xref: /openbmc/linux/drivers/net/ppp/ppp_async.c (revision e8161447)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PPP async serial channel driver for Linux.
4  *
5  * Copyright 1999 Paul Mackerras.
6  *
7  * This driver provides the encapsulation and framing for sending
8  * and receiving PPP frames over async serial lines.  It relies on
9  * the generic PPP layer to give it frames to send and to process
10  * received frames.  It implements the PPP line discipline.
11  *
12  * Part of the code in this driver was inspired by the old async-only
13  * PPP driver, written by Michael Callahan and Al Longyear, and
14  * subsequently hacked by Paul Mackerras.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/skbuff.h>
20 #include <linux/tty.h>
21 #include <linux/netdevice.h>
22 #include <linux/poll.h>
23 #include <linux/crc-ccitt.h>
24 #include <linux/ppp_defs.h>
25 #include <linux/ppp-ioctl.h>
26 #include <linux/ppp_channel.h>
27 #include <linux/spinlock.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/slab.h>
32 #include <asm/unaligned.h>
33 #include <linux/uaccess.h>
34 #include <asm/string.h>
35 
36 #define PPP_VERSION	"2.4.2"
37 
38 #define OBUFSIZE	4096
39 
40 /* Structure for storing local state. */
41 struct asyncppp {
42 	struct tty_struct *tty;
43 	unsigned int	flags;
44 	unsigned int	state;
45 	unsigned int	rbits;
46 	int		mru;
47 	spinlock_t	xmit_lock;
48 	spinlock_t	recv_lock;
49 	unsigned long	xmit_flags;
50 	u32		xaccm[8];
51 	u32		raccm;
52 	unsigned int	bytes_sent;
53 	unsigned int	bytes_rcvd;
54 
55 	struct sk_buff	*tpkt;
56 	int		tpkt_pos;
57 	u16		tfcs;
58 	unsigned char	*optr;
59 	unsigned char	*olim;
60 	unsigned long	last_xmit;
61 
62 	struct sk_buff	*rpkt;
63 	int		lcp_fcs;
64 	struct sk_buff_head rqueue;
65 
66 	struct tasklet_struct tsk;
67 
68 	refcount_t	refcnt;
69 	struct completion dead;
70 	struct ppp_channel chan;	/* interface to generic ppp layer */
71 	unsigned char	obuf[OBUFSIZE];
72 };
73 
74 /* Bit numbers in xmit_flags */
75 #define XMIT_WAKEUP	0
76 #define XMIT_FULL	1
77 #define XMIT_BUSY	2
78 
79 /* State bits */
80 #define SC_TOSS		1
81 #define SC_ESCAPE	2
82 #define SC_PREV_ERROR	4
83 
84 /* Bits in rbits */
85 #define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86 
87 static int flag_time = HZ;
88 module_param(flag_time, int, 0);
89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
90 MODULE_LICENSE("GPL");
91 MODULE_ALIAS_LDISC(N_PPP);
92 
93 /*
94  * Prototypes.
95  */
96 static int ppp_async_encode(struct asyncppp *ap);
97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
98 static int ppp_async_push(struct asyncppp *ap);
99 static void ppp_async_flush_output(struct asyncppp *ap);
100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
101 			    const char *flags, int count);
102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
103 			   unsigned long arg);
104 static void ppp_async_process(struct tasklet_struct *t);
105 
106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
107 			   int len, int inbound);
108 
109 static const struct ppp_channel_ops async_ops = {
110 	.start_xmit = ppp_async_send,
111 	.ioctl      = ppp_async_ioctl,
112 };
113 
114 /*
115  * Routines implementing the PPP line discipline.
116  */
117 
118 /*
119  * We have a potential race on dereferencing tty->disc_data,
120  * because the tty layer provides no locking at all - thus one
121  * cpu could be running ppp_asynctty_receive while another
122  * calls ppp_asynctty_close, which zeroes tty->disc_data and
123  * frees the memory that ppp_asynctty_receive is using.  The best
124  * way to fix this is to use a rwlock in the tty struct, but for now
125  * we use a single global rwlock for all ttys in ppp line discipline.
