xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision 8c749ce9)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static const struct net_device_ops ppp_netdev_ops;
287 
288 static struct class *ppp_class;
289 
290 /* per net-namespace data */
291 static inline struct ppp_net *ppp_pernet(struct net *net)
292 {
293 	BUG_ON(!net);
294 
295 	return net_generic(net, ppp_net_id);
296 }
297 
298 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
299 static inline int proto_to_npindex(int proto)
300 {
301 	switch (proto) {
302 	case PPP_IP:
303 		return NP_IP;
304 	case PPP_IPV6:
305 		return NP_IPV6;
306 	case PPP_IPX:
307 		return NP_IPX;
308 	case PPP_AT:
309 		return NP_AT;
310 	case PPP_MPLS_UC:
311 		return NP_MPLS_UC;
312 	case PPP_MPLS_MC:
313 		return NP_MPLS_MC;
314 	}
315 	return -EINVAL;
316 }
317 
318 /* Translates an NP index into a PPP protocol number */
319 static const int npindex_to_proto[NUM_NP] = {
320 	PPP_IP,
321 	PPP_IPV6,
322 	PPP_IPX,
323 	PPP_AT,
324 	PPP_MPLS_UC,
325 	PPP_MPLS_MC,
326 };
327 
328 /* Translates an ethertype into an NP index */
329 static inline int ethertype_to_npindex(int ethertype)
330 {
331 	switch (ethertype) {
332 	case ETH_P_IP:
333 		return NP_IP;
334 	case ETH_P_IPV6:
335 		return NP_IPV6;
336 	case ETH_P_IPX:
337 		return NP_IPX;
338 	case ETH_P_PPPTALK:
339 	case ETH_P_ATALK:
340 		return NP_AT;
341 	case ETH_P_MPLS_UC:
342 		return NP_MPLS_UC;
343 	case ETH_P_MPLS_MC:
344 		return NP_MPLS_MC;
345 	}
346 	return -1;
347 }
348 
349 /* Translates an NP index into an ethertype */
350 static const int npindex_to_ethertype[NUM_NP] = {
351 	ETH_P_IP,
352 	ETH_P_IPV6,
353 	ETH_P_IPX,
354 	ETH_P_PPPTALK,
355 	ETH_P_MPLS_UC,
356 	ETH_P_MPLS_MC,
357 };
358 
359 /*
360  * Locking shorthand.
361  */
362 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
363 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
364 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
365 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
366 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
367 				     ppp_recv_lock(ppp); } while (0)
368 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
369 				     ppp_xmit_unlock(ppp); } while (0)
370 
371 /*
372  * /dev/ppp device routines.
373  * The /dev/ppp device is used by pppd to control the ppp unit.
374  * It supports the read, write, ioctl and poll functions.
375  * Open instances of /dev/ppp can be in one of three states:
376  * unattached, attached to a ppp unit, or attached to a ppp channel.
377  */
378 static int ppp_open(struct inode *inode, struct file *file)
379 {
380 	/*
381 	 * This could (should?) be enforced by the permissions on /dev/ppp.
382 	 */
383 	if (!capable(CAP_NET_ADMIN))
384 		return -EPERM;
385 	return 0;
386 }
387 
388 static int ppp_release(struct inode *unused, struct file *file)
389 {
390 	struct ppp_file *pf = file->private_data;
391 	struct ppp *ppp;
392 
393 	if (pf) {
394 		file->private_data = NULL;
395 		if (pf->kind == INTERFACE) {
396 			ppp = PF_TO_PPP(pf);
397 			rtnl_lock();
398 			if (file == ppp->owner)
399 				unregister_netdevice(ppp->dev);
400 			rtnl_unlock();
401 		}
402 		if (atomic_dec_and_test(&pf->refcnt)) {
403 			switch (pf->kind) {
404 			case INTERFACE:
405 				ppp_destroy_interface(PF_TO_PPP(pf));
406 				break;
407 			case CHANNEL:
408 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
409 				break;
410 			}
411 		}
412 	}
413 	return 0;
414 }
415 
416 static ssize_t ppp_read(struct file *file, char __user *buf,
417 			size_t count, loff_t *ppos)
418 {
419 	struct ppp_file *pf = file->private_data;
420 	DECLARE_WAITQUEUE(wait, current);
421 	ssize_t ret;
422 	struct sk_buff *skb = NULL;
423 	struct iovec iov;
424 	struct iov_iter to;
425 
426 	ret = count;
427 
428 	if (!pf)
429 		return -ENXIO;
430 	add_wait_queue(&pf->rwait, &wait);
431 	for (;;) {
432 		set_current_state(TASK_INTERRUPTIBLE);
433 		skb = skb_dequeue(&pf->rq);
434 		if (skb)
435 			break;
436 		ret = 0;
437 		if (pf->dead)
438 			break;
439 		if (pf->kind == INTERFACE) {
440 			/*
441 			 * Return 0 (EOF) on an interface that has no
442 			 * channels connected, unless it is looping
443 			 * network traffic (demand mode).
444 			 */
445 			struct ppp *ppp = PF_TO_PPP(pf);
446 			if (ppp->n_channels == 0 &&
447 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
448 				break;
449 		}
450 		ret = -EAGAIN;
451 		if (file->f_flags & O_NONBLOCK)
452 			break;
453 		ret = -ERESTARTSYS;
454 		if (signal_pending(current))
455 			break;
456 		schedule();
457 	}
458 	set_current_state(TASK_RUNNING);
459 	remove_wait_queue(&pf->rwait, &wait);
460 
461 	if (!skb)
462 		goto out;
463 
464 	ret = -EOVERFLOW;
465 	if (skb->len > count)
466 		goto outf;
467 	ret = -EFAULT;
468 	iov.iov_base = buf;
469 	iov.iov_len = count;
470 	iov_iter_init(&to, READ, &iov, 1, count);
471 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
472 		goto outf;
473 	ret = skb->len;
474 
475  outf:
476 	kfree_skb(skb);
477  out:
478 	return ret;
479 }
480 
481 static ssize_t ppp_write(struct file *file, const char __user *buf,
482 			 size_t count, loff_t *ppos)
483 {
484 	struct ppp_file *pf = file->private_data;
485 	struct sk_buff *skb;
486 	ssize_t ret;
487 
488 	if (!pf)
489 		return -ENXIO;
490 	ret = -ENOMEM;
491 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
492 	if (!skb)
493 		goto out;
494 	skb_reserve(skb, pf->hdrlen);
495 	ret = -EFAULT;
496 	if (copy_from_user(skb_put(skb, count), buf, count)) {
497 		kfree_skb(skb);
498 		goto out;
499 	}
500 
501 	skb_queue_tail(&pf->xq, skb);
502 
503 	switch (pf->kind) {
504 	case INTERFACE:
505 		ppp_xmit_process(PF_TO_PPP(pf));
506 		break;
507 	case CHANNEL:
508 		ppp_channel_push(PF_TO_CHANNEL(pf));
509 		break;
510 	}
511 
512 	ret = count;
513 
514  out:
515 	return ret;
516 }
517 
518 /* No kernel lock - fine */
519 static unsigned int ppp_poll(struct file *file, poll_table *wait)
520 {
521 	struct ppp_file *pf = file->private_data;
522 	unsigned int mask;
523 
524 	if (!pf)
525 		return 0;
526 	poll_wait(file, &pf->rwait, wait);
527 	mask = POLLOUT | POLLWRNORM;
528 	if (skb_peek(&pf->rq))
529 		mask |= POLLIN | POLLRDNORM;
530 	if (pf->dead)
531 		mask |= POLLHUP;
532 	else if (pf->kind == INTERFACE) {
533 		/* see comment in ppp_read */
534 		struct ppp *ppp = PF_TO_PPP(pf);
535 		if (ppp->n_channels == 0 &&
536 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
537 			mask |= POLLIN | POLLRDNORM;
538 	}
539 
540 	return mask;
541 }
542 
543 #ifdef CONFIG_PPP_FILTER
544 static int get_filter(void __user *arg, struct sock_filter **p)
545 {
546 	struct sock_fprog uprog;
547 	struct sock_filter *code = NULL;
548 	int len;
549 
550 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
551 		return -EFAULT;
552 
553 	if (!uprog.len) {
554 		*p = NULL;
555 		return 0;
556 	}
557 
558 	len = uprog.len * sizeof(struct sock_filter);
559 	code = memdup_user(uprog.filter, len);
560 	if (IS_ERR(code))
561 		return PTR_ERR(code);
562 
563 	*p = code;
564 	return uprog.len;
565 }
566 #endif /* CONFIG_PPP_FILTER */
567 
568 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570 	struct ppp_file *pf = file->private_data;
571 	struct ppp *ppp;
572 	int err = -EFAULT, val, val2, i;
573 	struct ppp_idle idle;
574 	struct npioctl npi;
575 	int unit, cflags;
576 	struct slcompress *vj;
577 	void __user *argp = (void __user *)arg;
578 	int __user *p = argp;
579 
580 	if (!pf)
581 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
582 					pf, file, cmd, arg);
583 
584 	if (cmd == PPPIOCDETACH) {
585 		/*
586 		 * We have to be careful here... if the file descriptor
587 		 * has been dup'd, we could have another process in the
588 		 * middle of a poll using the same file *, so we had
589 		 * better not free the interface data structures -
590 		 * instead we fail the ioctl.  Even in this case, we
591 		 * shut down the interface if we are the owner of it.
592 		 * Actually, we should get rid of PPPIOCDETACH, userland
593 		 * (i.e. pppd) could achieve the same effect by closing
594 		 * this fd and reopening /dev/ppp.
