xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision 82e6fdd6)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/idr.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/ppp-ioctl.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/stddef.h>
47 #include <linux/device.h>
48 #include <linux/mutex.h>
49 #include <linux/slab.h>
50 #include <linux/file.h>
51 #include <asm/unaligned.h>
52 #include <net/slhc_vj.h>
53 #include <linux/atomic.h>
54 #include <linux/refcount.h>
55 
56 #include <linux/nsproxy.h>
57 #include <net/net_namespace.h>
58 #include <net/netns/generic.h>
59 
60 #define PPP_VERSION	"2.4.2"
61 
62 /*
63  * Network protocols we support.
64  */
65 #define NP_IP	0		/* Internet Protocol V4 */
66 #define NP_IPV6	1		/* Internet Protocol V6 */
67 #define NP_IPX	2		/* IPX protocol */
68 #define NP_AT	3		/* Appletalk protocol */
69 #define NP_MPLS_UC 4		/* MPLS unicast */
70 #define NP_MPLS_MC 5		/* MPLS multicast */
71 #define NUM_NP	6		/* Number of NPs. */
72 
73 #define MPHDRLEN	6	/* multilink protocol header length */
74 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
75 
76 /*
77  * An instance of /dev/ppp can be associated with either a ppp
78  * interface unit or a ppp channel.  In both cases, file->private_data
79  * points to one of these.
80  */
81 struct ppp_file {
82 	enum {
83 		INTERFACE=1, CHANNEL
84 	}		kind;
85 	struct sk_buff_head xq;		/* pppd transmit queue */
86 	struct sk_buff_head rq;		/* receive queue for pppd */
87 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
88 	refcount_t	refcnt;		/* # refs (incl /dev/ppp attached) */
89 	int		hdrlen;		/* space to leave for headers */
90 	int		index;		/* interface unit / channel number */
91 	int		dead;		/* unit/channel has been shut down */
92 };
93 
94 #define PF_TO_X(pf, X)		container_of(pf, X, file)
95 
96 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
97 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
98 
99 /*
100  * Data structure to hold primary network stats for which
101  * we want to use 64 bit storage.  Other network stats
102  * are stored in dev->stats of the ppp strucute.
103  */
104 struct ppp_link_stats {
105 	u64 rx_packets;
106 	u64 tx_packets;
107 	u64 rx_bytes;
108 	u64 tx_bytes;
109 };
110 
111 /*
112  * Data structure describing one ppp unit.
113  * A ppp unit corresponds to a ppp network interface device
114  * and represents a multilink bundle.
115  * It can have 0 or more ppp channels connected to it.
116  */
117 struct ppp {
118 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
119 	struct file	*owner;		/* file that owns this unit 48 */
120 	struct list_head channels;	/* list of attached channels 4c */
121 	int		n_channels;	/* how many channels are attached 54 */
122 	spinlock_t	rlock;		/* lock for receive side 58 */
123 	spinlock_t	wlock;		/* lock for transmit side 5c */
124 	int __percpu	*xmit_recursion; /* xmit recursion detect */
125 	int		mru;		/* max receive unit 60 */
126 	unsigned int	flags;		/* control bits 64 */
127 	unsigned int	xstate;		/* transmit state bits 68 */
128 	unsigned int	rstate;		/* receive state bits 6c */
129 	int		debug;		/* debug flags 70 */
130 	struct slcompress *vj;		/* state for VJ header compression */
131 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
132 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
133 	struct compressor *xcomp;	/* transmit packet compressor 8c */
134 	void		*xc_state;	/* its internal state 90 */
135 	struct compressor *rcomp;	/* receive decompressor 94 */
136 	void		*rc_state;	/* its internal state 98 */
137 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
138 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
139 	struct net_device *dev;		/* network interface device a4 */
140 	int		closing;	/* is device closing down? a8 */
141 #ifdef CONFIG_PPP_MULTILINK
142 	int		nxchan;		/* next channel to send something on */
143 	u32		nxseq;		/* next sequence number to send */
144 	int		mrru;		/* MP: max reconst. receive unit */
145 	u32		nextseq;	/* MP: seq no of next packet */
146 	u32		minseq;		/* MP: min of most recent seqnos */
147 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
148 #endif /* CONFIG_PPP_MULTILINK */
149 #ifdef CONFIG_PPP_FILTER
150 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
151 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
152 #endif /* CONFIG_PPP_FILTER */
153 	struct net	*ppp_net;	/* the net we belong to */
154 	struct ppp_link_stats stats64;	/* 64 bit network stats */
155 };
156 
157 /*
158  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
159  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
160  * SC_MUST_COMP
161  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
162  * Bits in xstate: SC_COMP_RUN
163  */
164 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
165 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
166 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
167 
168 /*
169  * Private data structure for each channel.
170  * This includes the data structure used for multilink.
171  */
172 struct channel {
173 	struct ppp_file	file;		/* stuff for read/write/poll */
174 	struct list_head list;		/* link in all/new_channels list */
175 	struct ppp_channel *chan;	/* public channel data structure */
176 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
177 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
178 	struct ppp	*ppp;		/* ppp unit we're connected to */
179 	struct net	*chan_net;	/* the net channel belongs to */
180 	struct list_head clist;		/* link in list of channels per unit */
181 	rwlock_t	upl;		/* protects `ppp' */
182 #ifdef CONFIG_PPP_MULTILINK
183 	u8		avail;		/* flag used in multilink stuff */
184 	u8		had_frag;	/* >= 1 fragments have been sent */
185 	u32		lastseq;	/* MP: last sequence # received */
186 	int		speed;		/* speed of the corresponding ppp channel*/
187 #endif /* CONFIG_PPP_MULTILINK */
188 };
189 
190 struct ppp_config {
191 	struct file *file;
192 	s32 unit;
193 	bool ifname_is_set;
194 };
195 
196 /*
197  * SMP locking issues:
198  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
199  * list and the ppp.n_channels field, you need to take both locks
200  * before you modify them.
201  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
202  * channel.downl.
203  */
204 
205 static DEFINE_MUTEX(ppp_mutex);
206 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
207 static atomic_t channel_count = ATOMIC_INIT(0);
208 
209 /* per-net private data for this module */
210 static unsigned int ppp_net_id __read_mostly;
211 struct ppp_net {
212 	/* units to ppp mapping */
213 	struct idr units_idr;
214 
215 	/*
216 	 * all_ppp_mutex protects the units_idr mapping.
217 	 * It also ensures that finding a ppp unit in the units_idr
218 	 * map and updating its file.refcnt field is atomic.
219 	 */
220 	struct mutex all_ppp_mutex;
221 
222 	/* channels */
223 	struct list_head all_channels;
224 	struct list_head new_channels;
225 	int last_channel_index;
226 
227 	/*
228 	 * all_channels_lock protects all_channels and
229 	 * last_channel_index, and the atomicity of find
230 	 * a channel and updating its file.refcnt field.
231 	 */
232 	spinlock_t all_channels_lock;
233 };
234 
235 /* Get the PPP protocol number from a skb */
236 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
237 
238 /* We limit the length of ppp->file.rq to this (arbitrary) value */
239 #define PPP_MAX_RQLEN	32
240 
241 /*
242  * Maximum number of multilink fragments queued up.
243  * This has to be large enough to cope with the maximum latency of
244  * the slowest channel relative to the others.  Strictly it should
245  * depend on the number of channels and their characteristics.
246  */
247 #define PPP_MP_MAX_QLEN	128
248 
249 /* Multilink header bits. */
250 #define B	0x80		/* this fragment begins a packet */
251 #define E	0x40		/* this fragment ends a packet */
252 
253 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
254 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
255 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
256 
257 /* Prototypes. */
258 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
259 			struct file *file, unsigned int cmd, unsigned long arg);
260 static void ppp_xmit_process(struct ppp *ppp);
261 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
262 static void ppp_push(struct ppp *ppp);
263 static void ppp_channel_push(struct channel *pch);
264 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
265 			      struct channel *pch);
266 static void ppp_receive_error(struct ppp *ppp);
267 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
268 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
269 					    struct sk_buff *skb);
270 #ifdef CONFIG_PPP_MULTILINK
271 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
272 				struct channel *pch);
273 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
274 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
275 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
276 #endif /* CONFIG_PPP_MULTILINK */
277 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
278 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
279 static void ppp_ccp_closed(struct ppp *ppp);
280 static struct compressor *find_compressor(int type);
281 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
282 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
283 static void init_ppp_file(struct ppp_file *pf, int kind);
284 static void ppp_destroy_interface(struct ppp *ppp);
285 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
286 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
287 static int ppp_connect_channel(struct channel *pch, int unit);
288 static int ppp_disconnect_channel(struct channel *pch);
289 static void ppp_destroy_channel(struct channel *pch);
290 static int unit_get(struct idr *p, void *ptr);
291 static int unit_set(struct idr *p, void *ptr, int n);
292 static void unit_put(struct idr *p, int n);
293 static void *unit_find(struct idr *p, int n);
294 static void ppp_setup(struct net_device *dev);
295 
296 static const struct net_device_ops ppp_netdev_ops;
297 
298 static struct class *ppp_class;
299 
300 /* per net-namespace data */
301 static inline struct ppp_net *ppp_pernet(struct net *net)
302 {
303 	BUG_ON(!net);
304 
305 	return net_generic(net, ppp_net_id);
306 }
307 
308 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
309 static inline int proto_to_npindex(int proto)
310 {
311 	switch (proto) {
312 	case PPP_IP:
313 		return NP_IP;
314 	case PPP_IPV6:
315 		return NP_IPV6;
316 	case PPP_IPX:
317 		return NP_IPX;
318 	case PPP_AT:
319 		return NP_AT;
320 	case PPP_MPLS_UC:
321 		return NP_MPLS_UC;
322 	case PPP_MPLS_MC:
323 		return NP_MPLS_MC;
324 	}
325 	return -EINVAL;
326 }
327 
328 /* Translates an NP index into a PPP protocol number */
329 static const int npindex_to_proto[NUM_NP] = {
330 	PPP_IP,
331 	PPP_IPV6,
332 	PPP_IPX,
333 	PPP_AT,
334 	PPP_MPLS_UC,
335 	PPP_MPLS_MC,
336 };
337 
338 /* Translates an ethertype into an NP index */
339 static inline int ethertype_to_npindex(int ethertype)
340 {
341 	switch (ethertype) {
342 	case ETH_P_IP:
343 		return NP_IP;
344 	case ETH_P_IPV6:
345 		return NP_IPV6;
346 	case ETH_P_IPX:
347 		return NP_IPX;
348 	case ETH_P_PPPTALK:
349 	case ETH_P_ATALK:
350 		return NP_AT;
351 	case ETH_P_MPLS_UC:
352 		return NP_MPLS_UC;
353 	case ETH_P_MPLS_MC:
354 		return NP_MPLS_MC;
355 	}
356 	return -1;
357 }
358 
359 /* Translates an NP index into an ethertype */
360 static const int npindex_to_ethertype[NUM_NP] = {
361 	ETH_P_IP,
362 	ETH_P_IPV6,
363 	ETH_P_IPX,
364 	ETH_P_PPPTALK,
365 	ETH_P_MPLS_UC,
366 	ETH_P_MPLS_MC,
367 };
368 
369 /*
370  * Locking shorthand.
371  */
372 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
373 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
374 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
375 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
376 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
377 				     ppp_recv_lock(ppp); } while (0)
378 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
379 				     ppp_xmit_unlock(ppp); } while (0)
380 
381 /*
382  * /dev/ppp device routines.
383  * The /dev/ppp device is used by pppd to control the ppp unit.
384  * It supports the read, write, ioctl and poll functions.
385  * Open instances of /dev/ppp can be in one of three states:
386  * unattached, attached to a ppp unit, or attached to a ppp channel.
387  */
388 static int ppp_open(struct inode *inode, struct file *file)
389 {
390 	/*
391 	 * This could (should?) be enforced by the permissions on /dev/ppp.
392 	 */
393 	if (!ns_capable(file->f_cred->user_ns, CAP_NET_ADMIN))
394 		return -EPERM;
395 	return 0;
396 }
397 
398 static int ppp_release(struct inode *unused, struct file *file)
399 {
400 	struct ppp_file *pf = file->private_data;
401 	struct ppp *ppp;
402 
403 	if (pf) {
404 		file->private_data = NULL;
405 		if (pf->kind == INTERFACE) {
406 			ppp = PF_TO_PPP(pf);
407 			rtnl_lock();
408 			if (file == ppp->owner)
409 				unregister_netdevice(ppp->dev);
410 			rtnl_unlock();
411 		}
412 		if (refcount_dec_and_test(&pf->refcnt)) {
413 			switch (pf->kind) {
414 			case INTERFACE:
415 				ppp_destroy_interface(PF_TO_PPP(pf));
416 				break;
417 			case CHANNEL:
418 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
419 				break;
420 			}
421 		}
422 	}
423 	return 0;
424 }
425 
426 static ssize_t ppp_read(struct file *file, char __user *buf,
427 			size_t count, loff_t *ppos)
428 {
429 	struct ppp_file *pf = file->private_data;
430 	DECLARE_WAITQUEUE(wait, current);
431 	ssize_t ret;
432 	struct sk_buff *skb = NULL;
433 	struct iovec iov;
434 	struct iov_iter to;
435 
436 	ret = count;
437 
438 	if (!pf)
439 		return -ENXIO;
440 	add_wait_queue(&pf->rwait, &wait);
441 	for (;;) {
442 		set_current_state(TASK_INTERRUPTIBLE);
443 		skb = skb_dequeue(&pf->rq);
444 		if (skb)
445 			break;
446 		ret = 0;
447 		if (pf->dead)
448 			break;
449 		if (pf->kind == INTERFACE) {
450 			/*
451 			 * Return 0 (EOF) on an interface that has no
452 			 * channels connected, unless it is looping
453 			 * network traffic (demand mode).
