xref: /openbmc/linux/drivers/net/ppp/ppp_async.c (revision e23feb16)
1 /*
2  * PPP async serial channel driver for Linux.
3  *
4  * Copyright 1999 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * This driver provides the encapsulation and framing for sending
12  * and receiving PPP frames over async serial lines.  It relies on
13  * the generic PPP layer to give it frames to send and to process
14  * received frames.  It implements the PPP line discipline.
15  *
16  * Part of the code in this driver was inspired by the old async-only
17  * PPP driver, written by Michael Callahan and Al Longyear, and
18  * subsequently hacked by Paul Mackerras.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/skbuff.h>
24 #include <linux/tty.h>
25 #include <linux/netdevice.h>
26 #include <linux/poll.h>
27 #include <linux/crc-ccitt.h>
28 #include <linux/ppp_defs.h>
29 #include <linux/ppp-ioctl.h>
30 #include <linux/ppp_channel.h>
31 #include <linux/spinlock.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
38 #include <asm/string.h>
39 
40 #define PPP_VERSION	"2.4.2"
41 
42 #define OBUFSIZE	4096
43 
44 /* Structure for storing local state. */
45 struct asyncppp {
46 	struct tty_struct *tty;
47 	unsigned int	flags;
48 	unsigned int	state;
49 	unsigned int	rbits;
50 	int		mru;
51 	spinlock_t	xmit_lock;
52 	spinlock_t	recv_lock;
53 	unsigned long	xmit_flags;
54 	u32		xaccm[8];
55 	u32		raccm;
56 	unsigned int	bytes_sent;
57 	unsigned int	bytes_rcvd;
58 
59 	struct sk_buff	*tpkt;
60 	int		tpkt_pos;
61 	u16		tfcs;
62 	unsigned char	*optr;
63 	unsigned char	*olim;
64 	unsigned long	last_xmit;
65 
66 	struct sk_buff	*rpkt;
67 	int		lcp_fcs;
68 	struct sk_buff_head rqueue;
69 
70 	struct tasklet_struct tsk;
71 
72 	atomic_t	refcnt;
73 	struct semaphore dead_sem;
74 	struct ppp_channel chan;	/* interface to generic ppp layer */
75 	unsigned char	obuf[OBUFSIZE];
76 };
77 
78 /* Bit numbers in xmit_flags */
79 #define XMIT_WAKEUP	0
80 #define XMIT_FULL	1
81 #define XMIT_BUSY	2
82 
83 /* State bits */
84 #define SC_TOSS		1
85 #define SC_ESCAPE	2
86 #define SC_PREV_ERROR	4
87 
88 /* Bits in rbits */
89 #define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
90 
91 static int flag_time = HZ;
92 module_param(flag_time, int, 0);
93 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
94 MODULE_LICENSE("GPL");
95 MODULE_ALIAS_LDISC(N_PPP);
96 
97 /*
98  * Prototypes.
99  */
100 static int ppp_async_encode(struct asyncppp *ap);
101 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
102 static int ppp_async_push(struct asyncppp *ap);
103 static void ppp_async_flush_output(struct asyncppp *ap);
104 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
105 			    char *flags, int count);
106 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
107 			   unsigned long arg);
108 static void ppp_async_process(unsigned long arg);
109 
110 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
111 			   int len, int inbound);
112 
113 static const struct ppp_channel_ops async_ops = {
114 	.start_xmit = ppp_async_send,
115 	.ioctl      = ppp_async_ioctl,
116 };
117 
118 /*
119  * Routines implementing the PPP line discipline.
120  */
121 
122 /*
123  * We have a potential race on dereferencing tty->disc_data,
124  * because the tty layer provides no locking at all - thus one
125  * cpu could be running ppp_asynctty_receive while another
126  * calls ppp_asynctty_close, which zeroes tty->disc_data and
127  * frees the memory that ppp_asynctty_receive is using.  The best
128  * way to fix this is to use a rwlock in the tty struct, but for now
129  * we use a single global rwlock for all ttys in ppp line discipline.
130  *
131  * FIXME: this is no longer true. The _close path for the ldisc is
132  * now guaranteed to be sane.
