1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/skbuff.h> 20 #include <linux/tty.h> 21 #include <linux/netdevice.h> 22 #include <linux/poll.h> 23 #include <linux/crc-ccitt.h> 24 #include <linux/ppp_defs.h> 25 #include <linux/ppp-ioctl.h> 26 #include <linux/ppp_channel.h> 27 #include <linux/spinlock.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/jiffies.h> 31 #include <linux/slab.h> 32 #include <asm/unaligned.h> 33 #include <linux/uaccess.h> 34 #include <asm/string.h> 35 36 #define PPP_VERSION "2.4.2" 37 38 #define OBUFSIZE 4096 39 40 /* Structure for storing local state. */ 41 struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72 }; 73 74 /* Bit numbers in xmit_flags */ 75 #define XMIT_WAKEUP 0 76 #define XMIT_FULL 1 77 #define XMIT_BUSY 2 78 79 /* State bits */ 80 #define SC_TOSS 1 81 #define SC_ESCAPE 2 82 #define SC_PREV_ERROR 4 83 84 /* Bits in rbits */ 85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87 static int flag_time = HZ; 88 module_param(flag_time, int, 0); 89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90 MODULE_LICENSE("GPL"); 91 MODULE_ALIAS_LDISC(N_PPP); 92 93 /* 94 * Prototypes. 95 */ 96 static int ppp_async_encode(struct asyncppp *ap); 97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98 static int ppp_async_push(struct asyncppp *ap); 99 static void ppp_async_flush_output(struct asyncppp *ap); 100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 const char *flags, int count); 102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104 static void ppp_async_process(struct tasklet_struct *t); 105 106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109 static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112 }; 113 114 /* 115 * Routines implementing the PPP line discipline. 116 */ 117 118 /* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130 static DEFINE_RWLOCK(disc_data_lock); 131 132 static struct asyncppp *ap_get(struct tty_struct *tty) 133 { 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142 } 143 144 static void ap_put(struct asyncppp *ap) 145 { 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148 } 149 150 /* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154 static int 155 ppp_asynctty_open(struct tty_struct *tty) 156 { 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_setup(&ap->tsk, ppp_async_process); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204 } 205 206 /* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214 static void 215 ppp_asynctty_close(struct tty_struct *tty) 216 { 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242 } 243 244 /* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250 static void ppp_asynctty_hangup(struct tty_struct *tty) 251 { 252 ppp_asynctty_close(tty); 253 } 254 255 /* 256 * Read does nothing - no data is ever available this way. 257 * Pppd reads and writes packets via /dev/ppp instead. 258 */ 259 static ssize_t 260 ppp_asynctty_read(struct tty_struct *tty, struct file *file, 261 unsigned char *buf, size_t count, 262 void **cookie, unsigned long offset) 263 { 264 return -EAGAIN; 265 } 266 267 /* 268 * Write on the tty does nothing, the packets all come in 269 * from the ppp generic stuff. 270 */ 271 static ssize_t 272 ppp_asynctty_write(struct tty_struct *tty, struct file *file, 273 const unsigned char *buf, size_t count) 274 { 275 return -EAGAIN; 276 } 277 278 /* 279 * Called in process context only. May be re-entered by multiple 280 * ioctl calling threads. 