL;
1139 
1140 	ppp->file.dead = 1;
1141 	wake_up_interruptible(&ppp->file.rwait);
1142 }
1143 
1144 static const struct net_device_ops ppp_netdev_ops = {
1145 	.ndo_init	 = ppp_dev_init,
1146 	.ndo_uninit      = ppp_dev_uninit,
1147 	.ndo_start_xmit  = ppp_start_xmit,
1148 	.ndo_do_ioctl    = ppp_net_ioctl,
1149 	.ndo_get_stats64 = ppp_get_stats64,
1150 };
1151 
1152 static struct device_type ppp_type = {
1153 	.name = "ppp",
1154 };
1155 
1156 static void ppp_setup(struct net_device *dev)
1157 {
1158 	dev->netdev_ops = &ppp_netdev_ops;
1159 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1160 
1161 	dev->hard_header_len = PPP_HDRLEN;
1162 	dev->mtu = PPP_MRU;
1163 	dev->addr_len = 0;
1164 	dev->tx_queue_len = 3;
1165 	dev->type = ARPHRD_PPP;
1166 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1167 	netif_keep_dst(dev);
1168 }
1169 
1170 /*
1171  * Transmit-side routines.
1172  */
1173 
1174 /*
1175  * Called to do any work queued up on the transmit side
1176  * that can now be done.
1177  */
1178 static void
1179 ppp_xmit_process(struct ppp *ppp)
1180 {
1181 	struct sk_buff *skb;
1182 
1183 	ppp_xmit_lock(ppp);
1184 	if (!ppp->closing) {
1185 		ppp_push(ppp);
1186 		while (!ppp->xmit_pending &&
1187 		       (skb = skb_dequeue(&ppp->file.xq)))
1188 			ppp_send_frame(ppp, skb);
1189 		/* If there's no work left to do, tell the core net
1190 		   code that we can accept some more. */
1191 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1192 			netif_wake_queue(ppp->dev);
1193 		else
1194 			netif_stop_queue(ppp->dev);
1195 	}
1196 	ppp_xmit_unlock(ppp);
1197 }
1198 
1199 static inline struct sk_buff *
1200 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1201 {
1202 	struct sk_buff *new_skb;
1203 	int len;
1204 	int new_skb_size = ppp->dev->mtu +
1205 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1206 	int compressor_skb_size = ppp->dev->mtu +
1207 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1208 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1209 	if (!new_skb) {
1210 		if (net_ratelimit())
1211 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1212 		return NULL;
1213 	}
1214 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1215 		skb_reserve(new_skb,
1216 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1217 
1218 	/* compressor still expects A/C bytes in hdr */
1219 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1220 				   new_skb->data, skb->len + 2,
1221 				   compressor_skb_size);
1222 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1223 		consume_skb(skb);
1224 		skb = new_skb;
1225 		skb_put(skb, len);
1226 		skb_pull(skb, 2);	/* pull off A/C bytes */
1227 	} else if (len == 0) {
1228 		/* didn't compress, or CCP not up yet */
1229 		consume_skb(new_skb);
1230 		new_skb = skb;
1231 	} else {
1232 		/*
1233 		 * (len < 0)
1234 		 * MPPE requires that we do not send unencrypted
1235 		 * frames.  The compressor will return -1 if we
1236 		 * should drop the frame.  We cannot simply test
1237 		 * the compress_proto because MPPE and MPPC share
1238 		 * the same number.
1239 		 */
1240 		if (net_ratelimit())
1241 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1242 		kfree_skb(skb);
1243 		consume_skb(new_skb);
1244 		new_skb = NULL;
1245 	}
1246 	return new_skb;
1247 }
1248 
1249 /*
1250  * Compress and send a frame.
1251  * The caller should have locked the xmit path,
1252  * and xmit_pending should be 0.
1253  */
1254 static void
1255 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1256 {
1257 	int proto = PPP_PROTO(skb);
1258 	struct sk_buff *new_skb;
1259 	int len;
1260 	unsigned char *cp;
1261 
1262 	if (proto < 0x8000) {
1263 #ifdef CONFIG_PPP_FILTER
1264 		/* check if we should pass this packet */
1265 		/* the filter instructions are constructed assuming
1266 		   a four-byte PPP header on each packet */
1267 		*skb_push(skb, 2) = 1;
1268 		if (ppp->pass_filter &&
1269 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1270 			if (ppp->debug & 1)
1271 				netdev_printk(KERN_DEBUG, ppp->dev,
1272 					      "PPP: outbound frame "
1273 					      "not passed\n");
1274 			kfree_skb(skb);
1275 			return;
1276 		}
1277 		/* if this packet passes the active filter, record the time */
1278 		if (!(ppp->active_filter &&
1279 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1280 			ppp->last_xmit = jiffies;
1281 		skb_pull(skb, 2);
1282 #else
1283 		/* for data packets, record the time */
1284 		ppp->last_xmit = jiffies;
1285 #endif /* CONFIG_PPP_FILTER */
1286 	}
1287 
1288 	++ppp->stats64.tx_packets;
1289 	ppp->stats64.tx_bytes += skb->len - 2;
1290 
1291 	switch (proto) {
1292 	case PPP_IP:
1293 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1294 			break;
1295 		/* try to do VJ TCP header compression */
1296 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1297 				    GFP_ATOMIC);
1298 		if (!new_skb) {
1299 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1300 			goto drop;
1301 		}
1302 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1303 		cp = skb->data + 2;
1304 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1305 				    new_skb->data + 2, &cp,
1306 				    !(ppp->flags & SC_NO_TCP_CCID));
1307 		if (cp == skb->data + 2) {
1308 			/* didn't compress */
1309 			consume_skb(new_skb);
1310 		} else {
1311 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1312 				proto = PPP_VJC_COMP;
1313 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1314 			} else {
1315 				proto = PPP_VJC_UNCOMP;
1316 				cp[0] = skb->data[2];
1317 			}
1318 			consume_skb(skb);
1319 			skb = new_skb;
1320 			cp = skb_put(skb, len + 2);
1321 			cp[0] = 0;
1322 			cp[1] = proto;
1323 		}
1324 		break;
1325 
1326 	case PPP_CCP:
1327 		/* peek at outbound CCP frames */
1328 		ppp_ccp_peek(ppp, skb, 0);
1329 		break;
1330 	}
1331 
1332 	/* try to do packet compression */
1333 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1334 	    proto != PPP_LCP && proto != PPP_CCP) {
1335 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1336 			if (net_ratelimit())
1337 				netdev_err(ppp->dev,
1338 					   "ppp: compression required but "
1339 					   "down - pkt dropped.\n");
1340 			goto drop;
1341 		}
1342 		skb = pad_compress_skb(ppp, skb);
1343 		if (!skb)
1344 			goto drop;
1345 	}
1346 
1347 	/*
1348 	 * If we are waiting for traffic (demand dialling),
1349 	 * queue it up for pppd to receive.
1350 	 */
1351 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1352 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1353 			goto drop;
1354 		skb_queue_tail(&ppp->file.rq, skb);
1355 		wake_up_interruptible(&ppp->file.rwait);
1356 		return;
1357 	}
1358 
1359 	ppp->xmit_pending = skb;
1360 	ppp_push(ppp);
1361 	return;
1362 
1363  drop:
1364 	kfree_skb(skb);
1365 	++ppp->dev->stats.tx_errors;
1366 }
1367 
1368 /*
1369  * Try to send the frame in xmit_pending.
1370  * The caller should have the xmit path locked.