133  */
134 static DEFINE_RWLOCK(disc_data_lock);
135 
136 static struct asyncppp *ap_get(struct tty_struct *tty)
137 {
138 	struct asyncppp *ap;
139 
140 	read_lock(&disc_data_lock);
141 	ap = tty->disc_data;
142 	if (ap != NULL)
143 		atomic_inc(&ap->refcnt);
144 	read_unlock(&disc_data_lock);
145 	return ap;
146 }
147 
148 static void ap_put(struct asyncppp *ap)
149 {
150 	if (atomic_dec_and_test(&ap->refcnt))
151 		up(&ap->dead_sem);
152 }
153 
154 /*
155  * Called when a tty is put into PPP line discipline. Called in process
156  * context.
157  */
158 static int
159 ppp_asynctty_open(struct tty_struct *tty)
160 {
161 	struct asyncppp *ap;
162 	int err;
163 	int speed;
164 
165 	if (tty->ops->write == NULL)
166 		return -EOPNOTSUPP;
167 
168 	err = -ENOMEM;
169 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
170 	if (!ap)
171 		goto out;
172 
173 	/* initialize the asyncppp structure */
174 	ap->tty = tty;
175 	ap->mru = PPP_MRU;
176 	spin_lock_init(&ap->xmit_lock);
177 	spin_lock_init(&ap->recv_lock);
178 	ap->xaccm[0] = ~0U;
179 	ap->xaccm[3] = 0x60000000U;
180 	ap->raccm = ~0U;
181 	ap->optr = ap->obuf;
182 	ap->olim = ap->obuf;
183 	ap->lcp_fcs = -1;
184 
185 	skb_queue_head_init(&ap->rqueue);
186 	tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap);
187 
188 	atomic_set(&ap->refcnt, 1);
189 	sema_init(&ap->dead_sem, 0);
190 
191 	ap->chan.private = ap;
192 	ap->chan.ops = &async_ops;
193 	ap->chan.mtu = PPP_MRU;
194 	speed = tty_get_baud_rate(tty);
195 	ap->chan.speed = speed;
196 	err = ppp_register_channel(&ap->chan);
197 	if (err)
198 		goto out_free;
199 
200 	tty->disc_data = ap;
201 	tty->receive_room = 65536;
202 	return 0;
203 
204  out_free:
205 	kfree(ap);
206  out:
207 	return err;
208 }
209 
210 /*
211  * Called when the tty is put into another line discipline
212  * or it hangs up.  We have to wait for any cpu currently
213  * executing in any of the other ppp_asynctty_* routines to
214  * finish before we can call ppp_unregister_channel and free
215  * the asyncppp struct.  This routine must be called from
216  * process context, not interrupt or softirq context.
217  */
218 static void
219 ppp_asynctty_close(struct tty_struct *tty)
220 {
221 	struct asyncppp *ap;
222 
223 	write_lock_irq(&disc_data_lock);
224 	ap = tty->disc_data;
225 	tty->disc_data = NULL;
226 	write_unlock_irq(&disc_data_lock);
227 	if (!ap)
228 		return;
229 
230 	/*
231 	 * We have now ensured that nobody can start using ap from now
232 	 * on, but we have to wait for all existing users to finish.
233 	 * Note that ppp_unregister_channel ensures that no calls to
234 	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
235 	 * by the time it returns.
236 	 */
237 	if (!atomic_dec_and_test(&ap->refcnt))
238 		down(&ap->dead_sem);
239 	tasklet_kill(&ap->tsk);
240 
241 	ppp_unregister_channel(&ap->chan);
242 	kfree_skb(ap->rpkt);
243 	skb_queue_purge(&ap->rqueue);
244 	kfree_skb(ap->tpkt);
245 	kfree(ap);
246 }
247 
248 /*
249  * Called on tty hangup in process context.
250  *
251  * Wait for I/O to driver to complete and unregister PPP channel.
252  * This is already done by the close routine, so just call that.
253  */
254 static int ppp_asynctty_hangup(struct tty_struct *tty)
255 {
256 	ppp_asynctty_close(tty);
257 	return 0;
258 }
259 
260 /*
261  * Read does nothing - no data is ever available this way.