454 			 */
455 			struct ppp *ppp = PF_TO_PPP(pf);
456 
457 			ppp_recv_lock(ppp);
458 			if (ppp->n_channels == 0 &&
459 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
460 				ppp_recv_unlock(ppp);
461 				break;
462 			}
463 			ppp_recv_unlock(ppp);
464 		}
465 		ret = -EAGAIN;
466 		if (file->f_flags & O_NONBLOCK)
467 			break;
468 		ret = -ERESTARTSYS;
469 		if (signal_pending(current))
470 			break;
471 		schedule();
472 	}
473 	set_current_state(TASK_RUNNING);
474 	remove_wait_queue(&pf->rwait, &wait);
475 
476 	if (!skb)
477 		goto out;
478 
479 	ret = -EOVERFLOW;
480 	if (skb->len > count)
481 		goto outf;
482 	ret = -EFAULT;
483 	iov.iov_base = buf;
484 	iov.iov_len = count;
485 	iov_iter_init(&to, READ, &iov, 1, count);
486 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
487 		goto outf;
488 	ret = skb->len;
489 
490  outf:
491 	kfree_skb(skb);
492  out:
493 	return ret;
494 }
495 
496 static ssize_t ppp_write(struct file *file, const char __user *buf,
497 			 size_t count, loff_t *ppos)
498 {
499 	struct ppp_file *pf = file->private_data;
500 	struct sk_buff *skb;
501 	ssize_t ret;
502 
503 	if (!pf)
504 		return -ENXIO;
505 	ret = -ENOMEM;
506 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
507 	if (!skb)
508 		goto out;
509 	skb_reserve(skb, pf->hdrlen);
510 	ret = -EFAULT;
511 	if (copy_from_user(skb_put(skb, count), buf, count)) {
512 		kfree_skb(skb);
513 		goto out;
514 	}
515 
516 	skb_queue_tail(&pf->xq, skb);
517 
518 	switch (pf->kind) {
519 	case INTERFACE:
520 		ppp_xmit_process(PF_TO_PPP(pf));
521 		break;
522 	case CHANNEL:
523 		ppp_channel_push(PF_TO_CHANNEL(pf));
524 		break;
525 	}
526 
527 	ret = count;
528 
529  out:
530 	return ret;
531 }
532 
533 /* No kernel lock - fine */
534 static __poll_t ppp_poll(struct file *file, poll_table *wait)
535 {
536 	struct ppp_file *pf = file->private_data;
537 	__poll_t mask;
538 
539 	if (!pf)
540 		return 0;
541 	poll_wait(file, &pf->rwait, wait);
542 	mask = EPOLLOUT | EPOLLWRNORM;
543 	if (skb_peek(&pf->rq))
544 		mask |= EPOLLIN | EPOLLRDNORM;
545 	if (pf->dead)
546 		mask |= EPOLLHUP;
547 	else if (pf->kind == INTERFACE) {
548 		/* see comment in ppp_read */
549 		struct ppp *ppp = PF_TO_PPP(pf);
550 
551 		ppp_recv_lock(ppp);
552 		if (ppp->n_channels == 0 &&
553 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
554 			mask |= EPOLLIN | EPOLLRDNORM;
555 		ppp_recv_unlock(ppp);
556 	}
557 
558 	return mask;
559 }
560 
561 #ifdef CONFIG_PPP_FILTER
562 static int get_filter(void __user *arg, struct sock_filter **p)
563 {
564 	struct sock_fprog uprog;
565 	struct sock_filter *code = NULL;
566 	int len;
567 
568 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
569 		return -EFAULT;
570 
571 	if (!uprog.len) {
572 		*p = NULL;
573 		return 0;
574 	}
575 
576 	len = uprog.len * sizeof(struct sock_filter);
577 	code = memdup_user(uprog.filter, len);
578 	if (IS_ERR(code))
579 		return PTR_ERR(code);
580 
581 	*p = code;
582 	return uprog.len;
583 }
584 #endif /* CONFIG_PPP_FILTER */
585 
586 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
587 {
588 	struct ppp_file *pf;
589 	struct ppp *ppp;
590 	int err = -EFAULT, val, val2, i;
591 	struct ppp_idle idle;
592 	struct npioctl npi;
593 	int unit, cflags;
594 	struct slcompress *vj;
595 	void __user *argp = (void __user *)arg;
596 	int __user *p = argp;
597 
598 	mutex_lock(&ppp_mutex);
599 
600 	pf = file->private_data;
601 	if (!pf) {
602 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
603 					   pf, file, cmd, arg);
604 		goto out;
605 	}
606 
607 	if (cmd == PPPIOCDETACH) {
608 		/*
609 		 * We have to be careful here... if the file descriptor
610 		 * has been dup'd, we could have another process in the
611 		 * middle of a poll using the same file *, so we had
612 		 * better not free the interface data structures -
613 		 * instead we fail the ioctl.  Even in this case, we
614 		 * shut down the interface if we are the owner of it.
615 		 * Actually, we should get rid of PPPIOCDETACH, userland
616 		 * (i.e. pppd) could achieve the same effect by closing
617 		 * this fd and reopening /dev/ppp.
618 		 */
619 		err = -EINVAL;
620 		if (pf->kind == INTERFACE) {
621 			ppp = PF_TO_PPP(pf);
622 			rtnl_lock();
623 			if (file == ppp->owner)
624 				unregister_netdevice(ppp->dev);
625 			rtnl_unlock();
626 		}
627 		if (atomic_long_read(&file->f_count) < 2) {
628 			ppp_release(NULL, file);
629 			err = 0;
630 		} else
631 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
632 				atomic_long_read(&file->f_count));
633 		goto out;
634 	}
635 
636 	if (pf->kind == CHANNEL) {
637 		struct channel *pch;
638 		struct ppp_channel *chan;
639 
640 		pch = PF_TO_CHANNEL(pf);
641 
642 		switch (cmd) {
643 		case PPPIOCCONNECT:
644 			if (get_user(unit, p))
645 				break;
646 			err = ppp_connect_channel(pch, unit);
647 			break;
648 
649 		case PPPIOCDISCONN:
650 			err = ppp_disconnect_channel(pch);
651 			break;
652 
653 		default:
654 			down_read(&pch->chan_sem);
655 			chan = pch->chan;
656 			err = -ENOTTY;
657 			if (chan && chan->ops->ioctl)
658 				err = chan->ops->ioctl(chan, cmd, arg);
659 			up_read(&pch->chan_sem);
660 		}
661 		goto out;
662 	}
663 
664 	if (pf->kind != INTERFACE) {
665 		/* can't happen */
666 		pr_err("PPP: not interface or channel??\n");
667 		err = -EINVAL;
668 		goto out;
669 	}
670 
671 	ppp = PF_TO_PPP(pf);
672 	switch (cmd) {
673 	case PPPIOCSMRU:
674 		if (get_user(val, p))
675 			break;
676 		ppp->mru = val;
677 		err = 0;
678 		break;
679 
680 	case PPPIOCSFLAGS:
681 		if (get_user(val, p))
682 			break;
683 		ppp_lock(ppp);
684 		cflags = ppp->flags & ~val;
685 #ifdef CONFIG_PPP_MULTILINK
686 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
687 			ppp->nextseq = 0;
688 #endif
689 		ppp->flags = val & SC_FLAG_BITS;
690 		ppp_unlock(ppp);
691 		if (cflags & SC_CCP_OPEN)
692 			ppp_ccp_closed(ppp);
693 		err = 0;
694 		break;
695 
696 	case PPPIOCGFLAGS:
697 		val = ppp->flags | ppp->xstate | ppp->rstate;
698 		if (put_user(val, p))
699 			break;
700 		err = 0;
701 		break;
702 
703 	case PPPIOCSCOMPRESS:
704 		err = ppp_set_compress(ppp, arg);
705 		break;
706 
707 	case PPPIOCGUNIT:
708 		if (put_user(ppp->file.index, p))
709 			break;
710 		err = 0;
711 		break;
712 
713 	case PPPIOCSDEBUG:
714 		if (get_user(val, p))
715 			break;
716 		ppp->debug = val;
717 		err = 0;
718 		break;
719 
720 	case PPPIOCGDEBUG:
721 		if (put_user(ppp->debug, p))
722 			break;
723 		err = 0;
724 		break;
725 
726 	case PPPIOCGIDLE:
727 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
728 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
729 		if (copy_to_user(argp, &idle, sizeof(idle)))
730 			break;
731 		err = 0;
732 		break;
733 
734 	case PPPIOCSMAXCID:
735 		if (get_user(val, p))
736 			break;
737 		val2 = 15;
738 		if ((val >> 16) != 0) {
739 			val2 = val >> 16;
740 			val &= 0xffff;
741 		}
742 		vj = slhc_init(val2+1, val+1);
743 		if (IS_ERR(vj)) {
744 			err = PTR_ERR(vj);
745 			break;
746 		}
747 		ppp_lock(ppp);
748 		if (ppp->vj)
749 			slhc_free(ppp->vj);
750 		ppp->vj = vj;
751 		ppp_unlock(ppp);
752 		err = 0;
753 		break;
754 
755 	case PPPIOCGNPMODE:
756 	case PPPIOCSNPMODE:
757 		if (copy_from_user(&npi, argp, sizeof(npi)))
758 			break;
759 		err = proto_to_npindex(npi.protocol);
760 		if (err < 0)
761 			break;
762 		i = err;
763 		if (cmd == PPPIOCGNPMODE) {
764 			err = -EFAULT;
765 			npi.mode = ppp->npmode[i];
766 			if (copy_to_user(argp, &npi, sizeof(npi)))
767 				break;
768 		} else {
769 			ppp->npmode[i] = npi.mode;
770 			/* we may be able to transmit more packets now (??) */
771 			netif_wake_queue(ppp->dev);
772 		}
773 		err = 0;
774 		break;
775 
776 #ifdef CONFIG_PPP_FILTER
777 	case PPPIOCSPASS:
778 	{
779 		struct sock_filter *code;
780 
781 		err = get_filter(argp, &code);
782 		if (err >= 0) {
783 			struct bpf_prog *pass_filter = NULL;
784 			struct sock_fprog_kern fprog = {
785 				.len = err,
786 				.filter = code,
787 			};
788 
789 			err = 0;
790 			if (fprog.filter)
791 				err = bpf_prog_create(&pass_filter, &fprog);
792 			if (!err) {
793 				ppp_lock(ppp);
794 				if (ppp->pass_filter)
795 					bpf_prog_destroy(ppp->pass_filter);
796 				ppp->pass_filter = pass_filter;
797 				ppp_unlock(ppp);
798 			}
799 			kfree(code);
800 		}
801 		break;
802 	}
803 	case PPPIOCSACTIVE:
804 	{
805 		struct sock_filter *code;
806 
807 		err = get_filter(argp, &code);
808 		if (err >= 0) {
809 			struct bpf_prog *active_filter = NULL;
810 			struct sock_fprog_kern fprog = {
811 				.len = err,
812 				.filter = code,
813 			};
814 
815 			err = 0;
816 			if (fprog.filter)
817 				err = bpf_prog_create(&active_filter, &fprog);
818 			if (!err) {
819 				ppp_lock(ppp);
820 				if (ppp->active_filter)
821 					bpf_prog_destroy(ppp->active_filter);
822 				ppp->active_filter = active_filter;
823 				ppp_unlock(ppp);
824 			}
825 			kfree(code);
826 		}
827 		break;
828 	}
829 #endif /* CONFIG_PPP_FILTER */
830 
831 #ifdef CONFIG_PPP_MULTILINK
832 	case PPPIOCSMRRU:
833 		if (get_user(val, p))
834 			break;
835 		ppp_recv_lock(ppp);
836 		ppp->mrru = val;
837 		ppp_recv_unlock(ppp);
838 		err = 0;
839 		break;
840 #endif /* CONFIG_PPP_MULTILINK */
841 
842 	default:
843 		err = -ENOTTY;
844 	}
845 
846 out:
847 	mutex_unlock(&ppp_mutex);
848 
849 	return err;
850 }
851 
852 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
853 			struct file *file, unsigned int cmd, unsigned long arg)
854 {
855 	int unit, err = -EFAULT;
856 	struct ppp *ppp;
857 	struct channel *chan;
858 	struct ppp_net *pn;
859 	int __user *p = (int __user *)arg;
860 
861 	switch (cmd) {
862 	case PPPIOCNEWUNIT:
863 		/* Create a new ppp unit */