595 		 */
596 		err = -EINVAL;
597 		mutex_lock(&ppp_mutex);
598 		if (pf->kind == INTERFACE) {
599 			ppp = PF_TO_PPP(pf);
600 			rtnl_lock();
601 			if (file == ppp->owner)
602 				unregister_netdevice(ppp->dev);
603 			rtnl_unlock();
604 		}
605 		if (atomic_long_read(&file->f_count) < 2) {
606 			ppp_release(NULL, file);
607 			err = 0;
608 		} else
609 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
610 				atomic_long_read(&file->f_count));
611 		mutex_unlock(&ppp_mutex);
612 		return err;
613 	}
614 
615 	if (pf->kind == CHANNEL) {
616 		struct channel *pch;
617 		struct ppp_channel *chan;
618 
619 		mutex_lock(&ppp_mutex);
620 		pch = PF_TO_CHANNEL(pf);
621 
622 		switch (cmd) {
623 		case PPPIOCCONNECT:
624 			if (get_user(unit, p))
625 				break;
626 			err = ppp_connect_channel(pch, unit);
627 			break;
628 
629 		case PPPIOCDISCONN:
630 			err = ppp_disconnect_channel(pch);
631 			break;
632 
633 		default:
634 			down_read(&pch->chan_sem);
635 			chan = pch->chan;
636 			err = -ENOTTY;
637 			if (chan && chan->ops->ioctl)
638 				err = chan->ops->ioctl(chan, cmd, arg);
639 			up_read(&pch->chan_sem);
640 		}
641 		mutex_unlock(&ppp_mutex);
642 		return err;
643 	}
644 
645 	if (pf->kind != INTERFACE) {
646 		/* can't happen */
647 		pr_err("PPP: not interface or channel??\n");
648 		return -EINVAL;
649 	}
650 
651 	mutex_lock(&ppp_mutex);
652 	ppp = PF_TO_PPP(pf);
653 	switch (cmd) {
654 	case PPPIOCSMRU:
655 		if (get_user(val, p))
656 			break;
657 		ppp->mru = val;
658 		err = 0;
659 		break;
660 
661 	case PPPIOCSFLAGS:
662 		if (get_user(val, p))
663 			break;
664 		ppp_lock(ppp);
665 		cflags = ppp->flags & ~val;
666 #ifdef CONFIG_PPP_MULTILINK
667 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
668 			ppp->nextseq = 0;
669 #endif
670 		ppp->flags = val & SC_FLAG_BITS;
671 		ppp_unlock(ppp);
672 		if (cflags & SC_CCP_OPEN)
673 			ppp_ccp_closed(ppp);
674 		err = 0;
675 		break;
676 
677 	case PPPIOCGFLAGS:
678 		val = ppp->flags | ppp->xstate | ppp->rstate;
679 		if (put_user(val, p))
680 			break;
681 		err = 0;
682 		break;
683 
684 	case PPPIOCSCOMPRESS:
685 		err = ppp_set_compress(ppp, arg);
686 		break;
687 
688 	case PPPIOCGUNIT:
689 		if (put_user(ppp->file.index, p))
690 			break;
691 		err = 0;
692 		break;
693 
694 	case PPPIOCSDEBUG:
695 		if (get_user(val, p))
696 			break;
697 		ppp->debug = val;
698 		err = 0;
699 		break;
700 
701 	case PPPIOCGDEBUG:
702 		if (put_user(ppp->debug, p))
703 			break;
704 		err = 0;
705 		break;
706 
707 	case PPPIOCGIDLE:
708 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
709 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
710 		if (copy_to_user(argp, &idle, sizeof(idle)))
711 			break;
712 		err = 0;
713 		break;
714 
715 	case PPPIOCSMAXCID:
716 		if (get_user(val, p))
717 			break;
718 		val2 = 15;
719 		if ((val >> 16) != 0) {
720 			val2 = val >> 16;
721 			val &= 0xffff;
722 		}
723 		vj = slhc_init(val2+1, val+1);
724 		if (IS_ERR(vj)) {
725 			err = PTR_ERR(vj);
726 			break;
727 		}
728 		ppp_lock(ppp);
729 		if (ppp->vj)
730 			slhc_free(ppp->vj);
731 		ppp->vj = vj;
732 		ppp_unlock(ppp);
733 		err = 0;
734 		break;
735 
736 	case PPPIOCGNPMODE:
737 	case PPPIOCSNPMODE:
738 		if (copy_from_user(&npi, argp, sizeof(npi)))
739 			break;
740 		err = proto_to_npindex(npi.protocol);
741 		if (err < 0)
742 			break;
743 		i = err;
744 		if (cmd == PPPIOCGNPMODE) {
745 			err = -EFAULT;
746 			npi.mode = ppp->npmode[i];
747 			if (copy_to_user(argp, &npi, sizeof(npi)))
748 				break;
749 		} else {
750 			ppp->npmode[i] = npi.mode;
751 			/* we may be able to transmit more packets now (??) */
752 			netif_wake_queue(ppp->dev);
753 		}
754 		err = 0;
755 		break;
756 
757 #ifdef CONFIG_PPP_FILTER
758 	case PPPIOCSPASS:
759 	{
760 		struct sock_filter *code;
761 
762 		err = get_filter(argp, &code);
763 		if (err >= 0) {
764 			struct bpf_prog *pass_filter = NULL;
765 			struct sock_fprog_kern fprog = {
766 				.len = err,
767 				.filter = code,
768 			};
769 
770 			err = 0;
771 			if (fprog.filter)
772 				err = bpf_prog_create(&pass_filter, &fprog);
773 			if (!err) {
774 				ppp_lock(ppp);
775 				if (ppp->pass_filter)
776 					bpf_prog_destroy(ppp->pass_filter);
777 				ppp->pass_filter = pass_filter;
778 				ppp_unlock(ppp);
779 			}
780 			kfree(code);
781 		}
782 		break;
783 	}
784 	case PPPIOCSACTIVE:
785 	{
786 		struct sock_filter *code;
787 
788 		err = get_filter(argp, &code);
789 		if (err >= 0) {
790 			struct bpf_prog *active_filter = NULL;
791 			struct sock_fprog_kern fprog = {
792 				.len = err,
793 				.filter = code,
794 			};
795 
796 			err = 0;
797 			if (fprog.filter)
798 				err = bpf_prog_create(&active_filter, &fprog);
799 			if (!err) {
800 				ppp_lock(ppp);
801 				if (ppp->active_filter)
802 					bpf_prog_destroy(ppp->active_filter);
803 				ppp->active_filter = active_filter;
804 				ppp_unlock(ppp);
805 			}
806 			kfree(code);
807 		}
808 		break;
809 	}
810 #endif /* CONFIG_PPP_FILTER */
811 
812 #ifdef CONFIG_PPP_MULTILINK
813 	case PPPIOCSMRRU:
814 		if (get_user(val, p))
815 			break;
816 		ppp_recv_lock(ppp);
817 		ppp->mrru = val;
818 		ppp_recv_unlock(ppp);
819 		err = 0;
820 		break;
821 #endif /* CONFIG_PPP_MULTILINK */
822 
823 	default:
824 		err = -ENOTTY;
825 	}
826 	mutex_unlock(&ppp_mutex);
827 	return err;
828 }
829 
830 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
831 			struct file *file, unsigned int cmd, unsigned long arg)
832 {
833 	int unit, err = -EFAULT;
834 	struct ppp *ppp;
835 	struct channel *chan;
836 	struct ppp_net *pn;
837 	int __user *p = (int __user *)arg;
838 
839 	mutex_lock(&ppp_mutex);
840 	switch (cmd) {
841 	case PPPIOCNEWUNIT:
842 		/* Create a new ppp unit */
843 		if (get_user(unit, p))
844 			break;
845 		ppp = ppp_create_interface(net, unit, file, &err);
846 		if (!ppp)
847 			break;
848 		file->private_data = &ppp->file;
849 		err = -EFAULT;
850 		if (put_user(ppp->file.index, p))
851 			break;
852 		err = 0;
853 		break;
854 
855 	case PPPIOCATTACH:
856 		/* Attach to an existing ppp unit */
857 		if (get_user(unit, p))
858 			break;
859 		err = -ENXIO;
860 		pn = ppp_pernet(net);
861 		mutex_lock(&pn->all_ppp_mutex);
862 		ppp = ppp_find_unit(pn, unit);
863 		if (ppp) {
864 			atomic_inc(&ppp->file.refcnt);
865 			file->private_data = &ppp->file;
866 			err = 0;
867 		}
868 		mutex_unlock(&pn->all_ppp_mutex);
869 		break;
870 
871 	case PPPIOCATTCHAN:
872 		if (get_user(unit, p))
873 			break;
874 		err = -ENXIO;
875 		pn = ppp_pernet(net);
876 		spin_lock_bh(&pn->all_channels_lock);
877 		chan = ppp_find_channel(pn, unit);
878 		if (chan) {
879 			atomic_inc(&chan->file.refcnt);
880 			file->private_data = &chan->file;
881 			err = 0;
882 		}
883 		spin_unlock_bh(&pn->all_channels_lock);
884 		break;
885 
886 	default:
887 		err = -ENOTTY;
888 	}
889 	mutex_unlock(&ppp_mutex);
890 	return err;
891 }
892 
893 static const struct file_operations ppp_device_fops = {
894 	.owner		= THIS_MODULE,
895 	.read		= ppp_read,
896 	.write		= ppp_write,
897 	.poll		= ppp_poll,
898 	.unlocked_ioctl	= ppp_ioctl,
899 	.open		= ppp_open,
900 	.release	= ppp_release,
901 	.llseek		= noop_llseek,
902 };
903 
904 static __net_init int ppp_init_net(struct net *net)
905 {
906 	struct ppp_net *pn = net_generic(net, ppp_net_id);
907 
908 	idr_init(&pn->units_idr);
909 	mutex_init(&pn->all_ppp_mutex);
910 
911 	INIT_LIST_HEAD(&pn->all_channels);
912 	INIT_LIST_HEAD(&pn->new_channels);
913 
914 	spin_lock_init(&pn->all_channels_lock);
915 
916 	return 0;
917 }
918 
919 static __net_exit void ppp_exit_net(struct net *net)
920 {
921 	struct ppp_net *pn = net_generic(net, ppp_net_id);
922 	struct net_device *dev;
923 	struct net_device *aux;
924 	struct ppp *ppp;
925 	LIST_HEAD(list);
926 	int id;
927 
928 	rtnl_lock();
929 	for_each_netdev_safe(net, dev, aux) {
930 		if (dev->netdev_ops == &ppp_netdev_ops)
931 			unregister_netdevice_queue(dev, &list);
932 	}
933 
934 	idr_for_each_entry(&pn->units_idr, ppp, id)
935 		/* Skip devices already unregistered by previous loop */
936 		if (!net_eq(dev_net(ppp->dev), net))
937 			unregister_netdevice_queue(ppp->dev, &list);
938 
939 	unregister_netdevice_many(&list);
940 	rtnl_unlock();
941 
942 	idr_destroy(&pn->units_idr);
943 }
944 
945 static struct pernet_operations ppp_net_ops = {
946 	.init = ppp_init_net,
947 	.exit = ppp_exit_net,
948 	.id   = &ppp_net_id,
949 	.size = sizeof(struct ppp_net),
950 };
951 
952 #define PPP_MAJOR	108
953 
954 /* Called at boot time if ppp is compiled into the kernel,
955    or at module load time (from init_module) if compiled as a module. */
956 static int __init ppp_init(void)
957 {
958 	int err;
959 
960 	pr_info("PPP generic driver version " PPP_VERSION "\n");
961 
962 	err = register_pernet_device(&ppp_net_ops);
963 	if (err) {
964 		pr_err("failed to register PPP pernet device (%d)\n", err);
965 		goto out;
966 	}
967 
968 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
969 	if (err) {
970 		pr_err("failed to register PPP device (%d)\n", err);
971 		goto out_net;
972 	}
973 
974 	ppp_class = class_create(THIS_MODULE, "ppp");
975 	if (IS_ERR(ppp_class)) {
976 		err = PTR_ERR(ppp_class);
977 		goto out_chrdev;
978 	}
979 
980 	/* not a big deal if we fail here :-) */
981 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
982 
983 	return 0;
984 
985 out_chrdev:
986 	unregister_chrdev(PPP_MAJOR, "ppp");
987 out_net:
988 	unregister_pernet_device(&ppp_net_ops);
989 out:
990 	return err;
991 }
992 
993 /*
994  * Network interface unit routines.
