xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision 044ace5e)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/idr.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/ppp-ioctl.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/stddef.h>
47 #include <linux/device.h>
48 #include <linux/mutex.h>
49 #include <linux/slab.h>
50 #include <linux/file.h>
51 #include <asm/unaligned.h>
52 #include <net/slhc_vj.h>
53 #include <linux/atomic.h>
54 #include <linux/refcount.h>
55 
56 #include <linux/nsproxy.h>
57 #include <net/net_namespace.h>
58 #include <net/netns/generic.h>
59 
60 #define PPP_VERSION	"2.4.2"
61 
62 /*
63  * Network protocols we support.
64  */
65 #define NP_IP	0		/* Internet Protocol V4 */
66 #define NP_IPV6	1		/* Internet Protocol V6 */
67 #define NP_IPX	2		/* IPX protocol */
68 #define NP_AT	3		/* Appletalk protocol */
69 #define NP_MPLS_UC 4		/* MPLS unicast */
70 #define NP_MPLS_MC 5		/* MPLS multicast */
71 #define NUM_NP	6		/* Number of NPs. */
72 
73 #define MPHDRLEN	6	/* multilink protocol header length */
74 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
75 
76 /*
77  * An instance of /dev/ppp can be associated with either a ppp
78  * interface unit or a ppp channel.  In both cases, file->private_data
79  * points to one of these.
80  */
81 struct ppp_file {
82 	enum {
83 		INTERFACE=1, CHANNEL
84 	}		kind;
85 	struct sk_buff_head xq;		/* pppd transmit queue */
86 	struct sk_buff_head rq;		/* receive queue for pppd */
87 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
88 	refcount_t	refcnt;		/* # refs (incl /dev/ppp attached) */
89 	int		hdrlen;		/* space to leave for headers */
90 	int		index;		/* interface unit / channel number */
91 	int		dead;		/* unit/channel has been shut down */
92 };
93 
94 #define PF_TO_X(pf, X)		container_of(pf, X, file)
95 
96 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
97 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
98 
99 /*
100  * Data structure to hold primary network stats for which
101  * we want to use 64 bit storage.  Other network stats
102  * are stored in dev->stats of the ppp strucute.
103  */
104 struct ppp_link_stats {
105 	u64 rx_packets;
106 	u64 tx_packets;
107 	u64 rx_bytes;
108 	u64 tx_bytes;
109 };
110 
111 /*
112  * Data structure describing one ppp unit.
113  * A ppp unit corresponds to a ppp network interface device
114  * and represents a multilink bundle.
115  * It can have 0 or more ppp channels connected to it.
116  */
117 struct ppp {
118 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
119 	struct file	*owner;		/* file that owns this unit 48 */
120 	struct list_head channels;	/* list of attached channels 4c */
121 	int		n_channels;	/* how many channels are attached 54 */
122 	spinlock_t	rlock;		/* lock for receive side 58 */
123 	spinlock_t	wlock;		/* lock for transmit side 5c */
124 	int __percpu	*xmit_recursion; /* xmit recursion detect */
125 	int		mru;		/* max receive unit 60 */
126 	unsigned int	flags;		/* control bits 64 */
127 	unsigned int	xstate;		/* transmit state bits 68 */
128 	unsigned int	rstate;		/* receive state bits 6c */
129 	int		debug;		/* debug flags 70 */
130 	struct slcompress *vj;		/* state for VJ header compression */
131 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
132 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
133 	struct compressor *xcomp;	/* transmit packet compressor 8c */
134 	void		*xc_state;	/* its internal state 90 */
135 	struct compressor *rcomp;	/* receive decompressor 94 */
136 	void		*rc_state;	/* its internal state 98 */
137 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
138 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
139 	struct net_device *dev;		/* network interface device a4 */
140 	int		closing;	/* is device closing down? a8 */
141 #ifdef CONFIG_PPP_MULTILINK
142 	int		nxchan;		/* next channel to send something on */
143 	u32		nxseq;		/* next sequence number to send */
144 	int		mrru;		/* MP: max reconst. receive unit */
145 	u32		nextseq;	/* MP: seq no of next packet */
146 	u32		minseq;		/* MP: min of most recent seqnos */
147 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
148 #endif /* CONFIG_PPP_MULTILINK */
149 #ifdef CONFIG_PPP_FILTER
150 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
151 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
152 #endif /* CONFIG_PPP_FILTER */
153 	struct net	*ppp_net;	/* the net we belong to */
154 	struct ppp_link_stats stats64;	/* 64 bit network stats */
155 };
156 
157 /*
158  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
159  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
160  * SC_MUST_COMP
161  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
162  * Bits in xstate: SC_COMP_RUN
163  */
164 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
165 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
166 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
167 
168 /*
169  * Private data structure for each channel.
170  * This includes the data structure used for multilink.
171  */
172 struct channel {
173 	struct ppp_file	file;		/* stuff for read/write/poll */
174 	struct list_head list;		/* link in all/new_channels list */
175 	struct ppp_channel *chan;	/* public channel data structure */
176 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
177 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
178 	struct ppp	*ppp;		/* ppp unit we're connected to */
179 	struct net	*chan_net;	/* the net channel belongs to */
180 	struct list_head clist;		/* link in list of channels per unit */
181 	rwlock_t	upl;		/* protects `ppp' */
182 #ifdef CONFIG_PPP_MULTILINK
183 	u8		avail;		/* flag used in multilink stuff */
184 	u8		had_frag;	/* >= 1 fragments have been sent */
185 	u32		lastseq;	/* MP: last sequence # received */
186 	int		speed;		/* speed of the corresponding ppp channel*/
187 #endif /* CONFIG_PPP_MULTILINK */
188 };
189 
190 struct ppp_config {
191 	struct file *file;
192 	s32 unit;
193 	bool ifname_is_set;
194 };
195 
196 /*
197  * SMP locking issues:
198  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
199  * list and the ppp.n_channels field, you need to take both locks
200  * before you modify them.
201  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
202  * channel.downl.
203  */
204 
205 static DEFINE_MUTEX(ppp_mutex);
206 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
207 static atomic_t channel_count = ATOMIC_INIT(0);
208 
209 /* per-net private data for this module */
210 static unsigned int ppp_net_id __read_mostly;
211 struct ppp_net {
212 	/* units to ppp mapping */
213 	struct idr units_idr;
214 
215 	/*
216 	 * all_ppp_mutex protects the units_idr mapping.
217 	 * It also ensures that finding a ppp unit in the units_idr
218 	 * map and updating its file.refcnt field is atomic.
219 	 */
220 	struct mutex all_ppp_mutex;
221 
222 	/* channels */
223 	struct list_head all_channels;
224 	struct list_head new_channels;
225 	int last_channel_index;
226 
227 	/*
228 	 * all_channels_lock protects all_channels and
229 	 * last_channel_index, and the atomicity of find
230 	 * a channel and updating its file.refcnt field.
231 	 */
232 	spinlock_t all_channels_lock;
233 };
234 
235 /* Get the PPP protocol number from a skb */
236 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
237 
238 /* We limit the length of ppp->file.rq to this (arbitrary) value */
239 #define PPP_MAX_RQLEN	32
240 
241 /*
242  * Maximum number of multilink fragments queued up.
243  * This has to be large enough to cope with the maximum latency of
244  * the slowest channel relative to the others.  Strictly it should
245  * depend on the number of channels and their characteristics.
246  */
247 #define PPP_MP_MAX_QLEN	128
248 
249 /* Multilink header bits. */
250 #define B	0x80		/* this fragment begins a packet */
251 #define E	0x40		/* this fragment ends a packet */
252 
253 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
254 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
255 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
256 
257 /* Prototypes. */
258 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
259 			struct file *file, unsigned int cmd, unsigned long arg);
260 static void ppp_xmit_process(struct ppp *ppp);
261 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
262 static void ppp_push(struct ppp *ppp);
263 static void ppp_channel_push(struct channel *pch);
264 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
265 			      struct channel *pch);
266 static void ppp_receive_error(struct ppp *ppp);
267 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
268 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
269 					    struct sk_buff *skb);
270 #ifdef CONFIG_PPP_MULTILINK
271 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
272 				struct channel *pch);
273 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
274 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
275 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
276 #endif /* CONFIG_PPP_MULTILINK */
277 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
278 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
279 static void ppp_ccp_closed(struct ppp *ppp);
280 static struct compressor *find_compressor(int type);
281 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
282 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
283 static void init_ppp_file(struct ppp_file *pf, int kind);
284 static void ppp_destroy_interface(struct ppp *ppp);
285 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
286 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
287 static int ppp_connect_channel(struct channel *pch, int unit);
288 static int ppp_disconnect_channel(struct channel *pch);
289 static void ppp_destroy_channel(struct channel *pch);
290 static int unit_get(struct idr *p, void *ptr);
291 static int unit_set(struct idr *p, void *ptr, int n);
292 static void unit_put(struct idr *p, int n);
293 static void *unit_find(struct idr *p, int n);
294 static void ppp_setup(struct net_device *dev);
295 
296 static const struct net_device_ops ppp_netdev_ops;
297 
298 static struct class *ppp_class;
299 
300 /* per net-namespace data */
301 static inline struct ppp_net *ppp_pernet(struct net *net)
302 {
303 	BUG_ON(!net);
304 
305 	return net_generic(net, ppp_net_id);
306 }
307 
308 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
309 static inline int proto_to_npindex(int proto)
310 {
311 	switch (proto) {
312 	case PPP_IP:
313 		return NP_IP;
314 	case PPP_IPV6:
315 		return NP_IPV6;
316 	case PPP_IPX:
317 		return NP_IPX;
318 	case PPP_AT:
319 		return NP_AT;
320 	case PPP_MPLS_UC:
321 		return NP_MPLS_UC;
322 	case PPP_MPLS_MC:
323 		return NP_MPLS_MC;
324 	}
325 	return -EINVAL;
326 }
327 
328 /* Translates an NP index into a PPP protocol number */
329 static const int npindex_to_proto[NUM_NP] = {
330 	PPP_IP,
331 	PPP_IPV6,
332 	PPP_IPX,
333 	PPP_AT,
334 	PPP_MPLS_UC,
335 	PPP_MPLS_MC,
336 };
337 
338 /* Translates an ethertype into an NP index */
339 static inline int ethertype_to_npindex(int ethertype)
340 {
341 	switch (ethertype) {
342 	case ETH_P_IP:
343 		return NP_IP;
344 	case ETH_P_IPV6:
345 		return NP_IPV6;
346 	case ETH_P_IPX:
347 		return NP_IPX;
348 	case ETH_P_PPPTALK:
349 	case ETH_P_ATALK:
350 		return NP_AT;
351 	case ETH_P_MPLS_UC:
352 		return NP_MPLS_UC;
353 	case ETH_P_MPLS_MC:
354 		return NP_MPLS_MC;
355 	}
356 	return -1;
357 }
358 
359 /* Translates an NP index into an ethertype */
360 static const int npindex_to_ethertype[NUM_NP] = {
361 	ETH_P_IP,
362 	ETH_P_IPV6,
363 	ETH_P_IPX,
364 	ETH_P_PPPTALK,
365 	ETH_P_MPLS_UC,
366 	ETH_P_MPLS_MC,
367 };
368 
369 /*
370  * Locking shorthand.
371  */
372 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
373 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
374 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
375 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
376 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
377 				     ppp_recv_lock(ppp); } while (0)
378 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
379 				     ppp_xmit_unlock(ppp); } while (0)
380 
381 /*
382  * /dev/ppp device routines.
383  * The /dev/ppp device is used by pppd to control the ppp unit.
384  * It supports the read, write, ioctl and poll functions.
385  * Open instances of /dev/ppp can be in one of three states:
386  * unattached, attached to a ppp unit, or attached to a ppp channel.
387  */
388 static int ppp_open(struct inode *inode, struct file *file)
389 {
390 	/*
391 	 * This could (should?) be enforced by the permissions on /dev/ppp.
392 	 */
393 	if (!ns_capable(file->f_cred->user_ns, CAP_NET_ADMIN))
394 		return -EPERM;
395 	return 0;
396 }
397 
398 static int ppp_release(struct inode *unused, struct file *file)
399 {
400 	struct ppp_file *pf = file->private_data;
401 	struct ppp *ppp;
402 
403 	if (pf) {
404 		file->private_data = NULL;
405 		if (pf->kind == INTERFACE) {
406 			ppp = PF_TO_PPP(pf);
407 			rtnl_lock();
408 			if (file == ppp->owner)
409 				unregister_netdevice(ppp->dev);
410 			rtnl_unlock();
411 		}
412 		if (refcount_dec_and_test(&pf->refcnt)) {
413 			switch (pf->kind) {
414 			case INTERFACE:
415 				ppp_destroy_interface(PF_TO_PPP(pf));
416 				break;
417 			case CHANNEL:
418 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
419 				break;
420 			}
421 		}
422 	}
423 	return 0;
424 }
425 
426 static ssize_t ppp_read(struct file *file, char __user *buf,
427 			size_t count, loff_t *ppos)
428 {
429 	struct ppp_file *pf = file->private_data;
430 	DECLARE_WAITQUEUE(wait, current);
431 	ssize_t ret;
432 	struct sk_buff *skb = NULL;
433 	struct iovec iov;
434 	struct iov_iter to;
435 
436 	ret = count;
437 
438 	if (!pf)
439 		return -ENXIO;
440 	add_wait_queue(&pf->rwait, &wait);
441 	for (;;) {
442 		set_current_state(TASK_INTERRUPTIBLE);
443 		skb = skb_dequeue(&pf->rq);
444 		if (skb)
445 			break;
446 		ret = 0;
447 		if (pf->dead)
448 			break;
449 		if (pf->kind == INTERFACE) {
450 			/*
451 			 * Return 0 (EOF) on an interface that has no
452 			 * channels connected, unless it is looping
453 			 * network traffic (demand mode).