126  *
127  * FIXME: this is no longer true. The _close path for the ldisc is
128  * now guaranteed to be sane.
129  */
130 static DEFINE_RWLOCK(disc_data_lock);
131 
132 static struct asyncppp *ap_get(struct tty_struct *tty)
133 {
134 	struct asyncppp *ap;
135 
136 	read_lock(&disc_data_lock);
137 	ap = tty->disc_data;
138 	if (ap != NULL)
139 		refcount_inc(&ap->refcnt);
140 	read_unlock(&disc_data_lock);
141 	return ap;
142 }
143 
144 static void ap_put(struct asyncppp *ap)
145 {
146 	if (refcount_dec_and_test(&ap->refcnt))
147 		complete(&ap->dead);
148 }
149 
150 /*
151  * Called when a tty is put into PPP line discipline. Called in process
152  * context.
153  */
154 static int
155 ppp_asynctty_open(struct tty_struct *tty)
156 {
157 	struct asyncppp *ap;
158 	int err;
159 	int speed;
160 
161 	if (tty->ops->write == NULL)
162 		return -EOPNOTSUPP;
163 
164 	err = -ENOMEM;
165 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
166 	if (!ap)
167 		goto out;
168 
169 	/* initialize the asyncppp structure */
170 	ap->tty = tty;
171 	ap->mru = PPP_MRU;
172 	spin_lock_init(&ap->xmit_lock);
173 	spin_lock_init(&ap->recv_lock);
174 	ap->xaccm[0] = ~0U;
175 	ap->xaccm[3] = 0x60000000U;
176 	ap->raccm = ~0U;
177 	ap->optr = ap->obuf;
178 	ap->olim = ap->obuf;
179 	ap->lcp_fcs = -1;
180 
181 	skb_queue_head_init(&ap->rqueue);
182 	tasklet_setup(&ap->tsk, ppp_async_process);
183 
184 	refcount_set(&ap->refcnt, 1);
185 	init_completion(&ap->dead);
186 
187 	ap->chan.private = ap;
188 	ap->chan.ops = &async_ops;
189 	ap->chan.mtu = PPP_MRU;
190 	speed = tty_get_baud_rate(tty);
191 	ap->chan.speed = speed;
192 	err = ppp_register_channel(&ap->chan);
193 	if (err)
194 		goto out_free;
195 
196 	tty->disc_data = ap;
197 	tty->receive_room = 65536;
198 	return 0;
199 
200  out_free:
201 	kfree(ap);
202  out:
203 	return err;
204 }
205 
206 /*
207  * Called when the tty is put into another line discipline
208  * or it hangs up.  We have to wait for any cpu currently
209  * executing in any of the other ppp_asynctty_* routines to
210  * finish before we can call ppp_unregister_channel and free
211  * the asyncppp struct.  This routine must be called from
212  * process context, not interrupt or softirq context.
213  */
214 static void
215 ppp_asynctty_close(struct tty_struct *tty)
216 {
217 	struct asyncppp *ap;
218 
219 	write_lock_irq(&disc_data_lock);
220 	ap = tty->disc_data;
221 	tty->disc_data = NULL;
222 	write_unlock_irq(&disc_data_lock);
223 	if (!ap)
224 		return;
225 
226 	/*
227 	 * We have now ensured that nobody can start using ap from now
228 	 * on, but we have to wait for all existing users to finish.
229 	 * Note that ppp_unregister_channel ensures that no calls to
230 	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
231 	 * by the time it returns.
232 	 */
233 	if (!refcount_dec_and_test(&ap->refcnt))
234 		wait_for_completion(&ap->dead);
235 	tasklet_kill(&ap->tsk);
236 
237 	ppp_unregister_channel(&ap->chan);
238 	kfree_skb(ap->rpkt);
239 	skb_queue_purge(&ap->rqueue);
240 	kfree_skb(ap->tpkt);
241 	kfree(ap);
242 }
243 
244 /*
245  * Called on tty hangup in process context.
246  *
247  * Wait for I/O to driver to complete and unregister PPP channel.