864 		if (get_user(unit, p))
865 			break;
866 		err = ppp_create_interface(net, file, &unit);
867 		if (err < 0)
868 			break;
869 
870 		err = -EFAULT;
871 		if (put_user(unit, p))
872 			break;
873 		err = 0;
874 		break;
875 
876 	case PPPIOCATTACH:
877 		/* Attach to an existing ppp unit */
878 		if (get_user(unit, p))
879 			break;
880 		err = -ENXIO;
881 		pn = ppp_pernet(net);
882 		mutex_lock(&pn->all_ppp_mutex);
883 		ppp = ppp_find_unit(pn, unit);
884 		if (ppp) {
885 			refcount_inc(&ppp->file.refcnt);
886 			file->private_data = &ppp->file;
887 			err = 0;
888 		}
889 		mutex_unlock(&pn->all_ppp_mutex);
890 		break;
891 
892 	case PPPIOCATTCHAN:
893 		if (get_user(unit, p))
894 			break;
895 		err = -ENXIO;
896 		pn = ppp_pernet(net);
897 		spin_lock_bh(&pn->all_channels_lock);
898 		chan = ppp_find_channel(pn, unit);
899 		if (chan) {
900 			refcount_inc(&chan->file.refcnt);
901 			file->private_data = &chan->file;
902 			err = 0;
903 		}
904 		spin_unlock_bh(&pn->all_channels_lock);
905 		break;
906 
907 	default:
908 		err = -ENOTTY;
909 	}
910 
911 	return err;
912 }
913 
914 static const struct file_operations ppp_device_fops = {
915 	.owner		= THIS_MODULE,
916 	.read		= ppp_read,
917 	.write		= ppp_write,
918 	.poll		= ppp_poll,
919 	.unlocked_ioctl	= ppp_ioctl,
920 	.open		= ppp_open,
921 	.release	= ppp_release,
922 	.llseek		= noop_llseek,
923 };
924 
925 static __net_init int ppp_init_net(struct net *net)
926 {
927 	struct ppp_net *pn = net_generic(net, ppp_net_id);
928 
929 	idr_init(&pn->units_idr);
930 	mutex_init(&pn->all_ppp_mutex);
931 
932 	INIT_LIST_HEAD(&pn->all_channels);
933 	INIT_LIST_HEAD(&pn->new_channels);
934 
935 	spin_lock_init(&pn->all_channels_lock);
936 
937 	return 0;
938 }
939 
940 static __net_exit void ppp_exit_net(struct net *net)
941 {
942 	struct ppp_net *pn = net_generic(net, ppp_net_id);
943 	struct net_device *dev;
944 	struct net_device *aux;
945 	struct ppp *ppp;
946 	LIST_HEAD(list);
947 	int id;
948 
949 	rtnl_lock();
950 	for_each_netdev_safe(net, dev, aux) {
951 		if (dev->netdev_ops == &ppp_netdev_ops)
952 			unregister_netdevice_queue(dev, &list);
953 	}
954 
955 	idr_for_each_entry(&pn->units_idr, ppp, id)
956 		/* Skip devices already unregistered by previous loop */
957 		if (!net_eq(dev_net(ppp->dev), net))
958 			unregister_netdevice_queue(ppp->dev, &list);
959 
960 	unregister_netdevice_many(&list);
961 	rtnl_unlock();
962 
963 	mutex_destroy(&pn->all_ppp_mutex);
964 	idr_destroy(&pn->units_idr);
965 	WARN_ON_ONCE(!list_empty(&pn->all_channels));
966 	WARN_ON_ONCE(!list_empty(&pn->new_channels));
967 }
968 
969 static struct pernet_operations ppp_net_ops = {
970 	.init = ppp_init_net,
971 	.exit = ppp_exit_net,
972 	.id   = &ppp_net_id,
973 	.size = sizeof(struct ppp_net),
974 };
975 
976 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
977 {
978 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
979 	int ret;
980 
981 	mutex_lock(&pn->all_ppp_mutex);
982 
983 	if (unit < 0) {
984 		ret = unit_get(&pn->units_idr, ppp);
985 		if (ret < 0)
986 			goto err;
987 	} else {
988 		/* Caller asked for a specific unit number. Fail with -EEXIST
989 		 * if unavailable. For backward compatibility, return -EEXIST
990 		 * too if idr allocation fails; this makes pppd retry without
991 		 * requesting a specific unit number.
992 		 */
993 		if (unit_find(&pn->units_idr, unit)) {
994 			ret = -EEXIST;
995 			goto err;
996 		}
997 		ret = unit_set(&pn->units_idr, ppp, unit);
998 		if (ret < 0) {
999 			/* Rewrite error for backward compatibility */
1000 			ret = -EEXIST;
1001 			goto err;
1002 		}
1003 	}
1004 	ppp->file.index = ret;
1005 
1006 	if (!ifname_is_set)
1007 		snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
1008 
1009 	mutex_unlock(&pn->all_ppp_mutex);
1010 
1011 	ret = register_netdevice(ppp->dev);
1012 	if (ret < 0)
1013 		goto err_unit;
1014 
1015 	atomic_inc(&ppp_unit_count);
1016 
1017 	return 0;
1018 
1019 err_unit:
1020 	mutex_lock(&pn->all_ppp_mutex);
1021 	unit_put(&pn->units_idr, ppp->file.index);
1022 err:
1023 	mutex_unlock(&pn->all_ppp_mutex);
1024 
1025 	return ret;
1026 }
1027 
1028 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1029 			     const struct ppp_config *conf)
1030 {
1031 	struct ppp *ppp = netdev_priv(dev);
1032 	int indx;
1033 	int err;
1034 	int cpu;
1035 
1036 	ppp->dev = dev;
1037 	ppp->ppp_net = src_net;
1038 	ppp->mru = PPP_MRU;
1039 	ppp->owner = conf->file;
1040 
1041 	init_ppp_file(&ppp->file, INTERFACE);
1042 	ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1043 
1044 	for (indx = 0; indx < NUM_NP; ++indx)
1045 		ppp->npmode[indx] = NPMODE_PASS;
1046 	INIT_LIST_HEAD(&ppp->channels);
1047 	spin_lock_init(&ppp->rlock);
1048 	spin_lock_init(&ppp->wlock);
1049 
1050 	ppp->xmit_recursion = alloc_percpu(int);
1051 	if (!ppp->xmit_recursion) {
1052 		err = -ENOMEM;
1053 		goto err1;
1054 	}
1055 	for_each_possible_cpu(cpu)
1056 		(*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0;
1057 
1058 #ifdef CONFIG_PPP_MULTILINK
1059 	ppp->minseq = -1;
1060 	skb_queue_head_init(&ppp->mrq);
1061 #endif /* CONFIG_PPP_MULTILINK */
1062 #ifdef CONFIG_PPP_FILTER
1063 	ppp->pass_filter = NULL;
1064 	ppp->active_filter = NULL;
1065 #endif /* CONFIG_PPP_FILTER */
1066 
1067 	err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1068 	if (err < 0)
1069 		goto err2;
1070 
1071 	conf->file->private_data = &ppp->file;
1072 
1073 	return 0;
1074 err2:
1075 	free_percpu(ppp->xmit_recursion);
1076 err1:
1077 	return err;
1078 }
1079 
1080 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1081 	[IFLA_PPP_DEV_FD]	= { .type = NLA_S32 },
1082 };
1083 
1084 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[],
1085 			   struct netlink_ext_ack *extack)
1086 {
1087 	if (!data)
1088 		return -EINVAL;
1089 
1090 	if (!data[IFLA_PPP_DEV_FD])
1091 		return -EINVAL;
1092 	if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1093 		return -EBADF;
1094 
1095 	return 0;
1096 }
1097 
1098 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1099 			  struct nlattr *tb[], struct nlattr *data[],
1100 			  struct netlink_ext_ack *extack)
1101 {
1102 	struct ppp_config conf = {
1103 		.unit = -1,
1104 		.ifname_is_set = true,
1105 	};
1106 	struct file *file;
1107 	int err;
1108 
1109 	file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1110 	if (!file)
1111 		return -EBADF;
1112 
1113 	/* rtnl_lock is already held here, but ppp_create_interface() locks
1114 	 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1115 	 * possible deadlock due to lock order inversion, at the cost of
1116 	 * pushing the problem back to userspace.
1117 	 */
1118 	if (!mutex_trylock(&ppp_mutex)) {
1119 		err = -EBUSY;
1120 		goto out;
1121 	}
1122 
1123 	if (file->f_op != &ppp_device_fops || file->private_data) {
1124 		err = -EBADF;
1125 		goto out_unlock;
1126 	}
1127 
1128 	conf.file = file;
1129 
1130 	/* Don't use device name generated by the rtnetlink layer when ifname
1131 	 * isn't specified. Let ppp_dev_configure() set the device name using
1132 	 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows
1133 	 * userspace to infer the device name using to the PPPIOCGUNIT ioctl.
1134 	 */
1135 	if (!tb[IFLA_IFNAME])
1136 		conf.ifname_is_set = false;
1137 
1138 	err = ppp_dev_configure(src_net, dev, &conf);
1139 
1140 out_unlock:
1141 	mutex_unlock(&ppp_mutex);
1142 out:
1143 	fput(file);
1144 
1145 	return err;
1146 }
1147 
1148 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1149 {
1150 	unregister_netdevice_queue(dev, head);
1151 }
1152 
1153 static size_t ppp_nl_get_size(const struct net_device *dev)
1154 {
1155 	return 0;
1156 }
1157 
1158 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1159 {
1160 	return 0;
1161 }
1162 
1163 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1164 {
1165 	struct ppp *ppp = netdev_priv(dev);
1166 
1167 	return ppp->ppp_net;
1168 }
1169 
1170 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1171 	.kind		= "ppp",
1172 	.maxtype	= IFLA_PPP_MAX,
1173 	.policy		= ppp_nl_policy,
1174 	.priv_size	= sizeof(struct ppp),
1175 	.setup		= ppp_setup,
1176 	.validate	= ppp_nl_validate,
1177 	.newlink	= ppp_nl_newlink,
1178 	.dellink	= ppp_nl_dellink,
1179 	.get_size	= ppp_nl_get_size,
1180 	.fill_info	= ppp_nl_fill_info,
1181 	.get_link_net	= ppp_nl_get_link_net,
1182 };
1183 
1184 #define PPP_MAJOR	108
1185 
1186 /* Called at boot time if ppp is compiled into the kernel,
1187    or at module load time (from init_module) if compiled as a module. */
1188 static int __init ppp_init(void)
1189 {
1190 	int err;
1191 
1192 	pr_info("PPP generic driver version " PPP_VERSION "\n");
1193 
1194 	err = register_pernet_device(&ppp_net_ops);
1195 	if (err) {
1196 		pr_err("failed to register PPP pernet device (%d)\n", err);
1197 		goto out;
1198 	}
1199 
1200 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1201 	if (err) {
1202 		pr_err("failed to register PPP device (%d)\n", err);
1203 		goto out_net;
1204 	}
1205 
1206 	ppp_class = class_create(THIS_MODULE, "ppp");
1207 	if (IS_ERR(ppp_class)) {
1208 		err = PTR_ERR(ppp_class);
1209 		goto out_chrdev;
1210 	}
1211 
1212 	err = rtnl_link_register(&ppp_link_ops);
1213 	if (err) {
1214 		pr_err("failed to register rtnetlink PPP handler\n");
1215 		goto out_class;
1216 	}
1217 
1218 	/* not a big deal if we fail here :-) */
1219 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1220 
1221 	return 0;
1222 
1223 out_class:
1224 	class_destroy(ppp_class);
1225 out_chrdev:
1226 	unregister_chrdev(PPP_MAJOR, "ppp");
1227 out_net:
1228 	unregister_pernet_device(&ppp_net_ops);
1229 out:
1230 	return err;
1231 }
1232 
1233 /*
1234  * Network interface unit routines.