454 			 */
455 			struct ppp *ppp = PF_TO_PPP(pf);
456 
457 			ppp_recv_lock(ppp);
458 			if (ppp->n_channels == 0 &&
459 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
460 				ppp_recv_unlock(ppp);
461 				break;
462 			}
463 			ppp_recv_unlock(ppp);
464 		}
465 		ret = -EAGAIN;
466 		if (file->f_flags & O_NONBLOCK)
467 			break;
468 		ret = -ERESTARTSYS;
469 		if (signal_pending(current))
470 			break;
471 		schedule();
472 	}
473 	set_current_state(TASK_RUNNING);
474 	remove_wait_queue(&pf->rwait, &wait);
475 
476 	if (!skb)
477 		goto out;
478 
479 	ret = -EOVERFLOW;
480 	if (skb->len > count)
481 		goto outf;
482 	ret = -EFAULT;
483 	iov.iov_base = buf;
484 	iov.iov_len = count;
485 	iov_iter_init(&to, READ, &iov, 1, count);
486 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
487 		goto outf;
488 	ret = skb->len;
489 
490  outf:
491 	kfree_skb(skb);
492  out:
493 	return ret;
494 }
495 
496 static ssize_t ppp_write(struct file *file, const char __user *buf,
497 			 size_t count, loff_t *ppos)
498 {
499 	struct ppp_file *pf = file->private_data;
500 	struct sk_buff *skb;
501 	ssize_t ret;
502 
503 	if (!pf)
504 		return -ENXIO;
505 	ret = -ENOMEM;
506 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
507 	if (!skb)
508 		goto out;
509 	skb_reserve(skb, pf->hdrlen);
510 	ret = -EFAULT;
511 	if (copy_from_user(skb_put(skb, count), buf, count)) {
512 		kfree_skb(skb);
513 		goto out;
514 	}
515 
516 	skb_queue_tail(&pf->xq, skb);
517 
518 	switch (pf->kind) {
519 	case INTERFACE:
520 		ppp_xmit_process(PF_TO_PPP(pf));
521 		break;
522 	case CHANNEL:
523 		ppp_channel_push(PF_TO_CHANNEL(pf));
524 		break;
525 	}
526 
527 	ret = count;
528 
529  out:
530 	return ret;
531 }
532 
533 /* No kernel lock - fine */
534 static unsigned int ppp_poll(struct file *file, poll_table *wait)
535 {
536 	struct ppp_file *pf = file->private_data;
537 	unsigned int mask;
538 
539 	if (!pf)
540 		return 0;
541 	poll_wait(file, &pf->rwait, wait);
542 	mask = POLLOUT | POLLWRNORM;
543 	if (skb_peek(&pf->rq))
544 		mask |= POLLIN | POLLRDNORM;
545 	if (pf->dead)
546 		mask |= POLLHUP;
547 	else if (pf->kind == INTERFACE) {
548 		/* see comment in ppp_read */
549 		struct ppp *ppp = PF_TO_PPP(pf);
550 
551 		ppp_recv_lock(ppp);
552 		if (ppp->n_channels == 0 &&
553 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
554 			mask |= POLLIN | POLLRDNORM;
555 		ppp_recv_unlock(ppp);
556 	}
557 
558 	return mask;
559 }
560 
561 #ifdef CONFIG_PPP_FILTER
562 static int get_filter(void __user *arg, struct sock_filter **p)
563 {
564 	struct sock_fprog uprog;
565 	struct sock_filter *code = NULL;
566 	int len;
567 
568 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
569 		return -EFAULT;
570 
571 	if (!uprog.len) {
572 		*p = NULL;
573 		return 0;
574 	}
575 
576 	len = uprog.len * sizeof(struct sock_filter);
577 	code = memdup_user(uprog.filter, len);
578 	if (IS_ERR(code))
579 		return PTR_ERR(code);
580 
581 	*p = code;
582 	return uprog.len;
583 }
584 #endif /* CONFIG_PPP_FILTER */
585 
586 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
587 {
588 	struct ppp_file *pf;
589 	struct ppp *ppp;
590 	int err = -EFAULT, val, val2, i;
591 	struct ppp_idle idle;
592 	struct npioctl npi;
593 	int unit, cflags;
594 	struct slcompress *vj;
595 	void __user *argp = (void __user *)arg;
596 	int __user *p = argp;
597 
598 	mutex_lock(&ppp_mutex);
599 
600 	pf = file->private_data;
601 	if (!pf) {
602 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
603 					   pf, file, cmd, arg);
604 		goto out;
605 	}
606 
607 	if (cmd == PPPIOCDETACH) {
608 		/*
609 		 * We have to be careful here... if the file descriptor
610 		 * has been dup'd, we could have another process in the
611 		 * middle of a poll using the same file *, so we had
612 		 * better not free the interface data structures -
613 		 * instead we fail the ioctl.  Even in this case, we
614 		 * shut down the interface if we are the owner of it.
615 		 * Actually, we should get rid of PPPIOCDETACH, userland
616 		 * (i.e. pppd) could achieve the same effect by closing
617 		 * this fd and reopening /dev/ppp.
618 		 */
619 		err = -EINVAL;
620 		if (pf->kind == INTERFACE) {
621 			ppp = PF_TO_PPP(pf);
622 			rtnl_lock();
623 			if (file == ppp->owner)
624 				unregister_netdevice(ppp->dev);
625 			rtnl_unlock();
626 		}
627 		if (atomic_long_read(&file->f_count) < 2) {
628 			ppp_release(NULL, file);
629 			err = 0;
630 		} else
631 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
632 				atomic_long_read(&file->f_count));
633 		goto out;
634 	}
635 
636 	if (pf->kind == CHANNEL) {
637 		struct channel *pch;
638 		struct ppp_channel *chan;
639 
640 		pch = PF_TO_CHANNEL(pf);
641 
642 		switch (cmd) {
643 		case PPPIOCCONNECT:
644 			if (get_user(unit, p))
645 				break;
646 			err = ppp_connect_channel(pch, unit);
647 			break;
648 
649 		case PPPIOCDISCONN:
650 			err = ppp_disconnect_channel(pch);
651 			break;
652 
653 		default:
654 			down_read(&pch->chan_sem);
655 			chan = pch->chan;
656 			err = -ENOTTY;
657 			if (chan && chan->ops->ioctl)
658 				err = chan->ops->ioctl(chan, cmd, arg);
659 			up_read(&pch->chan_sem);
660 		}
661 		goto out;
662 	}
663 
664 	if (pf->kind != INTERFACE) {
665 		/* can't happen */
666 		pr_err("PPP: not interface or channel??\n");
667 		err = -EINVAL;
668 		goto out;
669 	}
670 
671 	ppp = PF_TO_PPP(pf);
672 	switch (cmd) {
673 	case PPPIOCSMRU:
674 		if (get_user(val, p))
675 			break;
676 		ppp->mru = val;
677 		err = 0;
678 		break;
679 
680 	case PPPIOCSFLAGS:
681 		if (get_user(val, p))
682 			break;
683 		ppp_lock(ppp);
684 		cflags = ppp->flags & ~val;
685 #ifdef CONFIG_PPP_MULTILINK
686 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
687 			ppp->nextseq = 0;
688 #endif
689 		ppp->flags = val & SC_FLAG_BITS;
690 		ppp_unlock(ppp);
691 		if (cflags & SC_CCP_OPEN)
692 			ppp_ccp_closed(ppp);
693 		err = 0;
694 		break;
695 
696 	case PPPIOCGFLAGS:
697 		val = ppp->flags | ppp->xstate | ppp->rstate;
698 		if (put_user(val, p))
699 			break;
700 		err = 0;
701 		break;
702 
703 	case PPPIOCSCOMPRESS:
704 		err = ppp_set_compress(ppp, arg);
705 		break;
706 
707 	case PPPIOCGUNIT:
708 		if (put_user(ppp->file.index, p))
709 			break;
710 		err = 0;
711 		break;
712 
713 	case PPPIOCSDEBUG:
714 		if (get_user(val, p))
715 			break;
716 		ppp->debug = val;
717 		err = 0;
718 		break;
719 
720 	case PPPIOCGDEBUG:
721 		if (put_user(ppp->debug, p))
722 			break;
723 		err = 0;
724 		break;
725 
726 	case PPPIOCGIDLE:
727 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
728 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
729 		if (copy_to_user(argp, &idle, sizeof(idle)))
730 			break;
731 		err = 0;
732 		break;
733 
734 	case PPPIOCSMAXCID:
735 		if (get_user(val, p))
736 			break;
737 		val2 = 15;
738 		if ((val >> 16) != 0) {
739 			val2 = val >> 16;
740 			val &= 0xffff;
741 		}
742 		vj = slhc_init(val2+1, val+1);
743 		if (IS_ERR(vj)) {
744 			err = PTR_ERR(vj);
745 			break;
746 		}
747 		ppp_lock(ppp);
748 		if (ppp->vj)
749 			slhc_free(ppp->vj);
750 		ppp->vj = vj;
751 		ppp_unlock(ppp);
752 		err = 0;
753 		break;
754 
755 	case PPPIOCGNPMODE:
756 	case PPPIOCSNPMODE:
757 		if (copy_from_user(&npi, argp, sizeof(npi)))
758 			break;
759 		err = proto_to_npindex(npi.protocol);
760 		if (err < 0)
761 			break;
762 		i = err;
763 		if (cmd == PPPIOCGNPMODE) {
764 			err = -EFAULT;
765 			npi.mode = ppp->npmode[i];
766 			if (copy_to_user(argp, &npi, sizeof(npi)))
767 				break;
768 		} else {
769 			ppp->npmode[i] = npi.mode;
770 			/* we may be able to transmit more packets now (??) */
771 			netif_wake_queue(ppp->dev);
772 		}
773 		err = 0;
774 		break;
775 
776 #ifdef CONFIG_PPP_FILTER
777 	case PPPIOCSPASS:
778 	{
779 		struct sock_filter *code;
780 
781 		err = get_filter(argp, &code);
782 		if (err >= 0) {
783 			struct bpf_prog *pass_filter = NULL;
784 			struct sock_fprog_kern fprog = {
785 				.len = err,
786 				.filter = code,
787 			};
788 
789 			err = 0;
790 			if (fprog.filter)
791 				err = bpf_prog_create(&pass_filter, &fprog);
792 			if (!err) {
793 				ppp_lock(ppp);
794 				if (ppp->pass_filter)
795 					bpf_prog_destroy(ppp->pass_filter);
796 				ppp->pass_filter = pass_filter;
797 				ppp_unlock(ppp);
798 			}
799 			kfree(code);
800 		}
801 		break;
802 	}
803 	case PPPIOCSACTIVE:
804 	{
805 		struct sock_filter *code;
806 
807 		err = get_filter(argp, &code);
808 		if (err >= 0) {
809 			struct bpf_prog *active_filter = NULL;
810 			struct sock_fprog_kern fprog = {
811 				.len = err,
812 				.filter = code,
813 			};
814 
815 			err = 0;
816 			if (fprog.filter)
817 				err = bpf_prog_create(&active_filter, &fprog);
818 			if (!err) {
819 				ppp_lock(ppp);
820 				if (ppp->active_filter)
821 					bpf_prog_destroy(ppp->active_filter);
822 				ppp->active_filter = active_filter;
823 				ppp_unlock(ppp);
824 			}
825 			kfree(code);
826 		}
827 		break;
828 	}
829 #endif /* CONFIG_PPP_FILTER */
830 
831 #ifdef CONFIG_PPP_MULTILINK
832 	case PPPIOCSMRRU:
833 		if (get_user(val, p))
834 			break;
835 		ppp_recv_lock(ppp);
836 		ppp->mrru = val;
837 		ppp_recv_unlock(ppp);
838 		err = 0;
839 		break;
840 #endif /* CONFIG_PPP_MULTILINK */
841 
842 	default:
843 		err = -ENOTTY;
844 	}
845 
846 out:
847 	mutex_unlock(&ppp_mutex);
848 
849 	return err;
850 }
851 
852 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
853 			struct file *file, unsigned int cmd, unsigned long arg)
854 {
855 	int unit, err = -EFAULT;
856 	struct ppp *ppp;
857 	struct channel *chan;
858 	struct ppp_net *pn;
859 	int __user *p = (int __user *)arg;
860 
861 	switch (cmd) {
862 	case PPPIOCNEWUNIT:
863 		/* Create a new ppp unit */
864 		if (get_user(unit, p))
865 			break;
866 		err = ppp_create_interface(net, file, &unit);
867 		if (err < 0)
868 			break;
869 
870 		err = -EFAULT;
871 		if (put_user(unit, p))
872 			break;
873 		err = 0;
874 		break;
875 
876 	case PPPIOCATTACH:
877 		/* Attach to an existing ppp unit */
878 		if (get_user(unit, p))
879 			break;
880 		err = -ENXIO;
881 		pn = ppp_pernet(net);
882 		mutex_lock(&pn->all_ppp_mutex);
883 		ppp = ppp_find_unit(pn, unit);
884 		if (ppp) {
885 			refcount_inc(&ppp->file.refcnt);
886 			file->private_data = &ppp->file;
887 			err = 0;
888 		}
889 		mutex_unlock(&pn->all_ppp_mutex);
890 		break;
891 
892 	case PPPIOCATTCHAN:
893 		if (get_user(unit, p))
894 			break;
895 		err = -ENXIO;
896 		pn = ppp_pernet(net);
897 		spin_lock_bh(&pn->all_channels_lock);
898 		chan = ppp_find_channel(pn, unit);
899 		if (chan) {
900 			refcount_inc(&chan->file.refcnt);
901 			file->private_data = &chan->file;
902 			err = 0;
903 		}
904 		spin_unlock_bh(&pn->all_channels_lock);
905 		break;
906 
907 	default:
908 		err = -ENOTTY;
909 	}
910 
911 	return err;
912 }
913 
914 static const struct file_operations ppp_device_fops = {
915 	.owner		= THIS_MODULE,
916 	.read		= ppp_read,
917 	.write		= ppp_write,
918 	.poll		= ppp_poll,
919 	.unlocked_ioctl	= ppp_ioctl,
920 	.open		= ppp_open,
921 	.release	= ppp_release,
922 	.llseek		= noop_llseek,
923 };
924 
925 static __net_init int ppp_init_net(struct net *net)
926 {
927 	struct ppp_net *pn = net_generic(net, ppp_net_id);
928 
929 	idr_init(&pn->units_idr);
930 	mutex_init(&pn->all_ppp_mutex);
931 
932 	INIT_LIST_HEAD(&pn->all_channels);
933 	INIT_LIST_HEAD(&pn->new_channels);
934 
935 	spin_lock_init(&pn->all_channels_lock);
936 
937 	return 0;
938 }
939 
940 static __net_exit void ppp_exit_net(struct net *net)
941 {
942 	struct ppp_net *pn = net_generic(net, ppp_net_id);
943 	struct net_device *dev;
944 	struct net_device *aux;
945 	struct ppp *ppp;
946 	LIST_HEAD(list);
947 	int id;
948 
949 	rtnl_lock();
950 	for_each_netdev_safe(net, dev, aux) {
951 		if (dev->netdev_ops == &ppp_netdev_ops)
952 			unregister_netdevice_queue(dev, &list);
953 	}
954 
955 	idr_for_each_entry(&pn->units_idr, ppp, id)
956 		/* Skip devices already unregistered by previous loop */
957 		if (!net_eq(dev_net(ppp->dev), net))
958 			unregister_netdevice_queue(ppp->dev, &list);
959 
960 	unregister_netdevice_many(&list);
961 	rtnl_unlock();
962 
963 	mutex_destroy(&pn->all_ppp_mutex);
964 	idr_destroy(&pn->units_idr);
965 	WARN_ON_ONCE(!list_empty(&pn->all_channels));
966 	WARN_ON_ONCE(!list_empty(&pn->new_channels));
967 }
968 
969 static struct pernet_operations ppp_net_ops = {
970 	.init = ppp_init_net,
971 	.exit = ppp_exit_net,
972 	.id   = &ppp_net_id,
973 	.size = sizeof(struct ppp_net),
974 };
975 
976 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
977 {
978 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
979 	int ret;
980 
981 	mutex_lock(&pn->all_ppp_mutex);
982 
983 	if (unit < 0) {
984 		ret = unit_get(&pn->units_idr, ppp);
985 		if (ret < 0)
986 			goto err;
987 	} else {
988 		/* Caller asked for a specific unit number. Fail with -EEXIST
989 		 * if unavailable. For backward compatibility, return -EEXIST
990 		 * too if idr allocation fails; this makes pppd retry without
991 		 * requesting a specific unit number.
992 		 */
993 		if (unit_find(&pn->units_idr, unit)) {
994 			ret = -EEXIST;
995 			goto err;
996 		}
997 		ret = unit_set(&pn->units_idr, ppp, unit);
998 		if (ret < 0) {
999 			/* Rewrite error for backward compatibility */
1000 			ret = -EEXIST;
1001 			goto err;
1002 		}
1003 	}
1004 	ppp->file.index = ret;
1005 
1006 	if (!ifname_is_set)
1007 		snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
1008 
1009 	ret = register_netdevice(ppp->dev);
1010 	if (ret < 0)
1011 		goto err_unit;
1012 
1013 	atomic_inc(&ppp_unit_count);
1014 
1015 	mutex_unlock(&pn->all_ppp_mutex);
1016 
1017 	return 0;
1018 
1019 err_unit:
1020 	unit_put(&pn->units_idr, ppp->file.index);
1021 err:
1022 	mutex_unlock(&pn->all_ppp_mutex);
1023 
1024 	return ret;
1025 }
1026 
1027 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1028 			     const struct ppp_config *conf)
1029 {
1030 	struct ppp *ppp = netdev_priv(dev);
1031 	int indx;
1032 	int err;
1033 	int cpu;
1034 
1035 	ppp->dev = dev;
1036 	ppp->ppp_net = src_net;
1037 	ppp->mru = PPP_MRU;
1038 	ppp->owner = conf->file;
1039 
1040 	init_ppp_file(&ppp->file, INTERFACE);
1041 	ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1042 
1043 	for (indx = 0; indx < NUM_NP; ++indx)
1044 		ppp->npmode[indx] = NPMODE_PASS;
1045 	INIT_LIST_HEAD(&ppp->channels);
1046 	spin_lock_init(&ppp->rlock);
1047 	spin_lock_init(&ppp->wlock);
1048 
1049 	ppp->xmit_recursion = alloc_percpu(int);
1050 	if (!ppp->xmit_recursion) {
1051 		err = -ENOMEM;
1052 		goto err1;
1053 	}
1054 	for_each_possible_cpu(cpu)
1055 		(*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0;
1056 
1057 #ifdef CONFIG_PPP_MULTILINK
1058 	ppp->minseq = -1;
1059 	skb_queue_head_init(&ppp->mrq);
1060 #endif /* CONFIG_PPP_MULTILINK */
1061 #ifdef CONFIG_PPP_FILTER
1062 	ppp->pass_filter = NULL;
1063 	ppp->active_filter = NULL;
1064 #endif /* CONFIG_PPP_FILTER */
1065 
1066 	err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1067 	if (err < 0)
1068 		goto err2;
1069 
1070 	conf->file->private_data = &ppp->file;
1071 
1072 	return 0;
1073 err2:
1074 	free_percpu(ppp->xmit_recursion);
1075 err1:
1076 	return err;
1077 }
1078 
1079 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1080 	[IFLA_PPP_DEV_FD]	= { .type = NLA_S32 },
1081 };
1082 
1083 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[],
1084 			   struct netlink_ext_ack *extack)
1085 {
1086 	if (!data)
1087 		return -EINVAL;
1088 
1089 	if (!data[IFLA_PPP_DEV_FD])
1090 		return -EINVAL;
1091 	if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1092 		return -EBADF;
1093 
1094 	return 0;
1095 }
1096 
1097 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1098 			  struct nlattr *tb[], struct nlattr *data[],
1099 			  struct netlink_ext_ack *extack)
1100 {
1101 	struct ppp_config conf = {
1102 		.unit = -1,
1103 		.ifname_is_set = true,
1104 	};
1105 	struct file *file;
1106 	int err;
1107 
1108 	file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1109 	if (!file)
1110 		return -EBADF;
1111 
1112 	/* rtnl_lock is already held here, but ppp_create_interface() locks
1113 	 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1114 	 * possible deadlock due to lock order inversion, at the cost of
1115 	 * pushing the problem back to userspace.
1116 	 */
1117 	if (!mutex_trylock(&ppp_mutex)) {
1118 		err = -EBUSY;
1119 		goto out;
1120 	}
1121 
1122 	if (file->f_op != &ppp_device_fops || file->private_data) {
1123 		err = -EBADF;
1124 		goto out_unlock;
1125 	}
1126 
1127 	conf.file = file;
1128 
1129 	/* Don't use device name generated by the rtnetlink layer when ifname
1130 	 * isn't specified. Let ppp_dev_configure() set the device name using
1131 	 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows
1132 	 * userspace to infer the device name using to the PPPIOCGUNIT ioctl.
1133 	 */
1134 	if (!tb[IFLA_IFNAME])
1135 		conf.ifname_is_set = false;
1136 
1137 	err = ppp_dev_configure(src_net, dev, &conf);
1138 
1139 out_unlock:
1140 	mutex_unlock(&ppp_mutex);
1141 out:
1142 	fput(file);
1143 
1144 	return err;
1145 }
1146 
1147 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1148 {
1149 	unregister_netdevice_queue(dev, head);
1150 }
1151 
1152 static size_t ppp_nl_get_size(const struct net_device *dev)
1153 {
1154 	return 0;
1155 }
1156 
1157 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1158 {
1159 	return 0;
1160 }
1161 
1162 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1163 {
1164 	struct ppp *ppp = netdev_priv(dev);
1165 
1166 	return ppp->ppp_net;
1167 }
1168 
1169 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1170 	.kind		= "ppp",
1171 	.maxtype	= IFLA_PPP_MAX,
1172 	.policy		= ppp_nl_policy,
1173 	.priv_size	= sizeof(struct ppp),
1174 	.setup		= ppp_setup,
1175 	.validate	= ppp_nl_validate,
1176 	.newlink	= ppp_nl_newlink,
1177 	.dellink	= ppp_nl_dellink,
1178 	.get_size	= ppp_nl_get_size,
1179 	.fill_info	= ppp_nl_fill_info,
1180 	.get_link_net	= ppp_nl_get_link_net,
1181 };
1182 
1183 #define PPP_MAJOR	108
1184 
1185 /* Called at boot time if ppp is compiled into the kernel,
1186    or at module load time (from init_module) if compiled as a module. */
1187 static int __init ppp_init(void)
1188 {
1189 	int err;
1190 
1191 	pr_info("PPP generic driver version " PPP_VERSION "\n");
1192 
1193 	err = register_pernet_device(&ppp_net_ops);
1194 	if (err) {
1195 		pr_err("failed to register PPP pernet device (%d)\n", err);
1196 		goto out;
1197 	}
1198 
1199 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1200 	if (err) {
1201 		pr_err("failed to register PPP device (%d)\n", err);
1202 		goto out_net;
1203 	}
1204 
1205 	ppp_class = class_create(THIS_MODULE, "ppp");
1206 	if (IS_ERR(ppp_class)) {
1207 		err = PTR_ERR(ppp_class);
1208 		goto out_chrdev;
1209 	}
1210 
1211 	err = rtnl_link_register(&ppp_link_ops);
1212 	if (err) {
1213 		pr_err("failed to register rtnetlink PPP handler\n");
1214 		goto out_class;
1215 	}
1216 
1217 	/* not a big deal if we fail here :-) */
1218 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1219 
1220 	return 0;
1221 
1222 out_class:
1223 	class_destroy(ppp_class);
1224 out_chrdev:
1225 	unregister_chrdev(PPP_MAJOR, "ppp");
1226 out_net:
1227 	unregister_pernet_device(&ppp_net_ops);
1228 out:
1229 	return err;
1230 }
1231 
1232 /*
1233  * Network interface unit routines.