1371  */
1372 static void
1373 ppp_push(struct ppp *ppp)
1374 {
1375 	struct list_head *list;
1376 	struct channel *pch;
1377 	struct sk_buff *skb = ppp->xmit_pending;
1378 
1379 	if (!skb)
1380 		return;
1381 
1382 	list = &ppp->channels;
1383 	if (list_empty(list)) {
1384 		/* nowhere to send the packet, just drop it */
1385 		ppp->xmit_pending = NULL;
1386 		kfree_skb(skb);
1387 		return;
1388 	}
1389 
1390 	if ((ppp->flags & SC_MULTILINK) == 0) {
1391 		/* not doing multilink: send it down the first channel */
1392 		list = list->next;
1393 		pch = list_entry(list, struct channel, clist);
1394 
1395 		spin_lock_bh(&pch->downl);
1396 		if (pch->chan) {
1397 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1398 				ppp->xmit_pending = NULL;
1399 		} else {
1400 			/* channel got unregistered */
1401 			kfree_skb(skb);
1402 			ppp->xmit_pending = NULL;
1403 		}
1404 		spin_unlock_bh(&pch->downl);
1405 		return;
1406 	}
1407 
1408 #ifdef CONFIG_PPP_MULTILINK
1409 	/* Multilink: fragment the packet over as many links
1410 	   as can take the packet at the moment. */
1411 	if (!ppp_mp_explode(ppp, skb))
1412 		return;
1413 #endif /* CONFIG_PPP_MULTILINK */
1414 
1415 	ppp->xmit_pending = NULL;
1416 	kfree_skb(skb);
1417 }
1418 
1419 #ifdef CONFIG_PPP_MULTILINK
1420 static bool mp_protocol_compress __read_mostly = true;
1421 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1422 MODULE_PARM_DESC(mp_protocol_compress,
1423 		 "compress protocol id in multilink fragments");
1424 
1425 /*
1426  * Divide a packet to be transmitted into fragments and
1427  * send them out the individual links.
1428  */
1429 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1430 {
1431 	int len, totlen;
1432 	int i, bits, hdrlen, mtu;
1433 	int flen;
1434 	int navail, nfree, nzero;
1435 	int nbigger;
1436 	int totspeed;
1437 	int totfree;
1438 	unsigned char *p, *q;
1439 	struct list_head *list;
1440 	struct channel *pch;
1441 	struct sk_buff *frag;
1442 	struct ppp_channel *chan;
1443 
1444 	totspeed = 0; /*total bitrate of the bundle*/
1445 	nfree = 0; /* # channels which have no packet already queued */
1446 	navail = 0; /* total # of usable channels (not deregistered) */
1447 	nzero = 0; /* number of channels with zero speed associated*/
1448 	totfree = 0; /*total # of channels available and
1449 				  *having no queued packets before
1450 				  *starting the fragmentation*/
1451 
1452 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1453 	i = 0;
1454 	list_for_each_entry(pch, &ppp->channels, clist) {
1455 		if (pch->chan) {
1456 			pch->avail = 1;
1457 			navail++;
1458 			pch->speed = pch->chan->speed;
1459 		} else {
1460 			pch->avail = 0;
1461 		}
1462 		if (pch->avail) {
1463 			if (skb_queue_empty(&pch->file.xq) ||
1464 				!pch->had_frag) {
1465 					if (pch->speed == 0)
1466 						nzero++;
1467 					else
1468 						totspeed += pch->speed;
1469 
1470 					pch->avail = 2;
1471 					++nfree;
1472 					++totfree;
1473 				}
1474 			if (!pch->had_frag && i < ppp->nxchan)
1475 				ppp->nxchan = i;
1476 		}
1477 		++i;
1478 	}
1479 	/*
1480 	 * Don't start sending this packet unless at least half of
1481 	 * the channels are free.  This gives much better TCP
1482 	 * performance if we have a lot of channels.
1483 	 */
1484 	if (nfree == 0 || nfree < navail / 2)
1485 		return 0; /* can't take now, leave it in xmit_pending */
1486 
1487 	/* Do protocol field compression */
1488 	p = skb->data;
1489 	len = skb->len;
1490 	if (*p == 0 && mp_protocol_compress) {
1491 		++p;
1492 		--len;
1493 	}
1494 
1495 	totlen = len;
1496 	nbigger = len % nfree;
1497 
1498 	/* skip to the channel after the one we last used
1499 	   and start at that one */
1500 	list = &ppp->channels;
1501 	for (i = 0; i < ppp->nxchan; ++i) {
1502 		list = list->next;
1503 		if (list == &ppp->channels) {
1504 			i = 0;
1505 			break;
1506 		}
1507 	}
1508 
1509 	/* create a fragment for each channel */
1510 	bits = B;
1511 	while (len > 0) {
1512 		list = list->next;
1513 		if (list == &ppp->channels) {
1514 			i = 0;
1515 			continue;
1516 		}
1517 		pch = list_entry(list, struct channel, clist);
1518 		++i;
1519 		if (!pch->avail)
1520 			continue;
1521 
1522 		/*
1523 		 * Skip this channel if it has a fragment pending already and
1524 		 * we haven't given a fragment to all of the free channels.
1525 		 */
1526 		if (pch->avail == 1) {
1527 			if (nfree > 0)
1528 				continue;
1529 		} else {
1530 			pch->avail = 1;
1531 		}
1532 
1533 		/* check the channel's mtu and whether it is still attached. */
1534 		spin_lock_bh(&pch->downl);
1535 		if (pch->chan == NULL) {
1536 			/* can't use this channel, it's being deregistered */
1537 			if (pch->speed == 0)
1538 				nzero--;
1539 			else
1540 				totspeed -= pch->speed;
1541 
1542 			spin_unlock_bh(&pch->downl);
1543 			pch->avail = 0;
1544 			totlen = len;
1545 			totfree--;
1546 			nfree--;
1547 			if (--navail == 0)
1548 				break;
1549 			continue;
1550 		}
1551 
1552 		/*
1553 		*if the channel speed is not set divide
1554 		*the packet evenly among the free channels;
1555 		*otherwise divide it according to the speed
1556 		*of the channel we are going to transmit on
1557 		*/
1558 		flen = len;
1559 		if (nfree > 0) {
1560 			if (pch->speed == 0) {
1561 				flen = len/nfree;
1562 				if (nbigger > 0) {
1563 					flen++;
1564 					nbigger--;
1565 				}
1566 			} else {
1567 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1568 					((totspeed*totfree)/pch->speed)) - hdrlen;
1569 				if (nbigger > 0) {
1570 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1571 					nbigger -= ((totfree - nzero)*pch->speed)/
1572 							totspeed;
1573 				}
1574 			}
1575 			nfree--;
1576 		}
1577 
1578 		/*
1579 		 *check if we are on the last channel or
1580 		 *we exceded the length of the data to
1581 		 *fragment
1582 		 */
1583 		if ((nfree <= 0) || (flen > len))
1584 			flen = len;
1585 		/*
1586 		 *it is not worth to tx on slow channels:
1587 		 *in that case from the resulting flen according to the
1588 		 *above formula will be equal or less than zero.
1589 		 *Skip the channel in this case
1590 		 */
1591 		if (flen <= 0) {
1592 			pch->avail = 2;
1593 			spin_unlock_bh(&pch->downl);
1594 			continue;
1595 		}
1596 
1597 		/*
1598 		 * hdrlen includes the 2-byte PPP protocol field, but the
1599 		 * MTU counts only the payload excluding the protocol field.
1600 		 * (RFC1661 Section 2)
1601 		 */
1602 		mtu = pch->chan->mtu - (hdrlen - 2);
1603 		if (mtu < 4)
1604 			mtu = 4;
1605 		if (flen > mtu)
1606 			flen = mtu;
1607 		if (flen == len)
1608 			bits |= E;
1609 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1610 		if (!frag)
1611 			goto noskb;
1612 		q = skb_put(frag, flen + hdrlen);
1613 
1614 		/* make the MP header */
1615 		put_unaligned_be16(PPP_MP, q);
1616 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1617 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1618 			q[3] = ppp->nxseq;
1619 		} else {
1620 			q[2] = bits;
1621 			q[3] = ppp->nxseq >> 16;
1622 			q[4] = ppp->nxseq >> 8;
1623 			q[5] = ppp->nxseq;
1624 		}
1625 
1626 		memcpy(q + hdrlen, p, flen);
1627 
1628 		/* try to send it down the channel */
1629 		chan = pch->chan;
1630 		if (!skb_queue_empty(&pch->file.xq) ||
1631 			!chan->ops->start_xmit(chan, frag))
1632 			skb_queue_tail(&pch->file.xq, frag);
1633 		pch->had_frag = 1;
1634 		p += flen;
1635 		len -= flen;
1636 		++ppp->nxseq;
1637 		bits = 0;
1638 		spin_unlock_bh(&pch->downl);
1639 	}
1640 	ppp->nxchan = i;
1641 
1642 	return 1;
1643 
1644  noskb:
1645 	spin_unlock_bh(&pch->downl);
1646 	if (ppp->debug & 1)
1647 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1648 	++ppp->dev->stats.tx_errors;
1649 	++ppp->nxseq;
1650 	return 1;	/* abandon the frame */
1651 }
1652 #endif /* CONFIG_PPP_MULTILINK */
1653 
1654 /*
1655  * Try to send data out on a channel.