1235  */
1236 static netdev_tx_t
1237 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1238 {
1239 	struct ppp *ppp = netdev_priv(dev);
1240 	int npi, proto;
1241 	unsigned char *pp;
1242 
1243 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1244 	if (npi < 0)
1245 		goto outf;
1246 
1247 	/* Drop, accept or reject the packet */
1248 	switch (ppp->npmode[npi]) {
1249 	case NPMODE_PASS:
1250 		break;
1251 	case NPMODE_QUEUE:
1252 		/* it would be nice to have a way to tell the network
1253 		   system to queue this one up for later. */
1254 		goto outf;
1255 	case NPMODE_DROP:
1256 	case NPMODE_ERROR:
1257 		goto outf;
1258 	}
1259 
1260 	/* Put the 2-byte PPP protocol number on the front,
1261 	   making sure there is room for the address and control fields. */
1262 	if (skb_cow_head(skb, PPP_HDRLEN))
1263 		goto outf;
1264 
1265 	pp = skb_push(skb, 2);
1266 	proto = npindex_to_proto[npi];
1267 	put_unaligned_be16(proto, pp);
1268 
1269 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1270 	skb_queue_tail(&ppp->file.xq, skb);
1271 	ppp_xmit_process(ppp);
1272 	return NETDEV_TX_OK;
1273 
1274  outf:
1275 	kfree_skb(skb);
1276 	++dev->stats.tx_dropped;
1277 	return NETDEV_TX_OK;
1278 }
1279 
1280 static int
1281 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1282 {
1283 	struct ppp *ppp = netdev_priv(dev);
1284 	int err = -EFAULT;
1285 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1286 	struct ppp_stats stats;
1287 	struct ppp_comp_stats cstats;
1288 	char *vers;
1289 
1290 	switch (cmd) {
1291 	case SIOCGPPPSTATS:
1292 		ppp_get_stats(ppp, &stats);
1293 		if (copy_to_user(addr, &stats, sizeof(stats)))
1294 			break;
1295 		err = 0;
1296 		break;
1297 
1298 	case SIOCGPPPCSTATS:
1299 		memset(&cstats, 0, sizeof(cstats));
1300 		if (ppp->xc_state)
1301 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1302 		if (ppp->rc_state)
1303 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1304 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1305 			break;
1306 		err = 0;
1307 		break;
1308 
1309 	case SIOCGPPPVER:
1310 		vers = PPP_VERSION;
1311 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1312 			break;
1313 		err = 0;
1314 		break;
1315 
1316 	default:
1317 		err = -EINVAL;
1318 	}
1319 
1320 	return err;
1321 }
1322 
1323 static void
1324 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1325 {
1326 	struct ppp *ppp = netdev_priv(dev);
1327 
1328 	ppp_recv_lock(ppp);
1329 	stats64->rx_packets = ppp->stats64.rx_packets;
1330 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1331 	ppp_recv_unlock(ppp);
1332 
1333 	ppp_xmit_lock(ppp);
1334 	stats64->tx_packets = ppp->stats64.tx_packets;
1335 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1336 	ppp_xmit_unlock(ppp);
1337 
1338 	stats64->rx_errors        = dev->stats.rx_errors;
1339 	stats64->tx_errors        = dev->stats.tx_errors;
1340 	stats64->rx_dropped       = dev->stats.rx_dropped;
1341 	stats64->tx_dropped       = dev->stats.tx_dropped;
1342 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1343 }
1344 
1345 static int ppp_dev_init(struct net_device *dev)
1346 {
1347 	struct ppp *ppp;
1348 
1349 	netdev_lockdep_set_classes(dev);
1350 
1351 	ppp = netdev_priv(dev);
1352 	/* Let the netdevice take a reference on the ppp file. This ensures
1353 	 * that ppp_destroy_interface() won't run before the device gets
1354 	 * unregistered.
1355 	 */
1356 	refcount_inc(&ppp->file.refcnt);
1357 
1358 	return 0;
1359 }
1360 
1361 static void ppp_dev_uninit(struct net_device *dev)
1362 {
1363 	struct ppp *ppp = netdev_priv(dev);
1364 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1365 
1366 	ppp_lock(ppp);
1367 	ppp->closing = 1;
1368 	ppp_unlock(ppp);
1369 
1370 	mutex_lock(&pn->all_ppp_mutex);
1371 	unit_put(&pn->units_idr, ppp->file.index);
1372 	mutex_unlock(&pn->all_ppp_mutex);
1373 
1374 	ppp->owner = NULL;
1375 
1376 	ppp->file.dead = 1;
1377 	wake_up_interruptible(&ppp->file.rwait);
1378 }
1379 
1380 static void ppp_dev_priv_destructor(struct net_device *dev)
1381 {
1382 	struct ppp *ppp;
1383 
1384 	ppp = netdev_priv(dev);
1385 	if (refcount_dec_and_test(&ppp->file.refcnt))
1386 		ppp_destroy_interface(ppp);
1387 }
1388 
1389 static const struct net_device_ops ppp_netdev_ops = {
1390 	.ndo_init	 = ppp_dev_init,
1391 	.ndo_uninit      = ppp_dev_uninit,
1392 	.ndo_start_xmit  = ppp_start_xmit,
1393 	.ndo_do_ioctl    = ppp_net_ioctl,
1394 	.ndo_get_stats64 = ppp_get_stats64,
1395 };
1396 
1397 static struct device_type ppp_type = {
1398 	.name = "ppp",
1399 };
1400 
1401 static void ppp_setup(struct net_device *dev)
1402 {
1403 	dev->netdev_ops = &ppp_netdev_ops;
1404 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1405 
1406 	dev->features |= NETIF_F_LLTX;
1407 
1408 	dev->hard_header_len = PPP_HDRLEN;
1409 	dev->mtu = PPP_MRU;
1410 	dev->addr_len = 0;
1411 	dev->tx_queue_len = 3;
1412 	dev->type = ARPHRD_PPP;
1413 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1414 	dev->priv_destructor = ppp_dev_priv_destructor;
1415 	netif_keep_dst(dev);
1416 }
1417 
1418 /*
1419  * Transmit-side routines.
1420  */
1421 
1422 /* Called to do any work queued up on the transmit side that can now be done */
1423 static void __ppp_xmit_process(struct ppp *ppp)
1424 {
1425 	struct sk_buff *skb;
1426 
1427 	ppp_xmit_lock(ppp);
1428 	if (!ppp->closing) {
1429 		ppp_push(ppp);
1430 		while (!ppp->xmit_pending &&
1431 		       (skb = skb_dequeue(&ppp->file.xq)))
1432 			ppp_send_frame(ppp, skb);
1433 		/* If there's no work left to do, tell the core net
1434 		   code that we can accept some more. */
1435 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1436 			netif_wake_queue(ppp->dev);
1437 		else
1438 			netif_stop_queue(ppp->dev);
1439 	}
1440 	ppp_xmit_unlock(ppp);
1441 }
1442 
1443 static void ppp_xmit_process(struct ppp *ppp)
1444 {
1445 	local_bh_disable();
1446 
1447 	if (unlikely(*this_cpu_ptr(ppp->xmit_recursion)))
1448 		goto err;
1449 
1450 	(*this_cpu_ptr(ppp->xmit_recursion))++;
1451 	__ppp_xmit_process(ppp);
1452 	(*this_cpu_ptr(ppp->xmit_recursion))--;
1453 
1454 	local_bh_enable();
1455 
1456 	return;
1457 
1458 err:
1459 	local_bh_enable();
1460 
1461 	if (net_ratelimit())
1462 		netdev_err(ppp->dev, "recursion detected\n");
1463 }
1464 
1465 static inline struct sk_buff *
1466 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1467 {
1468 	struct sk_buff *new_skb;
1469 	int len;
1470 	int new_skb_size = ppp->dev->mtu +
1471 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1472 	int compressor_skb_size = ppp->dev->mtu +
1473 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1474 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1475 	if (!new_skb) {
1476 		if (net_ratelimit())
1477 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1478 		return NULL;
1479 	}
1480 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1481 		skb_reserve(new_skb,
1482 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1483 
1484 	/* compressor still expects A/C bytes in hdr */
1485 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1486 				   new_skb->data, skb->len + 2,
1487 				   compressor_skb_size);
1488 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1489 		consume_skb(skb);
1490 		skb = new_skb;
1491 		skb_put(skb, len);
1492 		skb_pull(skb, 2);	/* pull off A/C bytes */
1493 	} else if (len == 0) {
1494 		/* didn't compress, or CCP not up yet */
1495 		consume_skb(new_skb);
1496 		new_skb = skb;
1497 	} else {
1498 		/*
1499 		 * (len < 0)
1500 		 * MPPE requires that we do not send unencrypted
1501 		 * frames.  The compressor will return -1 if we
1502 		 * should drop the frame.  We cannot simply test
1503 		 * the compress_proto because MPPE and MPPC share
1504 		 * the same number.
1505 		 */
1506 		if (net_ratelimit())
1507 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1508 		kfree_skb(skb);
1509 		consume_skb(new_skb);
1510 		new_skb = NULL;
1511 	}
1512 	return new_skb;
1513 }
1514 
1515 /*
1516  * Compress and send a frame.
1517  * The caller should have locked the xmit path,
1518  * and xmit_pending should be 0.
1519  */
1520 static void
1521 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1522 {
1523 	int proto = PPP_PROTO(skb);
1524 	struct sk_buff *new_skb;
1525 	int len;
1526 	unsigned char *cp;
1527 
1528 	if (proto < 0x8000) {
1529 #ifdef CONFIG_PPP_FILTER
1530 		/* check if we should pass this packet */
1531 		/* the filter instructions are constructed assuming
1532 		   a four-byte PPP header on each packet */
1533 		*(u8 *)skb_push(skb, 2) = 1;
1534 		if (ppp->pass_filter &&
1535 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1536 			if (ppp->debug & 1)
1537 				netdev_printk(KERN_DEBUG, ppp->dev,
1538 					      "PPP: outbound frame "
1539 					      "not passed\n");
1540 			kfree_skb(skb);
1541 			return;
1542 		}
1543 		/* if this packet passes the active filter, record the time */
1544 		if (!(ppp->active_filter &&
1545 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1546 			ppp->last_xmit = jiffies;
1547 		skb_pull(skb, 2);
1548 #else
1549 		/* for data packets, record the time */
1550 		ppp->last_xmit = jiffies;
1551 #endif /* CONFIG_PPP_FILTER */
1552 	}
1553 
1554 	++ppp->stats64.tx_packets;
1555 	ppp->stats64.tx_bytes += skb->len - 2;
1556 
1557 	switch (proto) {
1558 	case PPP_IP:
1559 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1560 			break;
1561 		/* try to do VJ TCP header compression */
1562 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1563 				    GFP_ATOMIC);
1564 		if (!new_skb) {
1565 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1566 			goto drop;
1567 		}
1568 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1569 		cp = skb->data + 2;
1570 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1571 				    new_skb->data + 2, &cp,
1572 				    !(ppp->flags & SC_NO_TCP_CCID));
1573 		if (cp == skb->data + 2) {
1574 			/* didn't compress */
1575 			consume_skb(new_skb);
1576 		} else {
1577 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1578 				proto = PPP_VJC_COMP;
1579 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1580 			} else {
1581 				proto = PPP_VJC_UNCOMP;
1582 				cp[0] = skb->data[2];
1583 			}
1584 			consume_skb(skb);
1585 			skb = new_skb;
1586 			cp = skb_put(skb, len + 2);
1587 			cp[0] = 0;
1588 			cp[1] = proto;
1589 		}
1590 		break;
1591 
1592 	case PPP_CCP:
1593 		/* peek at outbound CCP frames */
1594 		ppp_ccp_peek(ppp, skb, 0);
1595 		break;
1596 	}
1597 
1598 	/* try to do packet compression */
1599 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1600 	    proto != PPP_LCP && proto != PPP_CCP) {
1601 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1602 			if (net_ratelimit())
1603 				netdev_err(ppp->dev,
1604 					   "ppp: compression required but "
1605 					   "down - pkt dropped.\n");
1606 			goto drop;
1607 		}
1608 		skb = pad_compress_skb(ppp, skb);
1609 		if (!skb)
1610 			goto drop;
1611 	}
1612 
1613 	/*
1614 	 * If we are waiting for traffic (demand dialling),
1615 	 * queue it up for pppd to receive.
1616 	 */
1617 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1618 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1619 			goto drop;
1620 		skb_queue_tail(&ppp->file.rq, skb);
1621 		wake_up_interruptible(&ppp->file.rwait);
1622 		return;
1623 	}
1624 
1625 	ppp->xmit_pending = skb;
1626 	ppp_push(ppp);
1627 	return;
1628 
1629  drop:
1630 	kfree_skb(skb);
1631 	++ppp->dev->stats.tx_errors;
1632 }
1633 
1634 /*
1635  * Try to send the frame in xmit_pending.
1636  * The caller should have the xmit path locked.
1637  */
1638 static void
1639 ppp_push(struct ppp *ppp)
1640 {
1641 	struct list_head *list;
1642 	struct channel *pch;
1643 	struct sk_buff *skb = ppp->xmit_pending;
1644 
1645 	if (!skb)
1646 		return;
1647 
1648 	list = &ppp->channels;
1649 	if (list_empty(list)) {
1650 		/* nowhere to send the packet, just drop it */
1651 		ppp->xmit_pending = NULL;
1652 		kfree_skb(skb);
1653 		return;
1654 	}
1655 
1656 	if ((ppp->flags & SC_MULTILINK) == 0) {
1657 		/* not doing multilink: send it down the first channel */
1658 		list = list->next;
1659 		pch = list_entry(list, struct channel, clist);
1660 
1661 		spin_lock(&pch->downl);
1662 		if (pch->chan) {
1663 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1664 				ppp->xmit_pending = NULL;
1665 		} else {
1666 			/* channel got unregistered */
1667 			kfree_skb(skb);
1668 			ppp->xmit_pending = NULL;
1669 		}
1670 		spin_unlock(&pch->downl);
1671 		return;
1672 	}
1673 
1674 #ifdef CONFIG_PPP_MULTILINK
1675 	/* Multilink: fragment the packet over as many links
1676 	   as can take the packet at the moment. */
1677 	if (!ppp_mp_explode(ppp, skb))
1678 		return;
1679 #endif /* CONFIG_PPP_MULTILINK */
1680 
1681 	ppp->xmit_pending = NULL;
1682 	kfree_skb(skb);
1683 }
1684 
1685 #ifdef CONFIG_PPP_MULTILINK
1686 static bool mp_protocol_compress __read_mostly = true;
1687 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1688 MODULE_PARM_DESC(mp_protocol_compress,
1689 		 "compress protocol id in multilink fragments");
1690 
1691 /*
1692  * Divide a packet to be transmitted into fragments and
1693  * send them out the individual links.