1234  */
1235 static netdev_tx_t
1236 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1237 {
1238 	struct ppp *ppp = netdev_priv(dev);
1239 	int npi, proto;
1240 	unsigned char *pp;
1241 
1242 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1243 	if (npi < 0)
1244 		goto outf;
1245 
1246 	/* Drop, accept or reject the packet */
1247 	switch (ppp->npmode[npi]) {
1248 	case NPMODE_PASS:
1249 		break;
1250 	case NPMODE_QUEUE:
1251 		/* it would be nice to have a way to tell the network
1252 		   system to queue this one up for later. */
1253 		goto outf;
1254 	case NPMODE_DROP:
1255 	case NPMODE_ERROR:
1256 		goto outf;
1257 	}
1258 
1259 	/* Put the 2-byte PPP protocol number on the front,
1260 	   making sure there is room for the address and control fields. */
1261 	if (skb_cow_head(skb, PPP_HDRLEN))
1262 		goto outf;
1263 
1264 	pp = skb_push(skb, 2);
1265 	proto = npindex_to_proto[npi];
1266 	put_unaligned_be16(proto, pp);
1267 
1268 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1269 	skb_queue_tail(&ppp->file.xq, skb);
1270 	ppp_xmit_process(ppp);
1271 	return NETDEV_TX_OK;
1272 
1273  outf:
1274 	kfree_skb(skb);
1275 	++dev->stats.tx_dropped;
1276 	return NETDEV_TX_OK;
1277 }
1278 
1279 static int
1280 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1281 {
1282 	struct ppp *ppp = netdev_priv(dev);
1283 	int err = -EFAULT;
1284 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1285 	struct ppp_stats stats;
1286 	struct ppp_comp_stats cstats;
1287 	char *vers;
1288 
1289 	switch (cmd) {
1290 	case SIOCGPPPSTATS:
1291 		ppp_get_stats(ppp, &stats);
1292 		if (copy_to_user(addr, &stats, sizeof(stats)))
1293 			break;
1294 		err = 0;
1295 		break;
1296 
1297 	case SIOCGPPPCSTATS:
1298 		memset(&cstats, 0, sizeof(cstats));
1299 		if (ppp->xc_state)
1300 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1301 		if (ppp->rc_state)
1302 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1303 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1304 			break;
1305 		err = 0;
1306 		break;
1307 
1308 	case SIOCGPPPVER:
1309 		vers = PPP_VERSION;
1310 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1311 			break;
1312 		err = 0;
1313 		break;
1314 
1315 	default:
1316 		err = -EINVAL;
1317 	}
1318 
1319 	return err;
1320 }
1321 
1322 static void
1323 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1324 {
1325 	struct ppp *ppp = netdev_priv(dev);
1326 
1327 	ppp_recv_lock(ppp);
1328 	stats64->rx_packets = ppp->stats64.rx_packets;
1329 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1330 	ppp_recv_unlock(ppp);
1331 
1332 	ppp_xmit_lock(ppp);
1333 	stats64->tx_packets = ppp->stats64.tx_packets;
1334 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1335 	ppp_xmit_unlock(ppp);
1336 
1337 	stats64->rx_errors        = dev->stats.rx_errors;
1338 	stats64->tx_errors        = dev->stats.tx_errors;
1339 	stats64->rx_dropped       = dev->stats.rx_dropped;
1340 	stats64->tx_dropped       = dev->stats.tx_dropped;
1341 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1342 }
1343 
1344 static int ppp_dev_init(struct net_device *dev)
1345 {
1346 	struct ppp *ppp;
1347 
1348 	netdev_lockdep_set_classes(dev);
1349 
1350 	ppp = netdev_priv(dev);
1351 	/* Let the netdevice take a reference on the ppp file. This ensures
1352 	 * that ppp_destroy_interface() won't run before the device gets
1353 	 * unregistered.
1354 	 */
1355 	refcount_inc(&ppp->file.refcnt);
1356 
1357 	return 0;
1358 }
1359 
1360 static void ppp_dev_uninit(struct net_device *dev)
1361 {
1362 	struct ppp *ppp = netdev_priv(dev);
1363 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1364 
1365 	ppp_lock(ppp);
1366 	ppp->closing = 1;
1367 	ppp_unlock(ppp);
1368 
1369 	mutex_lock(&pn->all_ppp_mutex);
1370 	unit_put(&pn->units_idr, ppp->file.index);
1371 	mutex_unlock(&pn->all_ppp_mutex);
1372 
1373 	ppp->owner = NULL;
1374 
1375 	ppp->file.dead = 1;
1376 	wake_up_interruptible(&ppp->file.rwait);
1377 }
1378 
1379 static void ppp_dev_priv_destructor(struct net_device *dev)
1380 {
1381 	struct ppp *ppp;
1382 
1383 	ppp = netdev_priv(dev);
1384 	if (refcount_dec_and_test(&ppp->file.refcnt))
1385 		ppp_destroy_interface(ppp);
1386 }
1387 
1388 static const struct net_device_ops ppp_netdev_ops = {
1389 	.ndo_init	 = ppp_dev_init,
1390 	.ndo_uninit      = ppp_dev_uninit,
1391 	.ndo_start_xmit  = ppp_start_xmit,
1392 	.ndo_do_ioctl    = ppp_net_ioctl,
1393 	.ndo_get_stats64 = ppp_get_stats64,
1394 };
1395 
1396 static struct device_type ppp_type = {
1397 	.name = "ppp",
1398 };
1399 
1400 static void ppp_setup(struct net_device *dev)
1401 {
1402 	dev->netdev_ops = &ppp_netdev_ops;
1403 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1404 
1405 	dev->features |= NETIF_F_LLTX;
1406 
1407 	dev->hard_header_len = PPP_HDRLEN;
1408 	dev->mtu = PPP_MRU;
1409 	dev->addr_len = 0;
1410 	dev->tx_queue_len = 3;
1411 	dev->type = ARPHRD_PPP;
1412 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1413 	dev->priv_destructor = ppp_dev_priv_destructor;
1414 	netif_keep_dst(dev);
1415 }
1416 
1417 /*
1418  * Transmit-side routines.
1419  */
1420 
1421 /* Called to do any work queued up on the transmit side that can now be done */
1422 static void __ppp_xmit_process(struct ppp *ppp)
1423 {
1424 	struct sk_buff *skb;
1425 
1426 	ppp_xmit_lock(ppp);
1427 	if (!ppp->closing) {
1428 		ppp_push(ppp);
1429 		while (!ppp->xmit_pending &&
1430 		       (skb = skb_dequeue(&ppp->file.xq)))
1431 			ppp_send_frame(ppp, skb);
1432 		/* If there's no work left to do, tell the core net
1433 		   code that we can accept some more. */
1434 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1435 			netif_wake_queue(ppp->dev);
1436 		else
1437 			netif_stop_queue(ppp->dev);
1438 	}
1439 	ppp_xmit_unlock(ppp);
1440 }
1441 
1442 static void ppp_xmit_process(struct ppp *ppp)
1443 {
1444 	local_bh_disable();
1445 
1446 	if (unlikely(*this_cpu_ptr(ppp->xmit_recursion)))
1447 		goto err;
1448 
1449 	(*this_cpu_ptr(ppp->xmit_recursion))++;
1450 	__ppp_xmit_process(ppp);
1451 	(*this_cpu_ptr(ppp->xmit_recursion))--;
1452 
1453 	local_bh_enable();
1454 
1455 	return;
1456 
1457 err:
1458 	local_bh_enable();
1459 
1460 	if (net_ratelimit())
1461 		netdev_err(ppp->dev, "recursion detected\n");
1462 }
1463 
1464 static inline struct sk_buff *
1465 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1466 {
1467 	struct sk_buff *new_skb;
1468 	int len;
1469 	int new_skb_size = ppp->dev->mtu +
1470 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1471 	int compressor_skb_size = ppp->dev->mtu +
1472 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1473 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1474 	if (!new_skb) {
1475 		if (net_ratelimit())
1476 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1477 		return NULL;
1478 	}
1479 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1480 		skb_reserve(new_skb,
1481 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1482 
1483 	/* compressor still expects A/C bytes in hdr */
1484 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1485 				   new_skb->data, skb->len + 2,
1486 				   compressor_skb_size);
1487 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1488 		consume_skb(skb);
1489 		skb = new_skb;
1490 		skb_put(skb, len);
1491 		skb_pull(skb, 2);	/* pull off A/C bytes */
1492 	} else if (len == 0) {
1493 		/* didn't compress, or CCP not up yet */
1494 		consume_skb(new_skb);
1495 		new_skb = skb;
1496 	} else {
1497 		/*
1498 		 * (len < 0)
1499 		 * MPPE requires that we do not send unencrypted
1500 		 * frames.  The compressor will return -1 if we
1501 		 * should drop the frame.  We cannot simply test
1502 		 * the compress_proto because MPPE and MPPC share
1503 		 * the same number.
1504 		 */
1505 		if (net_ratelimit())
1506 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1507 		kfree_skb(skb);
1508 		consume_skb(new_skb);
1509 		new_skb = NULL;
1510 	}
1511 	return new_skb;
1512 }
1513 
1514 /*
1515  * Compress and send a frame.
1516  * The caller should have locked the xmit path,
1517  * and xmit_pending should be 0.
1518  */
1519 static void
1520 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1521 {
1522 	int proto = PPP_PROTO(skb);
1523 	struct sk_buff *new_skb;
1524 	int len;
1525 	unsigned char *cp;
1526 
1527 	if (proto < 0x8000) {
1528 #ifdef CONFIG_PPP_FILTER
1529 		/* check if we should pass this packet */
1530 		/* the filter instructions are constructed assuming
1531 		   a four-byte PPP header on each packet */
1532 		*(u8 *)skb_push(skb, 2) = 1;
1533 		if (ppp->pass_filter &&
1534 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1535 			if (ppp->debug & 1)
1536 				netdev_printk(KERN_DEBUG, ppp->dev,
1537 					      "PPP: outbound frame "
1538 					      "not passed\n");
1539 			kfree_skb(skb);
1540 			return;
1541 		}
1542 		/* if this packet passes the active filter, record the time */
1543 		if (!(ppp->active_filter &&
1544 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1545 			ppp->last_xmit = jiffies;
1546 		skb_pull(skb, 2);
1547 #else
1548 		/* for data packets, record the time */
1549 		ppp->last_xmit = jiffies;
1550 #endif /* CONFIG_PPP_FILTER */
1551 	}
1552 
1553 	++ppp->stats64.tx_packets;
1554 	ppp->stats64.tx_bytes += skb->len - 2;
1555 
1556 	switch (proto) {
1557 	case PPP_IP:
1558 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1559 			break;
1560 		/* try to do VJ TCP header compression */
1561 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1562 				    GFP_ATOMIC);
1563 		if (!new_skb) {
1564 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1565 			goto drop;
1566 		}
1567 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1568 		cp = skb->data + 2;
1569 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1570 				    new_skb->data + 2, &cp,
1571 				    !(ppp->flags & SC_NO_TCP_CCID));
1572 		if (cp == skb->data + 2) {
1573 			/* didn't compress */
1574 			consume_skb(new_skb);
1575 		} else {
1576 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1577 				proto = PPP_VJC_COMP;
1578 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1579 			} else {
1580 				proto = PPP_VJC_UNCOMP;
1581 				cp[0] = skb->data[2];
1582 			}
1583 			consume_skb(skb);
1584 			skb = new_skb;
1585 			cp = skb_put(skb, len + 2);
1586 			cp[0] = 0;
1587 			cp[1] = proto;
1588 		}
1589 		break;
1590 
1591 	case PPP_CCP:
1592 		/* peek at outbound CCP frames */
1593 		ppp_ccp_peek(ppp, skb, 0);
1594 		break;
1595 	}
1596 
1597 	/* try to do packet compression */
1598 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1599 	    proto != PPP_LCP && proto != PPP_CCP) {
1600 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1601 			if (net_ratelimit())
1602 				netdev_err(ppp->dev,
1603 					   "ppp: compression required but "
1604 					   "down - pkt dropped.\n");
1605 			goto drop;
1606 		}
1607 		skb = pad_compress_skb(ppp, skb);
1608 		if (!skb)
1609 			goto drop;
1610 	}
1611 
1612 	/*
1613 	 * If we are waiting for traffic (demand dialling),
1614 	 * queue it up for pppd to receive.
1615 	 */
1616 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1617 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1618 			goto drop;
1619 		skb_queue_tail(&ppp->file.rq, skb);
1620 		wake_up_interruptible(&ppp->file.rwait);
1621 		return;
1622 	}
1623 
1624 	ppp->xmit_pending = skb;
1625 	ppp_push(ppp);
1626 	return;
1627 
1628  drop:
1629 	kfree_skb(skb);
1630 	++ppp->dev->stats.tx_errors;
1631 }
1632 
1633 /*
1634  * Try to send the frame in xmit_pending.
1635  * The caller should have the xmit path locked.
1636  */
1637 static void
1638 ppp_push(struct ppp *ppp)
1639 {
1640 	struct list_head *list;
1641 	struct channel *pch;
1642 	struct sk_buff *skb = ppp->xmit_pending;
1643 
1644 	if (!skb)
1645 		return;
1646 
1647 	list = &ppp->channels;
1648 	if (list_empty(list)) {
1649 		/* nowhere to send the packet, just drop it */
1650 		ppp->xmit_pending = NULL;
1651 		kfree_skb(skb);
1652 		return;
1653 	}
1654 
1655 	if ((ppp->flags & SC_MULTILINK) == 0) {
1656 		/* not doing multilink: send it down the first channel */
1657 		list = list->next;
1658 		pch = list_entry(list, struct channel, clist);
1659 
1660 		spin_lock(&pch->downl);
1661 		if (pch->chan) {
1662 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1663 				ppp->xmit_pending = NULL;
1664 		} else {
1665 			/* channel got unregistered */
1666 			kfree_skb(skb);
1667 			ppp->xmit_pending = NULL;
1668 		}
1669 		spin_unlock(&pch->downl);
1670 		return;
1671 	}
1672 
1673 #ifdef CONFIG_PPP_MULTILINK
1674 	/* Multilink: fragment the packet over as many links
1675 	   as can take the packet at the moment. */
1676 	if (!ppp_mp_explode(ppp, skb))
1677 		return;
1678 #endif /* CONFIG_PPP_MULTILINK */
1679 
1680 	ppp->xmit_pending = NULL;
1681 	kfree_skb(skb);
1682 }
1683 
1684 #ifdef CONFIG_PPP_MULTILINK
1685 static bool mp_protocol_compress __read_mostly = true;
1686 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1687 MODULE_PARM_DESC(mp_protocol_compress,
1688 		 "compress protocol id in multilink fragments");
1689 
1690 /*
1691  * Divide a packet to be transmitted into fragments and
1692  * send them out the individual links.