248  * This is already done by the close routine, so just call that.
249  */
250 static void ppp_asynctty_hangup(struct tty_struct *tty)
251 {
252 	ppp_asynctty_close(tty);
253 }
254 
255 /*
256  * Read does nothing - no data is ever available this way.
257  * Pppd reads and writes packets via /dev/ppp instead.
258  */
259 static ssize_t
260 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
261 		  unsigned char *buf, size_t count,
262 		  void **cookie, unsigned long offset)
263 {
264 	return -EAGAIN;
265 }
266 
267 /*
268  * Write on the tty does nothing, the packets all come in
269  * from the ppp generic stuff.
270  */
271 static ssize_t
272 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
273 		   const unsigned char *buf, size_t count)
274 {
275 	return -EAGAIN;
276 }
277 
278 /*
279  * Called in process context only. May be re-entered by multiple
280  * ioctl calling threads.
281  */
282 
283 static int
284 ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
285 {
286 	struct asyncppp *ap = ap_get(tty);
287 	int err, val;
288 	int __user *p = (int __user *)arg;
289 
290 	if (!ap)
291 		return -ENXIO;
292 	err = -EFAULT;
293 	switch (cmd) {
294 	case PPPIOCGCHAN:
295 		err = -EFAULT;
296 		if (put_user(ppp_channel_index(&ap->chan), p))
297 			break;
298 		err = 0;
299 		break;
300 
301 	case PPPIOCGUNIT:
302 		err = -EFAULT;
303 		if (put_user(ppp_unit_number(&ap->chan), p))
304 			break;
305 		err = 0;
306 		break;
307 
308 	case TCFLSH:
309 		/* flush our buffers and the serial port's buffer */
310 		if (arg == TCIOFLUSH || arg == TCOFLUSH)
311 			ppp_async_flush_output(ap);
312 		err = n_tty_ioctl_helper(tty, cmd, arg);
313 		break;
314 
315 	case FIONREAD:
316 		val = 0;
317 		if (put_user(val, p))
318 			break;
319 		err = 0;
320 		break;
321 
322 	default:
323 		/* Try the various mode ioctls */
324 		err = tty_mode_ioctl(tty, cmd, arg);
325 	}
326 
327 	ap_put(ap);
328 	return err;
329 }
330 
331 /* May sleep, don't call from interrupt level or with interrupts disabled */
332 static void
333 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
334 		     const char *cflags, size_t count)
335 {
336 	struct asyncppp *ap = ap_get(tty);
337 	unsigned long flags;
338 
339 	if (!ap)
340 		return;
341 	spin_lock_irqsave(&ap->recv_lock, flags);
342 	ppp_async_input(ap, buf, cflags, count);
343 	spin_unlock_irqrestore(&ap->recv_lock, flags);
344 	if (!skb_queue_empty(&ap->rqueue))
345 		tasklet_schedule(&ap->tsk);
346 	ap_put(ap);
347 	tty_unthrottle(tty);
348 }
349 
350 static void
351 ppp_asynctty_wakeup(struct tty_struct *tty)
352 {
353 	struct asyncppp *ap = ap_get(tty);
354 
355 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
356 	if (!ap)
357 		return;
358 	set_bit(XMIT_WAKEUP, &ap->xmit_flags);
359 	tasklet_schedule(&ap->tsk);
360 	ap_put(ap);
361 }
362 
363 
364 static struct tty_ldisc_ops ppp_ldisc = {
365 	.owner  = THIS_MODULE,
366 	.num	= N_PPP,
367 	.name	= "ppp",
368 	.open	= ppp_asynctty_open,
369 	.close	= ppp_asynctty_close,
370 	.hangup	= ppp_asynctty_hangup,
371 	.read	= ppp_asynctty_read,
372 	.write	= ppp_asynctty_write,
373 	.ioctl	= ppp_asynctty_ioctl,
374 	.receive_buf = ppp_asynctty_receive,
375 	.write_wakeup = ppp_asynctty_wakeup,
376 };
377 
378 static int __init
379 ppp_async_init(void)
380 {
381 	int err;
382 
383 	err = tty_register_ldisc(&ppp_ldisc);
384 	if (err != 0)
385 		printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
386 		       err);
387 	return err;
388 }
389 
390 /*
391  * The following routines provide the PPP channel interface.
