1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/skbuff.h> 20 #include <linux/tty.h> 21 #include <linux/netdevice.h> 22 #include <linux/poll.h> 23 #include <linux/crc-ccitt.h> 24 #include <linux/ppp_defs.h> 25 #include <linux/ppp-ioctl.h> 26 #include <linux/ppp_channel.h> 27 #include <linux/spinlock.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/jiffies.h> 31 #include <linux/slab.h> 32 #include <asm/unaligned.h> 33 #include <linux/uaccess.h> 34 #include <asm/string.h> 35 36 #define PPP_VERSION "2.4.2" 37 38 #define OBUFSIZE 4096 39 40 /* Structure for storing local state. */ 41 struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72 }; 73 74 /* Bit numbers in xmit_flags */ 75 #define XMIT_WAKEUP 0 76 #define XMIT_FULL 1 77 #define XMIT_BUSY 2 78 79 /* State bits */ 80 #define SC_TOSS 1 81 #define SC_ESCAPE 2 82 #define SC_PREV_ERROR 4 83 84 /* Bits in rbits */ 85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87 static int flag_time = HZ; 88 module_param(flag_time, int, 0); 89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90 MODULE_LICENSE("GPL"); 91 MODULE_ALIAS_LDISC(N_PPP); 92 93 /* 94 * Prototypes. 95 */ 96 static int ppp_async_encode(struct asyncppp *ap); 97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98 static int ppp_async_push(struct asyncppp *ap); 99 static void ppp_async_flush_output(struct asyncppp *ap); 100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 const char *flags, int count); 102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104 static void ppp_async_process(struct tasklet_struct *t); 105 106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109 static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112 }; 113 114 /* 115 * Routines implementing the PPP line discipline. 116 */ 117 118 /* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130 static DEFINE_RWLOCK(disc_data_lock); 131 132 static struct asyncppp *ap_get(struct tty_struct *tty) 133 { 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142 } 143 144 static void ap_put(struct asyncppp *ap) 145 { 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148 } 149 150 /* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154 static int 155 ppp_asynctty_open(struct tty_struct *tty) 156 { 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_setup(&ap->tsk, ppp_async_process); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204 } 205 206 /* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214 static void 215 ppp_asynctty_close(struct tty_struct *tty) 216 { 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242 } 243 244 /* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250 static void ppp_asynctty_hangup(struct tty_struct *tty) 251 { 252 ppp_asynctty_close(tty); 253 } 254 255 /* 256 * Read does nothing - no data is ever available this way. 257 * Pppd reads and writes packets via /dev/ppp instead. 258 */ 259 static ssize_t 260 ppp_asynctty_read(struct tty_struct *tty, struct file *file, 261 unsigned char *buf, size_t count, 262 void **cookie, unsigned long offset) 263 { 264 return -EAGAIN; 265 } 266 267 /* 268 * Write on the tty does nothing, the packets all come in 269 * from the ppp generic stuff. 270 */ 271 static ssize_t 272 ppp_asynctty_write(struct tty_struct *tty, struct file *file, 273 const unsigned char *buf, size_t count) 274 { 275 return -EAGAIN; 276 } 277 278 /* 279 * Called in process context only. May be re-entered by multiple 280 * ioctl calling threads. 