1693  */
1694 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1695 {
1696 	int len, totlen;
1697 	int i, bits, hdrlen, mtu;
1698 	int flen;
1699 	int navail, nfree, nzero;
1700 	int nbigger;
1701 	int totspeed;
1702 	int totfree;
1703 	unsigned char *p, *q;
1704 	struct list_head *list;
1705 	struct channel *pch;
1706 	struct sk_buff *frag;
1707 	struct ppp_channel *chan;
1708 
1709 	totspeed = 0; /*total bitrate of the bundle*/
1710 	nfree = 0; /* # channels which have no packet already queued */
1711 	navail = 0; /* total # of usable channels (not deregistered) */
1712 	nzero = 0; /* number of channels with zero speed associated*/
1713 	totfree = 0; /*total # of channels available and
1714 				  *having no queued packets before
1715 				  *starting the fragmentation*/
1716 
1717 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1718 	i = 0;
1719 	list_for_each_entry(pch, &ppp->channels, clist) {
1720 		if (pch->chan) {
1721 			pch->avail = 1;
1722 			navail++;
1723 			pch->speed = pch->chan->speed;
1724 		} else {
1725 			pch->avail = 0;
1726 		}
1727 		if (pch->avail) {
1728 			if (skb_queue_empty(&pch->file.xq) ||
1729 				!pch->had_frag) {
1730 					if (pch->speed == 0)
1731 						nzero++;
1732 					else
1733 						totspeed += pch->speed;
1734 
1735 					pch->avail = 2;
1736 					++nfree;
1737 					++totfree;
1738 				}
1739 			if (!pch->had_frag && i < ppp->nxchan)
1740 				ppp->nxchan = i;
1741 		}
1742 		++i;
1743 	}
1744 	/*
1745 	 * Don't start sending this packet unless at least half of
1746 	 * the channels are free.  This gives much better TCP
1747 	 * performance if we have a lot of channels.
1748 	 */
1749 	if (nfree == 0 || nfree < navail / 2)
1750 		return 0; /* can't take now, leave it in xmit_pending */
1751 
1752 	/* Do protocol field compression */
1753 	p = skb->data;
1754 	len = skb->len;
1755 	if (*p == 0 && mp_protocol_compress) {
1756 		++p;
1757 		--len;
1758 	}
1759 
1760 	totlen = len;
1761 	nbigger = len % nfree;
1762 
1763 	/* skip to the channel after the one we last used
1764 	   and start at that one */
1765 	list = &ppp->channels;
1766 	for (i = 0; i < ppp->nxchan; ++i) {
1767 		list = list->next;
1768 		if (list == &ppp->channels) {
1769 			i = 0;
1770 			break;
1771 		}
1772 	}
1773 
1774 	/* create a fragment for each channel */
1775 	bits = B;
1776 	while (len > 0) {
1777 		list = list->next;
1778 		if (list == &ppp->channels) {
1779 			i = 0;
1780 			continue;
1781 		}
1782 		pch = list_entry(list, struct channel, clist);
1783 		++i;
1784 		if (!pch->avail)
1785 			continue;
1786 
1787 		/*
1788 		 * Skip this channel if it has a fragment pending already and
1789 		 * we haven't given a fragment to all of the free channels.
1790 		 */
1791 		if (pch->avail == 1) {
1792 			if (nfree > 0)
1793 				continue;
1794 		} else {
1795 			pch->avail = 1;
1796 		}
1797 
1798 		/* check the channel's mtu and whether it is still attached. */
1799 		spin_lock(&pch->downl);
1800 		if (pch->chan == NULL) {
1801 			/* can't use this channel, it's being deregistered */
1802 			if (pch->speed == 0)
1803 				nzero--;
1804 			else
1805 				totspeed -= pch->speed;
1806 
1807 			spin_unlock(&pch->downl);
1808 			pch->avail = 0;
1809 			totlen = len;
1810 			totfree--;
1811 			nfree--;
1812 			if (--navail == 0)
1813 				break;
1814 			continue;
1815 		}
1816 
1817 		/*
1818 		*if the channel speed is not set divide
1819 		*the packet evenly among the free channels;
1820 		*otherwise divide it according to the speed
1821 		*of the channel we are going to transmit on
1822 		*/
1823 		flen = len;
1824 		if (nfree > 0) {
1825 			if (pch->speed == 0) {
1826 				flen = len/nfree;
1827 				if (nbigger > 0) {
1828 					flen++;
1829 					nbigger--;
1830 				}
1831 			} else {
1832 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1833 					((totspeed*totfree)/pch->speed)) - hdrlen;
1834 				if (nbigger > 0) {
1835 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1836 					nbigger -= ((totfree - nzero)*pch->speed)/
1837 							totspeed;
1838 				}
1839 			}
1840 			nfree--;
1841 		}
1842 
1843 		/*
1844 		 *check if we are on the last channel or
1845 		 *we exceded the length of the data to
1846 		 *fragment
1847 		 */
1848 		if ((nfree <= 0) || (flen > len))
1849 			flen = len;
1850 		/*
1851 		 *it is not worth to tx on slow channels:
1852 		 *in that case from the resulting flen according to the
1853 		 *above formula will be equal or less than zero.
1854 		 *Skip the channel in this case
1855 		 */
1856 		if (flen <= 0) {
1857 			pch->avail = 2;
1858 			spin_unlock(&pch->downl);
1859 			continue;
1860 		}
1861 
1862 		/*
1863 		 * hdrlen includes the 2-byte PPP protocol field, but the
1864 		 * MTU counts only the payload excluding the protocol field.
1865 		 * (RFC1661 Section 2)
1866 		 */
1867 		mtu = pch->chan->mtu - (hdrlen - 2);
1868 		if (mtu < 4)
1869 			mtu = 4;
1870 		if (flen > mtu)
1871 			flen = mtu;
1872 		if (flen == len)
1873 			bits |= E;
1874 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1875 		if (!frag)
1876 			goto noskb;
1877 		q = skb_put(frag, flen + hdrlen);
1878 
1879 		/* make the MP header */
1880 		put_unaligned_be16(PPP_MP, q);
1881 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1882 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1883 			q[3] = ppp->nxseq;
1884 		} else {
1885 			q[2] = bits;
1886 			q[3] = ppp->nxseq >> 16;
1887 			q[4] = ppp->nxseq >> 8;
1888 			q[5] = ppp->nxseq;
1889 		}
1890 
1891 		memcpy(q + hdrlen, p, flen);
1892 
1893 		/* try to send it down the channel */
1894 		chan = pch->chan;
1895 		if (!skb_queue_empty(&pch->file.xq) ||
1896 			!chan->ops->start_xmit(chan, frag))
1897 			skb_queue_tail(&pch->file.xq, frag);
1898 		pch->had_frag = 1;
1899 		p += flen;
1900 		len -= flen;
1901 		++ppp->nxseq;
1902 		bits = 0;
1903 		spin_unlock(&pch->downl);
1904 	}
1905 	ppp->nxchan = i;
1906 
1907 	return 1;
1908 
1909  noskb:
1910 	spin_unlock(&pch->downl);
1911 	if (ppp->debug & 1)
1912 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1913 	++ppp->dev->stats.tx_errors;
1914 	++ppp->nxseq;
1915 	return 1;	/* abandon the frame */
1916 }
1917 #endif /* CONFIG_PPP_MULTILINK */
1918 
1919 /* Try to send data out on a channel */
1920 static void __ppp_channel_push(struct channel *pch)
1921 {
1922 	struct sk_buff *skb;
1923 	struct ppp *ppp;
1924 
1925 	spin_lock(&pch->downl);
1926 	if (pch->chan) {
1927 		while (!skb_queue_empty(&pch->file.xq)) {
1928 			skb = skb_dequeue(&pch->file.xq);
1929 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1930 				/* put the packet back and try again later */
1931 				skb_queue_head(&pch->file.xq, skb);
1932 				break;
1933 			}
1934 		}
1935 	} else {
1936 		/* channel got deregistered */
1937 		skb_queue_purge(&pch->file.xq);
1938 	}
1939 	spin_unlock(&pch->downl);
1940 	/* see if there is anything from the attached unit to be sent */
1941 	if (skb_queue_empty(&pch->file.xq)) {
1942 		ppp = pch->ppp;
1943 		if (ppp)
1944 			__ppp_xmit_process(ppp);
1945 	}
1946 }
1947 
1948 static void ppp_channel_push(struct channel *pch)
1949 {
1950 	read_lock_bh(&pch->upl);
1951 	if (pch->ppp) {
1952 		(*this_cpu_ptr(pch->ppp->xmit_recursion))++;
1953 		__ppp_channel_push(pch);
1954 		(*this_cpu_ptr(pch->ppp->xmit_recursion))--;
1955 	} else {
1956 		__ppp_channel_push(pch);
1957 	}
1958 	read_unlock_bh(&pch->upl);
1959 }
1960 
1961 /*
1962  * Receive-side routines.
1963  */
1964 
1965 struct ppp_mp_skb_parm {
1966 	u32		sequence;
1967 	u8		BEbits;
1968 };
1969 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1970 
1971 static inline void
1972 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1973 {
1974 	ppp_recv_lock(ppp);
1975 	if (!ppp->closing)
1976 		ppp_receive_frame(ppp, skb, pch);
1977 	else
1978 		kfree_skb(skb);
1979 	ppp_recv_unlock(ppp);
1980 }
1981 
1982 void
1983 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1984 {
1985 	struct channel *pch = chan->ppp;
1986 	int proto;
1987 
1988 	if (!pch) {
1989 		kfree_skb(skb);
1990 		return;
1991 	}
1992 
1993 	read_lock_bh(&pch->upl);
1994 	if (!pskb_may_pull(skb, 2)) {
1995 		kfree_skb(skb);
1996 		if (pch->ppp) {
1997 			++pch->ppp->dev->stats.rx_length_errors;
1998 			ppp_receive_error(pch->ppp);
1999 		}
2000 		goto done;
2001 	}
2002 
2003 	proto = PPP_PROTO(skb);
2004 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
2005 		/* put it on the channel queue */
2006 		skb_queue_tail(&pch->file.rq, skb);
2007 		/* drop old frames if queue too long */
2008 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
2009 		       (skb = skb_dequeue(&pch->file.rq)))
2010 			kfree_skb(skb);
2011 		wake_up_interruptible(&pch->file.rwait);
2012 	} else {
2013 		ppp_do_recv(pch->ppp, skb, pch);
2014 	}
2015 
2016 done:
2017 	read_unlock_bh(&pch->upl);
2018 }
2019 
2020 /* Put a 0-length skb in the receive queue as an error indication */
2021 void
2022 ppp_input_error(struct ppp_channel *chan, int code)
2023 {
2024 	struct channel *pch = chan->ppp;
2025 	struct sk_buff *skb;
2026 
2027 	if (!pch)
2028 		return;
2029 
2030 	read_lock_bh(&pch->upl);
2031 	if (pch->ppp) {
2032 		skb = alloc_skb(0, GFP_ATOMIC);
2033 		if (skb) {
2034 			skb->len = 0;		/* probably unnecessary */
2035 			skb->cb[0] = code;
2036 			ppp_do_recv(pch->ppp, skb, pch);
2037 		}
2038 	}
2039 	read_unlock_bh(&pch->upl);
2040 }
2041 
2042 /*
2043  * We come in here to process a received frame.
2044  * The receive side of the ppp unit is locked.
2045  */
2046 static void
2047 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2048 {
2049 	/* note: a 0-length skb is used as an error indication */
2050 	if (skb->len > 0) {
2051 		skb_checksum_complete_unset(skb);
2052 #ifdef CONFIG_PPP_MULTILINK
2053 		/* XXX do channel-level decompression here */
2054 		if (PPP_PROTO(skb) == PPP_MP)
2055 			ppp_receive_mp_frame(ppp, skb, pch);
2056 		else
2057 #endif /* CONFIG_PPP_MULTILINK */
2058 			ppp_receive_nonmp_frame(ppp, skb);
2059 	} else {
2060 		kfree_skb(skb);
2061 		ppp_receive_error(ppp);
2062 	}
2063 }
2064 
2065 static void
2066 ppp_receive_error(struct ppp *ppp)
2067 {
2068 	++ppp->dev->stats.rx_errors;
2069 	if (ppp->vj)
2070 		slhc_toss(ppp->vj);
2071 }
2072 
2073 static void
2074 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
2075 {
2076 	struct sk_buff *ns;
2077 	int proto, len, npi;
2078 
2079 	/*
2080 	 * Decompress the frame, if compressed.
2081 	 * Note that some decompressors need to see uncompressed frames
2082 	 * that come in as well as compressed frames.