281 */ 282 283 static int 284 ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) 285 { 286 struct asyncppp *ap = ap_get(tty); 287 int err, val; 288 int __user *p = (int __user *)arg; 289 290 if (!ap) 291 return -ENXIO; 292 err = -EFAULT; 293 switch (cmd) { 294 case PPPIOCGCHAN: 295 err = -EFAULT; 296 if (put_user(ppp_channel_index(&ap->chan), p)) 297 break; 298 err = 0; 299 break; 300 301 case PPPIOCGUNIT: 302 err = -EFAULT; 303 if (put_user(ppp_unit_number(&ap->chan), p)) 304 break; 305 err = 0; 306 break; 307 308 case TCFLSH: 309 /* flush our buffers and the serial port's buffer */ 310 if (arg == TCIOFLUSH || arg == TCOFLUSH) 311 ppp_async_flush_output(ap); 312 err = n_tty_ioctl_helper(tty, cmd, arg); 313 break; 314 315 case FIONREAD: 316 val = 0; 317 if (put_user(val, p)) 318 break; 319 err = 0; 320 break; 321 322 default: 323 /* Try the various mode ioctls */ 324 err = tty_mode_ioctl(tty, cmd, arg); 325 } 326 327 ap_put(ap); 328 return err; 329 } 330 331 /* May sleep, don't call from interrupt level or with interrupts disabled */ 332 static void 333 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 334 const char *cflags, size_t count) 335 { 336 struct asyncppp *ap = ap_get(tty); 337 unsigned long flags; 338 339 if (!ap) 340 return; 341 spin_lock_irqsave(&ap->recv_lock, flags); 342 ppp_async_input(ap, buf, cflags, count); 343 spin_unlock_irqrestore(&ap->recv_lock, flags); 344 if (!skb_queue_empty(&ap->rqueue)) 345 tasklet_schedule(&ap->tsk); 346 ap_put(ap); 347 tty_unthrottle(tty); 348 } 349 350 static void 351 ppp_asynctty_wakeup(struct tty_struct *tty) 352 { 353 struct asyncppp *ap = ap_get(tty); 354 355 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 356 if (!ap) 357 return; 358 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 359 tasklet_schedule(&ap->tsk); 360 ap_put(ap); 361 } 362 363 364 static struct tty_ldisc_ops ppp_ldisc = { 365 .owner = THIS_MODULE, 366 .num = N_PPP, 367 .name = "ppp", 368 .open = ppp_asynctty_open, 369 .close = ppp_asynctty_close, 370 .hangup = ppp_asynctty_hangup, 371 .read = ppp_asynctty_read, 372 .write = ppp_asynctty_write, 373 .ioctl = ppp_asynctty_ioctl, 374 .receive_buf = ppp_asynctty_receive, 375 .write_wakeup = ppp_asynctty_wakeup, 376 }; 377 378 static int __init 379 ppp_async_init(void) 380 { 381 int err; 382 383 err = tty_register_ldisc(&ppp_ldisc); 384 if (err != 0) 385 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 386 err); 387 return err; 388 } 389 390 /* 391 * The following routines provide the PPP channel interface. 392 */ 393 static int 394 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 395 { 396 struct asyncppp *ap = chan->private; 397 void __user *argp = (void __user *)arg; 398 int __user *p = argp; 399 int err, val; 400 u32 accm[8]; 401 402 err = -EFAULT; 403 switch (cmd) { 404 case PPPIOCGFLAGS: 405 val = ap->flags | ap->rbits; 406 if (put_user(val, p)) 407 break; 408 err = 0; 409 break; 410 case PPPIOCSFLAGS: 411 if (get_user(val, p)) 412 break; 413 ap->flags = val & ~SC_RCV_BITS; 414 spin_lock_irq(&ap->recv_lock); 415 ap->rbits = val & SC_RCV_BITS; 416 spin_unlock_irq(&ap->recv_lock); 417 err = 0; 418 break; 419 420 case PPPIOCGASYNCMAP: 421 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 422 break; 423 err = 0; 424 break; 425 case PPPIOCSASYNCMAP: 426 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 427 break; 428 err = 0; 429 break; 430 431 case PPPIOCGRASYNCMAP: 432 if (put_user(ap->raccm, (u32 __user *)argp)) 433 break; 434 err = 0; 435 break; 436 case PPPIOCSRASYNCMAP: 437 if (get_user(ap->raccm, (u32 __user *)argp)) 438 break; 439 err = 0; 440 break; 441 442 case PPPIOCGXASYNCMAP: 443 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 444 break; 445 err = 0; 446 break; 447 case PPPIOCSXASYNCMAP: 448 if (copy_from_user(accm, argp, sizeof(accm))) 449 break; 