1694  */
1695 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1696 {
1697 	int len, totlen;
1698 	int i, bits, hdrlen, mtu;
1699 	int flen;
1700 	int navail, nfree, nzero;
1701 	int nbigger;
1702 	int totspeed;
1703 	int totfree;
1704 	unsigned char *p, *q;
1705 	struct list_head *list;
1706 	struct channel *pch;
1707 	struct sk_buff *frag;
1708 	struct ppp_channel *chan;
1709 
1710 	totspeed = 0; /*total bitrate of the bundle*/
1711 	nfree = 0; /* # channels which have no packet already queued */
1712 	navail = 0; /* total # of usable channels (not deregistered) */
1713 	nzero = 0; /* number of channels with zero speed associated*/
1714 	totfree = 0; /*total # of channels available and
1715 				  *having no queued packets before
1716 				  *starting the fragmentation*/
1717 
1718 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1719 	i = 0;
1720 	list_for_each_entry(pch, &ppp->channels, clist) {
1721 		if (pch->chan) {
1722 			pch->avail = 1;
1723 			navail++;
1724 			pch->speed = pch->chan->speed;
1725 		} else {
1726 			pch->avail = 0;
1727 		}
1728 		if (pch->avail) {
1729 			if (skb_queue_empty(&pch->file.xq) ||
1730 				!pch->had_frag) {
1731 					if (pch->speed == 0)
1732 						nzero++;
1733 					else
1734 						totspeed += pch->speed;
1735 
1736 					pch->avail = 2;
1737 					++nfree;
1738 					++totfree;
1739 				}
1740 			if (!pch->had_frag && i < ppp->nxchan)
1741 				ppp->nxchan = i;
1742 		}
1743 		++i;
1744 	}
1745 	/*
1746 	 * Don't start sending this packet unless at least half of
1747 	 * the channels are free.  This gives much better TCP
1748 	 * performance if we have a lot of channels.
1749 	 */
1750 	if (nfree == 0 || nfree < navail / 2)
1751 		return 0; /* can't take now, leave it in xmit_pending */
1752 
1753 	/* Do protocol field compression */
1754 	p = skb->data;
1755 	len = skb->len;
1756 	if (*p == 0 && mp_protocol_compress) {
1757 		++p;
1758 		--len;
1759 	}
1760 
1761 	totlen = len;
1762 	nbigger = len % nfree;
1763 
1764 	/* skip to the channel after the one we last used
1765 	   and start at that one */
1766 	list = &ppp->channels;
1767 	for (i = 0; i < ppp->nxchan; ++i) {
1768 		list = list->next;
1769 		if (list == &ppp->channels) {
1770 			i = 0;
1771 			break;
1772 		}
1773 	}
1774 
1775 	/* create a fragment for each channel */
1776 	bits = B;
1777 	while (len > 0) {
1778 		list = list->next;
1779 		if (list == &ppp->channels) {
1780 			i = 0;
1781 			continue;
1782 		}
1783 		pch = list_entry(list, struct channel, clist);
1784 		++i;
1785 		if (!pch->avail)
1786 			continue;
1787 
1788 		/*
1789 		 * Skip this channel if it has a fragment pending already and
1790 		 * we haven't given a fragment to all of the free channels.
1791 		 */
1792 		if (pch->avail == 1) {
1793 			if (nfree > 0)
1794 				continue;
1795 		} else {
1796 			pch->avail = 1;
1797 		}
1798 
1799 		/* check the channel's mtu and whether it is still attached. */
1800 		spin_lock(&pch->downl);
1801 		if (pch->chan == NULL) {
1802 			/* can't use this channel, it's being deregistered */
1803 			if (pch->speed == 0)
1804 				nzero--;
1805 			else
1806 				totspeed -= pch->speed;
1807 
1808 			spin_unlock(&pch->downl);
1809 			pch->avail = 0;
1810 			totlen = len;
1811 			totfree--;
1812 			nfree--;
1813 			if (--navail == 0)
1814 				break;
1815 			continue;
1816 		}
1817 
1818 		/*
1819 		*if the channel speed is not set divide
1820 		*the packet evenly among the free channels;
1821 		*otherwise divide it according to the speed
1822 		*of the channel we are going to transmit on
1823 		*/
1824 		flen = len;
1825 		if (nfree > 0) {
1826 			if (pch->speed == 0) {
1827 				flen = len/nfree;
1828 				if (nbigger > 0) {
1829 					flen++;
1830 					nbigger--;
1831 				}
1832 			} else {
1833 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1834 					((totspeed*totfree)/pch->speed)) - hdrlen;
1835 				if (nbigger > 0) {
1836 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1837 					nbigger -= ((totfree - nzero)*pch->speed)/
1838 							totspeed;
1839 				}
1840 			}
1841 			nfree--;
1842 		}
1843 
1844 		/*
1845 		 *check if we are on the last channel or
1846 		 *we exceded the length of the data to
1847 		 *fragment
1848 		 */
1849 		if ((nfree <= 0) || (flen > len))
1850 			flen = len;
1851 		/*
1852 		 *it is not worth to tx on slow channels:
1853 		 *in that case from the resulting flen according to the
1854 		 *above formula will be equal or less than zero.
1855 		 *Skip the channel in this case
1856 		 */
1857 		if (flen <= 0) {
1858 			pch->avail = 2;
1859 			spin_unlock(&pch->downl);
1860 			continue;
1861 		}
1862 
1863 		/*
1864 		 * hdrlen includes the 2-byte PPP protocol field, but the
1865 		 * MTU counts only the payload excluding the protocol field.
1866 		 * (RFC1661 Section 2)
1867 		 */
1868 		mtu = pch->chan->mtu - (hdrlen - 2);
1869 		if (mtu < 4)
1870 			mtu = 4;
1871 		if (flen > mtu)
1872 			flen = mtu;
1873 		if (flen == len)
1874 			bits |= E;
1875 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1876 		if (!frag)
1877 			goto noskb;
1878 		q = skb_put(frag, flen + hdrlen);
1879 
1880 		/* make the MP header */
1881 		put_unaligned_be16(PPP_MP, q);
1882 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1883 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1884 			q[3] = ppp->nxseq;
1885 		} else {
1886 			q[2] = bits;
1887 			q[3] = ppp->nxseq >> 16;
1888 			q[4] = ppp->nxseq >> 8;
1889 			q[5] = ppp->nxseq;
1890 		}
1891 
1892 		memcpy(q + hdrlen, p, flen);
1893 
1894 		/* try to send it down the channel */
1895 		chan = pch->chan;
1896 		if (!skb_queue_empty(&pch->file.xq) ||
1897 			!chan->ops->start_xmit(chan, frag))
1898 			skb_queue_tail(&pch->file.xq, frag);
1899 		pch->had_frag = 1;
1900 		p += flen;
1901 		len -= flen;
1902 		++ppp->nxseq;
1903 		bits = 0;
1904 		spin_unlock(&pch->downl);
1905 	}
1906 	ppp->nxchan = i;
1907 
1908 	return 1;
1909 
1910  noskb:
1911 	spin_unlock(&pch->downl);
1912 	if (ppp->debug & 1)
1913 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1914 	++ppp->dev->stats.tx_errors;
1915 	++ppp->nxseq;
1916 	return 1;	/* abandon the frame */
1917 }
1918 #endif /* CONFIG_PPP_MULTILINK */
1919 
1920 /* Try to send data out on a channel */
1921 static void __ppp_channel_push(struct channel *pch)
1922 {
1923 	struct sk_buff *skb;
1924 	struct ppp *ppp;
1925 
1926 	spin_lock(&pch->downl);
1927 	if (pch->chan) {
1928 		while (!skb_queue_empty(&pch->file.xq)) {
1929 			skb = skb_dequeue(&pch->file.xq);
1930 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1931 				/* put the packet back and try again later */
1932 				skb_queue_head(&pch->file.xq, skb);
1933 				break;
1934 			}
1935 		}
1936 	} else {
1937 		/* channel got deregistered */
1938 		skb_queue_purge(&pch->file.xq);
1939 	}
1940 	spin_unlock(&pch->downl);
1941 	/* see if there is anything from the attached unit to be sent */
1942 	if (skb_queue_empty(&pch->file.xq)) {
1943 		ppp = pch->ppp;
1944 		if (ppp)
1945 			__ppp_xmit_process(ppp);
1946 	}
1947 }
1948 
1949 static void ppp_channel_push(struct channel *pch)
1950 {
1951 	read_lock_bh(&pch->upl);
1952 	if (pch->ppp) {
1953 		(*this_cpu_ptr(pch->ppp->xmit_recursion))++;
1954 		__ppp_channel_push(pch);
1955 		(*this_cpu_ptr(pch->ppp->xmit_recursion))--;
1956 	} else {
1957 		__ppp_channel_push(pch);
1958 	}
1959 	read_unlock_bh(&pch->upl);
1960 }
1961 
1962 /*
1963  * Receive-side routines.
1964  */
1965 
1966 struct ppp_mp_skb_parm {
1967 	u32		sequence;
1968 	u8		BEbits;
1969 };
1970 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1971 
1972 static inline void
1973 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1974 {
1975 	ppp_recv_lock(ppp);
1976 	if (!ppp->closing)
1977 		ppp_receive_frame(ppp, skb, pch);
1978 	else
1979 		kfree_skb(skb);
1980 	ppp_recv_unlock(ppp);
1981 }
1982 
1983 void
1984 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1985 {
1986 	struct channel *pch = chan->ppp;
1987 	int proto;
1988 
1989 	if (!pch) {
1990 		kfree_skb(skb);
1991 		return;
1992 	}
1993 
1994 	read_lock_bh(&pch->upl);
1995 	if (!pskb_may_pull(skb, 2)) {
1996 		kfree_skb(skb);
1997 		if (pch->ppp) {
1998 			++pch->ppp->dev->stats.rx_length_errors;
1999 			ppp_receive_error(pch->ppp);
2000 		}
2001 		goto done;
2002 	}
2003 
2004 	proto = PPP_PROTO(skb);
2005 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
2006 		/* put it on the channel queue */
2007 		skb_queue_tail(&pch->file.rq, skb);
2008 		/* drop old frames if queue too long */
2009 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
2010 		       (skb = skb_dequeue(&pch->file.rq)))
2011 			kfree_skb(skb);
2012 		wake_up_interruptible(&pch->file.rwait);
2013 	} else {
2014 		ppp_do_recv(pch->ppp, skb, pch);
2015 	}
2016 
2017 done:
2018 	read_unlock_bh(&pch->upl);
2019 }
2020 
2021 /* Put a 0-length skb in the receive queue as an error indication */
2022 void
2023 ppp_input_error(struct ppp_channel *chan, int code)
2024 {
2025 	struct channel *pch = chan->ppp;
2026 	struct sk_buff *skb;
2027 
2028 	if (!pch)
2029 		return;
2030 
2031 	read_lock_bh(&pch->upl);
2032 	if (pch->ppp) {
2033 		skb = alloc_skb(0, GFP_ATOMIC);
2034 		if (skb) {
2035 			skb->len = 0;		/* probably unnecessary */
2036 			skb->cb[0] = code;
2037 			ppp_do_recv(pch->ppp, skb, pch);
2038 		}
2039 	}
2040 	read_unlock_bh(&pch->upl);
2041 }
2042 
2043 /*
2044  * We come in here to process a received frame.
2045  * The receive side of the ppp unit is locked.
2046  */
2047 static void
2048 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2049 {
2050 	/* note: a 0-length skb is used as an error indication */
2051 	if (skb->len > 0) {
2052 		skb_checksum_complete_unset(skb);
2053 #ifdef CONFIG_PPP_MULTILINK
2054 		/* XXX do channel-level decompression here */
2055 		if (PPP_PROTO(skb) == PPP_MP)
2056 			ppp_receive_mp_frame(ppp, skb, pch);
2057 		else
2058 #endif /* CONFIG_PPP_MULTILINK */
2059 			ppp_receive_nonmp_frame(ppp, skb);
2060 	} else {
2061 		kfree_skb(skb);
2062 		ppp_receive_error(ppp);
2063 	}
2064 }
2065 
2066 static void
2067 ppp_receive_error(struct ppp *ppp)
2068 {
2069 	++ppp->dev->stats.rx_errors;
2070 	if (ppp->vj)
2071 		slhc_toss(ppp->vj);
2072 }
2073 
2074 static void
2075 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
2076 {
2077 	struct sk_buff *ns;
2078 	int proto, len, npi;
2079 
2080 	/*
2081 	 * Decompress the frame, if compressed.
2082 	 * Note that some decompressors need to see uncompressed frames
2083 	 * that come in as well as compressed frames.