392  */
393 static int
394 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
395 {
396 	struct asyncppp *ap = chan->private;
397 	void __user *argp = (void __user *)arg;
398 	int __user *p = argp;
399 	int err, val;
400 	u32 accm[8];
401 
402 	err = -EFAULT;
403 	switch (cmd) {
404 	case PPPIOCGFLAGS:
405 		val = ap->flags | ap->rbits;
406 		if (put_user(val, p))
407 			break;
408 		err = 0;
409 		break;
410 	case PPPIOCSFLAGS:
411 		if (get_user(val, p))
412 			break;
413 		ap->flags = val & ~SC_RCV_BITS;
414 		spin_lock_irq(&ap->recv_lock);
415 		ap->rbits = val & SC_RCV_BITS;
416 		spin_unlock_irq(&ap->recv_lock);
417 		err = 0;
418 		break;
419 
420 	case PPPIOCGASYNCMAP:
421 		if (put_user(ap->xaccm[0], (u32 __user *)argp))
422 			break;
423 		err = 0;
424 		break;
425 	case PPPIOCSASYNCMAP:
426 		if (get_user(ap->xaccm[0], (u32 __user *)argp))
427 			break;
428 		err = 0;
429 		break;
430 
431 	case PPPIOCGRASYNCMAP:
432 		if (put_user(ap->raccm, (u32 __user *)argp))
433 			break;
434 		err = 0;
435 		break;
436 	case PPPIOCSRASYNCMAP:
437 		if (get_user(ap->raccm, (u32 __user *)argp))
438 			break;
439 		err = 0;
440 		break;
441 
442 	case PPPIOCGXASYNCMAP:
443 		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
444 			break;
445 		err = 0;
446 		break;
447 	case PPPIOCSXASYNCMAP:
448 		if (copy_from_user(accm, argp, sizeof(accm)))
449 			break;
450 		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */
451 		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */
452 		memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
453 		err = 0;
454 		break;
455 
456 	case PPPIOCGMRU:
457 		if (put_user(ap->mru, p))
458 			break;
459 		err = 0;
460 		break;
461 	case PPPIOCSMRU:
462 		if (get_user(val, p))
463 			break;
464 		if (val < PPP_MRU)
465 			val = PPP_MRU;
466 		ap->mru = val;
467 		err = 0;
468 		break;
469 
470 	default:
471 		err = -ENOTTY;
472 	}
473 
474 	return err;
475 }
476 
477 /*
478  * This is called at softirq level to deliver received packets
479  * to the ppp_generic code, and to tell the ppp_generic code
480  * if we can accept more output now.
481  */
482 static void ppp_async_process(struct tasklet_struct *t)
483 {
484 	struct asyncppp *ap = from_tasklet(ap, t, tsk);
485 	struct sk_buff *skb;
486 
487 	/* process received packets */
488 	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
489 		if (skb->cb[0])
490 			ppp_input_error(&ap->chan, 0);
491 		ppp_input(&ap->chan, skb);
492 	}
493 
494 	/* try to push more stuff out */
495 	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
496 		ppp_output_wakeup(&ap->chan);
497 }
498 
499 /*
500  * Procedures for encapsulation and framing.
501  */
502 
503 /*
504  * Procedure to encode the data for async serial transmission.
505  * Does octet stuffing (escaping), puts the address/control bytes
506  * on if A/C compression is disabled, and does protocol compression.
507  * Assumes ap->tpkt != 0 on entry.
508  * Returns 1 if we finished the current frame, 0 otherwise.