1656  */
1657 static void
1658 ppp_channel_push(struct channel *pch)
1659 {
1660 	struct sk_buff *skb;
1661 	struct ppp *ppp;
1662 
1663 	spin_lock_bh(&pch->downl);
1664 	if (pch->chan) {
1665 		while (!skb_queue_empty(&pch->file.xq)) {
1666 			skb = skb_dequeue(&pch->file.xq);
1667 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1668 				/* put the packet back and try again later */
1669 				skb_queue_head(&pch->file.xq, skb);
1670 				break;
1671 			}
1672 		}
1673 	} else {
1674 		/* channel got deregistered */
1675 		skb_queue_purge(&pch->file.xq);
1676 	}
1677 	spin_unlock_bh(&pch->downl);
1678 	/* see if there is anything from the attached unit to be sent */
1679 	if (skb_queue_empty(&pch->file.xq)) {
1680 		read_lock_bh(&pch->upl);
1681 		ppp = pch->ppp;
1682 		if (ppp)
1683 			ppp_xmit_process(ppp);
1684 		read_unlock_bh(&pch->upl);
1685 	}
1686 }
1687 
1688 /*
1689  * Receive-side routines.
1690  */
1691 
1692 struct ppp_mp_skb_parm {
1693 	u32		sequence;
1694 	u8		BEbits;
1695 };
1696 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1697 
1698 static inline void
1699 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1700 {
1701 	ppp_recv_lock(ppp);
1702 	if (!ppp->closing)
1703 		ppp_receive_frame(ppp, skb, pch);
1704 	else
1705 		kfree_skb(skb);
1706 	ppp_recv_unlock(ppp);
1707 }
1708 
1709 void
1710 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1711 {
1712 	struct channel *pch = chan->ppp;
1713 	int proto;
1714 
1715 	if (!pch) {
1716 		kfree_skb(skb);
1717 		return;
1718 	}
1719 
1720 	read_lock_bh(&pch->upl);
1721 	if (!pskb_may_pull(skb, 2)) {
1722 		kfree_skb(skb);
1723 		if (pch->ppp) {
1724 			++pch->ppp->dev->stats.rx_length_errors;
1725 			ppp_receive_error(pch->ppp);
1726 		}
1727 		goto done;
1728 	}
1729 
1730 	proto = PPP_PROTO(skb);
1731 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1732 		/* put it on the channel queue */
1733 		skb_queue_tail(&pch->file.rq, skb);
1734 		/* drop old frames if queue too long */
1735 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1736 		       (skb = skb_dequeue(&pch->file.rq)))
1737 			kfree_skb(skb);
1738 		wake_up_interruptible(&pch->file.rwait);
1739 	} else {
1740 		ppp_do_recv(pch->ppp, skb, pch);
1741 	}
1742 
1743 done:
1744 	read_unlock_bh(&pch->upl);
1745 }
1746 
1747 /* Put a 0-length skb in the receive queue as an error indication */
1748 void
1749 ppp_input_error(struct ppp_channel *chan, int code)
1750 {
1751 	struct channel *pch = chan->ppp;
1752 	struct sk_buff *skb;
1753 
1754 	if (!pch)
1755 		return;
1756 
1757 	read_lock_bh(&pch->upl);
1758 	if (pch->ppp) {
1759 		skb = alloc_skb(0, GFP_ATOMIC);
1760 		if (skb) {
1761 			skb->len = 0;		/* probably unnecessary */
1762 			skb->cb[0] = code;
1763 			ppp_do_recv(pch->ppp, skb, pch);
1764 		}
1765 	}
1766 	read_unlock_bh(&pch->upl);
1767 }
1768 
1769 /*
1770  * We come in here to process a received frame.
1771  * The receive side of the ppp unit is locked.
1772  */
1773 static void
1774 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1775 {
1776 	/* note: a 0-length skb is used as an error indication */
1777 	if (skb->len > 0) {
1778 		skb_checksum_complete_unset(skb);
1779 #ifdef CONFIG_PPP_MULTILINK
1780 		/* XXX do channel-level decompression here */
1781 		if (PPP_PROTO(skb) == PPP_MP)
1782 			ppp_receive_mp_frame(ppp, skb, pch);
1783 		else
1784 #endif /* CONFIG_PPP_MULTILINK */
1785 			ppp_receive_nonmp_frame(ppp, skb);
1786 	} else {
1787 		kfree_skb(skb);
1788 		ppp_receive_error(ppp);
1789 	}
1790 }
1791 
1792 static void
1793 ppp_receive_error(struct ppp *ppp)
1794 {
1795 	++ppp->dev->stats.rx_errors;
1796 	if (ppp->vj)
1797 		slhc_toss(ppp->vj);
1798 }
1799 
1800 static void
1801 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1802 {
1803 	struct sk_buff *ns;
1804 	int proto, len, npi;
1805 
1806 	/*
1807 	 * Decompress the frame, if compressed.
1808 	 * Note that some decompressors need to see uncompressed frames
1809 	 * that come in as well as compressed frames.
1810 	 */
1811 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1812 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1813 		skb = ppp_decompress_frame(ppp, skb);
1814 
1815 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1816 		goto err;
1817 
1818 	proto = PPP_PROTO(skb);
1819 	switch (proto) {
1820 	case PPP_VJC_COMP:
1821 		/* decompress VJ compressed packets */
1822 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1823 			goto err;
1824 
1825 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1826 			/* copy to a new sk_buff with more tailroom */
1827 			ns = dev_alloc_skb(skb->len + 128);
1828 			if (!ns) {
1829 				netdev_err(ppp->dev, "PPP: no memory "
1830 					   "(VJ decomp)\n");
1831 				goto err;
1832 			}
1833 			skb_reserve(ns, 2);
1834 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1835 			consume_skb(skb);
1836 			skb = ns;
1837 		}
1838 		else
1839 			skb->ip_summed = CHECKSUM_NONE;
1840 
1841 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1842 		if (len <= 0) {
1843 			netdev_printk(KERN_DEBUG, ppp->dev,
1844 				      "PPP: VJ decompression error\n");
1845 			goto err;
1846 		}
1847 		len += 2;
1848 		if (len > skb->len)
1849 			skb_put(skb, len - skb->len);
1850 		else if (len < skb->len)
1851 			skb_trim(skb, len);
1852 		proto = PPP_IP;
1853 		break;
1854 
1855 	case PPP_VJC_UNCOMP:
1856 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1857 			goto err;
1858 
1859 		/* Until we fix the decompressor need to make sure
1860 		 * data portion is linear.