450 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 451 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 452 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 453 err = 0; 454 break; 455 456 case PPPIOCGMRU: 457 if (put_user(ap->mru, p)) 458 break; 459 err = 0; 460 break; 461 case PPPIOCSMRU: 462 if (get_user(val, p)) 463 break; 464 if (val < PPP_MRU) 465 val = PPP_MRU; 466 ap->mru = val; 467 err = 0; 468 break; 469 470 default: 471 err = -ENOTTY; 472 } 473 474 return err; 475 } 476 477 /* 478 * This is called at softirq level to deliver received packets 479 * to the ppp_generic code, and to tell the ppp_generic code 480 * if we can accept more output now. 481 */ 482 static void ppp_async_process(struct tasklet_struct *t) 483 { 484 struct asyncppp *ap = from_tasklet(ap, t, tsk); 485 struct sk_buff *skb; 486 487 /* process received packets */ 488 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 489 if (skb->cb[0]) 490 ppp_input_error(&ap->chan, 0); 491 ppp_input(&ap->chan, skb); 492 } 493 494 /* try to push more stuff out */ 495 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 496 ppp_output_wakeup(&ap->chan); 497 } 498 499 /* 500 * Procedures for encapsulation and framing. 501 */ 502 503 /* 504 * Procedure to encode the data for async serial transmission. 505 * Does octet stuffing (escaping), puts the address/control bytes 506 * on if A/C compression is disabled, and does protocol compression. 507 * Assumes ap->tpkt != 0 on entry. 508 * Returns 1 if we finished the current frame, 0 otherwise. 509 */ 510 511 #define PUT_BYTE(ap, buf, c, islcp) do { \ 512 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 513 *buf++ = PPP_ESCAPE; \ 514 *buf++ = c ^ PPP_TRANS; \ 515 } else \ 516 *buf++ = c; \ 517 } while (0) 518 519 static int 520 ppp_async_encode(struct asyncppp *ap) 521 { 522 int fcs, i, count, c, proto; 523 unsigned char *buf, *buflim; 524 unsigned char *data; 525 int islcp; 526 527 buf = ap->obuf; 528 ap->olim = buf; 529 ap->optr = buf; 530 i = ap->tpkt_pos; 531 data = ap->tpkt->data; 532 count = ap->tpkt->len; 533 fcs = ap->tfcs; 534 proto = get_unaligned_be16(data); 535 536 /* 537 * LCP packets with code values between 1 (configure-reqest) 538 * and 7 (code-reject) must be sent as though no options 539 * had been negotiated. 540 */ 541 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 542 543 if (i == 0) { 544 if (islcp) 545 async_lcp_peek(ap, data, count, 0); 546 547 /* 548 * Start of a new packet - insert the leading FLAG 549 * character if necessary. 550 */ 551 if (islcp || flag_time == 0 || 552 time_after_eq(jiffies, ap->last_xmit + flag_time)) 553 *buf++ = PPP_FLAG; 554 ap->last_xmit = jiffies; 555 fcs = PPP_INITFCS; 556 557 /* 558 * Put in the address/control bytes if necessary 559 */ 560 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 561 PUT_BYTE(ap, buf, 0xff, islcp); 562 fcs = PPP_FCS(fcs, 0xff); 563 PUT_BYTE(ap, buf, 0x03, islcp); 564 fcs = PPP_FCS(fcs, 0x03); 565 } 566 } 567 568 /* 569 * Once we put in the last byte, we need to put in the FCS 570 * and closing flag, so make sure there is at least 7 bytes 571 * of free space in the output buffer. 572 */ 573 buflim = ap->obuf + OBUFSIZE - 6; 574 while (i < count && buf < buflim) { 575 c = data[i++]; 576 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 577 continue; /* compress protocol field */ 578 fcs = PPP_FCS(fcs, c); 579 PUT_BYTE(ap, buf, c, islcp); 580 } 581 582 if (i < count) { 583 /* 584 * Remember where we are up to in this packet. 