2083 	 */
2084 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2085 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2086 		skb = ppp_decompress_frame(ppp, skb);
2087 
2088 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2089 		goto err;
2090 
2091 	proto = PPP_PROTO(skb);
2092 	switch (proto) {
2093 	case PPP_VJC_COMP:
2094 		/* decompress VJ compressed packets */
2095 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2096 			goto err;
2097 
2098 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2099 			/* copy to a new sk_buff with more tailroom */
2100 			ns = dev_alloc_skb(skb->len + 128);
2101 			if (!ns) {
2102 				netdev_err(ppp->dev, "PPP: no memory "
2103 					   "(VJ decomp)\n");
2104 				goto err;
2105 			}
2106 			skb_reserve(ns, 2);
2107 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2108 			consume_skb(skb);
2109 			skb = ns;
2110 		}
2111 		else
2112 			skb->ip_summed = CHECKSUM_NONE;
2113 
2114 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2115 		if (len <= 0) {
2116 			netdev_printk(KERN_DEBUG, ppp->dev,
2117 				      "PPP: VJ decompression error\n");
2118 			goto err;
2119 		}
2120 		len += 2;
2121 		if (len > skb->len)
2122 			skb_put(skb, len - skb->len);
2123 		else if (len < skb->len)
2124 			skb_trim(skb, len);
2125 		proto = PPP_IP;
2126 		break;
2127 
2128 	case PPP_VJC_UNCOMP:
2129 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2130 			goto err;
2131 
2132 		/* Until we fix the decompressor need to make sure
2133 		 * data portion is linear.
2134 		 */
2135 		if (!pskb_may_pull(skb, skb->len))
2136 			goto err;
2137 
2138 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2139 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2140 			goto err;
2141 		}
2142 		proto = PPP_IP;
2143 		break;
2144 
2145 	case PPP_CCP:
2146 		ppp_ccp_peek(ppp, skb, 1);
2147 		break;
2148 	}
2149 
2150 	++ppp->stats64.rx_packets;
2151 	ppp->stats64.rx_bytes += skb->len - 2;
2152 
2153 	npi = proto_to_npindex(proto);
2154 	if (npi < 0) {
2155 		/* control or unknown frame - pass it to pppd */
2156 		skb_queue_tail(&ppp->file.rq, skb);
2157 		/* limit queue length by dropping old frames */
2158 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2159 		       (skb = skb_dequeue(&ppp->file.rq)))
2160 			kfree_skb(skb);
2161 		/* wake up any process polling or blocking on read */
2162 		wake_up_interruptible(&ppp->file.rwait);
2163 
2164 	} else {
2165 		/* network protocol frame - give it to the kernel */
2166 
2167 #ifdef CONFIG_PPP_FILTER
2168 		/* check if the packet passes the pass and active filters */
2169 		/* the filter instructions are constructed assuming
2170 		   a four-byte PPP header on each packet */
2171 		if (ppp->pass_filter || ppp->active_filter) {
2172 			if (skb_unclone(skb, GFP_ATOMIC))
2173 				goto err;
2174 
2175 			*(u8 *)skb_push(skb, 2) = 0;
2176 			if (ppp->pass_filter &&
2177 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2178 				if (ppp->debug & 1)
2179 					netdev_printk(KERN_DEBUG, ppp->dev,
2180 						      "PPP: inbound frame "
2181 						      "not passed\n");
2182 				kfree_skb(skb);
2183 				return;
2184 			}
2185 			if (!(ppp->active_filter &&
2186 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2187 				ppp->last_recv = jiffies;
2188 			__skb_pull(skb, 2);
2189 		} else
2190 #endif /* CONFIG_PPP_FILTER */
2191 			ppp->last_recv = jiffies;
2192 
2193 		if ((ppp->dev->flags & IFF_UP) == 0 ||
2194 		    ppp->npmode[npi] != NPMODE_PASS) {
2195 			kfree_skb(skb);
2196 		} else {
2197 			/* chop off protocol */
2198 			skb_pull_rcsum(skb, 2);
2199 			skb->dev = ppp->dev;
2200 			skb->protocol = htons(npindex_to_ethertype[npi]);
2201 			skb_reset_mac_header(skb);
2202 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2203 						      dev_net(ppp->dev)));
2204 			netif_rx(skb);
2205 		}
2206 	}
2207 	return;
2208 
2209  err:
2210 	kfree_skb(skb);
2211 	ppp_receive_error(ppp);
2212 }
2213 
2214 static struct sk_buff *
2215 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2216 {
2217 	int proto = PPP_PROTO(skb);
2218 	struct sk_buff *ns;
2219 	int len;
2220 
2221 	/* Until we fix all the decompressor's need to make sure
2222 	 * data portion is linear.
2223 	 */
2224 	if (!pskb_may_pull(skb, skb->len))
2225 		goto err;
2226 
2227 	if (proto == PPP_COMP) {
2228 		int obuff_size;
2229 
2230 		switch(ppp->rcomp->compress_proto) {
2231 		case CI_MPPE:
2232 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
2233 			break;
2234 		default:
2235 			obuff_size = ppp->mru + PPP_HDRLEN;
2236 			break;
2237 		}
2238 
2239 		ns = dev_alloc_skb(obuff_size);
2240 		if (!ns) {
2241 			netdev_err(ppp->dev, "ppp_decompress_frame: "
2242 				   "no memory\n");
2243 			goto err;
2244 		}
2245 		/* the decompressor still expects the A/C bytes in the hdr */
2246 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2247 				skb->len + 2, ns->data, obuff_size);
2248 		if (len < 0) {
2249 			/* Pass the compressed frame to pppd as an
2250 			   error indication. */
2251 			if (len == DECOMP_FATALERROR)
2252 				ppp->rstate |= SC_DC_FERROR;
2253 			kfree_skb(ns);
2254 			goto err;
2255 		}
2256 
2257 		consume_skb(skb);
2258 		skb = ns;
2259 		skb_put(skb, len);
2260 		skb_pull(skb, 2);	/* pull off the A/C bytes */
2261 
2262 	} else {
2263 		/* Uncompressed frame - pass to decompressor so it
2264 		   can update its dictionary if necessary. */
2265 		if (ppp->rcomp->incomp)
2266 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2267 					   skb->len + 2);
2268 	}
2269 
2270 	return skb;
2271 
2272  err:
2273 	ppp->rstate |= SC_DC_ERROR;
2274 	ppp_receive_error(ppp);
2275 	return skb;
2276 }
2277 
2278 #ifdef CONFIG_PPP_MULTILINK
2279 /*
2280  * Receive a multilink frame.
2281  * We put it on the reconstruction queue and then pull off
2282  * as many completed frames as we can.
2283  */
2284 static void
2285 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2286 {
2287 	u32 mask, seq;
2288 	struct channel *ch;
2289 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2290 
2291 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2292 		goto err;		/* no good, throw it away */
2293 
2294 	/* Decode sequence number and begin/end bits */
2295 	if (ppp->flags & SC_MP_SHORTSEQ) {
2296 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2297 		mask = 0xfff;
2298 	} else {
2299 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2300 		mask = 0xffffff;
2301 	}
2302 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2303 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2304 
2305 	/*
2306 	 * Do protocol ID decompression on the first fragment of each packet.
2307 	 */
2308 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2309 		*(u8 *)skb_push(skb, 1) = 0;
2310 
2311 	/*
2312 	 * Expand sequence number to 32 bits, making it as close
2313 	 * as possible to ppp->minseq.
2314 	 */
2315 	seq |= ppp->minseq & ~mask;
2316 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2317 		seq += mask + 1;
2318 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2319 		seq -= mask + 1;	/* should never happen */
2320 	PPP_MP_CB(skb)->sequence = seq;
2321 	pch->lastseq = seq;
2322 
2323 	/*
2324 	 * If this packet comes before the next one we were expecting,
2325 	 * drop it.
2326 	 */
2327 	if (seq_before(seq, ppp->nextseq)) {
2328 		kfree_skb(skb);
2329 		++ppp->dev->stats.rx_dropped;
2330 		ppp_receive_error(ppp);
2331 		return;
2332 	}
2333 
2334 	/*
2335 	 * Reevaluate minseq, the minimum over all channels of the
2336 	 * last sequence number received on each channel.  Because of
2337 	 * the increasing sequence number rule, we know that any fragment
2338 	 * before `minseq' which hasn't arrived is never going to arrive.
2339 	 * The list of channels can't change because we have the receive
2340 	 * side of the ppp unit locked.
2341 	 */
2342 	list_for_each_entry(ch, &ppp->channels, clist) {
2343 		if (seq_before(ch->lastseq, seq))
2344 			seq = ch->lastseq;
2345 	}
2346 	if (seq_before(ppp->minseq, seq))
2347 		ppp->minseq = seq;
2348 
2349 	/* Put the fragment on the reconstruction queue */
2350 	ppp_mp_insert(ppp, skb);
2351 
2352 	/* If the queue is getting long, don't wait any longer for packets
2353 	   before the start of the queue. */
2354 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2355 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2356 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2357 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2358 	}
2359 
2360 	/* Pull completed packets off the queue and receive them. */
2361 	while ((skb = ppp_mp_reconstruct(ppp))) {
2362 		if (pskb_may_pull(skb, 2))
2363 			ppp_receive_nonmp_frame(ppp, skb);
2364 		else {
2365 			++ppp->dev->stats.rx_length_errors;
2366 			kfree_skb(skb);
2367 			ppp_receive_error(ppp);
2368 		}
2369 	}
2370 
2371 	return;
2372 
2373  err:
2374 	kfree_skb(skb);
2375 	ppp_receive_error(ppp);
2376 }
2377 
2378 /*
2379  * Insert a fragment on the MP reconstruction queue.
2380  * The queue is ordered by increasing sequence number.
2381  */
2382 static void
2383 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2384 {
2385 	struct sk_buff *p;
2386 	struct sk_buff_head *list = &ppp->mrq;
2387 	u32 seq = PPP_MP_CB(skb)->sequence;
2388 
2389 	/* N.B. we don't need to lock the list lock because we have the
2390 	   ppp unit receive-side lock. */
2391 	skb_queue_walk(list, p) {
2392 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2393 			break;
2394 	}
2395 	__skb_queue_before(list, p, skb);
2396 }
2397 
2398 /*
2399  * Reconstruct a packet from the MP fragment queue.
2400  * We go through increasing sequence numbers until we find a
2401  * complete packet, or we get to the sequence number for a fragment
2402  * which hasn't arrived but might still do so.
2403  */
2404 static struct sk_buff *
2405 ppp_mp_reconstruct(struct ppp *ppp)
2406 {
2407 	u32 seq = ppp->nextseq;
2408 	u32 minseq = ppp->minseq;
2409 	struct sk_buff_head *list = &ppp->mrq;
2410 	struct sk_buff *p, *tmp;
2411 	struct sk_buff *head, *tail;
2412 	struct sk_buff *skb = NULL;
2413 	int lost = 0, len = 0;
2414 
2415 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2416 		return NULL;
2417 	head = list->next;
2418 	tail = NULL;
2419 	skb_queue_walk_safe(list, p, tmp) {
2420 	again:
2421 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2422 			/* this can't happen, anyway ignore the skb */
2423 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2424 				   "seq %u < %u\n",
2425 				   PPP_MP_CB(p)->sequence, seq);
2426 			__skb_unlink(p, list);
2427 			kfree_skb(p);
2428 			continue;
2429 		}
2430 		if (PPP_MP_CB(p)->sequence != seq) {
2431 			u32 oldseq;
2432 			/* Fragment `seq' is missing.  If it is after
2433 			   minseq, it might arrive later, so stop here. */
2434 			if (seq_after(seq, minseq))
2435 				break;
2436 			/* Fragment `seq' is lost, keep going. */
2437 			lost = 1;
2438 			oldseq = seq;
2439 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2440 				minseq + 1: PPP_MP_CB(p)->sequence;
2441 
2442 			if (ppp->debug & 1)
2443 				netdev_printk(KERN_DEBUG, ppp->dev,
2444 					      "lost frag %u..%u\n",
2445 					      oldseq, seq-1);
2446 
2447 			goto again;
2448 		}
2449 
2450 		/*
2451 		 * At this point we know that all the fragments from
2452 		 * ppp->nextseq to seq are either present or lost.
2453 		 * Also, there are no complete packets in the queue
2454 		 * that have no missing fragments and end before this
2455 		 * fragment.
2456 		 */
2457 
2458 		/* B bit set indicates this fragment starts a packet */
2459 		if (PPP_MP_CB(p)->BEbits & B) {
2460 			head = p;
2461 			lost = 0;
2462 			len = 0;
2463 		}
2464 
2465 		len += p->len;
2466 
2467 		/* Got a complete packet yet? */
2468 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2469 		    (PPP_MP_CB(head)->BEbits & B)) {
2470 			if (len > ppp->mrru + 2) {
2471 				++ppp->dev->stats.rx_length_errors;
2472 				netdev_printk(KERN_DEBUG, ppp->dev,
2473 					      "PPP: reconstructed packet"
2474 					      " is too long (%d)\n", len);
2475 			} else {
2476 				tail = p;
2477 				break;
2478 			}
2479 			ppp->nextseq = seq + 1;
2480 		}
2481 
2482 		/*
2483 		 * If this is the ending fragment of a packet,
2484 		 * and we haven't found a complete valid packet yet,
2485 		 * we can discard up to and including this fragment.