262  * Pppd reads and writes packets via /dev/ppp instead.
263  */
264 static ssize_t
265 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
266 		  unsigned char __user *buf, size_t count)
267 {
268 	return -EAGAIN;
269 }
270 
271 /*
272  * Write on the tty does nothing, the packets all come in
273  * from the ppp generic stuff.
274  */
275 static ssize_t
276 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
277 		   const unsigned char *buf, size_t count)
278 {
279 	return -EAGAIN;
280 }
281 
282 /*
283  * Called in process context only. May be re-entered by multiple
284  * ioctl calling threads.
285  */
286 
287 static int
288 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
289 		   unsigned int cmd, unsigned long arg)
290 {
291 	struct asyncppp *ap = ap_get(tty);
292 	int err, val;
293 	int __user *p = (int __user *)arg;
294 
295 	if (!ap)
296 		return -ENXIO;
297 	err = -EFAULT;
298 	switch (cmd) {
299 	case PPPIOCGCHAN:
300 		err = -EFAULT;
301 		if (put_user(ppp_channel_index(&ap->chan), p))
302 			break;
303 		err = 0;
304 		break;
305 
306 	case PPPIOCGUNIT:
307 		err = -EFAULT;
308 		if (put_user(ppp_unit_number(&ap->chan), p))
309 			break;
310 		err = 0;
311 		break;
312 
313 	case TCFLSH:
314 		/* flush our buffers and the serial port's buffer */
315 		if (arg == TCIOFLUSH || arg == TCOFLUSH)
316 			ppp_async_flush_output(ap);
317 		err = n_tty_ioctl_helper(tty, file, cmd, arg);
318 		break;
319 
320 	case FIONREAD:
321 		val = 0;
322 		if (put_user(val, p))
323 			break;
324 		err = 0;
325 		break;
326 
327 	default:
328 		/* Try the various mode ioctls */
329 		err = tty_mode_ioctl(tty, file, cmd, arg);
330 	}
331 
332 	ap_put(ap);
333 	return err;
334 }
335 
336 /* No kernel lock - fine */
337 static unsigned int
338 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
339 {
340 	return 0;
341 }
342 
343 /* May sleep, don't call from interrupt level or with interrupts disabled */
344 static void
345 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
346 		  char *cflags, int count)
347 {
348 	struct asyncppp *ap = ap_get(tty);
349 	unsigned long flags;
350 
351 	if (!ap)
352 		return;
353 	spin_lock_irqsave(&ap->recv_lock, flags);
354 	ppp_async_input(ap, buf, cflags, count);
355 	spin_unlock_irqrestore(&ap->recv_lock, flags);
356 	if (!skb_queue_empty(&ap->rqueue))
357 		tasklet_schedule(&ap->tsk);
358 	ap_put(ap);
359 	tty_unthrottle(tty);
360 }
361 
362 static void
363 ppp_asynctty_wakeup(struct tty_struct *tty)
364 {
365 	struct asyncppp *ap = ap_get(tty);
366 
367 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
368 	if (!ap)
369 		return;
370 	set_bit(XMIT_WAKEUP, &ap->xmit_flags);
371 	tasklet_schedule(&ap->tsk);
372 	ap_put(ap);
373 }
374 
375 
376 static struct tty_ldisc_ops ppp_ldisc = {
377 	.owner  = THIS_MODULE,
378 	.magic	= TTY_LDISC_MAGIC,
379 	.name	= "ppp",
380 	.open	= ppp_asynctty_open,
381 	.close	= ppp_asynctty_close,
382 	.hangup	= ppp_asynctty_hangup,
383 	.read	= ppp_asynctty_read,
384 	.write	= ppp_asynctty_write,
385 	.ioctl	= ppp_asynctty_ioctl,
386 	.poll	= ppp_asynctty_poll,
387 	.receive_buf = ppp_asynctty_receive,
388 	.write_wakeup = ppp_asynctty_wakeup,
389 };
390 
391 static int __init
392 ppp_async_init(void)
393 {
394 	int err;
395 
396 	err = tty_register_ldisc(N_PPP, &ppp_ldisc);
397 	if (err != 0)
398 		printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
399 		       err);
400 	return err;
401 }
402 
403 /*
404  * The following routines provide the PPP channel interface.