585 */ 586 ap->olim = buf; 587 ap->tpkt_pos = i; 588 ap->tfcs = fcs; 589 return 0; 590 } 591 592 /* 593 * We have finished the packet. Add the FCS and flag. 594 */ 595 fcs = ~fcs; 596 c = fcs & 0xff; 597 PUT_BYTE(ap, buf, c, islcp); 598 c = (fcs >> 8) & 0xff; 599 PUT_BYTE(ap, buf, c, islcp); 600 *buf++ = PPP_FLAG; 601 ap->olim = buf; 602 603 consume_skb(ap->tpkt); 604 ap->tpkt = NULL; 605 return 1; 606 } 607 608 /* 609 * Transmit-side routines. 610 */ 611 612 /* 613 * Send a packet to the peer over an async tty line. 614 * Returns 1 iff the packet was accepted. 615 * If the packet was not accepted, we will call ppp_output_wakeup 616 * at some later time. 617 */ 618 static int 619 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 620 { 621 struct asyncppp *ap = chan->private; 622 623 ppp_async_push(ap); 624 625 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 626 return 0; /* already full */ 627 ap->tpkt = skb; 628 ap->tpkt_pos = 0; 629 630 ppp_async_push(ap); 631 return 1; 632 } 633 634 /* 635 * Push as much data as possible out to the tty. 636 */ 637 static int 638 ppp_async_push(struct asyncppp *ap) 639 { 640 int avail, sent, done = 0; 641 struct tty_struct *tty = ap->tty; 642 int tty_stuffed = 0; 643 644 /* 645 * We can get called recursively here if the tty write 646 * function calls our wakeup function. This can happen 647 * for example on a pty with both the master and slave 648 * set to PPP line discipline. 649 * We use the XMIT_BUSY bit to detect this and get out, 650 * leaving the XMIT_WAKEUP bit set to tell the other 651 * instance that it may now be able to write more now. 652 */ 653 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 654 return 0; 655 spin_lock_bh(&ap->xmit_lock); 656 for (;;) { 657 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 658 tty_stuffed = 0; 659 if (!tty_stuffed && ap->optr < ap->olim) { 660 avail = ap->olim - ap->optr; 661 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 662 sent = tty->ops->write(tty, ap->optr, avail); 663 if (sent < 0) 664 goto flush; /* error, e.g. loss of CD */ 665 ap->optr += sent; 666 if (sent < avail) 667 tty_stuffed = 1; 668 continue; 669 } 670 if (ap->optr >= ap->olim && ap->tpkt) { 671 if (ppp_async_encode(ap)) { 672 /* finished processing ap->tpkt */ 673 clear_bit(XMIT_FULL, &ap->xmit_flags); 674 done = 1; 675 } 676 continue; 677 } 678 /* 679 * We haven't made any progress this time around. 680 * Clear XMIT_BUSY to let other callers in, but 681 * after doing so we have to check if anyone set 682 * XMIT_WAKEUP since we last checked it. If they 683 * did, we should try again to set XMIT_BUSY and go 684 * around again in case XMIT_BUSY was still set when 685 * the other caller tried. 686 */ 687 clear_bit(XMIT_BUSY, &ap->xmit_flags); 688 /* any more work to do? if not, exit the loop */ 689 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 690 (!tty_stuffed && ap->tpkt))) 691 break; 692 /* more work to do, see if we can do it now */ 693 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 694 break; 695 } 696 spin_unlock_bh(&ap->xmit_lock); 697 return done; 698 699 flush: 700 clear_bit(XMIT_BUSY, &ap->xmit_flags); 701 if (ap->tpkt) { 702 kfree_skb(ap->tpkt); 703 ap->tpkt = NULL; 704 clear_bit(XMIT_FULL, &ap->xmit_flags); 705 done = 1; 706 } 707 ap->optr = ap->olim; 708 spin_unlock_bh(&ap->xmit_lock); 709 return done; 710 } 711 712 /* 713 * Flush output from our internal buffers. 714 * Called for the TCFLSH ioctl. Can be entered in parallel 715 * but this is covered by the xmit_lock. 716 */ 717 static void 718 ppp_async_flush_output(struct asyncppp *ap) 719 { 720 int done = 0; 721 722 spin_lock_bh(&ap->xmit_lock); 723 ap->optr = ap->olim; 724 if (ap->tpkt != NULL) { 725 kfree_skb(ap->tpkt); 726 ap->tpkt = NULL; 727 clear_bit(XMIT_FULL, &ap->xmit_flags); 728 done = 1; 729 } 730 spin_unlock_bh(&ap->xmit_lock); 731 if (done) 732 ppp_output_wakeup(&ap->chan); 733 } 734 735 /* 736 * Receive-side routines. 