509  */
510 
511 #define PUT_BYTE(ap, buf, c, islcp)	do {		\
512 	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
513 		*buf++ = PPP_ESCAPE;			\
514 		*buf++ = c ^ PPP_TRANS;			\
515 	} else						\
516 		*buf++ = c;				\
517 } while (0)
518 
519 static int
520 ppp_async_encode(struct asyncppp *ap)
521 {
522 	int fcs, i, count, c, proto;
523 	unsigned char *buf, *buflim;
524 	unsigned char *data;
525 	int islcp;
526 
527 	buf = ap->obuf;
528 	ap->olim = buf;
529 	ap->optr = buf;
530 	i = ap->tpkt_pos;
531 	data = ap->tpkt->data;
532 	count = ap->tpkt->len;
533 	fcs = ap->tfcs;
534 	proto = get_unaligned_be16(data);
535 
536 	/*
537 	 * LCP packets with code values between 1 (configure-reqest)
538 	 * and 7 (code-reject) must be sent as though no options
539 	 * had been negotiated.
540 	 */
541 	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
542 
543 	if (i == 0) {
544 		if (islcp)
545 			async_lcp_peek(ap, data, count, 0);
546 
547 		/*
548 		 * Start of a new packet - insert the leading FLAG
549 		 * character if necessary.
550 		 */
551 		if (islcp || flag_time == 0 ||
552 		    time_after_eq(jiffies, ap->last_xmit + flag_time))
553 			*buf++ = PPP_FLAG;
554 		ap->last_xmit = jiffies;
555 		fcs = PPP_INITFCS;
556 
557 		/*
558 		 * Put in the address/control bytes if necessary
559 		 */
560 		if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
561 			PUT_BYTE(ap, buf, 0xff, islcp);
562 			fcs = PPP_FCS(fcs, 0xff);
563 			PUT_BYTE(ap, buf, 0x03, islcp);
564 			fcs = PPP_FCS(fcs, 0x03);
565 		}
566 	}
567 
568 	/*
569 	 * Once we put in the last byte, we need to put in the FCS
570 	 * and closing flag, so make sure there is at least 7 bytes
571 	 * of free space in the output buffer.
572 	 */
573 	buflim = ap->obuf + OBUFSIZE - 6;
574 	while (i < count && buf < buflim) {
575 		c = data[i++];
576 		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
577 			continue;	/* compress protocol field */
578 		fcs = PPP_FCS(fcs, c);
579 		PUT_BYTE(ap, buf, c, islcp);
580 	}
581 
582 	if (i < count) {
583 		/*
584 		 * Remember where we are up to in this packet.
585 		 */
586 		ap->olim = buf;
587 		ap->tpkt_pos = i;
588 		ap->tfcs = fcs;
589 		return 0;
590 	}
591 
592 	/*
593 	 * We have finished the packet.  Add the FCS and flag.
594 	 */
595 	fcs = ~fcs;
596 	c = fcs & 0xff;
597 	PUT_BYTE(ap, buf, c, islcp);
598 	c = (fcs >> 8) & 0xff;
599 	PUT_BYTE(ap, buf, c, islcp);
600 	*buf++ = PPP_FLAG;
601 	ap->olim = buf;
602 
603 	consume_skb(ap->tpkt);
604 	ap->tpkt = NULL;
605 	return 1;
606 }
607 
608 /*
609  * Transmit-side routines.
610  */
611 
612 /*
613  * Send a packet to the peer over an async tty line.
614  * Returns 1 iff the packet was accepted.
615  * If the packet was not accepted, we will call ppp_output_wakeup
616  * at some later time.
617  */
618 static int
619 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
620 {
621 	struct asyncppp *ap = chan->private;
622 
623 	ppp_async_push(ap);
624 
625 	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
626 		return 0;	/* already full */
627 	ap->tpkt = skb;
628 	ap->tpkt_pos = 0;
629 
630 	ppp_async_push(ap);
631 	return 1;
632 }
633 
634 /*
635  * Push as much data as possible out to the tty.
636  */
637 static int
638 ppp_async_push(struct asyncppp *ap)
639 {
640 	int avail, sent, done = 0;
641 	struct tty_struct *tty = ap->tty;
642 	int tty_stuffed = 0;
643 
644 	/*
645 	 * We can get called recursively here if the tty write
646 	 * function calls our wakeup function.  This can happen
647 	 * for example on a pty with both the master and slave
648 	 * set to PPP line discipline.