1861 		 */
1862 		if (!pskb_may_pull(skb, skb->len))
1863 			goto err;
1864 
1865 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1866 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1867 			goto err;
1868 		}
1869 		proto = PPP_IP;
1870 		break;
1871 
1872 	case PPP_CCP:
1873 		ppp_ccp_peek(ppp, skb, 1);
1874 		break;
1875 	}
1876 
1877 	++ppp->stats64.rx_packets;
1878 	ppp->stats64.rx_bytes += skb->len - 2;
1879 
1880 	npi = proto_to_npindex(proto);
1881 	if (npi < 0) {
1882 		/* control or unknown frame - pass it to pppd */
1883 		skb_queue_tail(&ppp->file.rq, skb);
1884 		/* limit queue length by dropping old frames */
1885 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1886 		       (skb = skb_dequeue(&ppp->file.rq)))
1887 			kfree_skb(skb);
1888 		/* wake up any process polling or blocking on read */
1889 		wake_up_interruptible(&ppp->file.rwait);
1890 
1891 	} else {
1892 		/* network protocol frame - give it to the kernel */
1893 
1894 #ifdef CONFIG_PPP_FILTER
1895 		/* check if the packet passes the pass and active filters */
1896 		/* the filter instructions are constructed assuming
1897 		   a four-byte PPP header on each packet */
1898 		if (ppp->pass_filter || ppp->active_filter) {
1899 			if (skb_unclone(skb, GFP_ATOMIC))
1900 				goto err;
1901 
1902 			*skb_push(skb, 2) = 0;
1903 			if (ppp->pass_filter &&
1904 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1905 				if (ppp->debug & 1)
1906 					netdev_printk(KERN_DEBUG, ppp->dev,
1907 						      "PPP: inbound frame "
1908 						      "not passed\n");
1909 				kfree_skb(skb);
1910 				return;
1911 			}
1912 			if (!(ppp->active_filter &&
1913 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1914 				ppp->last_recv = jiffies;
1915 			__skb_pull(skb, 2);
1916 		} else
1917 #endif /* CONFIG_PPP_FILTER */
1918 			ppp->last_recv = jiffies;
1919 
1920 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1921 		    ppp->npmode[npi] != NPMODE_PASS) {
1922 			kfree_skb(skb);
1923 		} else {
1924 			/* chop off protocol */
1925 			skb_pull_rcsum(skb, 2);
1926 			skb->dev = ppp->dev;
1927 			skb->protocol = htons(npindex_to_ethertype[npi]);
1928 			skb_reset_mac_header(skb);
1929 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
1930 						      dev_net(ppp->dev)));
1931 			netif_rx(skb);
1932 		}
1933 	}
1934 	return;
1935 
1936  err:
1937 	kfree_skb(skb);
1938 	ppp_receive_error(ppp);
1939 }
1940 
1941 static struct sk_buff *
1942 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1943 {
1944 	int proto = PPP_PROTO(skb);
1945 	struct sk_buff *ns;
1946 	int len;
1947 
1948 	/* Until we fix all the decompressor's need to make sure
1949 	 * data portion is linear.
1950 	 */
1951 	if (!pskb_may_pull(skb, skb->len))
1952 		goto err;
1953 
1954 	if (proto == PPP_COMP) {
1955 		int obuff_size;
1956 
1957 		switch(ppp->rcomp->compress_proto) {
1958 		case CI_MPPE:
1959 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1960 			break;
1961 		default:
1962 			obuff_size = ppp->mru + PPP_HDRLEN;
1963 			break;
1964 		}
1965 
1966 		ns = dev_alloc_skb(obuff_size);
1967 		if (!ns) {
1968 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1969 				   "no memory\n");
1970 			goto err;
1971 		}
1972 		/* the decompressor still expects the A/C bytes in the hdr */
1973 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1974 				skb->len + 2, ns->data, obuff_size);
1975 		if (len < 0) {
1976 			/* Pass the compressed frame to pppd as an
1977 			   error indication. */
1978 			if (len == DECOMP_FATALERROR)
1979 				ppp->rstate |= SC_DC_FERROR;
1980 			kfree_skb(ns);
1981 			goto err;
1982 		}
1983 
1984 		consume_skb(skb);
1985 		skb = ns;
1986 		skb_put(skb, len);
1987 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1988 
1989 	} else {
1990 		/* Uncompressed frame - pass to decompressor so it
1991 		   can update its dictionary if necessary. */
1992 		if (ppp->rcomp->incomp)
1993 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1994 					   skb->len + 2);
1995 	}
1996 
1997 	return skb;
1998 
1999  err:
2000 	ppp->rstate |= SC_DC_ERROR;
2001 	ppp_receive_error(ppp);
2002 	return skb;
2003 }
2004 
2005 #ifdef CONFIG_PPP_MULTILINK
2006 /*
2007  * Receive a multilink frame.
2008  * We put it on the reconstruction queue and then pull off
2009  * as many completed frames as we can.
2010  */
2011 static void
2012 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2013 {
2014 	u32 mask, seq;
2015 	struct channel *ch;
2016 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2017 
2018 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2019 		goto err;		/* no good, throw it away */
2020 
2021 	/* Decode sequence number and begin/end bits */
2022 	if (ppp->flags & SC_MP_SHORTSEQ) {
2023 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2024 		mask = 0xfff;
2025 	} else {
2026 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2027 		mask = 0xffffff;
2028 	}
2029 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2030 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2031 
2032 	/*
2033 	 * Do protocol ID decompression on the first fragment of each packet.
2034 	 */
2035 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2036 		*skb_push(skb, 1) = 0;
2037 
2038 	/*
2039 	 * Expand sequence number to 32 bits, making it as close
2040 	 * as possible to ppp->minseq.
2041 	 */
2042 	seq |= ppp->minseq & ~mask;
2043 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2044 		seq += mask + 1;
2045 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2046 		seq -= mask + 1;	/* should never happen */
2047 	PPP_MP_CB(skb)->sequence = seq;
2048 	pch->lastseq = seq;
2049 
2050 	/*
2051 	 * If this packet comes before the next one we were expecting,
2052 	 * drop it.
2053 	 */
2054 	if (seq_before(seq, ppp->nextseq)) {
2055 		kfree_skb(skb);
2056 		++ppp->dev->stats.rx_dropped;
2057 		ppp_receive_error(ppp);
2058 		return;
2059 	}
2060 
2061 	/*
2062 	 * Reevaluate minseq, the minimum over all channels of the
2063 	 * last sequence number received on each channel.  Because of
2064 	 * the increasing sequence number rule, we know that any fragment
2065 	 * before `minseq' which hasn't arrived is never going to arrive.
2066 	 * The list of channels can't change because we have the receive
2067 	 * side of the ppp unit locked.
2068 	 */
2069 	list_for_each_entry(ch, &ppp->channels, clist) {
2070 		if (seq_before(ch->lastseq, seq))
2071 			seq = ch->lastseq;
2072 	}
2073 	if (seq_before(ppp->minseq, seq))
2074 		ppp->minseq = seq;
2075 
2076 	/* Put the fragment on the reconstruction queue */
2077 	ppp_mp_insert(ppp, skb);
2078 
2079 	/* If the queue is getting long, don't wait any longer for packets
2080 	   before the start of the queue. */
2081 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2082 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2083 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2084 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2085 	}
2086 
2087 	/* Pull completed packets off the queue and receive them. */
2088 	while ((skb = ppp_mp_reconstruct(ppp))) {
2089 		if (pskb_may_pull(skb, 2))
2090 			ppp_receive_nonmp_frame(ppp, skb);
2091 		else {
2092 			++ppp->dev->stats.rx_length_errors;
2093 			kfree_skb(skb);
2094 			ppp_receive_error(ppp);
2095 		}
2096 	}
2097 
2098 	return;
2099 
2100  err:
2101 	kfree_skb(skb);
2102 	ppp_receive_error(ppp);
2103 }
2104 
2105 /*
2106  * Insert a fragment on the MP reconstruction queue.
2107  * The queue is ordered by increasing sequence number.
2108  */
2109 static void
2110 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2111 {
2112 	struct sk_buff *p;
2113 	struct sk_buff_head *list = &ppp->mrq;
2114 	u32 seq = PPP_MP_CB(skb)->sequence;
2115 
2116 	/* N.B. we don't need to lock the list lock because we have the
2117 	   ppp unit receive-side lock. */
2118 	skb_queue_walk(list, p) {
2119 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2120 			break;
2121 	}
2122 	__skb_queue_before(list, p, skb);
2123 }
2124 
2125 /*
2126  * Reconstruct a packet from the MP fragment queue.