995  */
996 static netdev_tx_t
997 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
998 {
999 	struct ppp *ppp = netdev_priv(dev);
1000 	int npi, proto;
1001 	unsigned char *pp;
1002 
1003 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1004 	if (npi < 0)
1005 		goto outf;
1006 
1007 	/* Drop, accept or reject the packet */
1008 	switch (ppp->npmode[npi]) {
1009 	case NPMODE_PASS:
1010 		break;
1011 	case NPMODE_QUEUE:
1012 		/* it would be nice to have a way to tell the network
1013 		   system to queue this one up for later. */
1014 		goto outf;
1015 	case NPMODE_DROP:
1016 	case NPMODE_ERROR:
1017 		goto outf;
1018 	}
1019 
1020 	/* Put the 2-byte PPP protocol number on the front,
1021 	   making sure there is room for the address and control fields. */
1022 	if (skb_cow_head(skb, PPP_HDRLEN))
1023 		goto outf;
1024 
1025 	pp = skb_push(skb, 2);
1026 	proto = npindex_to_proto[npi];
1027 	put_unaligned_be16(proto, pp);
1028 
1029 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1030 	skb_queue_tail(&ppp->file.xq, skb);
1031 	ppp_xmit_process(ppp);
1032 	return NETDEV_TX_OK;
1033 
1034  outf:
1035 	kfree_skb(skb);
1036 	++dev->stats.tx_dropped;
1037 	return NETDEV_TX_OK;
1038 }
1039 
1040 static int
1041 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1042 {
1043 	struct ppp *ppp = netdev_priv(dev);
1044 	int err = -EFAULT;
1045 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1046 	struct ppp_stats stats;
1047 	struct ppp_comp_stats cstats;
1048 	char *vers;
1049 
1050 	switch (cmd) {
1051 	case SIOCGPPPSTATS:
1052 		ppp_get_stats(ppp, &stats);
1053 		if (copy_to_user(addr, &stats, sizeof(stats)))
1054 			break;
1055 		err = 0;
1056 		break;
1057 
1058 	case SIOCGPPPCSTATS:
1059 		memset(&cstats, 0, sizeof(cstats));
1060 		if (ppp->xc_state)
1061 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1062 		if (ppp->rc_state)
1063 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1064 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1065 			break;
1066 		err = 0;
1067 		break;
1068 
1069 	case SIOCGPPPVER:
1070 		vers = PPP_VERSION;
1071 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1072 			break;
1073 		err = 0;
1074 		break;
1075 
1076 	default:
1077 		err = -EINVAL;
1078 	}
1079 
1080 	return err;
1081 }
1082 
1083 static struct rtnl_link_stats64*
1084 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1085 {
1086 	struct ppp *ppp = netdev_priv(dev);
1087 
1088 	ppp_recv_lock(ppp);
1089 	stats64->rx_packets = ppp->stats64.rx_packets;
1090 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1091 	ppp_recv_unlock(ppp);
1092 
1093 	ppp_xmit_lock(ppp);
1094 	stats64->tx_packets = ppp->stats64.tx_packets;
1095 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1096 	ppp_xmit_unlock(ppp);
1097 
1098 	stats64->rx_errors        = dev->stats.rx_errors;
1099 	stats64->tx_errors        = dev->stats.tx_errors;
1100 	stats64->rx_dropped       = dev->stats.rx_dropped;
1101 	stats64->tx_dropped       = dev->stats.tx_dropped;
1102 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1103 
1104 	return stats64;
1105 }
1106 
1107 static struct lock_class_key ppp_tx_busylock;
1108 static int ppp_dev_init(struct net_device *dev)
1109 {
1110 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1111 	return 0;
1112 }
1113 
1114 static void ppp_dev_uninit(struct net_device *dev)
1115 {
1116 	struct ppp *ppp = netdev_priv(dev);
1117 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1118 
1119 	ppp_lock(ppp);
1120 	ppp->closing = 1;
1121 	ppp_unlock(ppp);
1122 
1123 	mutex_lock(&pn->all_ppp_mutex);
1124 	unit_put(&pn->units_idr, ppp->file.index);
1125 	mutex_unlock(&pn->all_ppp_mutex);
1126 
1127 	ppp->owner = NULL;
1128 
1129 	ppp->file.dead = 1;
1130 	wake_up_interruptible(&ppp->file.rwait);
1131 }
1132 
1133 static const struct net_device_ops ppp_netdev_ops = {
1134 	.ndo_init	 = ppp_dev_init,
1135 	.ndo_uninit      = ppp_dev_uninit,
1136 	.ndo_start_xmit  = ppp_start_xmit,
1137 	.ndo_do_ioctl    = ppp_net_ioctl,
1138 	.ndo_get_stats64 = ppp_get_stats64,
1139 };
1140 
1141 static struct device_type ppp_type = {
1142 	.name = "ppp",
1143 };
1144 
1145 static void ppp_setup(struct net_device *dev)
1146 {
1147 	dev->netdev_ops = &ppp_netdev_ops;
1148 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1149 
1150 	dev->hard_header_len = PPP_HDRLEN;
1151 	dev->mtu = PPP_MRU;
1152 	dev->addr_len = 0;
1153 	dev->tx_queue_len = 3;
1154 	dev->type = ARPHRD_PPP;
1155 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1156 	netif_keep_dst(dev);
1157 }
1158 
1159 /*
1160  * Transmit-side routines.
1161  */
1162 
1163 /*
1164  * Called to do any work queued up on the transmit side
1165  * that can now be done.
1166  */
1167 static void
1168 ppp_xmit_process(struct ppp *ppp)
1169 {
1170 	struct sk_buff *skb;
1171 
1172 	ppp_xmit_lock(ppp);
1173 	if (!ppp->closing) {
1174 		ppp_push(ppp);
1175 		while (!ppp->xmit_pending &&
1176 		       (skb = skb_dequeue(&ppp->file.xq)))
1177 			ppp_send_frame(ppp, skb);
1178 		/* If there's no work left to do, tell the core net
1179 		   code that we can accept some more. */
1180 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1181 			netif_wake_queue(ppp->dev);
1182 		else
1183 			netif_stop_queue(ppp->dev);
1184 	}
1185 	ppp_xmit_unlock(ppp);
1186 }
1187 
1188 static inline struct sk_buff *
1189 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1190 {
1191 	struct sk_buff *new_skb;
1192 	int len;
1193 	int new_skb_size = ppp->dev->mtu +
1194 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1195 	int compressor_skb_size = ppp->dev->mtu +
1196 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1197 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1198 	if (!new_skb) {
1199 		if (net_ratelimit())
1200 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1201 		return NULL;
1202 	}
1203 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1204 		skb_reserve(new_skb,
1205 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1206 
1207 	/* compressor still expects A/C bytes in hdr */
1208 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1209 				   new_skb->data, skb->len + 2,
1210 				   compressor_skb_size);
1211 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1212 		consume_skb(skb);
1213 		skb = new_skb;
1214 		skb_put(skb, len);
1215 		skb_pull(skb, 2);	/* pull off A/C bytes */
1216 	} else if (len == 0) {
1217 		/* didn't compress, or CCP not up yet */
1218 		consume_skb(new_skb);
1219 		new_skb = skb;
1220 	} else {
1221 		/*
1222 		 * (len < 0)
1223 		 * MPPE requires that we do not send unencrypted
1224 		 * frames.  The compressor will return -1 if we
1225 		 * should drop the frame.  We cannot simply test
1226 		 * the compress_proto because MPPE and MPPC share
1227 		 * the same number.
1228 		 */
1229 		if (net_ratelimit())
1230 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1231 		kfree_skb(skb);
1232 		consume_skb(new_skb);
1233 		new_skb = NULL;
1234 	}
1235 	return new_skb;
1236 }
1237 
1238 /*
1239  * Compress and send a frame.
1240  * The caller should have locked the xmit path,
1241  * and xmit_pending should be 0.
1242  */
1243 static void
1244 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1245 {
1246 	int proto = PPP_PROTO(skb);
1247 	struct sk_buff *new_skb;
1248 	int len;
1249 	unsigned char *cp;
1250 
1251 	if (proto < 0x8000) {
1252 #ifdef CONFIG_PPP_FILTER
1253 		/* check if we should pass this packet */
1254 		/* the filter instructions are constructed assuming
1255 		   a four-byte PPP header on each packet */
1256 		*skb_push(skb, 2) = 1;
1257 		if (ppp->pass_filter &&
1258 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1259 			if (ppp->debug & 1)
1260 				netdev_printk(KERN_DEBUG, ppp->dev,
1261 					      "PPP: outbound frame "
1262 					      "not passed\n");
1263 			kfree_skb(skb);
1264 			return;
1265 		}
1266 		/* if this packet passes the active filter, record the time */
1267 		if (!(ppp->active_filter &&
1268 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1269 			ppp->last_xmit = jiffies;
1270 		skb_pull(skb, 2);
1271 #else
1272 		/* for data packets, record the time */
1273 		ppp->last_xmit = jiffies;
1274 #endif /* CONFIG_PPP_FILTER */
1275 	}
1276 
1277 	++ppp->stats64.tx_packets;
1278 	ppp->stats64.tx_bytes += skb->len - 2;
1279 
1280 	switch (proto) {
1281 	case PPP_IP:
1282 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1283 			break;
1284 		/* try to do VJ TCP header compression */
1285 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1286 				    GFP_ATOMIC);
1287 		if (!new_skb) {
1288 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1289 			goto drop;
1290 		}
1291 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1292 		cp = skb->data + 2;
1293 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1294 				    new_skb->data + 2, &cp,
1295 				    !(ppp->flags & SC_NO_TCP_CCID));
1296 		if (cp == skb->data + 2) {
1297 			/* didn't compress */
1298 			consume_skb(new_skb);
1299 		} else {
1300 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1301 				proto = PPP_VJC_COMP;
1302 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1303 			} else {
1304 				proto = PPP_VJC_UNCOMP;
1305 				cp[0] = skb->data[2];
1306 			}
1307 			consume_skb(skb);
1308 			skb = new_skb;
1309 			cp = skb_put(skb, len + 2);
1310 			cp[0] = 0;
1311 			cp[1] = proto;
1312 		}
1313 		break;
1314 
1315 	case PPP_CCP:
1316 		/* peek at outbound CCP frames */
1317 		ppp_ccp_peek(ppp, skb, 0);
1318 		break;
1319 	}
1320 
1321 	/* try to do packet compression */
1322 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1323 	    proto != PPP_LCP && proto != PPP_CCP) {
1324 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1325 			if (net_ratelimit())
1326 				netdev_err(ppp->dev,
1327 					   "ppp: compression required but "
1328 					   "down - pkt dropped.\n");
1329 			goto drop;
1330 		}
1331 		skb = pad_compress_skb(ppp, skb);
1332 		if (!skb)
1333 			goto drop;
1334 	}
1335 
1336 	/*
1337 	 * If we are waiting for traffic (demand dialling),
1338 	 * queue it up for pppd to receive.
1339 	 */
1340 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1341 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1342 			goto drop;
1343 		skb_queue_tail(&ppp->file.rq, skb);
1344 		wake_up_interruptible(&ppp->file.rwait);
1345 		return;
1346 	}
1347 
1348 	ppp->xmit_pending = skb;
1349 	ppp_push(ppp);
1350 	return;
1351 
1352  drop:
1353 	kfree_skb(skb);
1354 	++ppp->dev->stats.tx_errors;
1355 }
1356 
1357 /*
1358  * Try to send the frame in xmit_pending.