649 	 * We use the XMIT_BUSY bit to detect this and get out,
650 	 * leaving the XMIT_WAKEUP bit set to tell the other
651 	 * instance that it may now be able to write more now.
652 	 */
653 	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
654 		return 0;
655 	spin_lock_bh(&ap->xmit_lock);
656 	for (;;) {
657 		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
658 			tty_stuffed = 0;
659 		if (!tty_stuffed && ap->optr < ap->olim) {
660 			avail = ap->olim - ap->optr;
661 			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
662 			sent = tty->ops->write(tty, ap->optr, avail);
663 			if (sent < 0)
664 				goto flush;	/* error, e.g. loss of CD */
665 			ap->optr += sent;
666 			if (sent < avail)
667 				tty_stuffed = 1;
668 			continue;
669 		}
670 		if (ap->optr >= ap->olim && ap->tpkt) {
671 			if (ppp_async_encode(ap)) {
672 				/* finished processing ap->tpkt */
673 				clear_bit(XMIT_FULL, &ap->xmit_flags);
674 				done = 1;
675 			}
676 			continue;
677 		}
678 		/*
679 		 * We haven't made any progress this time around.
680 		 * Clear XMIT_BUSY to let other callers in, but
681 		 * after doing so we have to check if anyone set
682 		 * XMIT_WAKEUP since we last checked it.  If they
683 		 * did, we should try again to set XMIT_BUSY and go
684 		 * around again in case XMIT_BUSY was still set when
685 		 * the other caller tried.
686 		 */
687 		clear_bit(XMIT_BUSY, &ap->xmit_flags);
688 		/* any more work to do? if not, exit the loop */
689 		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
690 		      (!tty_stuffed && ap->tpkt)))
691 			break;
692 		/* more work to do, see if we can do it now */
693 		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
694 			break;
695 	}
696 	spin_unlock_bh(&ap->xmit_lock);
697 	return done;
698 
699 flush:
700 	clear_bit(XMIT_BUSY, &ap->xmit_flags);
701 	if (ap->tpkt) {
702 		kfree_skb(ap->tpkt);
703 		ap->tpkt = NULL;
704 		clear_bit(XMIT_FULL, &ap->xmit_flags);
705 		done = 1;
706 	}
707 	ap->optr = ap->olim;
708 	spin_unlock_bh(&ap->xmit_lock);
709 	return done;
710 }
711 
712 /*
713  * Flush output from our internal buffers.
714  * Called for the TCFLSH ioctl. Can be entered in parallel
715  * but this is covered by the xmit_lock.
716  */
717 static void
718 ppp_async_flush_output(struct asyncppp *ap)
719 {
720 	int done = 0;
721 
722 	spin_lock_bh(&ap->xmit_lock);
723 	ap->optr = ap->olim;
724 	if (ap->tpkt != NULL) {
725 		kfree_skb(ap->tpkt);
726 		ap->tpkt = NULL;
727 		clear_bit(XMIT_FULL, &ap->xmit_flags);
728 		done = 1;
729 	}
730 	spin_unlock_bh(&ap->xmit_lock);
731 	if (done)
732 		ppp_output_wakeup(&ap->chan);
733 }
734 
735 /*
736  * Receive-side routines.