2127  * We go through increasing sequence numbers until we find a
2128  * complete packet, or we get to the sequence number for a fragment
2129  * which hasn't arrived but might still do so.
2130  */
2131 static struct sk_buff *
2132 ppp_mp_reconstruct(struct ppp *ppp)
2133 {
2134 	u32 seq = ppp->nextseq;
2135 	u32 minseq = ppp->minseq;
2136 	struct sk_buff_head *list = &ppp->mrq;
2137 	struct sk_buff *p, *tmp;
2138 	struct sk_buff *head, *tail;
2139 	struct sk_buff *skb = NULL;
2140 	int lost = 0, len = 0;
2141 
2142 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2143 		return NULL;
2144 	head = list->next;
2145 	tail = NULL;
2146 	skb_queue_walk_safe(list, p, tmp) {
2147 	again:
2148 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2149 			/* this can't happen, anyway ignore the skb */
2150 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2151 				   "seq %u < %u\n",
2152 				   PPP_MP_CB(p)->sequence, seq);
2153 			__skb_unlink(p, list);
2154 			kfree_skb(p);
2155 			continue;
2156 		}
2157 		if (PPP_MP_CB(p)->sequence != seq) {
2158 			u32 oldseq;
2159 			/* Fragment `seq' is missing.  If it is after
2160 			   minseq, it might arrive later, so stop here. */
2161 			if (seq_after(seq, minseq))
2162 				break;
2163 			/* Fragment `seq' is lost, keep going. */
2164 			lost = 1;
2165 			oldseq = seq;
2166 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2167 				minseq + 1: PPP_MP_CB(p)->sequence;
2168 
2169 			if (ppp->debug & 1)
2170 				netdev_printk(KERN_DEBUG, ppp->dev,
2171 					      "lost frag %u..%u\n",
2172 					      oldseq, seq-1);
2173 
2174 			goto again;
2175 		}
2176 
2177 		/*
2178 		 * At this point we know that all the fragments from
2179 		 * ppp->nextseq to seq are either present or lost.
2180 		 * Also, there are no complete packets in the queue
2181 		 * that have no missing fragments and end before this
2182 		 * fragment.
2183 		 */
2184 
2185 		/* B bit set indicates this fragment starts a packet */
2186 		if (PPP_MP_CB(p)->BEbits & B) {
2187 			head = p;
2188 			lost = 0;
2189 			len = 0;
2190 		}
2191 
2192 		len += p->len;
2193 
2194 		/* Got a complete packet yet? */
2195 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2196 		    (PPP_MP_CB(head)->BEbits & B)) {
2197 			if (len > ppp->mrru + 2) {
2198 				++ppp->dev->stats.rx_length_errors;
2199 				netdev_printk(KERN_DEBUG, ppp->dev,
2200 					      "PPP: reconstructed packet"
2201 					      " is too long (%d)\n", len);
2202 			} else {
2203 				tail = p;
2204 				break;
2205 			}
2206 			ppp->nextseq = seq + 1;
2207 		}
2208 
2209 		/*
2210 		 * If this is the ending fragment of a packet,
2211 		 * and we haven't found a complete valid packet yet,
2212 		 * we can discard up to and including this fragment.
2213 		 */
2214 		if (PPP_MP_CB(p)->BEbits & E) {
2215 			struct sk_buff *tmp2;
2216 
2217 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2218 				if (ppp->debug & 1)
2219 					netdev_printk(KERN_DEBUG, ppp->dev,
2220 						      "discarding frag %u\n",
2221 						      PPP_MP_CB(p)->sequence);
2222 				__skb_unlink(p, list);
2223 				kfree_skb(p);
2224 			}
2225 			head = skb_peek(list);
2226 			if (!head)
2227 				break;
2228 		}
2229 		++seq;
2230 	}
2231 
2232 	/* If we have a complete packet, copy it all into one skb. */
2233 	if (tail != NULL) {
2234 		/* If we have discarded any fragments,
2235 		   signal a receive error. */
2236 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2237 			skb_queue_walk_safe(list, p, tmp) {
2238 				if (p == head)
2239 					break;
2240 				if (ppp->debug & 1)
2241 					netdev_printk(KERN_DEBUG, ppp->dev,
2242 						      "discarding frag %u\n",
2243 						      PPP_MP_CB(p)->sequence);
2244 				__skb_unlink(p, list);
2245 				kfree_skb(p);
2246 			}
2247 
2248 			if (ppp->debug & 1)
2249 				netdev_printk(KERN_DEBUG, ppp->dev,
2250 					      "  missed pkts %u..%u\n",
2251 					      ppp->nextseq,
2252 					      PPP_MP_CB(head)->sequence-1);
2253 			++ppp->dev->stats.rx_dropped;
2254 			ppp_receive_error(ppp);
2255 		}
2256 
2257 		skb = head;
2258 		if (head != tail) {
2259 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2260 			p = skb_queue_next(list, head);
2261 			__skb_unlink(skb, list);
2262 			skb_queue_walk_from_safe(list, p, tmp) {
2263 				__skb_unlink(p, list);
2264 				*fragpp = p;
2265 				p->next = NULL;
2266 				fragpp = &p->next;
2267 
2268 				skb->len += p->len;
2269 				skb->data_len += p->len;
2270 				skb->truesize += p->truesize;
2271 
2272 				if (p == tail)
2273 					break;
2274 			}
2275 		} else {
2276 			__skb_unlink(skb, list);
2277 		}
2278 
2279 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2280 	}
2281 
2282 	return skb;
2283 }
2284 #endif /* CONFIG_PPP_MULTILINK */
2285 
2286 /*
2287  * Channel interface.
2288  */
2289 
2290 /* Create a new, unattached ppp channel. */
2291 int ppp_register_channel(struct ppp_channel *chan)
2292 {
2293 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2294 }
2295 
2296 /* Create a new, unattached ppp channel for specified net. */
2297 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2298 {
2299 	struct channel *pch;
2300 	struct ppp_net *pn;
2301 
2302 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2303 	if (!pch)
2304 		return -ENOMEM;
2305 
2306 	pn = ppp_pernet(net);
2307 
2308 	pch->ppp = NULL;
2309 	pch->chan = chan;
2310 	pch->chan_net = get_net(net);
2311 	chan->ppp = pch;
2312 	init_ppp_file(&pch->file, CHANNEL);
2313 	pch->file.hdrlen = chan->hdrlen;
2314 #ifdef CONFIG_PPP_MULTILINK
2315 	pch->lastseq = -1;
2316 #endif /* CONFIG_PPP_MULTILINK */
2317 	init_rwsem(&pch->chan_sem);
2318 	spin_lock_init(&pch->downl);
2319 	rwlock_init(&pch->upl);
2320 
2321 	spin_lock_bh(&pn->all_channels_lock);
2322 	pch->file.index = ++pn->last_channel_index;
2323 	list_add(&pch->list, &pn->new_channels);
2324 	atomic_inc(&channel_count);
2325 	spin_unlock_bh(&pn->all_channels_lock);
2326 
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Return the index of a channel.
2332  */
2333 int ppp_channel_index(struct ppp_channel *chan)
2334 {
2335 	struct channel *pch = chan->ppp;
2336 
2337 	if (pch)
2338 		return pch->file.index;
2339 	return -1;
2340 }
2341 
2342 /*
2343  * Return the PPP unit number to which a channel is connected.
2344  */
2345 int ppp_unit_number(struct ppp_channel *chan)
2346 {
2347 	struct channel *pch = chan->ppp;
2348 	int unit = -1;
2349 
2350 	if (pch) {
2351 		read_lock_bh(&pch->upl);
2352 		if (pch->ppp)
2353 			unit = pch->ppp->file.index;
2354 		read_unlock_bh(&pch->upl);
2355 	}
2356 	return unit;
2357 }
2358 
2359 /*
2360  * Return the PPP device interface name of a channel.