1359  * The caller should have the xmit path locked.
1360  */
1361 static void
1362 ppp_push(struct ppp *ppp)
1363 {
1364 	struct list_head *list;
1365 	struct channel *pch;
1366 	struct sk_buff *skb = ppp->xmit_pending;
1367 
1368 	if (!skb)
1369 		return;
1370 
1371 	list = &ppp->channels;
1372 	if (list_empty(list)) {
1373 		/* nowhere to send the packet, just drop it */
1374 		ppp->xmit_pending = NULL;
1375 		kfree_skb(skb);
1376 		return;
1377 	}
1378 
1379 	if ((ppp->flags & SC_MULTILINK) == 0) {
1380 		/* not doing multilink: send it down the first channel */
1381 		list = list->next;
1382 		pch = list_entry(list, struct channel, clist);
1383 
1384 		spin_lock_bh(&pch->downl);
1385 		if (pch->chan) {
1386 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1387 				ppp->xmit_pending = NULL;
1388 		} else {
1389 			/* channel got unregistered */
1390 			kfree_skb(skb);
1391 			ppp->xmit_pending = NULL;
1392 		}
1393 		spin_unlock_bh(&pch->downl);
1394 		return;
1395 	}
1396 
1397 #ifdef CONFIG_PPP_MULTILINK
1398 	/* Multilink: fragment the packet over as many links
1399 	   as can take the packet at the moment. */
1400 	if (!ppp_mp_explode(ppp, skb))
1401 		return;
1402 #endif /* CONFIG_PPP_MULTILINK */
1403 
1404 	ppp->xmit_pending = NULL;
1405 	kfree_skb(skb);
1406 }
1407 
1408 #ifdef CONFIG_PPP_MULTILINK
1409 static bool mp_protocol_compress __read_mostly = true;
1410 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1411 MODULE_PARM_DESC(mp_protocol_compress,
1412 		 "compress protocol id in multilink fragments");
1413 
1414 /*
1415  * Divide a packet to be transmitted into fragments and
1416  * send them out the individual links.
1417  */
1418 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1419 {
1420 	int len, totlen;
1421 	int i, bits, hdrlen, mtu;
1422 	int flen;
1423 	int navail, nfree, nzero;
1424 	int nbigger;
1425 	int totspeed;
1426 	int totfree;
1427 	unsigned char *p, *q;
1428 	struct list_head *list;
1429 	struct channel *pch;
1430 	struct sk_buff *frag;
1431 	struct ppp_channel *chan;
1432 
1433 	totspeed = 0; /*total bitrate of the bundle*/
1434 	nfree = 0; /* # channels which have no packet already queued */
1435 	navail = 0; /* total # of usable channels (not deregistered) */
1436 	nzero = 0; /* number of channels with zero speed associated*/
1437 	totfree = 0; /*total # of channels available and
1438 				  *having no queued packets before
1439 				  *starting the fragmentation*/
1440 
1441 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1442 	i = 0;
1443 	list_for_each_entry(pch, &ppp->channels, clist) {
1444 		if (pch->chan) {
1445 			pch->avail = 1;
1446 			navail++;
1447 			pch->speed = pch->chan->speed;
1448 		} else {
1449 			pch->avail = 0;
1450 		}
1451 		if (pch->avail) {
1452 			if (skb_queue_empty(&pch->file.xq) ||
1453 				!pch->had_frag) {
1454 					if (pch->speed == 0)
1455 						nzero++;
1456 					else
1457 						totspeed += pch->speed;
1458 
1459 					pch->avail = 2;
1460 					++nfree;
1461 					++totfree;
1462 				}
1463 			if (!pch->had_frag && i < ppp->nxchan)
1464 				ppp->nxchan = i;
1465 		}
1466 		++i;
1467 	}
1468 	/*
1469 	 * Don't start sending this packet unless at least half of
1470 	 * the channels are free.  This gives much better TCP
1471 	 * performance if we have a lot of channels.
1472 	 */
1473 	if (nfree == 0 || nfree < navail / 2)
1474 		return 0; /* can't take now, leave it in xmit_pending */
1475 
1476 	/* Do protocol field compression */
1477 	p = skb->data;
1478 	len = skb->len;
1479 	if (*p == 0 && mp_protocol_compress) {
1480 		++p;
1481 		--len;
1482 	}
1483 
1484 	totlen = len;
1485 	nbigger = len % nfree;
1486 
1487 	/* skip to the channel after the one we last used
1488 	   and start at that one */
1489 	list = &ppp->channels;
1490 	for (i = 0; i < ppp->nxchan; ++i) {
1491 		list = list->next;
1492 		if (list == &ppp->channels) {
1493 			i = 0;
1494 			break;
1495 		}
1496 	}
1497 
1498 	/* create a fragment for each channel */
1499 	bits = B;
1500 	while (len > 0) {
1501 		list = list->next;
1502 		if (list == &ppp->channels) {
1503 			i = 0;
1504 			continue;
1505 		}
1506 		pch = list_entry(list, struct channel, clist);
1507 		++i;
1508 		if (!pch->avail)
1509 			continue;
1510 
1511 		/*
1512 		 * Skip this channel if it has a fragment pending already and
1513 		 * we haven't given a fragment to all of the free channels.
1514 		 */
1515 		if (pch->avail == 1) {
1516 			if (nfree > 0)
1517 				continue;
1518 		} else {
1519 			pch->avail = 1;
1520 		}
1521 
1522 		/* check the channel's mtu and whether it is still attached. */
1523 		spin_lock_bh(&pch->downl);
1524 		if (pch->chan == NULL) {
1525 			/* can't use this channel, it's being deregistered */
1526 			if (pch->speed == 0)
1527 				nzero--;
1528 			else
1529 				totspeed -= pch->speed;
1530 
1531 			spin_unlock_bh(&pch->downl);
1532 			pch->avail = 0;
1533 			totlen = len;
1534 			totfree--;
1535 			nfree--;
1536 			if (--navail == 0)
1537 				break;
1538 			continue;
1539 		}
1540 
1541 		/*
1542 		*if the channel speed is not set divide
1543 		*the packet evenly among the free channels;
1544 		*otherwise divide it according to the speed
1545 		*of the channel we are going to transmit on
1546 		*/
1547 		flen = len;
1548 		if (nfree > 0) {
1549 			if (pch->speed == 0) {
1550 				flen = len/nfree;
1551 				if (nbigger > 0) {
1552 					flen++;
1553 					nbigger--;
1554 				}
1555 			} else {
1556 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1557 					((totspeed*totfree)/pch->speed)) - hdrlen;
1558 				if (nbigger > 0) {
1559 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1560 					nbigger -= ((totfree - nzero)*pch->speed)/
1561 							totspeed;
1562 				}
1563 			}
1564 			nfree--;
1565 		}
1566 
1567 		/*
1568 		 *check if we are on the last channel or
1569 		 *we exceded the length of the data to
1570 		 *fragment
1571 		 */
1572 		if ((nfree <= 0) || (flen > len))
1573 			flen = len;
1574 		/*
1575 		 *it is not worth to tx on slow channels:
1576 		 *in that case from the resulting flen according to the
1577 		 *above formula will be equal or less than zero.
1578 		 *Skip the channel in this case
1579 		 */
1580 		if (flen <= 0) {
1581 			pch->avail = 2;
1582 			spin_unlock_bh(&pch->downl);
1583 			continue;
1584 		}
1585 
1586 		/*
1587 		 * hdrlen includes the 2-byte PPP protocol field, but the
1588 		 * MTU counts only the payload excluding the protocol field.
1589 		 * (RFC1661 Section 2)
1590 		 */
1591 		mtu = pch->chan->mtu - (hdrlen - 2);
1592 		if (mtu < 4)
1593 			mtu = 4;
1594 		if (flen > mtu)
1595 			flen = mtu;
1596 		if (flen == len)
1597 			bits |= E;
1598 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1599 		if (!frag)
1600 			goto noskb;
1601 		q = skb_put(frag, flen + hdrlen);
1602 
1603 		/* make the MP header */
1604 		put_unaligned_be16(PPP_MP, q);
1605 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1606 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1607 			q[3] = ppp->nxseq;
1608 		} else {
1609 			q[2] = bits;
1610 			q[3] = ppp->nxseq >> 16;
1611 			q[4] = ppp->nxseq >> 8;
1612 			q[5] = ppp->nxseq;
1613 		}
1614 
1615 		memcpy(q + hdrlen, p, flen);
1616 
1617 		/* try to send it down the channel */
1618 		chan = pch->chan;
1619 		if (!skb_queue_empty(&pch->file.xq) ||
1620 			!chan->ops->start_xmit(chan, frag))
1621 			skb_queue_tail(&pch->file.xq, frag);
1622 		pch->had_frag = 1;
1623 		p += flen;
1624 		len -= flen;
1625 		++ppp->nxseq;
1626 		bits = 0;
1627 		spin_unlock_bh(&pch->downl);
1628 	}
1629 	ppp->nxchan = i;
1630 
1631 	return 1;
1632 
1633  noskb:
1634 	spin_unlock_bh(&pch->downl);
1635 	if (ppp->debug & 1)
1636 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1637 	++ppp->dev->stats.tx_errors;
1638 	++ppp->nxseq;
1639 	return 1;	/* abandon the frame */
1640 }
1641 #endif /* CONFIG_PPP_MULTILINK */
1642 
1643 /*
1644  * Try to send data out on a channel.
1645  */
1646 static void
1647 ppp_channel_push(struct channel *pch)
1648 {
1649 	struct sk_buff *skb;
1650 	struct ppp *ppp;
1651 
1652 	spin_lock_bh(&pch->downl);
1653 	if (pch->chan) {
1654 		while (!skb_queue_empty(&pch->file.xq)) {
1655 			skb = skb_dequeue(&pch->file.xq);
1656 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1657 				/* put the packet back and try again later */
1658 				skb_queue_head(&pch->file.xq, skb);
1659 				break;
1660 			}
1661 		}
1662 	} else {
1663 		/* channel got deregistered */
1664 		skb_queue_purge(&pch->file.xq);
1665 	}
1666 	spin_unlock_bh(&pch->downl);
1667 	/* see if there is anything from the attached unit to be sent */
1668 	if (skb_queue_empty(&pch->file.xq)) {
1669 		read_lock_bh(&pch->upl);
1670 		ppp = pch->ppp;
1671 		if (ppp)
1672 			ppp_xmit_process(ppp);
1673 		read_unlock_bh(&pch->upl);
1674 	}
1675 }
1676 
1677 /*
1678  * Receive-side routines.