2486 		 */
2487 		if (PPP_MP_CB(p)->BEbits & E) {
2488 			struct sk_buff *tmp2;
2489 
2490 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2491 				if (ppp->debug & 1)
2492 					netdev_printk(KERN_DEBUG, ppp->dev,
2493 						      "discarding frag %u\n",
2494 						      PPP_MP_CB(p)->sequence);
2495 				__skb_unlink(p, list);
2496 				kfree_skb(p);
2497 			}
2498 			head = skb_peek(list);
2499 			if (!head)
2500 				break;
2501 		}
2502 		++seq;
2503 	}
2504 
2505 	/* If we have a complete packet, copy it all into one skb. */
2506 	if (tail != NULL) {
2507 		/* If we have discarded any fragments,
2508 		   signal a receive error. */
2509 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2510 			skb_queue_walk_safe(list, p, tmp) {
2511 				if (p == head)
2512 					break;
2513 				if (ppp->debug & 1)
2514 					netdev_printk(KERN_DEBUG, ppp->dev,
2515 						      "discarding frag %u\n",
2516 						      PPP_MP_CB(p)->sequence);
2517 				__skb_unlink(p, list);
2518 				kfree_skb(p);
2519 			}
2520 
2521 			if (ppp->debug & 1)
2522 				netdev_printk(KERN_DEBUG, ppp->dev,
2523 					      "  missed pkts %u..%u\n",
2524 					      ppp->nextseq,
2525 					      PPP_MP_CB(head)->sequence-1);
2526 			++ppp->dev->stats.rx_dropped;
2527 			ppp_receive_error(ppp);
2528 		}
2529 
2530 		skb = head;
2531 		if (head != tail) {
2532 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2533 			p = skb_queue_next(list, head);
2534 			__skb_unlink(skb, list);
2535 			skb_queue_walk_from_safe(list, p, tmp) {
2536 				__skb_unlink(p, list);
2537 				*fragpp = p;
2538 				p->next = NULL;
2539 				fragpp = &p->next;
2540 
2541 				skb->len += p->len;
2542 				skb->data_len += p->len;
2543 				skb->truesize += p->truesize;
2544 
2545 				if (p == tail)
2546 					break;
2547 			}
2548 		} else {
2549 			__skb_unlink(skb, list);
2550 		}
2551 
2552 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2553 	}
2554 
2555 	return skb;
2556 }
2557 #endif /* CONFIG_PPP_MULTILINK */
2558 
2559 /*
2560  * Channel interface.
2561  */
2562 
2563 /* Create a new, unattached ppp channel. */
2564 int ppp_register_channel(struct ppp_channel *chan)
2565 {
2566 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2567 }
2568 
2569 /* Create a new, unattached ppp channel for specified net. */
2570 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2571 {
2572 	struct channel *pch;
2573 	struct ppp_net *pn;
2574 
2575 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2576 	if (!pch)
2577 		return -ENOMEM;
2578 
2579 	pn = ppp_pernet(net);
2580 
2581 	pch->ppp = NULL;
2582 	pch->chan = chan;
2583 	pch->chan_net = get_net(net);
2584 	chan->ppp = pch;
2585 	init_ppp_file(&pch->file, CHANNEL);
2586 	pch->file.hdrlen = chan->hdrlen;
2587 #ifdef CONFIG_PPP_MULTILINK
2588 	pch->lastseq = -1;
2589 #endif /* CONFIG_PPP_MULTILINK */
2590 	init_rwsem(&pch->chan_sem);
2591 	spin_lock_init(&pch->downl);
2592 	rwlock_init(&pch->upl);
2593 
2594 	spin_lock_bh(&pn->all_channels_lock);
2595 	pch->file.index = ++pn->last_channel_index;
2596 	list_add(&pch->list, &pn->new_channels);
2597 	atomic_inc(&channel_count);
2598 	spin_unlock_bh(&pn->all_channels_lock);
2599 
2600 	return 0;
2601 }
2602 
2603 /*
2604  * Return the index of a channel.
2605  */
2606 int ppp_channel_index(struct ppp_channel *chan)
2607 {
2608 	struct channel *pch = chan->ppp;
2609 
2610 	if (pch)
2611 		return pch->file.index;
2612 	return -1;
2613 }
2614 
2615 /*
2616  * Return the PPP unit number to which a channel is connected.
2617  */
2618 int ppp_unit_number(struct ppp_channel *chan)
2619 {
2620 	struct channel *pch = chan->ppp;
2621 	int unit = -1;
2622 
2623 	if (pch) {
2624 		read_lock_bh(&pch->upl);
2625 		if (pch->ppp)
2626 			unit = pch->ppp->file.index;
2627 		read_unlock_bh(&pch->upl);
2628 	}
2629 	return unit;
2630 }
2631 
2632 /*
2633  * Return the PPP device interface name of a channel.
2634  */
2635 char *ppp_dev_name(struct ppp_channel *chan)
2636 {
2637 	struct channel *pch = chan->ppp;
2638 	char *name = NULL;
2639 
2640 	if (pch) {
2641 		read_lock_bh(&pch->upl);
2642 		if (pch->ppp && pch->ppp->dev)
2643 			name = pch->ppp->dev->name;
2644 		read_unlock_bh(&pch->upl);
2645 	}
2646 	return name;
2647 }
2648 
2649 
2650 /*
2651  * Disconnect a channel from the generic layer.
2652  * This must be called in process context.
2653  */
2654 void
2655 ppp_unregister_channel(struct ppp_channel *chan)
2656 {
2657 	struct channel *pch = chan->ppp;
2658 	struct ppp_net *pn;
2659 
2660 	if (!pch)
2661 		return;		/* should never happen */
2662 
2663 	chan->ppp = NULL;
2664 
2665 	/*
2666 	 * This ensures that we have returned from any calls into the
2667 	 * the channel's start_xmit or ioctl routine before we proceed.
2668 	 */
2669 	down_write(&pch->chan_sem);
2670 	spin_lock_bh(&pch->downl);
2671 	pch->chan = NULL;
2672 	spin_unlock_bh(&pch->downl);
2673 	up_write(&pch->chan_sem);
2674 	ppp_disconnect_channel(pch);
2675 
2676 	pn = ppp_pernet(pch->chan_net);
2677 	spin_lock_bh(&pn->all_channels_lock);
2678 	list_del(&pch->list);
2679 	spin_unlock_bh(&pn->all_channels_lock);
2680 
2681 	pch->file.dead = 1;
2682 	wake_up_interruptible(&pch->file.rwait);
2683 	if (refcount_dec_and_test(&pch->file.refcnt))
2684 		ppp_destroy_channel(pch);
2685 }
2686 
2687 /*
2688  * Callback from a channel when it can accept more to transmit.
2689  * This should be called at BH/softirq level, not interrupt level.
2690  */
2691 void
2692 ppp_output_wakeup(struct ppp_channel *chan)
2693 {
2694 	struct channel *pch = chan->ppp;
2695 
2696 	if (!pch)
2697 		return;
2698 	ppp_channel_push(pch);
2699 }
2700 
2701 /*
2702  * Compression control.
2703  */
2704 
2705 /* Process the PPPIOCSCOMPRESS ioctl. */
2706 static int
2707 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2708 {
2709 	int err;
2710 	struct compressor *cp, *ocomp;
2711 	struct ppp_option_data data;
2712 	void *state, *ostate;
2713 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2714 
2715 	err = -EFAULT;
2716 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2717 		goto out;
2718 	if (data.length > CCP_MAX_OPTION_LENGTH)
2719 		goto out;
2720 	if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2721 		goto out;
2722 
2723 	err = -EINVAL;
2724 	if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2725 		goto out;
2726 
2727 	cp = try_then_request_module(
2728 		find_compressor(ccp_option[0]),
2729 		"ppp-compress-%d", ccp_option[0]);
2730 	if (!cp)
2731 		goto out;
2732 
2733 	err = -ENOBUFS;
2734 	if (data.transmit) {
2735 		state = cp->comp_alloc(ccp_option, data.length);
2736 		if (state) {
2737 			ppp_xmit_lock(ppp);
2738 			ppp->xstate &= ~SC_COMP_RUN;
2739 			ocomp = ppp->xcomp;
2740 			ostate = ppp->xc_state;
2741 			ppp->xcomp = cp;
2742 			ppp->xc_state = state;
2743 			ppp_xmit_unlock(ppp);
2744 			if (ostate) {
2745 				ocomp->comp_free(ostate);
2746 				module_put(ocomp->owner);
2747 			}
2748 			err = 0;
2749 		} else
2750 			module_put(cp->owner);
2751 
2752 	} else {
2753 		state = cp->decomp_alloc(ccp_option, data.length);
2754 		if (state) {
2755 			ppp_recv_lock(ppp);
2756 			ppp->rstate &= ~SC_DECOMP_RUN;
2757 			ocomp = ppp->rcomp;
2758 			ostate = ppp->rc_state;
2759 			ppp->rcomp = cp;
2760 			ppp->rc_state = state;
2761 			ppp_recv_unlock(ppp);
2762 			if (ostate) {
2763 				ocomp->decomp_free(ostate);
2764 				module_put(ocomp->owner);
2765 			}
2766 			err = 0;
2767 		} else
2768 			module_put(cp->owner);
2769 	}
2770 
2771  out:
2772 	return err;
2773 }
2774 
2775 /*
2776  * Look at a CCP packet and update our state accordingly.
2777  * We assume the caller has the xmit or recv path locked.
2778  */
2779 static void
2780 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2781 {
2782 	unsigned char *dp;
2783 	int len;
2784 
2785 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2786 		return;	/* no header */
2787 	dp = skb->data + 2;
2788 
2789 	switch (CCP_CODE(dp)) {
2790 	case CCP_CONFREQ:
2791 
2792 		/* A ConfReq starts negotiation of compression
2793 		 * in one direction of transmission,
2794 		 * and hence brings it down...but which way?
2795 		 *
2796 		 * Remember:
2797 		 * A ConfReq indicates what the sender would like to receive
2798 		 */
2799 		if(inbound)
2800 			/* He is proposing what I should send */
2801 			ppp->xstate &= ~SC_COMP_RUN;
2802 		else
2803 			/* I am proposing to what he should send */
2804 			ppp->rstate &= ~SC_DECOMP_RUN;
2805 
2806 		break;
2807 
2808 	case CCP_TERMREQ:
2809 	case CCP_TERMACK:
2810 		/*
2811 		 * CCP is going down, both directions of transmission
2812 		 */
2813 		ppp->rstate &= ~SC_DECOMP_RUN;
2814 		ppp->xstate &= ~SC_COMP_RUN;
2815 		break;
2816 
2817 	case CCP_CONFACK:
2818 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2819 			break;
2820 		len = CCP_LENGTH(dp);
2821 		if (!pskb_may_pull(skb, len + 2))
2822 			return;		/* too short */
2823 		dp += CCP_HDRLEN;
2824 		len -= CCP_HDRLEN;
2825 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2826 			break;
2827 		if (inbound) {
2828 			/* we will start receiving compressed packets */
2829 			if (!ppp->rc_state)
2830 				break;
2831 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2832 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2833 				ppp->rstate |= SC_DECOMP_RUN;
2834 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2835 			}
2836 		} else {
2837 			/* we will soon start sending compressed packets */
2838 			if (!ppp->xc_state)
2839 				break;
2840 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2841 					ppp->file.index, 0, ppp->debug))
2842 				ppp->xstate |= SC_COMP_RUN;
2843 		}
2844 		break;
2845 
2846 	case CCP_RESETACK:
2847 		/* reset the [de]compressor */
2848 		if ((ppp->flags & SC_CCP_UP) == 0)
2849 			break;
2850 		if (inbound) {
2851 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2852 				ppp->rcomp->decomp_reset(ppp->rc_state);
2853 				ppp->rstate &= ~SC_DC_ERROR;
2854 			}
2855 		} else {
2856 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2857 				ppp->xcomp->comp_reset(ppp->xc_state);
2858 		}
2859 		break;
2860 	}
2861 }
2862 
2863 /* Free up compression resources. */
2864 static void
2865 ppp_ccp_closed(struct ppp *ppp)
2866 {
2867 	void *xstate, *rstate;
2868 	struct compressor *xcomp, *rcomp;
2869 
2870 	ppp_lock(ppp);
2871 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2872 	ppp->xstate = 0;
2873 	xcomp = ppp->xcomp;
2874 	xstate = ppp->xc_state;
2875 	ppp->xc_state = NULL;
2876 	ppp->rstate = 0;
2877 	rcomp = ppp->rcomp;
2878 	rstate = ppp->rc_state;
2879 	ppp->rc_state = NULL;
2880 	ppp_unlock(ppp);
2881 
2882 	if (xstate) {
2883 		xcomp->comp_free(xstate);
2884 		module_put(xcomp->owner);
2885 	}
2886 	if (rstate) {
2887 		rcomp->decomp_free(rstate);
2888 		module_put(rcomp->owner);
2889 	}
2890 }
2891 
2892 /* List of compressors. */
2893 static LIST_HEAD(compressor_list);
2894 static DEFINE_SPINLOCK(compressor_list_lock);
2895 
2896 struct compressor_entry {
2897 	struct list_head list;
2898 	struct compressor *comp;
2899 };
2900 
2901 static struct compressor_entry *
2902 find_comp_entry(int proto)
2903 {
2904 	struct compressor_entry *ce;
2905 
2906 	list_for_each_entry(ce, &compressor_list, list) {
2907 		if (ce->comp->compress_proto == proto)
2908 			return ce;
2909 	}
2910 	return NULL;
2911 }
2912 
2913 /* Register a compressor */
2914 int
2915 ppp_register_compressor(struct compressor *cp)
2916 {
2917 	struct compressor_entry *ce;
2918 	int ret;
2919 	spin_lock(&compressor_list_lock);
2920 	ret = -EEXIST;
2921 	if (find_comp_entry(cp->compress_proto))
2922 		goto out;
2923 	ret = -ENOMEM;
2924 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2925 	if (!ce)
2926 		goto out;
2927 	ret = 0;
2928 	ce->comp = cp;
2929 	list_add(&ce->list, &compressor_list);
2930  out:
2931 	spin_unlock(&compressor_list_lock);
2932 	return ret;
2933 }
2934 
2935 /* Unregister a compressor */
2936 void
2937 ppp_unregister_compressor(struct compressor *cp)
2938 {
2939 	struct compressor_entry *ce;
2940 
2941 	spin_lock(&compressor_list_lock);
2942 	ce = find_comp_entry(cp->compress_proto);
2943 	if (ce && ce->comp == cp) {
2944 		list_del(&ce->list);
2945 		kfree(ce);
2946 	}
2947 	spin_unlock(&compressor_list_lock);
2948 }
2949 
2950 /* Find a compressor. */
2951 static struct compressor *
2952 find_compressor(int type)
2953 {
2954 	struct compressor_entry *ce;
2955 	struct compressor *cp = NULL;
2956 
2957 	spin_lock(&compressor_list_lock);
2958 	ce = find_comp_entry(type);
2959 	if (ce) {
2960 		cp = ce->comp;
2961 		if (!try_module_get(cp->owner))
2962 			cp = NULL;
2963 	}
2964 	spin_unlock(&compressor_list_lock);
2965 	return cp;
2966 }
2967 
2968 /*
2969  * Miscelleneous stuff.