2361  */
2362 char *ppp_dev_name(struct ppp_channel *chan)
2363 {
2364 	struct channel *pch = chan->ppp;
2365 	char *name = NULL;
2366 
2367 	if (pch) {
2368 		read_lock_bh(&pch->upl);
2369 		if (pch->ppp && pch->ppp->dev)
2370 			name = pch->ppp->dev->name;
2371 		read_unlock_bh(&pch->upl);
2372 	}
2373 	return name;
2374 }
2375 
2376 
2377 /*
2378  * Disconnect a channel from the generic layer.
2379  * This must be called in process context.
2380  */
2381 void
2382 ppp_unregister_channel(struct ppp_channel *chan)
2383 {
2384 	struct channel *pch = chan->ppp;
2385 	struct ppp_net *pn;
2386 
2387 	if (!pch)
2388 		return;		/* should never happen */
2389 
2390 	chan->ppp = NULL;
2391 
2392 	/*
2393 	 * This ensures that we have returned from any calls into the
2394 	 * the channel's start_xmit or ioctl routine before we proceed.
2395 	 */
2396 	down_write(&pch->chan_sem);
2397 	spin_lock_bh(&pch->downl);
2398 	pch->chan = NULL;
2399 	spin_unlock_bh(&pch->downl);
2400 	up_write(&pch->chan_sem);
2401 	ppp_disconnect_channel(pch);
2402 
2403 	pn = ppp_pernet(pch->chan_net);
2404 	spin_lock_bh(&pn->all_channels_lock);
2405 	list_del(&pch->list);
2406 	spin_unlock_bh(&pn->all_channels_lock);
2407 	put_net(pch->chan_net);
2408 	pch->chan_net = NULL;
2409 
2410 	pch->file.dead = 1;
2411 	wake_up_interruptible(&pch->file.rwait);
2412 	if (atomic_dec_and_test(&pch->file.refcnt))
2413 		ppp_destroy_channel(pch);
2414 }
2415 
2416 /*
2417  * Callback from a channel when it can accept more to transmit.
2418  * This should be called at BH/softirq level, not interrupt level.
2419  */
2420 void
2421 ppp_output_wakeup(struct ppp_channel *chan)
2422 {
2423 	struct channel *pch = chan->ppp;
2424 
2425 	if (!pch)
2426 		return;
2427 	ppp_channel_push(pch);
2428 }
2429 
2430 /*
2431  * Compression control.
2432  */
2433 
2434 /* Process the PPPIOCSCOMPRESS ioctl. */
2435 static int
2436 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2437 {
2438 	int err;
2439 	struct compressor *cp, *ocomp;
2440 	struct ppp_option_data data;
2441 	void *state, *ostate;
2442 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2443 
2444 	err = -EFAULT;
2445 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2446 		goto out;
2447 	if (data.length > CCP_MAX_OPTION_LENGTH)
2448 		goto out;
2449 	if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2450 		goto out;
2451 
2452 	err = -EINVAL;
2453 	if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2454 		goto out;
2455 
2456 	cp = try_then_request_module(
2457 		find_compressor(ccp_option[0]),
2458 		"ppp-compress-%d", ccp_option[0]);
2459 	if (!cp)
2460 		goto out;
2461 
2462 	err = -ENOBUFS;
2463 	if (data.transmit) {
2464 		state = cp->comp_alloc(ccp_option, data.length);
2465 		if (state) {
2466 			ppp_xmit_lock(ppp);
2467 			ppp->xstate &= ~SC_COMP_RUN;
2468 			ocomp = ppp->xcomp;
2469 			ostate = ppp->xc_state;
2470 			ppp->xcomp = cp;
2471 			ppp->xc_state = state;
2472 			ppp_xmit_unlock(ppp);
2473 			if (ostate) {
2474 				ocomp->comp_free(ostate);
2475 				module_put(ocomp->owner);
2476 			}
2477 			err = 0;
2478 		} else
2479 			module_put(cp->owner);
2480 
2481 	} else {
2482 		state = cp->decomp_alloc(ccp_option, data.length);
2483 		if (state) {
2484 			ppp_recv_lock(ppp);
2485 			ppp->rstate &= ~SC_DECOMP_RUN;
2486 			ocomp = ppp->rcomp;
2487 			ostate = ppp->rc_state;
2488 			ppp->rcomp = cp;
2489 			ppp->rc_state = state;
2490 			ppp_recv_unlock(ppp);
2491 			if (ostate) {
2492 				ocomp->decomp_free(ostate);
2493 				module_put(ocomp->owner);
2494 			}
2495 			err = 0;
2496 		} else
2497 			module_put(cp->owner);
2498 	}
2499 
2500  out:
2501 	return err;
2502 }
2503 
2504 /*
2505  * Look at a CCP packet and update our state accordingly.
2506  * We assume the caller has the xmit or recv path locked.
2507  */
2508 static void
2509 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2510 {
2511 	unsigned char *dp;
2512 	int len;
2513 
2514 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2515 		return;	/* no header */
2516 	dp = skb->data + 2;
2517 
2518 	switch (CCP_CODE(dp)) {
2519 	case CCP_CONFREQ:
2520 
2521 		/* A ConfReq starts negotiation of compression
2522 		 * in one direction of transmission,
2523 		 * and hence brings it down...but which way?
2524 		 *
2525 		 * Remember:
2526 		 * A ConfReq indicates what the sender would like to receive
2527 		 */
2528 		if(inbound)
2529 			/* He is proposing what I should send */
2530 			ppp->xstate &= ~SC_COMP_RUN;
2531 		else
2532 			/* I am proposing to what he should send */
2533 			ppp->rstate &= ~SC_DECOMP_RUN;
2534 
2535 		break;
2536 
2537 	case CCP_TERMREQ:
2538 	case CCP_TERMACK:
2539 		/*
2540 		 * CCP is going down, both directions of transmission
2541 		 */
2542 		ppp->rstate &= ~SC_DECOMP_RUN;
2543 		ppp->xstate &= ~SC_COMP_RUN;
2544 		break;
2545 
2546 	case CCP_CONFACK:
2547 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2548 			break;
2549 		len = CCP_LENGTH(dp);
2550 		if (!pskb_may_pull(skb, len + 2))
2551 			return;		/* too short */
2552 		dp += CCP_HDRLEN;
2553 		len -= CCP_HDRLEN;
2554 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2555 			break;
2556 		if (inbound) {
2557 			/* we will start receiving compressed packets */
2558 			if (!ppp->rc_state)
2559 				break;
2560 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2561 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2562 				ppp->rstate |= SC_DECOMP_RUN;
2563 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2564 			}
2565 		} else {
2566 			/* we will soon start sending compressed packets */
2567 			if (!ppp->xc_state)
2568 				break;
2569 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2570 					ppp->file.index, 0, ppp->debug))
2571 				ppp->xstate |= SC_COMP_RUN;
2572 		}
2573 		break;
2574 
2575 	case CCP_RESETACK:
2576 		/* reset the [de]compressor */
2577 		if ((ppp->flags & SC_CCP_UP) == 0)
2578 			break;
2579 		if (inbound) {
2580 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2581 				ppp->rcomp->decomp_reset(ppp->rc_state);
2582 				ppp->rstate &= ~SC_DC_ERROR;
2583 			}
2584 		} else {
2585 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2586 				ppp->xcomp->comp_reset(ppp->xc_state);
2587 		}
2588 		break;
2589 	}
2590 }
2591 
2592 /* Free up compression resources. */
2593 static void
2594 ppp_ccp_closed(struct ppp *ppp)
2595 {
2596 	void *xstate, *rstate;
2597 	struct compressor *xcomp, *rcomp;
2598 
2599 	ppp_lock(ppp);
2600 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2601 	ppp->xstate = 0;
2602 	xcomp = ppp->xcomp;
2603 	xstate = ppp->xc_state;
2604 	ppp->xc_state = NULL;
2605 	ppp->rstate = 0;