2084 	 */
2085 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2086 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2087 		skb = ppp_decompress_frame(ppp, skb);
2088 
2089 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2090 		goto err;
2091 
2092 	proto = PPP_PROTO(skb);
2093 	switch (proto) {
2094 	case PPP_VJC_COMP:
2095 		/* decompress VJ compressed packets */
2096 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2097 			goto err;
2098 
2099 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2100 			/* copy to a new sk_buff with more tailroom */
2101 			ns = dev_alloc_skb(skb->len + 128);
2102 			if (!ns) {
2103 				netdev_err(ppp->dev, "PPP: no memory "
2104 					   "(VJ decomp)\n");
2105 				goto err;
2106 			}
2107 			skb_reserve(ns, 2);
2108 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2109 			consume_skb(skb);
2110 			skb = ns;
2111 		}
2112 		else
2113 			skb->ip_summed = CHECKSUM_NONE;
2114 
2115 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2116 		if (len <= 0) {
2117 			netdev_printk(KERN_DEBUG, ppp->dev,
2118 				      "PPP: VJ decompression error\n");
2119 			goto err;
2120 		}
2121 		len += 2;
2122 		if (len > skb->len)
2123 			skb_put(skb, len - skb->len);
2124 		else if (len < skb->len)
2125 			skb_trim(skb, len);
2126 		proto = PPP_IP;
2127 		break;
2128 
2129 	case PPP_VJC_UNCOMP:
2130 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2131 			goto err;
2132 
2133 		/* Until we fix the decompressor need to make sure
2134 		 * data portion is linear.
2135 		 */
2136 		if (!pskb_may_pull(skb, skb->len))
2137 			goto err;
2138 
2139 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2140 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2141 			goto err;
2142 		}
2143 		proto = PPP_IP;
2144 		break;
2145 
2146 	case PPP_CCP:
2147 		ppp_ccp_peek(ppp, skb, 1);
2148 		break;
2149 	}
2150 
2151 	++ppp->stats64.rx_packets;
2152 	ppp->stats64.rx_bytes += skb->len - 2;
2153 
2154 	npi = proto_to_npindex(proto);
2155 	if (npi < 0) {
2156 		/* control or unknown frame - pass it to pppd */
2157 		skb_queue_tail(&ppp->file.rq, skb);
2158 		/* limit queue length by dropping old frames */
2159 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2160 		       (skb = skb_dequeue(&ppp->file.rq)))
2161 			kfree_skb(skb);
2162 		/* wake up any process polling or blocking on read */
2163 		wake_up_interruptible(&ppp->file.rwait);
2164 
2165 	} else {
2166 		/* network protocol frame - give it to the kernel */
2167 
2168 #ifdef CONFIG_PPP_FILTER
2169 		/* check if the packet passes the pass and active filters */
2170 		/* the filter instructions are constructed assuming
2171 		   a four-byte PPP header on each packet */
2172 		if (ppp->pass_filter || ppp->active_filter) {
2173 			if (skb_unclone(skb, GFP_ATOMIC))
2174 				goto err;
2175 
2176 			*(u8 *)skb_push(skb, 2) = 0;
2177 			if (ppp->pass_filter &&
2178 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2179 				if (ppp->debug & 1)
2180 					netdev_printk(KERN_DEBUG, ppp->dev,
2181 						      "PPP: inbound frame "
2182 						      "not passed\n");
2183 				kfree_skb(skb);
2184 				return;
2185 			}
2186 			if (!(ppp->active_filter &&
2187 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2188 				ppp->last_recv = jiffies;
2189 			__skb_pull(skb, 2);
2190 		} else
2191 #endif /* CONFIG_PPP_FILTER */
2192 			ppp->last_recv = jiffies;
2193 
2194 		if ((ppp->dev->flags & IFF_UP) == 0 ||
2195 		    ppp->npmode[npi] != NPMODE_PASS) {
2196 			kfree_skb(skb);
2197 		} else {
2198 			/* chop off protocol */
2199 			skb_pull_rcsum(skb, 2);
2200 			skb->dev = ppp->dev;
2201 			skb->protocol = htons(npindex_to_ethertype[npi]);
2202 			skb_reset_mac_header(skb);
2203 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2204 						      dev_net(ppp->dev)));
2205 			netif_rx(skb);
2206 		}
2207 	}
2208 	return;
2209 
2210  err:
2211 	kfree_skb(skb);
2212 	ppp_receive_error(ppp);
2213 }
2214 
2215 static struct sk_buff *
2216 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2217 {
2218 	int proto = PPP_PROTO(skb);
2219 	struct sk_buff *ns;
2220 	int len;
2221 
2222 	/* Until we fix all the decompressor's need to make sure
2223 	 * data portion is linear.
2224 	 */
2225 	if (!pskb_may_pull(skb, skb->len))
2226 		goto err;
2227 
2228 	if (proto == PPP_COMP) {
2229 		int obuff_size;
2230 
2231 		switch(ppp->rcomp->compress_proto) {
2232 		case CI_MPPE:
2233 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
2234 			break;
2235 		default:
2236 			obuff_size = ppp->mru + PPP_HDRLEN;
2237 			break;
2238 		}
2239 
2240 		ns = dev_alloc_skb(obuff_size);
2241 		if (!ns) {
2242 			netdev_err(ppp->dev, "ppp_decompress_frame: "
2243 				   "no memory\n");
2244 			goto err;
2245 		}
2246 		/* the decompressor still expects the A/C bytes in the hdr */
2247 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2248 				skb->len + 2, ns->data, obuff_size);
2249 		if (len < 0) {
2250 			/* Pass the compressed frame to pppd as an
2251 			   error indication. */
2252 			if (len == DECOMP_FATALERROR)
2253 				ppp->rstate |= SC_DC_FERROR;
2254 			kfree_skb(ns);
2255 			goto err;
2256 		}
2257 
2258 		consume_skb(skb);
2259 		skb = ns;
2260 		skb_put(skb, len);
2261 		skb_pull(skb, 2);	/* pull off the A/C bytes */
2262 
2263 	} else {
2264 		/* Uncompressed frame - pass to decompressor so it
2265 		   can update its dictionary if necessary. */
2266 		if (ppp->rcomp->incomp)
2267 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2268 					   skb->len + 2);
2269 	}
2270 
2271 	return skb;
2272 
2273  err:
2274 	ppp->rstate |= SC_DC_ERROR;
2275 	ppp_receive_error(ppp);
2276 	return skb;
2277 }
2278 
2279 #ifdef CONFIG_PPP_MULTILINK
2280 /*
2281  * Receive a multilink frame.
2282  * We put it on the reconstruction queue and then pull off
2283  * as many completed frames as we can.
2284  */
2285 static void
2286 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2287 {
2288 	u32 mask, seq;
2289 	struct channel *ch;
2290 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2291 
2292 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2293 		goto err;		/* no good, throw it away */
2294 
2295 	/* Decode sequence number and begin/end bits */
2296 	if (ppp->flags & SC_MP_SHORTSEQ) {
2297 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2298 		mask = 0xfff;
2299 	} else {
2300 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2301 		mask = 0xffffff;
2302 	}
2303 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2304 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2305 
2306 	/*
2307 	 * Do protocol ID decompression on the first fragment of each packet.
2308 	 */
2309 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2310 		*(u8 *)skb_push(skb, 1) = 0;
2311 
2312 	/*
2313 	 * Expand sequence number to 32 bits, making it as close
2314 	 * as possible to ppp->minseq.
2315 	 */
2316 	seq |= ppp->minseq & ~mask;
2317 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2318 		seq += mask + 1;
2319 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2320 		seq -= mask + 1;	/* should never happen */
2321 	PPP_MP_CB(skb)->sequence = seq;
2322 	pch->lastseq = seq;
2323 
2324 	/*
2325 	 * If this packet comes before the next one we were expecting,
2326 	 * drop it.
2327 	 */
2328 	if (seq_before(seq, ppp->nextseq)) {
2329 		kfree_skb(skb);
2330 		++ppp->dev->stats.rx_dropped;
2331 		ppp_receive_error(ppp);
2332 		return;
2333 	}
2334 
2335 	/*
2336 	 * Reevaluate minseq, the minimum over all channels of the
2337 	 * last sequence number received on each channel.  Because of
2338 	 * the increasing sequence number rule, we know that any fragment
2339 	 * before `minseq' which hasn't arrived is never going to arrive.
2340 	 * The list of channels can't change because we have the receive
2341 	 * side of the ppp unit locked.
2342 	 */
2343 	list_for_each_entry(ch, &ppp->channels, clist) {
2344 		if (seq_before(ch->lastseq, seq))
2345 			seq = ch->lastseq;
2346 	}
2347 	if (seq_before(ppp->minseq, seq))
2348 		ppp->minseq = seq;
2349 
2350 	/* Put the fragment on the reconstruction queue */
2351 	ppp_mp_insert(ppp, skb);
2352 
2353 	/* If the queue is getting long, don't wait any longer for packets
2354 	   before the start of the queue. */
2355 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2356 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2357 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2358 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2359 	}
2360 
2361 	/* Pull completed packets off the queue and receive them. */
2362 	while ((skb = ppp_mp_reconstruct(ppp))) {
2363 		if (pskb_may_pull(skb, 2))
2364 			ppp_receive_nonmp_frame(ppp, skb);
2365 		else {
2366 			++ppp->dev->stats.rx_length_errors;
2367 			kfree_skb(skb);
2368 			ppp_receive_error(ppp);
2369 		}
2370 	}
2371 
2372 	return;
2373 
2374  err:
2375 	kfree_skb(skb);
2376 	ppp_receive_error(ppp);
2377 }
2378 
2379 /*
2380  * Insert a fragment on the MP reconstruction queue.
2381  * The queue is ordered by increasing sequence number.
2382  */
2383 static void
2384 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2385 {
2386 	struct sk_buff *p;
2387 	struct sk_buff_head *list = &ppp->mrq;
2388 	u32 seq = PPP_MP_CB(skb)->sequence;
2389 
2390 	/* N.B. we don't need to lock the list lock because we have the
2391 	   ppp unit receive-side lock. */
2392 	skb_queue_walk(list, p) {
2393 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2394 			break;
2395 	}
2396 	__skb_queue_before(list, p, skb);
2397 }
2398 
2399 /*
2400  * Reconstruct a packet from the MP fragment queue.
2401  * We go through increasing sequence numbers until we find a
2402  * complete packet, or we get to the sequence number for a fragment
2403  * which hasn't arrived but might still do so.
2404  */
2405 static struct sk_buff *
2406 ppp_mp_reconstruct(struct ppp *ppp)
2407 {
2408 	u32 seq = ppp->nextseq;
2409 	u32 minseq = ppp->minseq;
2410 	struct sk_buff_head *list = &ppp->mrq;
2411 	struct sk_buff *p, *tmp;
2412 	struct sk_buff *head, *tail;
2413 	struct sk_buff *skb = NULL;
2414 	int lost = 0, len = 0;
2415 
2416 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2417 		return NULL;
2418 	head = list->next;
2419 	tail = NULL;
2420 	skb_queue_walk_safe(list, p, tmp) {
2421 	again:
2422 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2423 			/* this can't happen, anyway ignore the skb */
2424 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2425 				   "seq %u < %u\n",
2426 				   PPP_MP_CB(p)->sequence, seq);
2427 			__skb_unlink(p, list);
2428 			kfree_skb(p);
2429 			continue;
2430 		}
2431 		if (PPP_MP_CB(p)->sequence != seq) {
2432 			u32 oldseq;
2433 			/* Fragment `seq' is missing.  If it is after
2434 			   minseq, it might arrive later, so stop here. */
2435 			if (seq_after(seq, minseq))
2436 				break;
2437 			/* Fragment `seq' is lost, keep going. */
2438 			lost = 1;
2439 			oldseq = seq;
2440 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2441 				minseq + 1: PPP_MP_CB(p)->sequence;
2442 
2443 			if (ppp->debug & 1)
2444 				netdev_printk(KERN_DEBUG, ppp->dev,
2445 					      "lost frag %u..%u\n",
2446 					      oldseq, seq-1);
2447 
2448 			goto again;
2449 		}
2450 
2451 		/*
2452 		 * At this point we know that all the fragments from
2453 		 * ppp->nextseq to seq are either present or lost.
2454 		 * Also, there are no complete packets in the queue
2455 		 * that have no missing fragments and end before this
2456 		 * fragment.
2457 		 */
2458 
2459 		/* B bit set indicates this fragment starts a packet */
2460 		if (PPP_MP_CB(p)->BEbits & B) {
2461 			head = p;
2462 			lost = 0;
2463 			len = 0;
2464 		}
2465 
2466 		len += p->len;
2467 
2468 		/* Got a complete packet yet? */
2469 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2470 		    (PPP_MP_CB(head)->BEbits & B)) {
2471 			if (len > ppp->mrru + 2) {
2472 				++ppp->dev->stats.rx_length_errors;
2473 				netdev_printk(KERN_DEBUG, ppp->dev,
2474 					      "PPP: reconstructed packet"
2475 					      " is too long (%d)\n", len);
2476 			} else {
2477 				tail = p;
2478 				break;
2479 			}
2480 			ppp->nextseq = seq + 1;
2481 		}
2482 
2483 		/*
2484 		 * If this is the ending fragment of a packet,
2485 		 * and we haven't found a complete valid packet yet,
2486 		 * we can discard up to and including this fragment.