405  */
406 static int
407 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
408 {
409 	struct asyncppp *ap = chan->private;
410 	void __user *argp = (void __user *)arg;
411 	int __user *p = argp;
412 	int err, val;
413 	u32 accm[8];
414 
415 	err = -EFAULT;
416 	switch (cmd) {
417 	case PPPIOCGFLAGS:
418 		val = ap->flags | ap->rbits;
419 		if (put_user(val, p))
420 			break;
421 		err = 0;
422 		break;
423 	case PPPIOCSFLAGS:
424 		if (get_user(val, p))
425 			break;
426 		ap->flags = val & ~SC_RCV_BITS;
427 		spin_lock_irq(&ap->recv_lock);
428 		ap->rbits = val & SC_RCV_BITS;
429 		spin_unlock_irq(&ap->recv_lock);
430 		err = 0;
431 		break;
432 
433 	case PPPIOCGASYNCMAP:
434 		if (put_user(ap->xaccm[0], (u32 __user *)argp))
435 			break;
436 		err = 0;
437 		break;
438 	case PPPIOCSASYNCMAP:
439 		if (get_user(ap->xaccm[0], (u32 __user *)argp))
440 			break;
441 		err = 0;
442 		break;
443 
444 	case PPPIOCGRASYNCMAP:
445 		if (put_user(ap->raccm, (u32 __user *)argp))
446 			break;
447 		err = 0;
448 		break;
449 	case PPPIOCSRASYNCMAP:
450 		if (get_user(ap->raccm, (u32 __user *)argp))
451 			break;
452 		err = 0;
453 		break;
454 
455 	case PPPIOCGXASYNCMAP:
456 		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
457 			break;
458 		err = 0;
459 		break;
460 	case PPPIOCSXASYNCMAP:
461 		if (copy_from_user(accm, argp, sizeof(accm)))
462 			break;
463 		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */
464 		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */
465 		memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
466 		err = 0;
467 		break;
468 
469 	case PPPIOCGMRU:
470 		if (put_user(ap->mru, p))
471 			break;
472 		err = 0;
473 		break;
474 	case PPPIOCSMRU:
475 		if (get_user(val, p))
476 			break;
477 		if (val < PPP_MRU)
478 			val = PPP_MRU;
479 		ap->mru = val;
480 		err = 0;
481 		break;
482 
483 	default:
484 		err = -ENOTTY;
485 	}
486 
487 	return err;
488 }
489 
490 /*
491  * This is called at softirq level to deliver received packets
492  * to the ppp_generic code, and to tell the ppp_generic code
493  * if we can accept more output now.
494  */
495 static void ppp_async_process(unsigned long arg)
496 {
497 	struct asyncppp *ap = (struct asyncppp *) arg;
498 	struct sk_buff *skb;
499 
500 	/* process received packets */
501 	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
502 		if (skb->cb[0])
503 			ppp_input_error(&ap->chan, 0);
504 		ppp_input(&ap->chan, skb);
505 	}
506 
507 	/* try to push more stuff out */
508 	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
509 		ppp_output_wakeup(&ap->chan);
510 }
511 
512 /*
513  * Procedures for encapsulation and framing.
514  */
515 
516 /*
517  * Procedure to encode the data for async serial transmission.
518  * Does octet stuffing (escaping), puts the address/control bytes
519  * on if A/C compression is disabled, and does protocol compression.
520  * Assumes ap->tpkt != 0 on entry.
521  * Returns 1 if we finished the current frame, 0 otherwise.