2606 	rcomp = ppp->rcomp;
2607 	rstate = ppp->rc_state;
2608 	ppp->rc_state = NULL;
2609 	ppp_unlock(ppp);
2610 
2611 	if (xstate) {
2612 		xcomp->comp_free(xstate);
2613 		module_put(xcomp->owner);
2614 	}
2615 	if (rstate) {
2616 		rcomp->decomp_free(rstate);
2617 		module_put(rcomp->owner);
2618 	}
2619 }
2620 
2621 /* List of compressors. */
2622 static LIST_HEAD(compressor_list);
2623 static DEFINE_SPINLOCK(compressor_list_lock);
2624 
2625 struct compressor_entry {
2626 	struct list_head list;
2627 	struct compressor *comp;
2628 };
2629 
2630 static struct compressor_entry *
2631 find_comp_entry(int proto)
2632 {
2633 	struct compressor_entry *ce;
2634 
2635 	list_for_each_entry(ce, &compressor_list, list) {
2636 		if (ce->comp->compress_proto == proto)
2637 			return ce;
2638 	}
2639 	return NULL;
2640 }
2641 
2642 /* Register a compressor */
2643 int
2644 ppp_register_compressor(struct compressor *cp)
2645 {
2646 	struct compressor_entry *ce;
2647 	int ret;
2648 	spin_lock(&compressor_list_lock);
2649 	ret = -EEXIST;
2650 	if (find_comp_entry(cp->compress_proto))
2651 		goto out;
2652 	ret = -ENOMEM;
2653 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2654 	if (!ce)
2655 		goto out;
2656 	ret = 0;
2657 	ce->comp = cp;
2658 	list_add(&ce->list, &compressor_list);
2659  out:
2660 	spin_unlock(&compressor_list_lock);
2661 	return ret;
2662 }
2663 
2664 /* Unregister a compressor */
2665 void
2666 ppp_unregister_compressor(struct compressor *cp)
2667 {
2668 	struct compressor_entry *ce;
2669 
2670 	spin_lock(&compressor_list_lock);
2671 	ce = find_comp_entry(cp->compress_proto);
2672 	if (ce && ce->comp == cp) {
2673 		list_del(&ce->list);
2674 		kfree(ce);
2675 	}
2676 	spin_unlock(&compressor_list_lock);
2677 }
2678 
2679 /* Find a compressor. */
2680 static struct compressor *
2681 find_compressor(int type)
2682 {
2683 	struct compressor_entry *ce;
2684 	struct compressor *cp = NULL;
2685 
2686 	spin_lock(&compressor_list_lock);
2687 	ce = find_comp_entry(type);
2688 	if (ce) {
2689 		cp = ce->comp;
2690 		if (!try_module_get(cp->owner))
2691 			cp = NULL;
2692 	}
2693 	spin_unlock(&compressor_list_lock);
2694 	return cp;
2695 }
2696 
2697 /*
2698  * Miscelleneous stuff.
2699  */
2700 
2701 static void
2702 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2703 {
2704 	struct slcompress *vj = ppp->vj;
2705 
2706 	memset(st, 0, sizeof(*st));
2707 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2708 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2709 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2710 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2711 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2712 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2713 	if (!vj)
2714 		return;
2715 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2716 	st->vj.vjs_compressed = vj->sls_o_compressed;
2717 	st->vj.vjs_searches = vj->sls_o_searches;
2718 	st->vj.vjs_misses = vj->sls_o_misses;
2719 	st->vj.vjs_errorin = vj->sls_i_error;
2720 	st->vj.vjs_tossed = vj->sls_i_tossed;
2721 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2722 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2723 }
2724 
2725 /*
2726  * Stuff for handling the lists of ppp units and channels
2727  * and for initialization.
2728  */
2729 
2730 /*
2731  * Create a new ppp interface unit.  Fails if it can't allocate memory
2732  * or if there is already a unit with the requested number.
2733  * unit == -1 means allocate a new number.
2734  */
2735 static struct ppp *ppp_create_interface(struct net *net, int unit,
2736 					struct file *file, int *retp)
2737 {
2738 	struct ppp *ppp;
2739 	struct ppp_net *pn;
2740 	struct net_device *dev = NULL;
2741 	int ret = -ENOMEM;
2742 	int i;
2743 
2744 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
2745 	if (!dev)
2746 		goto out1;
2747 
2748 	pn = ppp_pernet(net);
2749 
2750 	ppp = netdev_priv(dev);
2751 	ppp->dev = dev;
2752 	ppp->mru = PPP_MRU;
2753 	init_ppp_file(&ppp->file, INTERFACE);
2754 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2755 	ppp->owner = file;
2756 	for (i = 0; i < NUM_NP; ++i)
2757 		ppp->npmode[i] = NPMODE_PASS;
2758 	INIT_LIST_HEAD(&ppp->channels);
2759 	spin_lock_init(&ppp->rlock);
2760 	spin_lock_init(&ppp->wlock);
2761 #ifdef CONFIG_PPP_MULTILINK
2762 	ppp->minseq = -1;
2763 	skb_queue_head_init(&ppp->mrq);
2764 #endif /* CONFIG_PPP_MULTILINK */
2765 #ifdef CONFIG_PPP_FILTER
2766 	ppp->pass_filter = NULL;
2767 	ppp->active_filter = NULL;
2768 #endif /* CONFIG_PPP_FILTER */
2769 
2770 	/*
2771 	 * drum roll: don't forget to set
2772 	 * the net device is belong to
2773 	 */
2774 	dev_net_set(dev, net);
2775 
2776 	rtnl_lock();
2777 	mutex_lock(&pn->all_ppp_mutex);
2778 
2779 	if (unit < 0) {
2780 		unit = unit_get(&pn->units_idr, ppp);
2781 		if (unit < 0) {
2782 			ret = unit;
2783 			goto out2;
2784 		}
2785 	} else {
2786 		ret = -EEXIST;
2787 		if (unit_find(&pn->units_idr, unit))
2788 			goto out2; /* unit already exists */
2789 		/*
2790 		 * if caller need a specified unit number
2791 		 * lets try to satisfy him, otherwise --
2792 		 * he should better ask us for new unit number
2793 		 *
2794 		 * NOTE: yes I know that returning EEXIST it's not
2795 		 * fair but at least pppd will ask us to allocate
2796 		 * new unit in this case so user is happy :)
2797 		 */
2798 		unit = unit_set(&pn->units_idr, ppp, unit);
2799 		if (unit < 0)
2800 			goto out2;
2801 	}
2802 
2803 	/* Initialize the new ppp unit */
2804 	ppp->file.index = unit;
2805 	sprintf(dev->name, "ppp%d", unit);
2806 
2807 	ret = register_netdevice(dev);
2808 	if (ret != 0) {
2809 		unit_put(&pn->units_idr, unit);
2810 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2811 			   dev->name, ret);
2812 		goto out2;
2813 	}
2814 
2815 	ppp->ppp_net = net;
2816 
2817 	atomic_inc(&ppp_unit_count);
2818 	mutex_unlock(&pn->all_ppp_mutex);
2819 	rtnl_unlock();
2820 
2821 	*retp = 0;
2822 	return ppp;
2823 
2824 out2:
2825 	mutex_unlock(&pn->all_ppp_mutex);
2826 	rtnl_unlock();
2827 	free_netdev(dev);
2828 out1:
2829 	*retp = ret;
2830 	return NULL;
2831 }
2832 
2833 /*
2834  * Initialize a ppp_file structure.
2835  */
2836 static void
2837 init_ppp_file(struct ppp_file *pf, int kind)
2838 {
2839 	pf->kind = kind;
2840 	skb_queue_head_init(&pf->xq);
2841 	skb_queue_head_init(&pf->rq);
2842 	atomic_set(&pf->refcnt, 1);
2843 	init_waitqueue_head(&pf->rwait);
2844 }
2845 
2846 /*
2847  * Free the memory used by a ppp unit.  This is only called once
2848  * there are no channels connected to the unit and no file structs
2849  * that reference the unit.