2487 		 */
2488 		if (PPP_MP_CB(p)->BEbits & E) {
2489 			struct sk_buff *tmp2;
2490 
2491 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2492 				if (ppp->debug & 1)
2493 					netdev_printk(KERN_DEBUG, ppp->dev,
2494 						      "discarding frag %u\n",
2495 						      PPP_MP_CB(p)->sequence);
2496 				__skb_unlink(p, list);
2497 				kfree_skb(p);
2498 			}
2499 			head = skb_peek(list);
2500 			if (!head)
2501 				break;
2502 		}
2503 		++seq;
2504 	}
2505 
2506 	/* If we have a complete packet, copy it all into one skb. */
2507 	if (tail != NULL) {
2508 		/* If we have discarded any fragments,
2509 		   signal a receive error. */
2510 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2511 			skb_queue_walk_safe(list, p, tmp) {
2512 				if (p == head)
2513 					break;
2514 				if (ppp->debug & 1)
2515 					netdev_printk(KERN_DEBUG, ppp->dev,
2516 						      "discarding frag %u\n",
2517 						      PPP_MP_CB(p)->sequence);
2518 				__skb_unlink(p, list);
2519 				kfree_skb(p);
2520 			}
2521 
2522 			if (ppp->debug & 1)
2523 				netdev_printk(KERN_DEBUG, ppp->dev,
2524 					      "  missed pkts %u..%u\n",
2525 					      ppp->nextseq,
2526 					      PPP_MP_CB(head)->sequence-1);
2527 			++ppp->dev->stats.rx_dropped;
2528 			ppp_receive_error(ppp);
2529 		}
2530 
2531 		skb = head;
2532 		if (head != tail) {
2533 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2534 			p = skb_queue_next(list, head);
2535 			__skb_unlink(skb, list);
2536 			skb_queue_walk_from_safe(list, p, tmp) {
2537 				__skb_unlink(p, list);
2538 				*fragpp = p;
2539 				p->next = NULL;
2540 				fragpp = &p->next;
2541 
2542 				skb->len += p->len;
2543 				skb->data_len += p->len;
2544 				skb->truesize += p->truesize;
2545 
2546 				if (p == tail)
2547 					break;
2548 			}
2549 		} else {
2550 			__skb_unlink(skb, list);
2551 		}
2552 
2553 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2554 	}
2555 
2556 	return skb;
2557 }
2558 #endif /* CONFIG_PPP_MULTILINK */
2559 
2560 /*
2561  * Channel interface.
2562  */
2563 
2564 /* Create a new, unattached ppp channel. */
2565 int ppp_register_channel(struct ppp_channel *chan)
2566 {
2567 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2568 }
2569 
2570 /* Create a new, unattached ppp channel for specified net. */
2571 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2572 {
2573 	struct channel *pch;
2574 	struct ppp_net *pn;
2575 
2576 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2577 	if (!pch)
2578 		return -ENOMEM;
2579 
2580 	pn = ppp_pernet(net);
2581 
2582 	pch->ppp = NULL;
2583 	pch->chan = chan;
2584 	pch->chan_net = get_net(net);
2585 	chan->ppp = pch;
2586 	init_ppp_file(&pch->file, CHANNEL);
2587 	pch->file.hdrlen = chan->hdrlen;
2588 #ifdef CONFIG_PPP_MULTILINK
2589 	pch->lastseq = -1;
2590 #endif /* CONFIG_PPP_MULTILINK */
2591 	init_rwsem(&pch->chan_sem);
2592 	spin_lock_init(&pch->downl);
2593 	rwlock_init(&pch->upl);
2594 
2595 	spin_lock_bh(&pn->all_channels_lock);
2596 	pch->file.index = ++pn->last_channel_index;
2597 	list_add(&pch->list, &pn->new_channels);
2598 	atomic_inc(&channel_count);
2599 	spin_unlock_bh(&pn->all_channels_lock);
2600 
2601 	return 0;
2602 }
2603 
2604 /*
2605  * Return the index of a channel.
2606  */
2607 int ppp_channel_index(struct ppp_channel *chan)
2608 {
2609 	struct channel *pch = chan->ppp;
2610 
2611 	if (pch)
2612 		return pch->file.index;
2613 	return -1;
2614 }
2615 
2616 /*
2617  * Return the PPP unit number to which a channel is connected.
2618  */
2619 int ppp_unit_number(struct ppp_channel *chan)
2620 {
2621 	struct channel *pch = chan->ppp;
2622 	int unit = -1;
2623 
2624 	if (pch) {
2625 		read_lock_bh(&pch->upl);
2626 		if (pch->ppp)
2627 			unit = pch->ppp->file.index;
2628 		read_unlock_bh(&pch->upl);
2629 	}
2630 	return unit;
2631 }
2632 
2633 /*
2634  * Return the PPP device interface name of a channel.
2635  */
2636 char *ppp_dev_name(struct ppp_channel *chan)
2637 {
2638 	struct channel *pch = chan->ppp;
2639 	char *name = NULL;
2640 
2641 	if (pch) {
2642 		read_lock_bh(&pch->upl);
2643 		if (pch->ppp && pch->ppp->dev)
2644 			name = pch->ppp->dev->name;
2645 		read_unlock_bh(&pch->upl);
2646 	}
2647 	return name;
2648 }
2649 
2650 
2651 /*
2652  * Disconnect a channel from the generic layer.
2653  * This must be called in process context.
2654  */
2655 void
2656 ppp_unregister_channel(struct ppp_channel *chan)
2657 {
2658 	struct channel *pch = chan->ppp;
2659 	struct ppp_net *pn;
2660 
2661 	if (!pch)
2662 		return;		/* should never happen */
2663 
2664 	chan->ppp = NULL;
2665 
2666 	/*
2667 	 * This ensures that we have returned from any calls into the
2668 	 * the channel's start_xmit or ioctl routine before we proceed.
2669 	 */
2670 	down_write(&pch->chan_sem);
2671 	spin_lock_bh(&pch->downl);
2672 	pch->chan = NULL;
2673 	spin_unlock_bh(&pch->downl);
2674 	up_write(&pch->chan_sem);
2675 	ppp_disconnect_channel(pch);
2676 
2677 	pn = ppp_pernet(pch->chan_net);
2678 	spin_lock_bh(&pn->all_channels_lock);
2679 	list_del(&pch->list);
2680 	spin_unlock_bh(&pn->all_channels_lock);
2681 
2682 	pch->file.dead = 1;
2683 	wake_up_interruptible(&pch->file.rwait);
2684 	if (refcount_dec_and_test(&pch->file.refcnt))
2685 		ppp_destroy_channel(pch);
2686 }
2687 
2688 /*
2689  * Callback from a channel when it can accept more to transmit.
2690  * This should be called at BH/softirq level, not interrupt level.
2691  */
2692 void
2693 ppp_output_wakeup(struct ppp_channel *chan)
2694 {
2695 	struct channel *pch = chan->ppp;
2696 
2697 	if (!pch)
2698 		return;
2699 	ppp_channel_push(pch);
2700 }
2701 
2702 /*
2703  * Compression control.
2704  */
2705 
2706 /* Process the PPPIOCSCOMPRESS ioctl. */
2707 static int
2708 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2709 {
2710 	int err;
2711 	struct compressor *cp, *ocomp;
2712 	struct ppp_option_data data;
2713 	void *state, *ostate;
2714 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2715 
2716 	err = -EFAULT;
2717 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2718 		goto out;
2719 	if (data.length > CCP_MAX_OPTION_LENGTH)
2720 		goto out;
2721 	if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2722 		goto out;
2723 
2724 	err = -EINVAL;
2725 	if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2726 		goto out;
2727 
2728 	cp = try_then_request_module(
2729 		find_compressor(ccp_option[0]),
2730 		"ppp-compress-%d", ccp_option[0]);
2731 	if (!cp)
2732 		goto out;
2733 
2734 	err = -ENOBUFS;
2735 	if (data.transmit) {
2736 		state = cp->comp_alloc(ccp_option, data.length);
2737 		if (state) {
2738 			ppp_xmit_lock(ppp);
2739 			ppp->xstate &= ~SC_COMP_RUN;
2740 			ocomp = ppp->xcomp;
2741 			ostate = ppp->xc_state;
2742 			ppp->xcomp = cp;
2743 			ppp->xc_state = state;
2744 			ppp_xmit_unlock(ppp);
2745 			if (ostate) {
2746 				ocomp->comp_free(ostate);
2747 				module_put(ocomp->owner);
2748 			}
2749 			err = 0;
2750 		} else
2751 			module_put(cp->owner);
2752 
2753 	} else {
2754 		state = cp->decomp_alloc(ccp_option, data.length);
2755 		if (state) {
2756 			ppp_recv_lock(ppp);
2757 			ppp->rstate &= ~SC_DECOMP_RUN;
2758 			ocomp = ppp->rcomp;
2759 			ostate = ppp->rc_state;
2760 			ppp->rcomp = cp;
2761 			ppp->rc_state = state;
2762 			ppp_recv_unlock(ppp);
2763 			if (ostate) {
2764 				ocomp->decomp_free(ostate);
2765 				module_put(ocomp->owner);
2766 			}
2767 			err = 0;
2768 		} else
2769 			module_put(cp->owner);
2770 	}
2771 
2772  out:
2773 	return err;
2774 }
2775 
2776 /*
2777  * Look at a CCP packet and update our state accordingly.
2778  * We assume the caller has the xmit or recv path locked.
2779  */
2780 static void
2781 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2782 {
2783 	unsigned char *dp;
2784 	int len;
2785 
2786 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2787 		return;	/* no header */
2788 	dp = skb->data + 2;
2789 
2790 	switch (CCP_CODE(dp)) {
2791 	case CCP_CONFREQ:
2792 
2793 		/* A ConfReq starts negotiation of compression
2794 		 * in one direction of transmission,
2795 		 * and hence brings it down...but which way?
2796 		 *
2797 		 * Remember:
2798 		 * A ConfReq indicates what the sender would like to receive
2799 		 */
2800 		if(inbound)
2801 			/* He is proposing what I should send */
2802 			ppp->xstate &= ~SC_COMP_RUN;
2803 		else
2804 			/* I am proposing to what he should send */
2805 			ppp->rstate &= ~SC_DECOMP_RUN;
2806 
2807 		break;
2808 
2809 	case CCP_TERMREQ:
2810 	case CCP_TERMACK:
2811 		/*
2812 		 * CCP is going down, both directions of transmission
2813 		 */
2814 		ppp->rstate &= ~SC_DECOMP_RUN;
2815 		ppp->xstate &= ~SC_COMP_RUN;
2816 		break;
2817 
2818 	case CCP_CONFACK:
2819 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2820 			break;
2821 		len = CCP_LENGTH(dp);
2822 		if (!pskb_may_pull(skb, len + 2))
2823 			return;		/* too short */
2824 		dp += CCP_HDRLEN;
2825 		len -= CCP_HDRLEN;
2826 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2827 			break;
2828 		if (inbound) {
2829 			/* we will start receiving compressed packets */
2830 			if (!ppp->rc_state)
2831 				break;
2832 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2833 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2834 				ppp->rstate |= SC_DECOMP_RUN;
2835 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2836 			}
2837 		} else {
2838 			/* we will soon start sending compressed packets */
2839 			if (!ppp->xc_state)
2840 				break;
2841 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2842 					ppp->file.index, 0, ppp->debug))
2843 				ppp->xstate |= SC_COMP_RUN;
2844 		}
2845 		break;
2846 
2847 	case CCP_RESETACK:
2848 		/* reset the [de]compressor */
2849 		if ((ppp->flags & SC_CCP_UP) == 0)
2850 			break;
2851 		if (inbound) {
2852 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2853 				ppp->rcomp->decomp_reset(ppp->rc_state);
2854 				ppp->rstate &= ~SC_DC_ERROR;
2855 			}
2856 		} else {
2857 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2858 				ppp->xcomp->comp_reset(ppp->xc_state);
2859 		}
2860 		break;
2861 	}
2862 }
2863 
2864 /* Free up compression resources. */
2865 static void
2866 ppp_ccp_closed(struct ppp *ppp)
2867 {
2868 	void *xstate, *rstate;
2869 	struct compressor *xcomp, *rcomp;
2870 
2871 	ppp_lock(ppp);
2872 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2873 	ppp->xstate = 0;
2874 	xcomp = ppp->xcomp;
2875 	xstate = ppp->xc_state;
2876 	ppp->xc_state = NULL;
2877 	ppp->rstate = 0;
2878 	rcomp = ppp->rcomp;
2879 	rstate = ppp->rc_state;
2880 	ppp->rc_state = NULL;
2881 	ppp_unlock(ppp);
2882 
2883 	if (xstate) {
2884 		xcomp->comp_free(xstate);
2885 		module_put(xcomp->owner);
2886 	}
2887 	if (rstate) {
2888 		rcomp->decomp_free(rstate);
2889 		module_put(rcomp->owner);
2890 	}
2891 }
2892 
2893 /* List of compressors. */
2894 static LIST_HEAD(compressor_list);
2895 static DEFINE_SPINLOCK(compressor_list_lock);
2896 
2897 struct compressor_entry {
2898 	struct list_head list;
2899 	struct compressor *comp;
2900 };
2901 
2902 static struct compressor_entry *
2903 find_comp_entry(int proto)
2904 {
2905 	struct compressor_entry *ce;
2906 
2907 	list_for_each_entry(ce, &compressor_list, list) {
2908 		if (ce->comp->compress_proto == proto)
2909 			return ce;
2910 	}
2911 	return NULL;
2912 }
2913 
2914 /* Register a compressor */
2915 int
2916 ppp_register_compressor(struct compressor *cp)
2917 {
2918 	struct compressor_entry *ce;
2919 	int ret;
2920 	spin_lock(&compressor_list_lock);
2921 	ret = -EEXIST;
2922 	if (find_comp_entry(cp->compress_proto))
2923 		goto out;
2924 	ret = -ENOMEM;
2925 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2926 	if (!ce)
2927 		goto out;
2928 	ret = 0;
2929 	ce->comp = cp;
2930 	list_add(&ce->list, &compressor_list);
2931  out:
2932 	spin_unlock(&compressor_list_lock);
2933 	return ret;
2934 }
2935 
2936 /* Unregister a compressor */
2937 void
2938 ppp_unregister_compressor(struct compressor *cp)
2939 {
2940 	struct compressor_entry *ce;
2941 
2942 	spin_lock(&compressor_list_lock);
2943 	ce = find_comp_entry(cp->compress_proto);
2944 	if (ce && ce->comp == cp) {
2945 		list_del(&ce->list);
2946 		kfree(ce);
2947 	}
2948 	spin_unlock(&compressor_list_lock);
2949 }
2950 
2951 /* Find a compressor. */
2952 static struct compressor *
2953 find_compressor(int type)
2954 {
2955 	struct compressor_entry *ce;
2956 	struct compressor *cp = NULL;
2957 
2958 	spin_lock(&compressor_list_lock);
2959 	ce = find_comp_entry(type);
2960 	if (ce) {
2961 		cp = ce->comp;
2962 		if (!try_module_get(cp->owner))
2963 			cp = NULL;
2964 	}
2965 	spin_unlock(&compressor_list_lock);
2966 	return cp;
2967 }
2968 
2969 /*
2970  * Miscelleneous stuff.