737  */
738 
739 /* see how many ordinary chars there are at the start of buf */
740 static inline int
741 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
742 {
743 	int i, c;
744 
745 	for (i = 0; i < count; ++i) {
746 		c = buf[i];
747 		if (c == PPP_ESCAPE || c == PPP_FLAG ||
748 		    (c < 0x20 && (ap->raccm & (1 << c)) != 0))
749 			break;
750 	}
751 	return i;
752 }
753 
754 /* called when a flag is seen - do end-of-packet processing */
755 static void
756 process_input_packet(struct asyncppp *ap)
757 {
758 	struct sk_buff *skb;
759 	unsigned char *p;
760 	unsigned int len, fcs;
761 
762 	skb = ap->rpkt;
763 	if (ap->state & (SC_TOSS | SC_ESCAPE))
764 		goto err;
765 
766 	if (skb == NULL)
767 		return;		/* 0-length packet */
768 
769 	/* check the FCS */
770 	p = skb->data;
771 	len = skb->len;
772 	if (len < 3)
773 		goto err;	/* too short */
774 	fcs = PPP_INITFCS;
775 	for (; len > 0; --len)
776 		fcs = PPP_FCS(fcs, *p++);
777 	if (fcs != PPP_GOODFCS)
778 		goto err;	/* bad FCS */
779 	skb_trim(skb, skb->len - 2);
780 
781 	/* check for address/control and protocol compression */
782 	p = skb->data;
783 	if (p[0] == PPP_ALLSTATIONS) {
784 		/* chop off address/control */
785 		if (p[1] != PPP_UI || skb->len < 3)
786 			goto err;
787 		p = skb_pull(skb, 2);
788 	}
789 
790 	/* If protocol field is not compressed, it can be LCP packet */
791 	if (!(p[0] & 0x01)) {
792 		unsigned int proto;
793 
794 		if (skb->len < 2)
795 			goto err;
796 		proto = (p[0] << 8) + p[1];
797 		if (proto == PPP_LCP)
798 			async_lcp_peek(ap, p, skb->len, 1);
799 	}
800 
801 	/* queue the frame to be processed */
802 	skb->cb[0] = ap->state;
803 	skb_queue_tail(&ap->rqueue, skb);
804 	ap->rpkt = NULL;
805 	ap->state = 0;
806 	return;
807 
808  err:
809 	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
810 	ap->state = SC_PREV_ERROR;
811 	if (skb) {
812 		/* make skb appear as freshly allocated */
813 		skb_trim(skb, 0);
814 		skb_reserve(skb, - skb_headroom(skb));
815 	}
816 }
817 
818 /* Called when the tty driver has data for us. Runs parallel with the
819    other ldisc functions but will not be re-entered */
820 
821 static void
822 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
823 		const char *flags, int count)
824 {
825 	struct sk_buff *skb;
826 	int c, i, j, n, s, f;
827 	unsigned char *sp;
828 
829 	/* update bits used for 8-bit cleanness detection */
830 	if (~ap->rbits & SC_RCV_BITS) {
831 		s = 0;
832 		for (i = 0; i < count; ++i) {
833 			c = buf[i];
834 			if (flags && flags[i] != 0)
835 				continue;
836 			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
837 			c = ((c >> 4) ^ c) & 0xf;
838 			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
839 		}
840 		ap->rbits |= s;
841 	}
842 
843 	while (count > 0) {
844 		/* scan through and see how many chars we can do in bulk */
845 		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
846 			n = 1;
847 		else
848 			n = scan_ordinary(ap, buf, count);
849 
850 		f = 0;
851 		if (flags && (ap->state & SC_TOSS) == 0) {
852 			/* check the flags to see if any char had an error */
853 			for (j = 0; j < n; ++j)
854 				if ((f = flags[j]) != 0)
855 					break;
856 		}
857 		if (f != 0) {
858 			/* start tossing */
859 			ap->state |= SC_TOSS;
860 
861 		} else if (n > 0 && (ap->state & SC_TOSS) == 0) {
862 			/* stuff the chars in the skb */
863 			skb = ap->rpkt;
864 			if (!skb) {
865 				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
866 				if (!skb)
867 					goto nomem;
868 				ap->rpkt = skb;
869 			}
870 			if (skb->len == 0) {
871 				/* Try to get the payload 4-byte aligned.
872 				 * This should match the
873 				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
874 				 * process_input_packet, but we do not have
875 				 * enough chars here to test buf[1] and buf[2].