2970  */
2971 
2972 static void
2973 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2974 {
2975 	struct slcompress *vj = ppp->vj;
2976 
2977 	memset(st, 0, sizeof(*st));
2978 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2979 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2980 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2981 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2982 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2983 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2984 	if (!vj)
2985 		return;
2986 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2987 	st->vj.vjs_compressed = vj->sls_o_compressed;
2988 	st->vj.vjs_searches = vj->sls_o_searches;
2989 	st->vj.vjs_misses = vj->sls_o_misses;
2990 	st->vj.vjs_errorin = vj->sls_i_error;
2991 	st->vj.vjs_tossed = vj->sls_i_tossed;
2992 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2993 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2994 }
2995 
2996 /*
2997  * Stuff for handling the lists of ppp units and channels
2998  * and for initialization.
2999  */
3000 
3001 /*
3002  * Create a new ppp interface unit.  Fails if it can't allocate memory
3003  * or if there is already a unit with the requested number.
3004  * unit == -1 means allocate a new number.
3005  */
3006 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
3007 {
3008 	struct ppp_config conf = {
3009 		.file = file,
3010 		.unit = *unit,
3011 		.ifname_is_set = false,
3012 	};
3013 	struct net_device *dev;
3014 	struct ppp *ppp;
3015 	int err;
3016 
3017 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
3018 	if (!dev) {
3019 		err = -ENOMEM;
3020 		goto err;
3021 	}
3022 	dev_net_set(dev, net);
3023 	dev->rtnl_link_ops = &ppp_link_ops;
3024 
3025 	rtnl_lock();
3026 
3027 	err = ppp_dev_configure(net, dev, &conf);
3028 	if (err < 0)
3029 		goto err_dev;
3030 	ppp = netdev_priv(dev);
3031 	*unit = ppp->file.index;
3032 
3033 	rtnl_unlock();
3034 
3035 	return 0;
3036 
3037 err_dev:
3038 	rtnl_unlock();
3039 	free_netdev(dev);
3040 err:
3041 	return err;
3042 }
3043 
3044 /*
3045  * Initialize a ppp_file structure.
3046  */
3047 static void
3048 init_ppp_file(struct ppp_file *pf, int kind)
3049 {
3050 	pf->kind = kind;
3051 	skb_queue_head_init(&pf->xq);
3052 	skb_queue_head_init(&pf->rq);
3053 	refcount_set(&pf->refcnt, 1);
3054 	init_waitqueue_head(&pf->rwait);
3055 }
3056 
3057 /*
3058  * Free the memory used by a ppp unit.  This is only called once
3059  * there are no channels connected to the unit and no file structs
3060  * that reference the unit.
3061  */
3062 static void ppp_destroy_interface(struct ppp *ppp)
3063 {
3064 	atomic_dec(&ppp_unit_count);
3065 
3066 	if (!ppp->file.dead || ppp->n_channels) {
3067 		/* "can't happen" */
3068 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
3069 			   "but dead=%d n_channels=%d !\n",
3070 			   ppp, ppp->file.dead, ppp->n_channels);
3071 		return;
3072 	}
3073 
3074 	ppp_ccp_closed(ppp);
3075 	if (ppp->vj) {
3076 		slhc_free(ppp->vj);
3077 		ppp->vj = NULL;
3078 	}
3079 	skb_queue_purge(&ppp->file.xq);
3080 	skb_queue_purge(&ppp->file.rq);
3081 #ifdef CONFIG_PPP_MULTILINK
3082 	skb_queue_purge(&ppp->mrq);
3083 #endif /* CONFIG_PPP_MULTILINK */
3084 #ifdef CONFIG_PPP_FILTER
3085 	if (ppp->pass_filter) {
3086 		bpf_prog_destroy(ppp->pass_filter);
3087 		ppp->pass_filter = NULL;
3088 	}
3089 
3090 	if (ppp->active_filter) {
3091 		bpf_prog_destroy(ppp->active_filter);
3092 		ppp->active_filter = NULL;
3093 	}
3094 #endif /* CONFIG_PPP_FILTER */
3095 
3096 	kfree_skb(ppp->xmit_pending);
3097 	free_percpu(ppp->xmit_recursion);
3098 
3099 	free_netdev(ppp->dev);
3100 }
3101 
3102 /*
3103  * Locate an existing ppp unit.
3104  * The caller should have locked the all_ppp_mutex.
3105  */
3106 static struct ppp *
3107 ppp_find_unit(struct ppp_net *pn, int unit)
3108 {
3109 	return unit_find(&pn->units_idr, unit);
3110 }
3111 
3112 /*
3113  * Locate an existing ppp channel.
3114  * The caller should have locked the all_channels_lock.
3115  * First we look in the new_channels list, then in the
3116  * all_channels list.  If found in the new_channels list,
3117  * we move it to the all_channels list.  This is for speed
3118  * when we have a lot of channels in use.
3119  */
3120 static struct channel *
3121 ppp_find_channel(struct ppp_net *pn, int unit)
3122 {
3123 	struct channel *pch;
3124 
3125 	list_for_each_entry(pch, &pn->new_channels, list) {
3126 		if (pch->file.index == unit) {
3127 			list_move(&pch->list, &pn->all_channels);
3128 			return pch;
3129 		}
3130 	}
3131 
3132 	list_for_each_entry(pch, &pn->all_channels, list) {
3133 		if (pch->file.index == unit)
3134 			return pch;
3135 	}
3136 
3137 	return NULL;
3138 }
3139 
3140 /*
3141  * Connect a PPP channel to a PPP interface unit.
3142  */
3143 static int
3144 ppp_connect_channel(struct channel *pch, int unit)
3145 {
3146 	struct ppp *ppp;
3147 	struct ppp_net *pn;
3148 	int ret = -ENXIO;
3149 	int hdrlen;
3150 
3151 	pn = ppp_pernet(pch->chan_net);
3152 
3153 	mutex_lock(&pn->all_ppp_mutex);
3154 	ppp = ppp_find_unit(pn, unit);
3155 	if (!ppp)
3156 		goto out;
3157 	write_lock_bh(&pch->upl);
3158 	ret = -EINVAL;
3159 	if (pch->ppp)
3160 		goto outl;
3161 
3162 	ppp_lock(ppp);
3163 	if (pch->file.hdrlen > ppp->file.hdrlen)
3164 		ppp->file.hdrlen = pch->file.hdrlen;
3165 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
3166 	if (hdrlen > ppp->dev->hard_header_len)
3167 		ppp->dev->hard_header_len = hdrlen;
3168 	list_add_tail(&pch->clist, &ppp->channels);
3169 	++ppp->n_channels;
3170 	pch->ppp = ppp;
3171 	refcount_inc(&ppp->file.refcnt);
3172 	ppp_unlock(ppp);
3173 	ret = 0;
3174 
3175  outl:
3176 	write_unlock_bh(&pch->upl);
3177  out:
3178 	mutex_unlock(&pn->all_ppp_mutex);
3179 	return ret;
3180 }
3181 
3182 /*
3183  * Disconnect a channel from its ppp unit.
3184  */
3185 static int
3186 ppp_disconnect_channel(struct channel *pch)
3187 {
3188 	struct ppp *ppp;
3189 	int err = -EINVAL;
3190 
3191 	write_lock_bh(&pch->upl);
3192 	ppp = pch->ppp;
3193 	pch->ppp = NULL;
3194 	write_unlock_bh(&pch->upl);
3195 	if (ppp) {
3196 		/* remove it from the ppp unit's list */
3197 		ppp_lock(ppp);
3198 		list_del(&pch->clist);
3199 		if (--ppp->n_channels == 0)
3200 			wake_up_interruptible(&ppp->file.rwait);
3201 		ppp_unlock(ppp);
3202 		if (refcount_dec_and_test(&ppp->file.refcnt))
3203 			ppp_destroy_interface(ppp);
3204 		err = 0;
3205 	}
3206 	return err;
3207 }
3208 
3209 /*
3210  * Free up the resources used by a ppp channel.
3211  */
3212 static void ppp_destroy_channel(struct channel *pch)
3213 {
3214 	put_net(pch->chan_net);
3215 	pch->chan_net = NULL;
3216 
3217 	atomic_dec(&channel_count);
3218 
3219 	if (!pch->file.dead) {
3220 		/* "can't happen" */
3221 		pr_err("ppp: destroying undead channel %p !\n", pch);
3222 		return;
3223 	}
3224 	skb_queue_purge(&pch->file.xq);
3225 	skb_queue_purge(&pch->file.rq);
3226 	kfree(pch);
3227 }
3228 
3229 static void __exit ppp_cleanup(void)
3230 {
3231 	/* should never happen */
3232 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3233 		pr_err("PPP: removing module but units remain!\n");
3234 	rtnl_link_unregister(&ppp_link_ops);
3235 	unregister_chrdev(PPP_MAJOR, "ppp");
3236 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3237 	class_destroy(ppp_class);
3238 	unregister_pernet_device(&ppp_net_ops);
3239 }
3240 
3241 /*
3242  * Units handling. Caller must protect concurrent access
3243  * by holding all_ppp_mutex
3244  */
3245 
3246 /* associate pointer with specified number */
3247 static int unit_set(struct idr *p, void *ptr, int n)
3248 {
3249 	int unit;
3250 
3251 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3252 	if (unit == -ENOSPC)
3253 		unit = -EINVAL;
3254 	return unit;
3255 }
3256 
3257 /* get new free unit number and associate pointer with it */
3258 static int unit_get(struct idr *p, void *ptr)
3259 {
3260 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3261 }
3262 
3263 /* put unit number back to a pool */
3264 static void unit_put(struct idr *p, int n)
3265 {
3266 	idr_remove(p, n);
3267 }
3268 
3269 /* get pointer associated with the number */
3270 static void *unit_find(struct idr *p, int n)
3271 {
3272 	return idr_find(p, n);
3273 }
3274 
3275 /* Module/initialization stuff */
3276 
3277 module_init(ppp_init);
3278 module_exit(ppp_cleanup);
3279 
3280 EXPORT_SYMBOL(ppp_register_net_channel);
3281 EXPORT_SYMBOL(ppp_register_channel);
3282 EXPORT_SYMBOL(ppp_unregister_channel);
3283 EXPORT_SYMBOL(ppp_channel_index);
3284 EXPORT_SYMBOL(ppp_unit_number);
3285 EXPORT_SYMBOL(ppp_dev_name);
3286 EXPORT_SYMBOL(ppp_input);
3287 EXPORT_SYMBOL(ppp_input_error);
3288 EXPORT_SYMBOL(ppp_output_wakeup);
3289 EXPORT_SYMBOL(ppp_register_compressor);
3290 EXPORT_SYMBOL(ppp_unregister_compressor);
3291 MODULE_LICENSE("GPL");
3292 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3293 MODULE_ALIAS_RTNL_LINK("ppp");
3294 MODULE_ALIAS("devname:ppp");
3295