1679  */
1680 
1681 struct ppp_mp_skb_parm {
1682 	u32		sequence;
1683 	u8		BEbits;
1684 };
1685 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1686 
1687 static inline void
1688 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1689 {
1690 	ppp_recv_lock(ppp);
1691 	if (!ppp->closing)
1692 		ppp_receive_frame(ppp, skb, pch);
1693 	else
1694 		kfree_skb(skb);
1695 	ppp_recv_unlock(ppp);
1696 }
1697 
1698 void
1699 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1700 {
1701 	struct channel *pch = chan->ppp;
1702 	int proto;
1703 
1704 	if (!pch) {
1705 		kfree_skb(skb);
1706 		return;
1707 	}
1708 
1709 	read_lock_bh(&pch->upl);
1710 	if (!pskb_may_pull(skb, 2)) {
1711 		kfree_skb(skb);
1712 		if (pch->ppp) {
1713 			++pch->ppp->dev->stats.rx_length_errors;
1714 			ppp_receive_error(pch->ppp);
1715 		}
1716 		goto done;
1717 	}
1718 
1719 	proto = PPP_PROTO(skb);
1720 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1721 		/* put it on the channel queue */
1722 		skb_queue_tail(&pch->file.rq, skb);
1723 		/* drop old frames if queue too long */
1724 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1725 		       (skb = skb_dequeue(&pch->file.rq)))
1726 			kfree_skb(skb);
1727 		wake_up_interruptible(&pch->file.rwait);
1728 	} else {
1729 		ppp_do_recv(pch->ppp, skb, pch);
1730 	}
1731 
1732 done:
1733 	read_unlock_bh(&pch->upl);
1734 }
1735 
1736 /* Put a 0-length skb in the receive queue as an error indication */
1737 void
1738 ppp_input_error(struct ppp_channel *chan, int code)
1739 {
1740 	struct channel *pch = chan->ppp;
1741 	struct sk_buff *skb;
1742 
1743 	if (!pch)
1744 		return;
1745 
1746 	read_lock_bh(&pch->upl);
1747 	if (pch->ppp) {
1748 		skb = alloc_skb(0, GFP_ATOMIC);
1749 		if (skb) {
1750 			skb->len = 0;		/* probably unnecessary */
1751 			skb->cb[0] = code;
1752 			ppp_do_recv(pch->ppp, skb, pch);
1753 		}
1754 	}
1755 	read_unlock_bh(&pch->upl);
1756 }
1757 
1758 /*
1759  * We come in here to process a received frame.
1760  * The receive side of the ppp unit is locked.
1761  */
1762 static void
1763 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1764 {
1765 	/* note: a 0-length skb is used as an error indication */
1766 	if (skb->len > 0) {
1767 		skb_checksum_complete_unset(skb);
1768 #ifdef CONFIG_PPP_MULTILINK
1769 		/* XXX do channel-level decompression here */
1770 		if (PPP_PROTO(skb) == PPP_MP)
1771 			ppp_receive_mp_frame(ppp, skb, pch);
1772 		else
1773 #endif /* CONFIG_PPP_MULTILINK */
1774 			ppp_receive_nonmp_frame(ppp, skb);
1775 	} else {
1776 		kfree_skb(skb);
1777 		ppp_receive_error(ppp);
1778 	}
1779 }
1780 
1781 static void
1782 ppp_receive_error(struct ppp *ppp)
1783 {
1784 	++ppp->dev->stats.rx_errors;
1785 	if (ppp->vj)
1786 		slhc_toss(ppp->vj);
1787 }
1788 
1789 static void
1790 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1791 {
1792 	struct sk_buff *ns;
1793 	int proto, len, npi;
1794 
1795 	/*
1796 	 * Decompress the frame, if compressed.
1797 	 * Note that some decompressors need to see uncompressed frames
1798 	 * that come in as well as compressed frames.
1799 	 */
1800 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1801 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1802 		skb = ppp_decompress_frame(ppp, skb);
1803 
1804 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1805 		goto err;
1806 
1807 	proto = PPP_PROTO(skb);
1808 	switch (proto) {
1809 	case PPP_VJC_COMP:
1810 		/* decompress VJ compressed packets */
1811 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1812 			goto err;
1813 
1814 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1815 			/* copy to a new sk_buff with more tailroom */
1816 			ns = dev_alloc_skb(skb->len + 128);
1817 			if (!ns) {
1818 				netdev_err(ppp->dev, "PPP: no memory "
1819 					   "(VJ decomp)\n");
1820 				goto err;
1821 			}
1822 			skb_reserve(ns, 2);
1823 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1824 			consume_skb(skb);
1825 			skb = ns;
1826 		}
1827 		else
1828 			skb->ip_summed = CHECKSUM_NONE;
1829 
1830 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1831 		if (len <= 0) {
1832 			netdev_printk(KERN_DEBUG, ppp->dev,
1833 				      "PPP: VJ decompression error\n");
1834 			goto err;
1835 		}
1836 		len += 2;
1837 		if (len > skb->len)
1838 			skb_put(skb, len - skb->len);
1839 		else if (len < skb->len)
1840 			skb_trim(skb, len);
1841 		proto = PPP_IP;
1842 		break;
1843 
1844 	case PPP_VJC_UNCOMP:
1845 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1846 			goto err;
1847 
1848 		/* Until we fix the decompressor need to make sure
1849 		 * data portion is linear.
1850 		 */
1851 		if (!pskb_may_pull(skb, skb->len))
1852 			goto err;
1853 
1854 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1855 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1856 			goto err;
1857 		}
1858 		proto = PPP_IP;
1859 		break;
1860 
1861 	case PPP_CCP:
1862 		ppp_ccp_peek(ppp, skb, 1);
1863 		break;
1864 	}
1865 
1866 	++ppp->stats64.rx_packets;
1867 	ppp->stats64.rx_bytes += skb->len - 2;
1868 
1869 	npi = proto_to_npindex(proto);
1870 	if (npi < 0) {
1871 		/* control or unknown frame - pass it to pppd */
1872 		skb_queue_tail(&ppp->file.rq, skb);
1873 		/* limit queue length by dropping old frames */
1874 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1875 		       (skb = skb_dequeue(&ppp->file.rq)))
1876 			kfree_skb(skb);
1877 		/* wake up any process polling or blocking on read */
1878 		wake_up_interruptible(&ppp->file.rwait);
1879 
1880 	} else {
1881 		/* network protocol frame - give it to the kernel */
1882 
1883 #ifdef CONFIG_PPP_FILTER
1884 		/* check if the packet passes the pass and active filters */
1885 		/* the filter instructions are constructed assuming
1886 		   a four-byte PPP header on each packet */
1887 		if (ppp->pass_filter || ppp->active_filter) {
1888 			if (skb_unclone(skb, GFP_ATOMIC))
1889 				goto err;
1890 
1891 			*skb_push(skb, 2) = 0;
1892 			if (ppp->pass_filter &&
1893 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1894 				if (ppp->debug & 1)
1895 					netdev_printk(KERN_DEBUG, ppp->dev,
1896 						      "PPP: inbound frame "
1897 						      "not passed\n");
1898 				kfree_skb(skb);
1899 				return;
1900 			}
1901 			if (!(ppp->active_filter &&
1902 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1903 				ppp->last_recv = jiffies;
1904 			__skb_pull(skb, 2);
1905 		} else
1906 #endif /* CONFIG_PPP_FILTER */
1907 			ppp->last_recv = jiffies;
1908 
1909 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1910 		    ppp->npmode[npi] != NPMODE_PASS) {
1911 			kfree_skb(skb);
1912 		} else {
1913 			/* chop off protocol */
1914 			skb_pull_rcsum(skb, 2);
1915 			skb->dev = ppp->dev;
1916 			skb->protocol = htons(npindex_to_ethertype[npi]);
1917 			skb_reset_mac_header(skb);
1918 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
1919 						      dev_net(ppp->dev)));
1920 			netif_rx(skb);
1921 		}
1922 	}
1923 	return;
1924 
1925  err:
1926 	kfree_skb(skb);
1927 	ppp_receive_error(ppp);
1928 }
1929 
1930 static struct sk_buff *
1931 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1932 {
1933 	int proto = PPP_PROTO(skb);
1934 	struct sk_buff *ns;
1935 	int len;
1936 
1937 	/* Until we fix all the decompressor's need to make sure
1938 	 * data portion is linear.
1939 	 */
1940 	if (!pskb_may_pull(skb, skb->len))
1941 		goto err;
1942 
1943 	if (proto == PPP_COMP) {
1944 		int obuff_size;
1945 
1946 		switch(ppp->rcomp->compress_proto) {
1947 		case CI_MPPE:
1948 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1949 			break;
1950 		default:
1951 			obuff_size = ppp->mru + PPP_HDRLEN;
1952 			break;
1953 		}
1954 
1955 		ns = dev_alloc_skb(obuff_size);
1956 		if (!ns) {
1957 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1958 				   "no memory\n");
1959 			goto err;
1960 		}
1961 		/* the decompressor still expects the A/C bytes in the hdr */
1962 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1963 				skb->len + 2, ns->data, obuff_size);
1964 		if (len < 0) {
1965 			/* Pass the compressed frame to pppd as an
1966 			   error indication. */
1967 			if (len == DECOMP_FATALERROR)
1968 				ppp->rstate |= SC_DC_FERROR;
1969 			kfree_skb(ns);
1970 			goto err;
1971 		}
1972 
1973 		consume_skb(skb);
1974 		skb = ns;
1975 		skb_put(skb, len);
1976 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1977 
1978 	} else {
1979 		/* Uncompressed frame - pass to decompressor so it
1980 		   can update its dictionary if necessary. */
1981 		if (ppp->rcomp->incomp)
1982 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1983 					   skb->len + 2);
1984 	}
1985 
1986 	return skb;
1987 
1988  err:
1989 	ppp->rstate |= SC_DC_ERROR;
1990 	ppp_receive_error(ppp);
1991 	return skb;
1992 }
1993 
1994 #ifdef CONFIG_PPP_MULTILINK
1995 /*
1996  * Receive a multilink frame.
1997  * We put it on the reconstruction queue and then pull off
1998  * as many completed frames as we can.
1999  */
2000 static void
2001 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2002 {
2003 	u32 mask, seq;
2004 	struct channel *ch;
2005 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2006 
2007 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2008 		goto err;		/* no good, throw it away */
2009 
2010 	/* Decode sequence number and begin/end bits */
2011 	if (ppp->flags & SC_MP_SHORTSEQ) {
2012 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2013 		mask = 0xfff;
2014 	} else {
2015 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2016 		mask = 0xffffff;
2017 	}
2018 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2019 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2020 
2021 	/*
2022 	 * Do protocol ID decompression on the first fragment of each packet.
2023 	 */
2024 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2025 		*skb_push(skb, 1) = 0;
2026 
2027 	/*
2028 	 * Expand sequence number to 32 bits, making it as close
2029 	 * as possible to ppp->minseq.
2030 	 */
2031 	seq |= ppp->minseq & ~mask;
2032 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2033 		seq += mask + 1;
2034 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2035 		seq -= mask + 1;	/* should never happen */
2036 	PPP_MP_CB(skb)->sequence = seq;
2037 	pch->lastseq = seq;
2038 
2039 	/*
2040 	 * If this packet comes before the next one we were expecting,
2041 	 * drop it.
2042 	 */
2043 	if (seq_before(seq, ppp->nextseq)) {
2044 		kfree_skb(skb);
2045 		++ppp->dev->stats.rx_dropped;
2046 		ppp_receive_error(ppp);
2047 		return;
2048 	}
2049 
2050 	/*
2051 	 * Reevaluate minseq, the minimum over all channels of the
2052 	 * last sequence number received on each channel.  Because of
2053 	 * the increasing sequence number rule, we know that any fragment
2054 	 * before `minseq' which hasn't arrived is never going to arrive.