522  */
523 
524 #define PUT_BYTE(ap, buf, c, islcp)	do {		\
525 	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
526 		*buf++ = PPP_ESCAPE;			\
527 		*buf++ = c ^ PPP_TRANS;			\
528 	} else						\
529 		*buf++ = c;				\
530 } while (0)
531 
532 static int
533 ppp_async_encode(struct asyncppp *ap)
534 {
535 	int fcs, i, count, c, proto;
536 	unsigned char *buf, *buflim;
537 	unsigned char *data;
538 	int islcp;
539 
540 	buf = ap->obuf;
541 	ap->olim = buf;
542 	ap->optr = buf;
543 	i = ap->tpkt_pos;
544 	data = ap->tpkt->data;
545 	count = ap->tpkt->len;
546 	fcs = ap->tfcs;
547 	proto = get_unaligned_be16(data);
548 
549 	/*
550 	 * LCP packets with code values between 1 (configure-reqest)
551 	 * and 7 (code-reject) must be sent as though no options
552 	 * had been negotiated.
553 	 */
554 	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
555 
556 	if (i == 0) {
557 		if (islcp)
558 			async_lcp_peek(ap, data, count, 0);
559 
560 		/*
561 		 * Start of a new packet - insert the leading FLAG
562 		 * character if necessary.
563 		 */
564 		if (islcp || flag_time == 0 ||
565 		    time_after_eq(jiffies, ap->last_xmit + flag_time))
566 			*buf++ = PPP_FLAG;
567 		ap->last_xmit = jiffies;
568 		fcs = PPP_INITFCS;
569 
570 		/*
571 		 * Put in the address/control bytes if necessary
572 		 */
573 		if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
574 			PUT_BYTE(ap, buf, 0xff, islcp);
575 			fcs = PPP_FCS(fcs, 0xff);
576 			PUT_BYTE(ap, buf, 0x03, islcp);
577 			fcs = PPP_FCS(fcs, 0x03);
578 		}
579 	}
580 
581 	/*
582 	 * Once we put in the last byte, we need to put in the FCS
583 	 * and closing flag, so make sure there is at least 7 bytes
584 	 * of free space in the output buffer.
585 	 */
586 	buflim = ap->obuf + OBUFSIZE - 6;
587 	while (i < count && buf < buflim) {
588 		c = data[i++];
589 		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
590 			continue;	/* compress protocol field */
591 		fcs = PPP_FCS(fcs, c);
592 		PUT_BYTE(ap, buf, c, islcp);
593 	}
594 
595 	if (i < count) {
596 		/*
597 		 * Remember where we are up to in this packet.
598 		 */
599 		ap->olim = buf;
600 		ap->tpkt_pos = i;
601 		ap->tfcs = fcs;
602 		return 0;
603 	}
604 
605 	/*
606 	 * We have finished the packet.  Add the FCS and flag.
607 	 */
608 	fcs = ~fcs;
609 	c = fcs & 0xff;
610 	PUT_BYTE(ap, buf, c, islcp);
611 	c = (fcs >> 8) & 0xff;
612 	PUT_BYTE(ap, buf, c, islcp);
613 	*buf++ = PPP_FLAG;
614 	ap->olim = buf;
615 
616 	consume_skb(ap->tpkt);
617 	ap->tpkt = NULL;
618 	return 1;
619 }
620 
621 /*
622  * Transmit-side routines.
623  */
624 
625 /*
626  * Send a packet to the peer over an async tty line.
627  * Returns 1 iff the packet was accepted.
628  * If the packet was not accepted, we will call ppp_output_wakeup
629  * at some later time.
630  */
631 static int
632 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
633 {
634 	struct asyncppp *ap = chan->private;
635 
636 	ppp_async_push(ap);
637 
638 	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
639 		return 0;	/* already full */
640 	ap->tpkt = skb;
641 	ap->tpkt_pos = 0;
642 
643 	ppp_async_push(ap);
644 	return 1;
645 }
646 
647 /*
648  * Push as much data as possible out to the tty.
649  */
650 static int
651 ppp_async_push(struct asyncppp *ap)
652 {
653 	int avail, sent, done = 0;
654 	struct tty_struct *tty = ap->tty;
655 	int tty_stuffed = 0;
656 
657 	/*
658 	 * We can get called recursively here if the tty write
659 	 * function calls our wakeup function.  This can happen
660 	 * for example on a pty with both the master and slave
661 	 * set to PPP line discipline.