2971  */
2972 
2973 static void
2974 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2975 {
2976 	struct slcompress *vj = ppp->vj;
2977 
2978 	memset(st, 0, sizeof(*st));
2979 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2980 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2981 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2982 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2983 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2984 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2985 	if (!vj)
2986 		return;
2987 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2988 	st->vj.vjs_compressed = vj->sls_o_compressed;
2989 	st->vj.vjs_searches = vj->sls_o_searches;
2990 	st->vj.vjs_misses = vj->sls_o_misses;
2991 	st->vj.vjs_errorin = vj->sls_i_error;
2992 	st->vj.vjs_tossed = vj->sls_i_tossed;
2993 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2994 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2995 }
2996 
2997 /*
2998  * Stuff for handling the lists of ppp units and channels
2999  * and for initialization.
3000  */
3001 
3002 /*
3003  * Create a new ppp interface unit.  Fails if it can't allocate memory
3004  * or if there is already a unit with the requested number.
3005  * unit == -1 means allocate a new number.
3006  */
3007 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
3008 {
3009 	struct ppp_config conf = {
3010 		.file = file,
3011 		.unit = *unit,
3012 		.ifname_is_set = false,
3013 	};
3014 	struct net_device *dev;
3015 	struct ppp *ppp;
3016 	int err;
3017 
3018 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
3019 	if (!dev) {
3020 		err = -ENOMEM;
3021 		goto err;
3022 	}
3023 	dev_net_set(dev, net);
3024 	dev->rtnl_link_ops = &ppp_link_ops;
3025 
3026 	rtnl_lock();
3027 
3028 	err = ppp_dev_configure(net, dev, &conf);
3029 	if (err < 0)
3030 		goto err_dev;
3031 	ppp = netdev_priv(dev);
3032 	*unit = ppp->file.index;
3033 
3034 	rtnl_unlock();
3035 
3036 	return 0;
3037 
3038 err_dev:
3039 	rtnl_unlock();
3040 	free_netdev(dev);
3041 err:
3042 	return err;
3043 }
3044 
3045 /*
3046  * Initialize a ppp_file structure.
3047  */
3048 static void
3049 init_ppp_file(struct ppp_file *pf, int kind)
3050 {
3051 	pf->kind = kind;
3052 	skb_queue_head_init(&pf->xq);
3053 	skb_queue_head_init(&pf->rq);
3054 	refcount_set(&pf->refcnt, 1);
3055 	init_waitqueue_head(&pf->rwait);
3056 }
3057 
3058 /*
3059  * Free the memory used by a ppp unit.  This is only called once
3060  * there are no channels connected to the unit and no file structs
3061  * that reference the unit.
3062  */
3063 static void ppp_destroy_interface(struct ppp *ppp)
3064 {
3065 	atomic_dec(&ppp_unit_count);
3066 
3067 	if (!ppp->file.dead || ppp->n_channels) {
3068 		/* "can't happen" */
3069 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
3070 			   "but dead=%d n_channels=%d !\n",
3071 			   ppp, ppp->file.dead, ppp->n_channels);
3072 		return;
3073 	}
3074 
3075 	ppp_ccp_closed(ppp);
3076 	if (ppp->vj) {
3077 		slhc_free(ppp->vj);
3078 		ppp->vj = NULL;
3079 	}
3080 	skb_queue_purge(&ppp->file.xq);
3081 	skb_queue_purge(&ppp->file.rq);
3082 #ifdef CONFIG_PPP_MULTILINK
3083 	skb_queue_purge(&ppp->mrq);
3084 #endif /* CONFIG_PPP_MULTILINK */
3085 #ifdef CONFIG_PPP_FILTER
3086 	if (ppp->pass_filter) {
3087 		bpf_prog_destroy(ppp->pass_filter);
3088 		ppp->pass_filter = NULL;
3089 	}
3090 
3091 	if (ppp->active_filter) {
3092 		bpf_prog_destroy(ppp->active_filter);
3093 		ppp->active_filter = NULL;
3094 	}
3095 #endif /* CONFIG_PPP_FILTER */
3096 
3097 	kfree_skb(ppp->xmit_pending);
3098 	free_percpu(ppp->xmit_recursion);
3099 
3100 	free_netdev(ppp->dev);
3101 }
3102 
3103 /*
3104  * Locate an existing ppp unit.
3105  * The caller should have locked the all_ppp_mutex.
3106  */
3107 static struct ppp *
3108 ppp_find_unit(struct ppp_net *pn, int unit)
3109 {
3110 	return unit_find(&pn->units_idr, unit);
3111 }
3112 
3113 /*
3114  * Locate an existing ppp channel.
3115  * The caller should have locked the all_channels_lock.
3116  * First we look in the new_channels list, then in the
3117  * all_channels list.  If found in the new_channels list,
3118  * we move it to the all_channels list.  This is for speed
3119  * when we have a lot of channels in use.
3120  */
3121 static struct channel *
3122 ppp_find_channel(struct ppp_net *pn, int unit)
3123 {
3124 	struct channel *pch;
3125 
3126 	list_for_each_entry(pch, &pn->new_channels, list) {
3127 		if (pch->file.index == unit) {
3128 			list_move(&pch->list, &pn->all_channels);
3129 			return pch;
3130 		}
3131 	}
3132 
3133 	list_for_each_entry(pch, &pn->all_channels, list) {
3134 		if (pch->file.index == unit)
3135 			return pch;
3136 	}
3137 
3138 	return NULL;
3139 }
3140 
3141 /*
3142  * Connect a PPP channel to a PPP interface unit.
3143  */
3144 static int
3145 ppp_connect_channel(struct channel *pch, int unit)
3146 {
3147 	struct ppp *ppp;
3148 	struct ppp_net *pn;
3149 	int ret = -ENXIO;
3150 	int hdrlen;
3151 
3152 	pn = ppp_pernet(pch->chan_net);
3153 
3154 	mutex_lock(&pn->all_ppp_mutex);
3155 	ppp = ppp_find_unit(pn, unit);
3156 	if (!ppp)
3157 		goto out;
3158 	write_lock_bh(&pch->upl);
3159 	ret = -EINVAL;
3160 	if (pch->ppp)
3161 		goto outl;
3162 
3163 	ppp_lock(ppp);
3164 	if (pch->file.hdrlen > ppp->file.hdrlen)
3165 		ppp->file.hdrlen = pch->file.hdrlen;
3166 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
3167 	if (hdrlen > ppp->dev->hard_header_len)
3168 		ppp->dev->hard_header_len = hdrlen;
3169 	list_add_tail(&pch->clist, &ppp->channels);
3170 	++ppp->n_channels;
3171 	pch->ppp = ppp;
3172 	refcount_inc(&ppp->file.refcnt);
3173 	ppp_unlock(ppp);
3174 	ret = 0;
3175 
3176  outl:
3177 	write_unlock_bh(&pch->upl);
3178  out:
3179 	mutex_unlock(&pn->all_ppp_mutex);
3180 	return ret;
3181 }
3182 
3183 /*
3184  * Disconnect a channel from its ppp unit.
3185  */
3186 static int
3187 ppp_disconnect_channel(struct channel *pch)
3188 {
3189 	struct ppp *ppp;
3190 	int err = -EINVAL;
3191 
3192 	write_lock_bh(&pch->upl);
3193 	ppp = pch->ppp;
3194 	pch->ppp = NULL;
3195 	write_unlock_bh(&pch->upl);
3196 	if (ppp) {
3197 		/* remove it from the ppp unit's list */
3198 		ppp_lock(ppp);
3199 		list_del(&pch->clist);
3200 		if (--ppp->n_channels == 0)
3201 			wake_up_interruptible(&ppp->file.rwait);
3202 		ppp_unlock(ppp);
3203 		if (refcount_dec_and_test(&ppp->file.refcnt))
3204 			ppp_destroy_interface(ppp);
3205 		err = 0;
3206 	}
3207 	return err;
3208 }
3209 
3210 /*
3211  * Free up the resources used by a ppp channel.
3212  */
3213 static void ppp_destroy_channel(struct channel *pch)
3214 {
3215 	put_net(pch->chan_net);
3216 	pch->chan_net = NULL;
3217 
3218 	atomic_dec(&channel_count);
3219 
3220 	if (!pch->file.dead) {
3221 		/* "can't happen" */
3222 		pr_err("ppp: destroying undead channel %p !\n", pch);
3223 		return;
3224 	}
3225 	skb_queue_purge(&pch->file.xq);
3226 	skb_queue_purge(&pch->file.rq);
3227 	kfree(pch);
3228 }
3229 
3230 static void __exit ppp_cleanup(void)
3231 {
3232 	/* should never happen */
3233 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3234 		pr_err("PPP: removing module but units remain!\n");
3235 	rtnl_link_unregister(&ppp_link_ops);
3236 	unregister_chrdev(PPP_MAJOR, "ppp");
3237 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3238 	class_destroy(ppp_class);
3239 	unregister_pernet_device(&ppp_net_ops);
3240 }
3241 
3242 /*
3243  * Units handling. Caller must protect concurrent access
3244  * by holding all_ppp_mutex
3245  */
3246 
3247 /* associate pointer with specified number */
3248 static int unit_set(struct idr *p, void *ptr, int n)
3249 {
3250 	int unit;
3251 
3252 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3253 	if (unit == -ENOSPC)
3254 		unit = -EINVAL;
3255 	return unit;
3256 }
3257 
3258 /* get new free unit number and associate pointer with it */
3259 static int unit_get(struct idr *p, void *ptr)
3260 {
3261 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3262 }
3263 
3264 /* put unit number back to a pool */
3265 static void unit_put(struct idr *p, int n)
3266 {
3267 	idr_remove(p, n);
3268 }
3269 
3270 /* get pointer associated with the number */
3271 static void *unit_find(struct idr *p, int n)
3272 {
3273 	return idr_find(p, n);
3274 }
3275 
3276 /* Module/initialization stuff */
3277 
3278 module_init(ppp_init);
3279 module_exit(ppp_cleanup);
3280 
3281 EXPORT_SYMBOL(ppp_register_net_channel);
3282 EXPORT_SYMBOL(ppp_register_channel);
3283 EXPORT_SYMBOL(ppp_unregister_channel);
3284 EXPORT_SYMBOL(ppp_channel_index);
3285 EXPORT_SYMBOL(ppp_unit_number);
3286 EXPORT_SYMBOL(ppp_dev_name);
3287 EXPORT_SYMBOL(ppp_input);
3288 EXPORT_SYMBOL(ppp_input_error);
3289 EXPORT_SYMBOL(ppp_output_wakeup);
3290 EXPORT_SYMBOL(ppp_register_compressor);
3291 EXPORT_SYMBOL(ppp_unregister_compressor);
3292 MODULE_LICENSE("GPL");
3293 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3294 MODULE_ALIAS_RTNL_LINK("ppp");
3295 MODULE_ALIAS("devname:ppp");
3296