2055 	 * The list of channels can't change because we have the receive
2056 	 * side of the ppp unit locked.
2057 	 */
2058 	list_for_each_entry(ch, &ppp->channels, clist) {
2059 		if (seq_before(ch->lastseq, seq))
2060 			seq = ch->lastseq;
2061 	}
2062 	if (seq_before(ppp->minseq, seq))
2063 		ppp->minseq = seq;
2064 
2065 	/* Put the fragment on the reconstruction queue */
2066 	ppp_mp_insert(ppp, skb);
2067 
2068 	/* If the queue is getting long, don't wait any longer for packets
2069 	   before the start of the queue. */
2070 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2071 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2072 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2073 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2074 	}
2075 
2076 	/* Pull completed packets off the queue and receive them. */
2077 	while ((skb = ppp_mp_reconstruct(ppp))) {
2078 		if (pskb_may_pull(skb, 2))
2079 			ppp_receive_nonmp_frame(ppp, skb);
2080 		else {
2081 			++ppp->dev->stats.rx_length_errors;
2082 			kfree_skb(skb);
2083 			ppp_receive_error(ppp);
2084 		}
2085 	}
2086 
2087 	return;
2088 
2089  err:
2090 	kfree_skb(skb);
2091 	ppp_receive_error(ppp);
2092 }
2093 
2094 /*
2095  * Insert a fragment on the MP reconstruction queue.
2096  * The queue is ordered by increasing sequence number.
2097  */
2098 static void
2099 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2100 {
2101 	struct sk_buff *p;
2102 	struct sk_buff_head *list = &ppp->mrq;
2103 	u32 seq = PPP_MP_CB(skb)->sequence;
2104 
2105 	/* N.B. we don't need to lock the list lock because we have the
2106 	   ppp unit receive-side lock. */
2107 	skb_queue_walk(list, p) {
2108 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2109 			break;
2110 	}
2111 	__skb_queue_before(list, p, skb);
2112 }
2113 
2114 /*
2115  * Reconstruct a packet from the MP fragment queue.
2116  * We go through increasing sequence numbers until we find a
2117  * complete packet, or we get to the sequence number for a fragment
2118  * which hasn't arrived but might still do so.
2119  */
2120 static struct sk_buff *
2121 ppp_mp_reconstruct(struct ppp *ppp)
2122 {
2123 	u32 seq = ppp->nextseq;
2124 	u32 minseq = ppp->minseq;
2125 	struct sk_buff_head *list = &ppp->mrq;
2126 	struct sk_buff *p, *tmp;
2127 	struct sk_buff *head, *tail;
2128 	struct sk_buff *skb = NULL;
2129 	int lost = 0, len = 0;
2130 
2131 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2132 		return NULL;
2133 	head = list->next;
2134 	tail = NULL;
2135 	skb_queue_walk_safe(list, p, tmp) {
2136 	again:
2137 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2138 			/* this can't happen, anyway ignore the skb */
2139 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2140 				   "seq %u < %u\n",
2141 				   PPP_MP_CB(p)->sequence, seq);
2142 			__skb_unlink(p, list);
2143 			kfree_skb(p);
2144 			continue;
2145 		}
2146 		if (PPP_MP_CB(p)->sequence != seq) {
2147 			u32 oldseq;
2148 			/* Fragment `seq' is missing.  If it is after
2149 			   minseq, it might arrive later, so stop here. */
2150 			if (seq_after(seq, minseq))
2151 				break;
2152 			/* Fragment `seq' is lost, keep going. */
2153 			lost = 1;
2154 			oldseq = seq;
2155 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2156 				minseq + 1: PPP_MP_CB(p)->sequence;
2157 
2158 			if (ppp->debug & 1)
2159 				netdev_printk(KERN_DEBUG, ppp->dev,
2160 					      "lost frag %u..%u\n",
2161 					      oldseq, seq-1);
2162 
2163 			goto again;
2164 		}
2165 
2166 		/*
2167 		 * At this point we know that all the fragments from
2168 		 * ppp->nextseq to seq are either present or lost.
2169 		 * Also, there are no complete packets in the queue
2170 		 * that have no missing fragments and end before this
2171 		 * fragment.
2172 		 */
2173 
2174 		/* B bit set indicates this fragment starts a packet */
2175 		if (PPP_MP_CB(p)->BEbits & B) {
2176 			head = p;
2177 			lost = 0;
2178 			len = 0;
2179 		}
2180 
2181 		len += p->len;
2182 
2183 		/* Got a complete packet yet? */
2184 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2185 		    (PPP_MP_CB(head)->BEbits & B)) {
2186 			if (len > ppp->mrru + 2) {
2187 				++ppp->dev->stats.rx_length_errors;
2188 				netdev_printk(KERN_DEBUG, ppp->dev,
2189 					      "PPP: reconstructed packet"
2190 					      " is too long (%d)\n", len);
2191 			} else {
2192 				tail = p;
2193 				break;
2194 			}
2195 			ppp->nextseq = seq + 1;
2196 		}
2197 
2198 		/*
2199 		 * If this is the ending fragment of a packet,
2200 		 * and we haven't found a complete valid packet yet,
2201 		 * we can discard up to and including this fragment.
2202 		 */
2203 		if (PPP_MP_CB(p)->BEbits & E) {
2204 			struct sk_buff *tmp2;
2205 
2206 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2207 				if (ppp->debug & 1)
2208 					netdev_printk(KERN_DEBUG, ppp->dev,
2209 						      "discarding frag %u\n",
2210 						      PPP_MP_CB(p)->sequence);
2211 				__skb_unlink(p, list);
2212 				kfree_skb(p);
2213 			}
2214 			head = skb_peek(list);
2215 			if (!head)
2216 				break;
2217 		}
2218 		++seq;
2219 	}
2220 
2221 	/* If we have a complete packet, copy it all into one skb. */
2222 	if (tail != NULL) {
2223 		/* If we have discarded any fragments,
2224 		   signal a receive error. */
2225 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2226 			skb_queue_walk_safe(list, p, tmp) {
2227 				if (p == head)
2228 					break;
2229 				if (ppp->debug & 1)
2230 					netdev_printk(KERN_DEBUG, ppp->dev,
2231 						      "discarding frag %u\n",
2232 						      PPP_MP_CB(p)->sequence);
2233 				__skb_unlink(p, list);
2234 				kfree_skb(p);
2235 			}
2236 
2237 			if (ppp->debug & 1)
2238 				netdev_printk(KERN_DEBUG, ppp->dev,
2239 					      "  missed pkts %u..%u\n",
2240 					      ppp->nextseq,
2241 					      PPP_MP_CB(head)->sequence-1);
2242 			++ppp->dev->stats.rx_dropped;
2243 			ppp_receive_error(ppp);
2244 		}
2245 
2246 		skb = head;
2247 		if (head != tail) {
2248 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2249 			p = skb_queue_next(list, head);
2250 			__skb_unlink(skb, list);
2251 			skb_queue_walk_from_safe(list, p, tmp) {
2252 				__skb_unlink(p, list);
2253 				*fragpp = p;
2254 				p->next = NULL;
2255 				fragpp = &p->next;
2256 
2257 				skb->len += p->len;
2258 				skb->data_len += p->len;
2259 				skb->truesize += p->truesize;
2260 
2261 				if (p == tail)
2262 					break;
2263 			}
2264 		} else {
2265 			__skb_unlink(skb, list);
2266 		}
2267 
2268 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2269 	}
2270 
2271 	return skb;
2272 }
2273 #endif /* CONFIG_PPP_MULTILINK */
2274 
2275 /*
2276  * Channel interface.
2277  */
2278 
2279 /* Create a new, unattached ppp channel. */
2280 int ppp_register_channel(struct ppp_channel *chan)
2281 {
2282 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2283 }
2284 
2285 /* Create a new, unattached ppp channel for specified net. */
2286 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2287 {
2288 	struct channel *pch;
2289 	struct ppp_net *pn;
2290 
2291 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2292 	if (!pch)
2293 		return -ENOMEM;
2294 
2295 	pn = ppp_pernet(net);
2296 
2297 	pch->ppp = NULL;
2298 	pch->chan = chan;
2299 	pch->chan_net = net;
2300 	chan->ppp = pch;
2301 	init_ppp_file(&pch->file, CHANNEL);
2302 	pch->file.hdrlen = chan->hdrlen;
2303 #ifdef CONFIG_PPP_MULTILINK
2304 	pch->lastseq = -1;
2305 #endif /* CONFIG_PPP_MULTILINK */
2306 	init_rwsem(&pch->chan_sem);
2307 	spin_lock_init(&pch->downl);
2308 	rwlock_init(&pch->upl);
2309 
2310 	spin_lock_bh(&pn->all_channels_lock);
2311 	pch->file.index = ++pn->last_channel_index;
2312 	list_add(&pch->list, &pn->new_channels);
2313 	atomic_inc(&channel_count);
2314 	spin_unlock_bh(&pn->all_channels_lock);
2315 
2316 	return 0;
2317 }
2318 
2319 /*
2320  * Return the index of a channel.
2321  */
2322 int ppp_channel_index(struct ppp_channel *chan)
2323 {
2324 	struct channel *pch = chan->ppp;
2325 
2326 	if (pch)
2327 		return pch->file.index;
2328 	return -1;
2329 }
2330 
2331 /*
2332  * Return the PPP unit number to which a channel is connected.
2333  */
2334 int ppp_unit_number(struct ppp_channel *chan)
2335 {
2336 	struct channel *pch = chan->ppp;
2337 	int unit = -1;
2338 
2339 	if (pch) {
2340 		read_lock_bh(&pch->upl);
2341 		if (pch->ppp)
2342 			unit = pch->ppp->file.index;
2343 		read_unlock_bh(&pch->upl);
2344 	}
2345 	return unit;
2346 }
2347 
2348 /*
2349  * Return the PPP device interface name of a channel.
2350  */
2351 char *ppp_dev_name(struct ppp_channel *chan)
2352 {
2353 	struct channel *pch = chan->ppp;
2354 	char *name = NULL;
2355 
2356 	if (pch) {
2357 		read_lock_bh(&pch->upl);
2358 		if (pch->ppp && pch->ppp->dev)
2359 			name = pch->ppp->dev->name;
2360 		read_unlock_bh(&pch->upl);
2361 	}
2362 	return name;
2363 }
2364 
2365 
2366 /*
2367  * Disconnect a channel from the generic layer.
2368  * This must be called in process context.
2369  */
2370 void
2371 ppp_unregister_channel(struct ppp_channel *chan)
2372 {
2373 	struct channel *pch = chan->ppp;
2374 	struct ppp_net *pn;
2375 
2376 	if (!pch)
2377 		return;		/* should never happen */
2378 
2379 	chan->ppp = NULL;
2380 
2381 	/*
2382 	 * This ensures that we have returned from any calls into the
2383 	 * the channel's start_xmit or ioctl routine before we proceed.