662 	 * We use the XMIT_BUSY bit to detect this and get out,
663 	 * leaving the XMIT_WAKEUP bit set to tell the other
664 	 * instance that it may now be able to write more now.
665 	 */
666 	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
667 		return 0;
668 	spin_lock_bh(&ap->xmit_lock);
669 	for (;;) {
670 		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
671 			tty_stuffed = 0;
672 		if (!tty_stuffed && ap->optr < ap->olim) {
673 			avail = ap->olim - ap->optr;
674 			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
675 			sent = tty->ops->write(tty, ap->optr, avail);
676 			if (sent < 0)
677 				goto flush;	/* error, e.g. loss of CD */
678 			ap->optr += sent;
679 			if (sent < avail)
680 				tty_stuffed = 1;
681 			continue;
682 		}
683 		if (ap->optr >= ap->olim && ap->tpkt) {
684 			if (ppp_async_encode(ap)) {
685 				/* finished processing ap->tpkt */
686 				clear_bit(XMIT_FULL, &ap->xmit_flags);
687 				done = 1;
688 			}
689 			continue;
690 		}
691 		/*
692 		 * We haven't made any progress this time around.
693 		 * Clear XMIT_BUSY to let other callers in, but
694 		 * after doing so we have to check if anyone set
695 		 * XMIT_WAKEUP since we last checked it.  If they
696 		 * did, we should try again to set XMIT_BUSY and go
697 		 * around again in case XMIT_BUSY was still set when
698 		 * the other caller tried.
699 		 */
700 		clear_bit(XMIT_BUSY, &ap->xmit_flags);
701 		/* any more work to do? if not, exit the loop */
702 		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
703 		      (!tty_stuffed && ap->tpkt)))
704 			break;
705 		/* more work to do, see if we can do it now */
706 		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
707 			break;
708 	}
709 	spin_unlock_bh(&ap->xmit_lock);
710 	return done;
711 
712 flush:
713 	clear_bit(XMIT_BUSY, &ap->xmit_flags);
714 	if (ap->tpkt) {
715 		kfree_skb(ap->tpkt);
716 		ap->tpkt = NULL;
717 		clear_bit(XMIT_FULL, &ap->xmit_flags);
718 		done = 1;
719 	}
720 	ap->optr = ap->olim;
721 	spin_unlock_bh(&ap->xmit_lock);
722 	return done;
723 }
724 
725 /*
726  * Flush output from our internal buffers.
727  * Called for the TCFLSH ioctl. Can be entered in parallel
728  * but this is covered by the xmit_lock.
729  */
730 static void
731 ppp_async_flush_output(struct asyncppp *ap)
732 {
733 	int done = 0;
734 
735 	spin_lock_bh(&ap->xmit_lock);
736 	ap->optr = ap->olim;
737 	if (ap->tpkt != NULL) {
738 		kfree_skb(ap->tpkt);
739 		ap->tpkt = NULL;
740 		clear_bit(XMIT_FULL, &ap->xmit_flags);
741 		done = 1;
742 	}
743 	spin_unlock_bh(&ap->xmit_lock);
744 	if (done)
745 		ppp_output_wakeup(&ap->chan);
746 }
747 
748 /*
749  * Receive-side routines.