281 */ 282 283 static int 284 ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) 285 { 286 struct asyncppp *ap = ap_get(tty); 287 int err, val; 288 int __user *p = (int __user *)arg; 289 290 if (!ap) 291 return -ENXIO; 292 err = -EFAULT; 293 switch (cmd) { 294 case PPPIOCGCHAN: 295 err = -EFAULT; 296 if (put_user(ppp_channel_index(&ap->chan), p)) 297 break; 298 err = 0; 299 break; 300 301 case PPPIOCGUNIT: 302 err = -EFAULT; 303 if (put_user(ppp_unit_number(&ap->chan), p)) 304 break; 305 err = 0; 306 break; 307 308 case TCFLSH: 309 /* flush our buffers and the serial port's buffer */ 310 if (arg == TCIOFLUSH || arg == TCOFLUSH) 311 ppp_async_flush_output(ap); 312 err = n_tty_ioctl_helper(tty, cmd, arg); 313 break; 314 315 case FIONREAD: 316 val = 0; 317 if (put_user(val, p)) 318 break; 319 err = 0; 320 break; 321 322 default: 323 /* Try the various mode ioctls */ 324 err = tty_mode_ioctl(tty, cmd, arg); 325 } 326 327 ap_put(ap); 328 return err; 329 } 330 331 /* No kernel lock - fine */ 332 static __poll_t 333 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 334 { 335 return 0; 336 } 337 338 /* May sleep, don't call from interrupt level or with interrupts disabled */ 339 static void 340 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 341 const char *cflags, int count) 342 { 343 struct asyncppp *ap = ap_get(tty); 344 unsigned long flags; 345 346 if (!ap) 347 return; 348 spin_lock_irqsave(&ap->recv_lock, flags); 349 ppp_async_input(ap, buf, cflags, count); 350 spin_unlock_irqrestore(&ap->recv_lock, flags); 351 if (!skb_queue_empty(&ap->rqueue)) 352 tasklet_schedule(&ap->tsk); 353 ap_put(ap); 354 tty_unthrottle(tty); 355 } 356 357 static void 358 ppp_asynctty_wakeup(struct tty_struct *tty) 359 { 360 struct asyncppp *ap = ap_get(tty); 361 362 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 363 if (!ap) 364 return; 365 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 366 tasklet_schedule(&ap->tsk); 367 ap_put(ap); 368 } 369 370 371 static struct tty_ldisc_ops ppp_ldisc = { 372 .owner = THIS_MODULE, 373 .num = N_PPP, 374 .name = "ppp", 375 .open = ppp_asynctty_open, 376 .close = ppp_asynctty_close, 377 .hangup = ppp_asynctty_hangup, 378 .read = ppp_asynctty_read, 379 .write = ppp_asynctty_write, 380 .ioctl = ppp_asynctty_ioctl, 381 .poll = ppp_asynctty_poll, 382 .receive_buf = ppp_asynctty_receive, 383 .write_wakeup = ppp_asynctty_wakeup, 384 }; 385 386 static int __init 387 ppp_async_init(void) 388 { 389 int err; 390 391 err = tty_register_ldisc(&ppp_ldisc); 392 if (err != 0) 393 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 394 err); 395 return err; 396 } 397 398 /* 399 * The following routines provide the PPP channel interface. 400 */ 401 static int 402 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 403 { 404 struct asyncppp *ap = chan->private; 405 void __user *argp = (void __user *)arg; 406 int __user *p = argp; 407 int err, val; 408 u32 accm[8]; 409 410 err = -EFAULT; 411 switch (cmd) { 412 case PPPIOCGFLAGS: 413 val = ap->flags | ap->rbits; 414 if (put_user(val, p)) 415 break; 416 err = 0; 417 break; 418 case PPPIOCSFLAGS: 419 if (get_user(val, p)) 420 break; 421 ap->flags = val & ~SC_RCV_BITS; 422 spin_lock_irq(&ap->recv_lock); 423 ap->rbits = val & SC_RCV_BITS; 424 spin_unlock_irq(&ap->recv_lock); 425 err = 0; 426 break; 427 428 case PPPIOCGASYNCMAP: 429 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 430 break; 431 err = 0; 432 break; 433 case PPPIOCSASYNCMAP: 434 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 435 break; 436 err = 0; 437 break; 438 439 case PPPIOCGRASYNCMAP: 440 if (put_user(ap->raccm, (u32 __user *)argp)) 441 break; 442 err = 0; 443 break; 444 case PPPIOCSRASYNCMAP: 445 if (get_user(ap->raccm, (u32 __user *)argp)) 446 break; 447 err = 0; 448 break; 449 450 case PPPIOCGXASYNCMAP: 451 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 452 