737 */ 738 739 /* see how many ordinary chars there are at the start of buf */ 740 static inline int 741 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 742 { 743 int i, c; 744 745 for (i = 0; i < count; ++i) { 746 c = buf[i]; 747 if (c == PPP_ESCAPE || c == PPP_FLAG || 748 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 749 break; 750 } 751 return i; 752 } 753 754 /* called when a flag is seen - do end-of-packet processing */ 755 static void 756 process_input_packet(struct asyncppp *ap) 757 { 758 struct sk_buff *skb; 759 unsigned char *p; 760 unsigned int len, fcs; 761 762 skb = ap->rpkt; 763 if (ap->state & (SC_TOSS | SC_ESCAPE)) 764 goto err; 765 766 if (skb == NULL) 767 return; /* 0-length packet */ 768 769 /* check the FCS */ 770 p = skb->data; 771 len = skb->len; 772 if (len < 3) 773 goto err; /* too short */ 774 fcs = PPP_INITFCS; 775 for (; len > 0; --len) 776 fcs = PPP_FCS(fcs, *p++); 777 if (fcs != PPP_GOODFCS) 778 goto err; /* bad FCS */ 779 skb_trim(skb, skb->len - 2); 780 781 /* check for address/control and protocol compression */ 782 p = skb->data; 783 if (p[0] == PPP_ALLSTATIONS) { 784 /* chop off address/control */ 785 if (p[1] != PPP_UI || skb->len < 3) 786 goto err; 787 p = skb_pull(skb, 2); 788 } 789 790 /* If protocol field is not compressed, it can be LCP packet */ 791 if (!(p[0] & 0x01)) { 792 unsigned int proto; 793 794 if (skb->len < 2) 795 goto err; 796 proto = (p[0] << 8) + p[1]; 797 if (proto == PPP_LCP) 798 async_lcp_peek(ap, p, skb->len, 1); 799 } 800 801 /* queue the frame to be processed */ 802 skb->cb[0] = ap->state; 803 skb_queue_tail(&ap->rqueue, skb); 804 ap->rpkt = NULL; 805 ap->state = 0; 806 return; 807 808 err: 809 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 810 ap->state = SC_PREV_ERROR; 811 if (skb) { 812 /* make skb appear as freshly allocated */ 813 skb_trim(skb, 0); 814 skb_reserve(skb, - skb_headroom(skb)); 815 } 816 } 817 818 /* Called when the tty driver has data for us. Runs parallel with the 819 other ldisc functions but will not be re-entered */ 820 821 static void 822 ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 823 const char *flags, int count) 824 { 825 struct sk_buff *skb; 826 int c, i, j, n, s, f; 827 unsigned char *sp; 828 829 /* update bits used for 8-bit cleanness detection */ 830 if (~ap->rbits & SC_RCV_BITS) { 831 s = 0; 832 for (i = 0; i < count; ++i) { 833 c = buf[i]; 834 if (flags && flags[i] != 0) 835 continue; 836 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 837 c = ((c >> 4) ^ c) & 0xf; 838 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 839 } 840 ap->rbits |= s; 841 } 842 843 while (count > 0) { 844 /* scan through and see how many chars we can do in bulk */ 845 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 846 n = 1; 847 else 848 n = scan_ordinary(ap, buf, count); 849 850 f = 0; 851 if (flags && (ap->state & SC_TOSS) == 0) { 852 /* check the flags to see if any char had an error */ 853 for (j = 0; j < n; ++j) 854 if ((f = flags[j]) != 0) 855 break; 856 } 857 if (f != 0) { 858 /* start tossing */ 859 ap->state |= SC_TOSS; 860 861 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 862 /* stuff the chars in the skb */ 863 skb = ap->rpkt; 864 if (!skb) { 865 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 866 if (!skb) 867 goto nomem; 868 ap->rpkt = skb; 869 } 870 if (skb->len == 0) { 871 /* Try to get the payload 4-byte aligned. 