2384 	 */
2385 	down_write(&pch->chan_sem);
2386 	spin_lock_bh(&pch->downl);
2387 	pch->chan = NULL;
2388 	spin_unlock_bh(&pch->downl);
2389 	up_write(&pch->chan_sem);
2390 	ppp_disconnect_channel(pch);
2391 
2392 	pn = ppp_pernet(pch->chan_net);
2393 	spin_lock_bh(&pn->all_channels_lock);
2394 	list_del(&pch->list);
2395 	spin_unlock_bh(&pn->all_channels_lock);
2396 
2397 	pch->file.dead = 1;
2398 	wake_up_interruptible(&pch->file.rwait);
2399 	if (atomic_dec_and_test(&pch->file.refcnt))
2400 		ppp_destroy_channel(pch);
2401 }
2402 
2403 /*
2404  * Callback from a channel when it can accept more to transmit.
2405  * This should be called at BH/softirq level, not interrupt level.
2406  */
2407 void
2408 ppp_output_wakeup(struct ppp_channel *chan)
2409 {
2410 	struct channel *pch = chan->ppp;
2411 
2412 	if (!pch)
2413 		return;
2414 	ppp_channel_push(pch);
2415 }
2416 
2417 /*
2418  * Compression control.
2419  */
2420 
2421 /* Process the PPPIOCSCOMPRESS ioctl. */
2422 static int
2423 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2424 {
2425 	int err;
2426 	struct compressor *cp, *ocomp;
2427 	struct ppp_option_data data;
2428 	void *state, *ostate;
2429 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2430 
2431 	err = -EFAULT;
2432 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2433 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2434 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2435 		goto out;
2436 	err = -EINVAL;
2437 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2438 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2439 		goto out;
2440 
2441 	cp = try_then_request_module(
2442 		find_compressor(ccp_option[0]),
2443 		"ppp-compress-%d", ccp_option[0]);
2444 	if (!cp)
2445 		goto out;
2446 
2447 	err = -ENOBUFS;
2448 	if (data.transmit) {
2449 		state = cp->comp_alloc(ccp_option, data.length);
2450 		if (state) {
2451 			ppp_xmit_lock(ppp);
2452 			ppp->xstate &= ~SC_COMP_RUN;
2453 			ocomp = ppp->xcomp;
2454 			ostate = ppp->xc_state;
2455 			ppp->xcomp = cp;
2456 			ppp->xc_state = state;
2457 			ppp_xmit_unlock(ppp);
2458 			if (ostate) {
2459 				ocomp->comp_free(ostate);
2460 				module_put(ocomp->owner);
2461 			}
2462 			err = 0;
2463 		} else
2464 			module_put(cp->owner);
2465 
2466 	} else {
2467 		state = cp->decomp_alloc(ccp_option, data.length);
2468 		if (state) {
2469 			ppp_recv_lock(ppp);
2470 			ppp->rstate &= ~SC_DECOMP_RUN;
2471 			ocomp = ppp->rcomp;
2472 			ostate = ppp->rc_state;
2473 			ppp->rcomp = cp;
2474 			ppp->rc_state = state;
2475 			ppp_recv_unlock(ppp);
2476 			if (ostate) {
2477 				ocomp->decomp_free(ostate);
2478 				module_put(ocomp->owner);
2479 			}
2480 			err = 0;
2481 		} else
2482 			module_put(cp->owner);
2483 	}
2484 
2485  out:
2486 	return err;
2487 }
2488 
2489 /*
2490  * Look at a CCP packet and update our state accordingly.
2491  * We assume the caller has the xmit or recv path locked.
2492  */
2493 static void
2494 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2495 {
2496 	unsigned char *dp;
2497 	int len;
2498 
2499 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2500 		return;	/* no header */
2501 	dp = skb->data + 2;
2502 
2503 	switch (CCP_CODE(dp)) {
2504 	case CCP_CONFREQ:
2505 
2506 		/* A ConfReq starts negotiation of compression
2507 		 * in one direction of transmission,
2508 		 * and hence brings it down...but which way?
2509 		 *
2510 		 * Remember:
2511 		 * A ConfReq indicates what the sender would like to receive
2512 		 */
2513 		if(inbound)
2514 			/* He is proposing what I should send */
2515 			ppp->xstate &= ~SC_COMP_RUN;
2516 		else
2517 			/* I am proposing to what he should send */
2518 			ppp->rstate &= ~SC_DECOMP_RUN;
2519 
2520 		break;
2521 
2522 	case CCP_TERMREQ:
2523 	case CCP_TERMACK:
2524 		/*
2525 		 * CCP is going down, both directions of transmission
2526 		 */
2527 		ppp->rstate &= ~SC_DECOMP_RUN;
2528 		ppp->xstate &= ~SC_COMP_RUN;
2529 		break;
2530 
2531 	case CCP_CONFACK:
2532 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2533 			break;
2534 		len = CCP_LENGTH(dp);
2535 		if (!pskb_may_pull(skb, len + 2))
2536 			return;		/* too short */
2537 		dp += CCP_HDRLEN;
2538 		len -= CCP_HDRLEN;
2539 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2540 			break;
2541 		if (inbound) {
2542 			/* we will start receiving compressed packets */
2543 			if (!ppp->rc_state)
2544 				break;
2545 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2546 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2547 				ppp->rstate |= SC_DECOMP_RUN;
2548 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2549 			}
2550 		} else {
2551 			/* we will soon start sending compressed packets */
2552 			if (!ppp->xc_state)
2553 				break;
2554 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2555 					ppp->file.index, 0, ppp->debug))
2556 				ppp->xstate |= SC_COMP_RUN;
2557 		}
2558 		break;
2559 
2560 	case CCP_RESETACK:
2561 		/* reset the [de]compressor */
2562 		if ((ppp->flags & SC_CCP_UP) == 0)
2563 			break;
2564 		if (inbound) {
2565 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2566 				ppp->rcomp->decomp_reset(ppp->rc_state);
2567 				ppp->rstate &= ~SC_DC_ERROR;
2568 			}
2569 		} else {
2570 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2571 				ppp->xcomp->comp_reset(ppp->xc_state);
2572 		}
2573 		break;
2574 	}
2575 }
2576 
2577 /* Free up compression resources. */
2578 static void
2579 ppp_ccp_closed(struct ppp *ppp)
2580 {
2581 	void *xstate, *rstate;
2582 	struct compressor *xcomp, *rcomp;
2583 
2584 	ppp_lock(ppp);
2585 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2586 	ppp->xstate = 0;
2587 	xcomp = ppp->xcomp;
2588 	xstate = ppp->xc_state;
2589 	ppp->xc_state = NULL;
2590 	ppp->rstate = 0;
2591 	rcomp = ppp->rcomp;
2592 	rstate = ppp->rc_state;
2593 	ppp->rc_state = NULL;
2594 	ppp_unlock(ppp);
2595 
2596 	if (xstate) {
2597 		xcomp->comp_free(xstate);
2598 		module_put(xcomp->owner);
2599 	}
2600 	if (rstate) {
2601 		rcomp->decomp_free(rstate);
2602 		module_put(rcomp->owner);
2603 	}
2604 }
2605 
2606 /* List of compressors. */
2607 static LIST_HEAD(compressor_list);
2608 static DEFINE_SPINLOCK(compressor_list_lock);
2609 
2610 struct compressor_entry {
2611 	struct list_head list;
2612 	struct compressor *comp;
2613 };
2614 
2615 static struct compressor_entry *
2616 find_comp_entry(int proto)
2617 {
2618 	struct compressor_entry *ce;
2619 
2620 	list_for_each_entry(ce, &compressor_list, list) {
2621 		if (ce->comp->compress_proto == proto)
2622 			return ce;
2623 	}
2624 	return NULL;
2625 }
2626 
2627 /* Register a compressor */
2628 int
2629 ppp_register_compressor(struct compressor *cp)
2630 {
2631 	struct compressor_entry *ce;
2632 	int ret;
2633 	spin_lock(&compressor_list_lock);
2634 	ret = -EEXIST;
2635 	if (find_comp_entry(cp->compress_proto))
2636 		goto out;
2637 	ret = -ENOMEM;
2638 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2639 	if (!ce)
2640 		goto out;
2641 	ret = 0;
2642 	ce->comp = cp;
2643 	list_add(&ce->list, &compressor_list);
2644  out:
2645 	spin_unlock(&compressor_list_lock);
2646 	return ret;
2647 }
2648 
2649 /* Unregister a compressor */
2650 void
2651 ppp_unregister_compressor(struct compressor *cp)
2652 {
2653 	struct compressor_entry *ce;
2654 
2655 	spin_lock(&compressor_list_lock);
2656 	ce = find_comp_entry(cp->compress_proto);
2657 	if (ce && ce->comp == cp) {
2658 		list_del(&ce->list);
2659 		kfree(ce);
2660 	}
2661 	spin_unlock(&compressor_list_lock);
2662 }
2663 
2664 /* Find a compressor. */
2665 static struct compressor *
2666 find_compressor(int type)
2667 {
2668 	struct compressor_entry *ce;
2669 	struct compressor *cp = NULL;
2670 
2671 	spin_lock(&compressor_list_lock);
2672 	ce = find_comp_entry(type);
2673 	if (ce) {
2674 		cp = ce->comp;
2675 		if (!try_module_get(cp->owner))
2676 			cp = NULL;
2677 	}
2678 	spin_unlock(&compressor_list_lock);
2679 	return cp;
2680 }
2681 
2682 /*
2683  * Miscelleneous stuff.
2684  */
2685 
2686 static void
2687 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2688 {
2689 	struct slcompress *vj = ppp->vj;
2690 
2691 	memset(st, 0, sizeof(*st));
2692 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2693 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2694 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2695 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2696 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2697 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2698 	if (!vj)
2699 		return;
2700 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2701 	st->vj.vjs_compressed = vj->sls_o_compressed;
2702 	st->vj.vjs_searches = vj->sls_o_searches;
2703 	st->vj.vjs_misses = vj->sls_o_misses;
2704 	st->vj.vjs_errorin = vj->sls_i_error;
2705 	st->vj.vjs_tossed = vj->sls_i_tossed;
2706 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2707 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2708 }
2709 
2710 /*
2711  * Stuff for handling the lists of ppp units and channels
2712  * and for initialization.
2713  */
2714 
2715 /*
2716  * Create a new ppp interface unit.  Fails if it can't allocate memory
2717  * or if there is already a unit with the requested number.
2718  * unit == -1 means allocate a new number.