break; 453 err = 0; 454 break; 455 case PPPIOCSXASYNCMAP: 456 if (copy_from_user(accm, argp, sizeof(accm))) 457 break; 458 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 459 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 460 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 461 err = 0; 462 break; 463 464 case PPPIOCGMRU: 465 if (put_user(ap->mru, p)) 466 break; 467 err = 0; 468 break; 469 case PPPIOCSMRU: 470 if (get_user(val, p)) 471 break; 472 if (val < PPP_MRU) 473 val = PPP_MRU; 474 ap->mru = val; 475 err = 0; 476 break; 477 478 default: 479 err = -ENOTTY; 480 } 481 482 return err; 483 } 484 485 /* 486 * This is called at softirq level to deliver received packets 487 * to the ppp_generic code, and to tell the ppp_generic code 488 * if we can accept more output now. 489 */ 490 static void ppp_async_process(struct tasklet_struct *t) 491 { 492 struct asyncppp *ap = from_tasklet(ap, t, tsk); 493 struct sk_buff *skb; 494 495 /* process received packets */ 496 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 497 if (skb->cb[0]) 498 ppp_input_error(&ap->chan, 0); 499 ppp_input(&ap->chan, skb); 500 } 501 502 /* try to push more stuff out */ 503 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 504 ppp_output_wakeup(&ap->chan); 505 } 506 507 /* 508 * Procedures for encapsulation and framing. 509 */ 510 511 /* 512 * Procedure to encode the data for async serial transmission. 513 * Does octet stuffing (escaping), puts the address/control bytes 514 * on if A/C compression is disabled, and does protocol compression. 515 * Assumes ap->tpkt != 0 on entry. 516 * Returns 1 if we finished the current frame, 0 otherwise. 517 */ 518 519 #define PUT_BYTE(ap, buf, c, islcp) do { \ 520 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 521 *buf++ = PPP_ESCAPE; \ 522 *buf++ = c ^ PPP_TRANS; \ 523 } else \ 524 *buf++ = c; \ 525 } while (0) 526 527 static int 528 ppp_async_encode(struct asyncppp *ap) 529 { 530 int fcs, i, count, c, proto; 531 unsigned char *buf, *buflim; 532 unsigned char *data; 533 int islcp; 534 535 buf = ap->obuf; 536 ap->olim = buf; 537 ap->optr = buf; 538 i = ap->tpkt_pos; 539 data = ap->tpkt->data; 540 count = ap->tpkt->len; 541 fcs = ap->tfcs; 542 proto = get_unaligned_be16(data); 543 544 /* 545 * LCP packets with code values between 1 (configure-reqest) 546 * and 7 (code-reject) must be sent as though no options 547 * had been negotiated. 548 */ 549 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 550 551 if (i == 0) { 552 if (islcp) 553 async_lcp_peek(ap, data, count, 0); 554 555 /* 556 * Start of a new packet - insert the leading FLAG 557 * character if necessary. 558 */ 559 if (islcp || flag_time == 0 || 560 time_after_eq(jiffies, ap->last_xmit + flag_time)) 561 *buf++ = PPP_FLAG; 562 ap->last_xmit = jiffies; 563 fcs = PPP_INITFCS; 564 565 /* 566 * Put in the address/control bytes if necessary 567 */ 568 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 569 PUT_BYTE(ap, buf, 0xff, islcp); 570 fcs = PPP_FCS(fcs, 0xff); 571 PUT_BYTE(ap, buf, 0x03, islcp); 572 fcs = PPP_FCS(fcs, 0x03); 573 } 574 } 575 576 /* 577 * Once we put in the last byte, we need to put in the FCS 578 * and closing flag, so make sure there is at least 7 bytes 579 * of free space in the output buffer. 580 */ 581 buflim = ap->obuf + OBUFSIZE - 6; 582 while (i < count && buf < buflim) { 583 c = data[i++]; 584 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 585 continue; /* compress protocol field */ 586 fcs = PPP_FCS(fcs, c); 587 PUT_BYTE(ap, buf, c, islcp); 588 } 589 590 if (i < count) { 591 /* 592 * Remember where we are up to in this packet. 