872 * This should match the 873 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 874 * process_input_packet, but we do not have 875 * enough chars here to test buf[1] and buf[2]. 876 */ 877 if (buf[0] != PPP_ALLSTATIONS) 878 skb_reserve(skb, 2 + (buf[0] & 1)); 879 } 880 if (n > skb_tailroom(skb)) { 881 /* packet overflowed MRU */ 882 ap->state |= SC_TOSS; 883 } else { 884 sp = skb_put_data(skb, buf, n); 885 if (ap->state & SC_ESCAPE) { 886 sp[0] ^= PPP_TRANS; 887 ap->state &= ~SC_ESCAPE; 888 } 889 } 890 } 891 892 if (n >= count) 893 break; 894 895 c = buf[n]; 896 if (flags != NULL && flags[n] != 0) { 897 ap->state |= SC_TOSS; 898 } else if (c == PPP_FLAG) { 899 process_input_packet(ap); 900 } else if (c == PPP_ESCAPE) { 901 ap->state |= SC_ESCAPE; 902 } else if (I_IXON(ap->tty)) { 903 if (c == START_CHAR(ap->tty)) 904 start_tty(ap->tty); 905 else if (c == STOP_CHAR(ap->tty)) 906 stop_tty(ap->tty); 907 } 908 /* otherwise it's a char in the recv ACCM */ 909 ++n; 910 911 buf += n; 912 if (flags) 913 flags += n; 914 count -= n; 915 } 916 return; 917 918 nomem: 919 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 920 ap->state |= SC_TOSS; 921 } 922 923 /* 924 * We look at LCP frames going past so that we can notice 925 * and react to the LCP configure-ack from the peer. 926 * In the situation where the peer has been sent a configure-ack 927 * already, LCP is up once it has sent its configure-ack 928 * so the immediately following packet can be sent with the 929 * configured LCP options. This allows us to process the following 930 * packet correctly without pppd needing to respond quickly. 931 * 932 * We only respond to the received configure-ack if we have just 933 * sent a configure-request, and the configure-ack contains the 934 * same data (this is checked using a 16-bit crc of the data). 935 */ 936 #define CONFREQ 1 /* LCP code field values */ 937 #define CONFACK 2 938 #define LCP_MRU 1 /* LCP option numbers */ 939 #define LCP_ASYNCMAP 2 940 941 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 942 int len, int inbound) 943 { 944 int dlen, fcs, i, code; 945 u32 val; 946 947 data += 2; /* skip protocol bytes */ 948 len -= 2; 949 if (len < 4) /* 4 = code, ID, length */ 950 return; 951 code = data[0]; 952 if (code != CONFACK && code != CONFREQ) 953 return; 954 dlen = get_unaligned_be16(data + 2); 955 if (len < dlen) 956 return; /* packet got truncated or length is bogus */ 957 958 if (code == (inbound? CONFACK: CONFREQ)) { 959 /* 960 * sent confreq or received confack: 961 * calculate the crc of the data from the ID field on. 962 */ 963 fcs = PPP_INITFCS; 964 for (i = 1; i < dlen; ++i) 965 fcs = PPP_FCS(fcs, data[i]); 966 967 if (!inbound) { 968 /* outbound confreq - remember the crc for later */ 969 ap->lcp_fcs = fcs; 970 return; 971 } 972 973 /* received confack, check the crc */ 974 fcs ^= ap->lcp_fcs; 975 ap->lcp_fcs = -1; 976 if (fcs != 0) 977 return; 978 } else if (inbound) 979 return; /* not interested in received confreq */ 980 981 /* process the options in the confack */ 982 data += 4; 983 dlen -= 4; 984 /* data[0] is code, data[1] is length */ 985 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 986 switch (data[0]) { 987 case LCP_MRU: 988 val = get_unaligned_be16(data + 2); 989 if (inbound) 990 ap->mru = val; 991 else 992 ap->chan.mtu = val; 993 break; 994 case LCP_ASYNCMAP: 995 val = get_unaligned_be32(data + 2); 996 if (inbound) 997 ap->raccm = val; 998 else 999 ap->xaccm[0] = val; 1000 break; 1001 } 1002 dlen -= data[1]; 1003 data += data[1]; 1004 } 1005 } 1006 1007 static void __exit ppp_async_cleanup(void) 1008 { 1009 tty_unregister_ldisc(&ppp_ldisc); 1010 } 1011 1012 module_init(ppp_async_init); 1013 module_exit(ppp_async_cleanup); 1014