2719  */
2720 static struct ppp *ppp_create_interface(struct net *net, int unit,
2721 					struct file *file, int *retp)
2722 {
2723 	struct ppp *ppp;
2724 	struct ppp_net *pn;
2725 	struct net_device *dev = NULL;
2726 	int ret = -ENOMEM;
2727 	int i;
2728 
2729 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
2730 	if (!dev)
2731 		goto out1;
2732 
2733 	pn = ppp_pernet(net);
2734 
2735 	ppp = netdev_priv(dev);
2736 	ppp->dev = dev;
2737 	ppp->mru = PPP_MRU;
2738 	init_ppp_file(&ppp->file, INTERFACE);
2739 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2740 	ppp->owner = file;
2741 	for (i = 0; i < NUM_NP; ++i)
2742 		ppp->npmode[i] = NPMODE_PASS;
2743 	INIT_LIST_HEAD(&ppp->channels);
2744 	spin_lock_init(&ppp->rlock);
2745 	spin_lock_init(&ppp->wlock);
2746 #ifdef CONFIG_PPP_MULTILINK
2747 	ppp->minseq = -1;
2748 	skb_queue_head_init(&ppp->mrq);
2749 #endif /* CONFIG_PPP_MULTILINK */
2750 #ifdef CONFIG_PPP_FILTER
2751 	ppp->pass_filter = NULL;
2752 	ppp->active_filter = NULL;
2753 #endif /* CONFIG_PPP_FILTER */
2754 
2755 	/*
2756 	 * drum roll: don't forget to set
2757 	 * the net device is belong to
2758 	 */
2759 	dev_net_set(dev, net);
2760 
2761 	rtnl_lock();
2762 	mutex_lock(&pn->all_ppp_mutex);
2763 
2764 	if (unit < 0) {
2765 		unit = unit_get(&pn->units_idr, ppp);
2766 		if (unit < 0) {
2767 			ret = unit;
2768 			goto out2;
2769 		}
2770 	} else {
2771 		ret = -EEXIST;
2772 		if (unit_find(&pn->units_idr, unit))
2773 			goto out2; /* unit already exists */
2774 		/*
2775 		 * if caller need a specified unit number
2776 		 * lets try to satisfy him, otherwise --
2777 		 * he should better ask us for new unit number
2778 		 *
2779 		 * NOTE: yes I know that returning EEXIST it's not
2780 		 * fair but at least pppd will ask us to allocate
2781 		 * new unit in this case so user is happy :)
2782 		 */
2783 		unit = unit_set(&pn->units_idr, ppp, unit);
2784 		if (unit < 0)
2785 			goto out2;
2786 	}
2787 
2788 	/* Initialize the new ppp unit */
2789 	ppp->file.index = unit;
2790 	sprintf(dev->name, "ppp%d", unit);
2791 
2792 	ret = register_netdevice(dev);
2793 	if (ret != 0) {
2794 		unit_put(&pn->units_idr, unit);
2795 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2796 			   dev->name, ret);
2797 		goto out2;
2798 	}
2799 
2800 	ppp->ppp_net = net;
2801 
2802 	atomic_inc(&ppp_unit_count);
2803 	mutex_unlock(&pn->all_ppp_mutex);
2804 	rtnl_unlock();
2805 
2806 	*retp = 0;
2807 	return ppp;
2808 
2809 out2:
2810 	mutex_unlock(&pn->all_ppp_mutex);
2811 	free_netdev(dev);
2812 out1:
2813 	*retp = ret;
2814 	return NULL;
2815 }
2816 
2817 /*
2818  * Initialize a ppp_file structure.
2819  */
2820 static void
2821 init_ppp_file(struct ppp_file *pf, int kind)
2822 {
2823 	pf->kind = kind;
2824 	skb_queue_head_init(&pf->xq);
2825 	skb_queue_head_init(&pf->rq);
2826 	atomic_set(&pf->refcnt, 1);
2827 	init_waitqueue_head(&pf->rwait);
2828 }
2829 
2830 /*
2831  * Free the memory used by a ppp unit.  This is only called once
2832  * there are no channels connected to the unit and no file structs
2833  * that reference the unit.
2834  */
2835 static void ppp_destroy_interface(struct ppp *ppp)
2836 {
2837 	atomic_dec(&ppp_unit_count);
2838 
2839 	if (!ppp->file.dead || ppp->n_channels) {
2840 		/* "can't happen" */
2841 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2842 			   "but dead=%d n_channels=%d !\n",
2843 			   ppp, ppp->file.dead, ppp->n_channels);
2844 		return;
2845 	}
2846 
2847 	ppp_ccp_closed(ppp);
2848 	if (ppp->vj) {
2849 		slhc_free(ppp->vj);
2850 		ppp->vj = NULL;
2851 	}
2852 	skb_queue_purge(&ppp->file.xq);
2853 	skb_queue_purge(&ppp->file.rq);
2854 #ifdef CONFIG_PPP_MULTILINK
2855 	skb_queue_purge(&ppp->mrq);
2856 #endif /* CONFIG_PPP_MULTILINK */
2857 #ifdef CONFIG_PPP_FILTER
2858 	if (ppp->pass_filter) {
2859 		bpf_prog_destroy(ppp->pass_filter);
2860 		ppp->pass_filter = NULL;
2861 	}
2862 
2863 	if (ppp->active_filter) {
2864 		bpf_prog_destroy(ppp->active_filter);
2865 		ppp->active_filter = NULL;
2866 	}
2867 #endif /* CONFIG_PPP_FILTER */
2868 
2869 	kfree_skb(ppp->xmit_pending);
2870 
2871 	free_netdev(ppp->dev);
2872 }
2873 
2874 /*
2875  * Locate an existing ppp unit.
2876  * The caller should have locked the all_ppp_mutex.
2877  */
2878 static struct ppp *
2879 ppp_find_unit(struct ppp_net *pn, int unit)
2880 {
2881 	return unit_find(&pn->units_idr, unit);
2882 }
2883 
2884 /*
2885  * Locate an existing ppp channel.
2886  * The caller should have locked the all_channels_lock.
2887  * First we look in the new_channels list, then in the
2888  * all_channels list.  If found in the new_channels list,
2889  * we move it to the all_channels list.  This is for speed
2890  * when we have a lot of channels in use.
2891  */
2892 static struct channel *
2893 ppp_find_channel(struct ppp_net *pn, int unit)
2894 {
2895 	struct channel *pch;
2896 
2897 	list_for_each_entry(pch, &pn->new_channels, list) {
2898 		if (pch->file.index == unit) {
2899 			list_move(&pch->list, &pn->all_channels);
2900 			return pch;
2901 		}
2902 	}
2903 
2904 	list_for_each_entry(pch, &pn->all_channels, list) {
2905 		if (pch->file.index == unit)
2906 			return pch;
2907 	}
2908 
2909 	return NULL;
2910 }
2911 
2912 /*
2913  * Connect a PPP channel to a PPP interface unit.
2914  */
2915 static int
2916 ppp_connect_channel(struct channel *pch, int unit)
2917 {
2918 	struct ppp *ppp;
2919 	struct ppp_net *pn;
2920 	int ret = -ENXIO;
2921 	int hdrlen;
2922 
2923 	pn = ppp_pernet(pch->chan_net);
2924 
2925 	mutex_lock(&pn->all_ppp_mutex);
2926 	ppp = ppp_find_unit(pn, unit);
2927 	if (!ppp)
2928 		goto out;
2929 	write_lock_bh(&pch->upl);
2930 	ret = -EINVAL;
2931 	if (pch->ppp)
2932 		goto outl;
2933 
2934 	ppp_lock(ppp);
2935 	if (pch->file.hdrlen > ppp->file.hdrlen)
2936 		ppp->file.hdrlen = pch->file.hdrlen;
2937 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2938 	if (hdrlen > ppp->dev->hard_header_len)
2939 		ppp->dev->hard_header_len = hdrlen;
2940 	list_add_tail(&pch->clist, &ppp->channels);
2941 	++ppp->n_channels;
2942 	pch->ppp = ppp;
2943 	atomic_inc(&ppp->file.refcnt);
2944 	ppp_unlock(ppp);
2945 	ret = 0;
2946 
2947  outl:
2948 	write_unlock_bh(&pch->upl);
2949  out:
2950 	mutex_unlock(&pn->all_ppp_mutex);
2951 	return ret;
2952 }
2953 
2954 /*
2955  * Disconnect a channel from its ppp unit.
2956  */
2957 static int
2958 ppp_disconnect_channel(struct channel *pch)
2959 {
2960 	struct ppp *ppp;
2961 	int err = -EINVAL;
2962 
2963 	write_lock_bh(&pch->upl);
2964 	ppp = pch->ppp;
2965 	pch->ppp = NULL;
2966 	write_unlock_bh(&pch->upl);
2967 	if (ppp) {
2968 		/* remove it from the ppp unit's list */
2969 		ppp_lock(ppp);
2970 		list_del(&pch->clist);
2971 		if (--ppp->n_channels == 0)
2972 			wake_up_interruptible(&ppp->file.rwait);
2973 		ppp_unlock(ppp);
2974 		if (atomic_dec_and_test(&ppp->file.refcnt))
2975 			ppp_destroy_interface(ppp);
2976 		err = 0;
2977 	}
2978 	return err;
2979 }
2980 
2981 /*
2982  * Free up the resources used by a ppp channel.
2983  */
2984 static void ppp_destroy_channel(struct channel *pch)
2985 {
2986 	atomic_dec(&channel_count);
2987 
2988 	if (!pch->file.dead) {
2989 		/* "can't happen" */
2990 		pr_err("ppp: destroying undead channel %p !\n", pch);
2991 		return;
2992 	}
2993 	skb_queue_purge(&pch->file.xq);
2994 	skb_queue_purge(&pch->file.rq);
2995 	kfree(pch);
2996 }
2997 
2998 static void __exit ppp_cleanup(void)
2999 {
3000 	/* should never happen */
3001 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3002 		pr_err("PPP: removing module but units remain!\n");
3003 	unregister_chrdev(PPP_MAJOR, "ppp");
3004 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3005 	class_destroy(ppp_class);
3006 	unregister_pernet_device(&ppp_net_ops);
3007 }
3008 
3009 /*
3010  * Units handling. Caller must protect concurrent access
3011  * by holding all_ppp_mutex
3012  */
3013 
3014 /* associate pointer with specified number */
3015 static int unit_set(struct idr *p, void *ptr, int n)
3016 {
3017 	int unit;
3018 
3019 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3020 	if (unit == -ENOSPC)
3021 		unit = -EINVAL;
3022 	return unit;
3023 }
3024 
3025 /* get new free unit number and associate pointer with it */
3026 static int unit_get(struct idr *p, void *ptr)
3027 {
3028 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3029 }
3030 
3031 /* put unit number back to a pool */
3032 static void unit_put(struct idr *p, int n)
3033 {
3034 	idr_remove(p, n);
3035 }
3036 
3037 /* get pointer associated with the number */
3038 static void *unit_find(struct idr *p, int n)
3039 {
3040 	return idr_find(p, n);
3041 }
3042 
3043 /* Module/initialization stuff */
3044 
3045 module_init(ppp_init);
3046 module_exit(ppp_cleanup);
3047 
3048 EXPORT_SYMBOL(ppp_register_net_channel);
3049 EXPORT_SYMBOL(ppp_register_channel);
3050 EXPORT_SYMBOL(ppp_unregister_channel);
3051 EXPORT_SYMBOL(ppp_channel_index);
3052 EXPORT_SYMBOL(ppp_unit_number);
3053 EXPORT_SYMBOL(ppp_dev_name);
3054 EXPORT_SYMBOL(ppp_input);
3055 EXPORT_SYMBOL(ppp_input_error);
3056 EXPORT_SYMBOL(ppp_output_wakeup);
3057 EXPORT_SYMBOL(ppp_register_compressor);
3058 EXPORT_SYMBOL(ppp_unregister_compressor);
3059 MODULE_LICENSE("GPL");
3060 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3061 MODULE_ALIAS("devname:ppp");
3062