750  */
751 
752 /* see how many ordinary chars there are at the start of buf */
753 static inline int
754 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
755 {
756 	int i, c;
757 
758 	for (i = 0; i < count; ++i) {
759 		c = buf[i];
760 		if (c == PPP_ESCAPE || c == PPP_FLAG ||
761 		    (c < 0x20 && (ap->raccm & (1 << c)) != 0))
762 			break;
763 	}
764 	return i;
765 }
766 
767 /* called when a flag is seen - do end-of-packet processing */
768 static void
769 process_input_packet(struct asyncppp *ap)
770 {
771 	struct sk_buff *skb;
772 	unsigned char *p;
773 	unsigned int len, fcs, proto;
774 
775 	skb = ap->rpkt;
776 	if (ap->state & (SC_TOSS | SC_ESCAPE))
777 		goto err;
778 
779 	if (skb == NULL)
780 		return;		/* 0-length packet */
781 
782 	/* check the FCS */
783 	p = skb->data;
784 	len = skb->len;
785 	if (len < 3)
786 		goto err;	/* too short */
787 	fcs = PPP_INITFCS;
788 	for (; len > 0; --len)
789 		fcs = PPP_FCS(fcs, *p++);
790 	if (fcs != PPP_GOODFCS)
791 		goto err;	/* bad FCS */
792 	skb_trim(skb, skb->len - 2);
793 
794 	/* check for address/control and protocol compression */
795 	p = skb->data;
796 	if (p[0] == PPP_ALLSTATIONS) {
797 		/* chop off address/control */
798 		if (p[1] != PPP_UI || skb->len < 3)
799 			goto err;
800 		p = skb_pull(skb, 2);
801 	}
802 	proto = p[0];
803 	if (proto & 1) {
804 		/* protocol is compressed */
805 		skb_push(skb, 1)[0] = 0;
806 	} else {
807 		if (skb->len < 2)
808 			goto err;
809 		proto = (proto << 8) + p[1];
810 		if (proto == PPP_LCP)
811 			async_lcp_peek(ap, p, skb->len, 1);
812 	}
813 
814 	/* queue the frame to be processed */
815 	skb->cb[0] = ap->state;
816 	skb_queue_tail(&ap->rqueue, skb);
817 	ap->rpkt = NULL;
818 	ap->state = 0;
819 	return;
820 
821  err:
822 	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
823 	ap->state = SC_PREV_ERROR;
824 	if (skb) {
825 		/* make skb appear as freshly allocated */
826 		skb_trim(skb, 0);
827 		skb_reserve(skb, - skb_headroom(skb));
828 	}
829 }
830 
831 /* Called when the tty driver has data for us. Runs parallel with the
832    other ldisc functions but will not be re-entered */
833 
834 static void
835 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
836 		char *flags, int count)
837 {
838 	struct sk_buff *skb;
839 	int c, i, j, n, s, f;
840 	unsigned char *sp;
841 
842 	/* update bits used for 8-bit cleanness detection */
843 	if (~ap->rbits & SC_RCV_BITS) {
844 		s = 0;
845 		for (i = 0; i < count; ++i) {
846 			c = buf[i];
847 			if (flags && flags[i] != 0)
848 				continue;
849 			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
850 			c = ((c >> 4) ^ c) & 0xf;
851 			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
852 		}
853 		ap->rbits |= s;
854 	}
855 
856 	while (count > 0) {
857 		/* scan through and see how many chars we can do in bulk */
858 		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
859 			n = 1;
860 		else
861 			n = scan_ordinary(ap, buf, count);
862 
863 		f = 0;
864 		if (flags && (ap->state & SC_TOSS) == 0) {
865 			/* check the flags to see if any char had an error */
866 			for (j = 0; j < n; ++j)
867 				if ((f = flags[j]) != 0)
868 					break;
869 		}
870 		if (f != 0) {
871 			/* start tossing */
872 			ap->state |= SC_TOSS;
873 
874 		} else if (n > 0 && (ap->state & SC_TOSS) == 0) {
875 			/* stuff the chars in the skb */
876 			skb = ap->rpkt;
877 			if (!skb) {
878 				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
879 				if (!skb)
880 					goto nomem;
881  				ap->rpkt = skb;
882  			}
883  			if (skb->len == 0) {
884  				/* Try to get the payload 4-byte aligned.
885  				 * This should match the
886  				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
887  				 * process_input_packet, but we do not have
888  				 * enough chars here to test buf[1] and buf[2].