2850  */
2851 static void ppp_destroy_interface(struct ppp *ppp)
2852 {
2853 	atomic_dec(&ppp_unit_count);
2854 
2855 	if (!ppp->file.dead || ppp->n_channels) {
2856 		/* "can't happen" */
2857 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2858 			   "but dead=%d n_channels=%d !\n",
2859 			   ppp, ppp->file.dead, ppp->n_channels);
2860 		return;
2861 	}
2862 
2863 	ppp_ccp_closed(ppp);
2864 	if (ppp->vj) {
2865 		slhc_free(ppp->vj);
2866 		ppp->vj = NULL;
2867 	}
2868 	skb_queue_purge(&ppp->file.xq);
2869 	skb_queue_purge(&ppp->file.rq);
2870 #ifdef CONFIG_PPP_MULTILINK
2871 	skb_queue_purge(&ppp->mrq);
2872 #endif /* CONFIG_PPP_MULTILINK */
2873 #ifdef CONFIG_PPP_FILTER
2874 	if (ppp->pass_filter) {
2875 		bpf_prog_destroy(ppp->pass_filter);
2876 		ppp->pass_filter = NULL;
2877 	}
2878 
2879 	if (ppp->active_filter) {
2880 		bpf_prog_destroy(ppp->active_filter);
2881 		ppp->active_filter = NULL;
2882 	}
2883 #endif /* CONFIG_PPP_FILTER */
2884 
2885 	kfree_skb(ppp->xmit_pending);
2886 
2887 	free_netdev(ppp->dev);
2888 }
2889 
2890 /*
2891  * Locate an existing ppp unit.
2892  * The caller should have locked the all_ppp_mutex.
2893  */
2894 static struct ppp *
2895 ppp_find_unit(struct ppp_net *pn, int unit)
2896 {
2897 	return unit_find(&pn->units_idr, unit);
2898 }
2899 
2900 /*
2901  * Locate an existing ppp channel.
2902  * The caller should have locked the all_channels_lock.
2903  * First we look in the new_channels list, then in the
2904  * all_channels list.  If found in the new_channels list,
2905  * we move it to the all_channels list.  This is for speed
2906  * when we have a lot of channels in use.
2907  */
2908 static struct channel *
2909 ppp_find_channel(struct ppp_net *pn, int unit)
2910 {
2911 	struct channel *pch;
2912 
2913 	list_for_each_entry(pch, &pn->new_channels, list) {
2914 		if (pch->file.index == unit) {
2915 			list_move(&pch->list, &pn->all_channels);
2916 			return pch;
2917 		}
2918 	}
2919 
2920 	list_for_each_entry(pch, &pn->all_channels, list) {
2921 		if (pch->file.index == unit)
2922 			return pch;
2923 	}
2924 
2925 	return NULL;
2926 }
2927 
2928 /*
2929  * Connect a PPP channel to a PPP interface unit.
2930  */
2931 static int
2932 ppp_connect_channel(struct channel *pch, int unit)
2933 {
2934 	struct ppp *ppp;
2935 	struct ppp_net *pn;
2936 	int ret = -ENXIO;
2937 	int hdrlen;
2938 
2939 	pn = ppp_pernet(pch->chan_net);
2940 
2941 	mutex_lock(&pn->all_ppp_mutex);
2942 	ppp = ppp_find_unit(pn, unit);
2943 	if (!ppp)
2944 		goto out;
2945 	write_lock_bh(&pch->upl);
2946 	ret = -EINVAL;
2947 	if (pch->ppp)
2948 		goto outl;
2949 
2950 	ppp_lock(ppp);
2951 	if (pch->file.hdrlen > ppp->file.hdrlen)
2952 		ppp->file.hdrlen = pch->file.hdrlen;
2953 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2954 	if (hdrlen > ppp->dev->hard_header_len)
2955 		ppp->dev->hard_header_len = hdrlen;
2956 	list_add_tail(&pch->clist, &ppp->channels);
2957 	++ppp->n_channels;
2958 	pch->ppp = ppp;
2959 	atomic_inc(&ppp->file.refcnt);
2960 	ppp_unlock(ppp);
2961 	ret = 0;
2962 
2963  outl:
2964 	write_unlock_bh(&pch->upl);
2965  out:
2966 	mutex_unlock(&pn->all_ppp_mutex);
2967 	return ret;
2968 }
2969 
2970 /*
2971  * Disconnect a channel from its ppp unit.
2972  */
2973 static int
2974 ppp_disconnect_channel(struct channel *pch)
2975 {
2976 	struct ppp *ppp;
2977 	int err = -EINVAL;
2978 
2979 	write_lock_bh(&pch->upl);
2980 	ppp = pch->ppp;
2981 	pch->ppp = NULL;
2982 	write_unlock_bh(&pch->upl);
2983 	if (ppp) {
2984 		/* remove it from the ppp unit's list */
2985 		ppp_lock(ppp);
2986 		list_del(&pch->clist);
2987 		if (--ppp->n_channels == 0)
2988 			wake_up_interruptible(&ppp->file.rwait);
2989 		ppp_unlock(ppp);
2990 		if (atomic_dec_and_test(&ppp->file.refcnt))
2991 			ppp_destroy_interface(ppp);
2992 		err = 0;
2993 	}
2994 	return err;
2995 }
2996 
2997 /*
2998  * Free up the resources used by a ppp channel.
2999  */
3000 static void ppp_destroy_channel(struct channel *pch)
3001 {
3002 	atomic_dec(&channel_count);
3003 
3004 	if (!pch->file.dead) {
3005 		/* "can't happen" */
3006 		pr_err("ppp: destroying undead channel %p !\n", pch);
3007 		return;
3008 	}
3009 	skb_queue_purge(&pch->file.xq);
3010 	skb_queue_purge(&pch->file.rq);
3011 	kfree(pch);
3012 }
3013 
3014 static void __exit ppp_cleanup(void)
3015 {
3016 	/* should never happen */
3017 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3018 		pr_err("PPP: removing module but units remain!\n");
3019 	unregister_chrdev(PPP_MAJOR, "ppp");
3020 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3021 	class_destroy(ppp_class);
3022 	unregister_pernet_device(&ppp_net_ops);
3023 }
3024 
3025 /*
3026  * Units handling. Caller must protect concurrent access
3027  * by holding all_ppp_mutex
3028  */
3029 
3030 /* associate pointer with specified number */
3031 static int unit_set(struct idr *p, void *ptr, int n)
3032 {
3033 	int unit;
3034 
3035 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3036 	if (unit == -ENOSPC)
3037 		unit = -EINVAL;
3038 	return unit;
3039 }
3040 
3041 /* get new free unit number and associate pointer with it */
3042 static int unit_get(struct idr *p, void *ptr)
3043 {
3044 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3045 }
3046 
3047 /* put unit number back to a pool */
3048 static void unit_put(struct idr *p, int n)
3049 {
3050 	idr_remove(p, n);
3051 }
3052 
3053 /* get pointer associated with the number */
3054 static void *unit_find(struct idr *p, int n)
3055 {
3056 	return idr_find(p, n);
3057 }
3058 
3059 /* Module/initialization stuff */
3060 
3061 module_init(ppp_init);
3062 module_exit(ppp_cleanup);
3063 
3064 EXPORT_SYMBOL(ppp_register_net_channel);
3065 EXPORT_SYMBOL(ppp_register_channel);
3066 EXPORT_SYMBOL(ppp_unregister_channel);
3067 EXPORT_SYMBOL(ppp_channel_index);
3068 EXPORT_SYMBOL(ppp_unit_number);
3069 EXPORT_SYMBOL(ppp_dev_name);
3070 EXPORT_SYMBOL(ppp_input);
3071 EXPORT_SYMBOL(ppp_input_error);
3072 EXPORT_SYMBOL(ppp_output_wakeup);
3073 EXPORT_SYMBOL(ppp_register_compressor);
3074 EXPORT_SYMBOL(ppp_unregister_compressor);
3075 MODULE_LICENSE("GPL");
3076 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3077 MODULE_ALIAS("devname:ppp");
3078