876 				 */
877 				if (buf[0] != PPP_ALLSTATIONS)
878 					skb_reserve(skb, 2 + (buf[0] & 1));
879 			}
880 			if (n > skb_tailroom(skb)) {
881 				/* packet overflowed MRU */
882 				ap->state |= SC_TOSS;
883 			} else {
884 				sp = skb_put_data(skb, buf, n);
885 				if (ap->state & SC_ESCAPE) {
886 					sp[0] ^= PPP_TRANS;
887 					ap->state &= ~SC_ESCAPE;
888 				}
889 			}
890 		}
891 
892 		if (n >= count)
893 			break;
894 
895 		c = buf[n];
896 		if (flags != NULL && flags[n] != 0) {
897 			ap->state |= SC_TOSS;
898 		} else if (c == PPP_FLAG) {
899 			process_input_packet(ap);
900 		} else if (c == PPP_ESCAPE) {
901 			ap->state |= SC_ESCAPE;
902 		} else if (I_IXON(ap->tty)) {
903 			if (c == START_CHAR(ap->tty))
904 				start_tty(ap->tty);
905 			else if (c == STOP_CHAR(ap->tty))
906 				stop_tty(ap->tty);
907 		}
908 		/* otherwise it's a char in the recv ACCM */
909 		++n;
910 
911 		buf += n;
912 		if (flags)
913 			flags += n;
914 		count -= n;
915 	}
916 	return;
917 
918  nomem:
919 	printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
920 	ap->state |= SC_TOSS;
921 }
922 
923 /*
924  * We look at LCP frames going past so that we can notice
925  * and react to the LCP configure-ack from the peer.
926  * In the situation where the peer has been sent a configure-ack
927  * already, LCP is up once it has sent its configure-ack
928  * so the immediately following packet can be sent with the
929  * configured LCP options.  This allows us to process the following
930  * packet correctly without pppd needing to respond quickly.
931  *
932  * We only respond to the received configure-ack if we have just
933  * sent a configure-request, and the configure-ack contains the
934  * same data (this is checked using a 16-bit crc of the data).
935  */
936 #define CONFREQ		1	/* LCP code field values */
937 #define CONFACK		2
938 #define LCP_MRU		1	/* LCP option numbers */
939 #define LCP_ASYNCMAP	2
940 
941 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
942 			   int len, int inbound)
943 {
944 	int dlen, fcs, i, code;
945 	u32 val;
946 
947 	data += 2;		/* skip protocol bytes */
948 	len -= 2;
949 	if (len < 4)		/* 4 = code, ID, length */
950 		return;
951 	code = data[0];
952 	if (code != CONFACK && code != CONFREQ)
953 		return;
954 	dlen = get_unaligned_be16(data + 2);
955 	if (len < dlen)
956 		return;		/* packet got truncated or length is bogus */
957 
958 	if (code == (inbound? CONFACK: CONFREQ)) {
959 		/*
960 		 * sent confreq or received confack:
961 		 * calculate the crc of the data from the ID field on.
962 		 */
963 		fcs = PPP_INITFCS;
964 		for (i = 1; i < dlen; ++i)
965 			fcs = PPP_FCS(fcs, data[i]);
966 
967 		if (!inbound) {
968 			/* outbound confreq - remember the crc for later */
969 			ap->lcp_fcs = fcs;
970 			return;
971 		}
972 
973 		/* received confack, check the crc */
974 		fcs ^= ap->lcp_fcs;
975 		ap->lcp_fcs = -1;
976 		if (fcs != 0)
977 			return;
978 	} else if (inbound)
979 		return;	/* not interested in received confreq */
980 
981 	/* process the options in the confack */
982 	data += 4;
983 	dlen -= 4;
984 	/* data[0] is code, data[1] is length */
985 	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
986 		switch (data[0]) {
987 		case LCP_MRU:
988 			val = get_unaligned_be16(data + 2);
989 			if (inbound)
990 				ap->mru = val;
991 			else
992 				ap->chan.mtu = val;
993 			break;
994 		case LCP_ASYNCMAP:
995 			val = get_unaligned_be32(data + 2);
996 			if (inbound)
997 				ap->raccm = val;
998 			else
999 				ap->xaccm[0] = val;
1000 			break;
1001 		}
1002 		dlen -= data[1];
1003 		data += data[1];
1004 	}
1005 }
1006 
1007 static void __exit ppp_async_cleanup(void)
1008 {
1009 	tty_unregister_ldisc(&ppp_ldisc);
1010 }
1011 
1012 module_init(ppp_async_init);
1013 module_exit(ppp_async_cleanup);
1014