889  				 */
890 				if (buf[0] != PPP_ALLSTATIONS)
891 					skb_reserve(skb, 2 + (buf[0] & 1));
892 			}
893 			if (n > skb_tailroom(skb)) {
894 				/* packet overflowed MRU */
895 				ap->state |= SC_TOSS;
896 			} else {
897 				sp = skb_put(skb, n);
898 				memcpy(sp, buf, n);
899 				if (ap->state & SC_ESCAPE) {
900 					sp[0] ^= PPP_TRANS;
901 					ap->state &= ~SC_ESCAPE;
902 				}
903 			}
904 		}
905 
906 		if (n >= count)
907 			break;
908 
909 		c = buf[n];
910 		if (flags != NULL && flags[n] != 0) {
911 			ap->state |= SC_TOSS;
912 		} else if (c == PPP_FLAG) {
913 			process_input_packet(ap);
914 		} else if (c == PPP_ESCAPE) {
915 			ap->state |= SC_ESCAPE;
916 		} else if (I_IXON(ap->tty)) {
917 			if (c == START_CHAR(ap->tty))
918 				start_tty(ap->tty);
919 			else if (c == STOP_CHAR(ap->tty))
920 				stop_tty(ap->tty);
921 		}
922 		/* otherwise it's a char in the recv ACCM */
923 		++n;
924 
925 		buf += n;
926 		if (flags)
927 			flags += n;
928 		count -= n;
929 	}
930 	return;
931 
932  nomem:
933 	printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
934 	ap->state |= SC_TOSS;
935 }
936 
937 /*
938  * We look at LCP frames going past so that we can notice
939  * and react to the LCP configure-ack from the peer.
940  * In the situation where the peer has been sent a configure-ack
941  * already, LCP is up once it has sent its configure-ack
942  * so the immediately following packet can be sent with the
943  * configured LCP options.  This allows us to process the following
944  * packet correctly without pppd needing to respond quickly.
945  *
946  * We only respond to the received configure-ack if we have just
947  * sent a configure-request, and the configure-ack contains the
948  * same data (this is checked using a 16-bit crc of the data).
949  */
950 #define CONFREQ		1	/* LCP code field values */
951 #define CONFACK		2
952 #define LCP_MRU		1	/* LCP option numbers */
953 #define LCP_ASYNCMAP	2
954 
955 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
956 			   int len, int inbound)
957 {
958 	int dlen, fcs, i, code;
959 	u32 val;
960 
961 	data += 2;		/* skip protocol bytes */
962 	len -= 2;
963 	if (len < 4)		/* 4 = code, ID, length */
964 		return;
965 	code = data[0];
966 	if (code != CONFACK && code != CONFREQ)
967 		return;
968 	dlen = get_unaligned_be16(data + 2);
969 	if (len < dlen)
970 		return;		/* packet got truncated or length is bogus */
971 
972 	if (code == (inbound? CONFACK: CONFREQ)) {
973 		/*
974 		 * sent confreq or received confack:
975 		 * calculate the crc of the data from the ID field on.
976 		 */
977 		fcs = PPP_INITFCS;
978 		for (i = 1; i < dlen; ++i)
979 			fcs = PPP_FCS(fcs, data[i]);
980 
981 		if (!inbound) {
982 			/* outbound confreq - remember the crc for later */
983 			ap->lcp_fcs = fcs;
984 			return;
985 		}
986 
987 		/* received confack, check the crc */
988 		fcs ^= ap->lcp_fcs;
989 		ap->lcp_fcs = -1;
990 		if (fcs != 0)
991 			return;
992 	} else if (inbound)
993 		return;	/* not interested in received confreq */
994 
995 	/* process the options in the confack */
996 	data += 4;
997 	dlen -= 4;
998 	/* data[0] is code, data[1] is length */
999 	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
1000 		switch (data[0]) {
1001 		case LCP_MRU:
1002 			val = get_unaligned_be16(data + 2);
1003 			if (inbound)
1004 				ap->mru = val;
1005 			else
1006 				ap->chan.mtu = val;
1007 			break;
1008 		case LCP_ASYNCMAP:
1009 			val = get_unaligned_be32(data + 2);
1010 			if (inbound)
1011 				ap->raccm = val;
1012 			else
1013 				ap->xaccm[0] = val;
1014 			break;
1015 		}
1016 		dlen -= data[1];
1017 		data += data[1];
1018 	}
1019 }
1020 
1021 static void __exit ppp_async_cleanup(void)
1022 {
1023 	if (tty_unregister_ldisc(N_PPP) != 0)
1024 		printk(KERN_ERR "failed to unregister PPP line discipline\n");
1025 }
1026 
1027 module_init(ppp_async_init);
1028 module_exit(ppp_async_cleanup);
1029