593 */ 594 ap->olim = buf; 595 ap->tpkt_pos = i; 596 ap->tfcs = fcs; 597 return 0; 598 } 599 600 /* 601 * We have finished the packet. Add the FCS and flag. 602 */ 603 fcs = ~fcs; 604 c = fcs & 0xff; 605 PUT_BYTE(ap, buf, c, islcp); 606 c = (fcs >> 8) & 0xff; 607 PUT_BYTE(ap, buf, c, islcp); 608 *buf++ = PPP_FLAG; 609 ap->olim = buf; 610 611 consume_skb(ap->tpkt); 612 ap->tpkt = NULL; 613 return 1; 614 } 615 616 /* 617 * Transmit-side routines. 618 */ 619 620 /* 621 * Send a packet to the peer over an async tty line. 622 * Returns 1 iff the packet was accepted. 623 * If the packet was not accepted, we will call ppp_output_wakeup 624 * at some later time. 625 */ 626 static int 627 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 628 { 629 struct asyncppp *ap = chan->private; 630 631 ppp_async_push(ap); 632 633 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 634 return 0; /* already full */ 635 ap->tpkt = skb; 636 ap->tpkt_pos = 0; 637 638 ppp_async_push(ap); 639 return 1; 640 } 641 642 /* 643 * Push as much data as possible out to the tty. 644 */ 645 static int 646 ppp_async_push(struct asyncppp *ap) 647 { 648 int avail, sent, done = 0; 649 struct tty_struct *tty = ap->tty; 650 int tty_stuffed = 0; 651 652 /* 653 * We can get called recursively here if the tty write 654 * function calls our wakeup function. This can happen 655 * for example on a pty with both the master and slave 656 * set to PPP line discipline. 657 * We use the XMIT_BUSY bit to detect this and get out, 658 * leaving the XMIT_WAKEUP bit set to tell the other 659 * instance that it may now be able to write more now. 660 */ 661 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 662 return 0; 663 spin_lock_bh(&ap->xmit_lock); 664 for (;;) { 665 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 666 tty_stuffed = 0; 667 if (!tty_stuffed && ap->optr < ap->olim) { 668 avail = ap->olim - ap->optr; 669 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 670 sent = tty->ops->write(tty, ap->optr, avail); 671 if (sent < 0) 672 goto flush; /* error, e.g. loss of CD */ 673 ap->optr += sent; 674 if (sent < avail) 675 tty_stuffed = 1; 676 continue; 677 } 678 if (ap->optr >= ap->olim && ap->tpkt) { 679 if (ppp_async_encode(ap)) { 680 /* finished processing ap->tpkt */ 681 clear_bit(XMIT_FULL, &ap->xmit_flags); 682 done = 1; 683 } 684 continue; 685 } 686 /* 687 * We haven't made any progress this time around. 688 * Clear XMIT_BUSY to let other callers in, but 689 * after doing so we have to check if anyone set 690 * XMIT_WAKEUP since we last checked it. If they 691 * did, we should try again to set XMIT_BUSY and go 692 * around again in case XMIT_BUSY was still set when 693 * the other caller tried. 694 */ 695 clear_bit(XMIT_BUSY, &ap->xmit_flags); 696 /* any more work to do? if not, exit the loop */ 697 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 698 (!tty_stuffed && ap->tpkt))) 699 break; 700 /* more work to do, see if we can do it now */ 701 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 702 break; 703 } 704 spin_unlock_bh(&ap->xmit_lock); 705 return done; 706 707 flush: 708 clear_bit(XMIT_BUSY, &ap->xmit_flags); 709 if (ap->tpkt) { 710 kfree_skb(ap->tpkt); 711 ap->tpkt = NULL; 712 clear_bit(XMIT_FULL, &ap->xmit_flags); 713 done = 1; 714 } 715 ap->optr = ap->olim; 716 spin_unlock_bh(&ap->xmit_lock); 717 return done; 718 } 719 720 /* 721 * Flush output from our internal buffers. 722 * Called for the TCFLSH ioctl. Can be entered in parallel 723 * but this is covered by the xmit_lock. 724 */ 725 static void 726 ppp_async_flush_output(struct asyncppp *ap) 727 { 728 int done = 0; 729 730 spin_lock_bh(&ap->xmit_lock); 731 ap->optr = ap->olim; 732 if (ap->tpkt != NULL) { 733 kfree_skb(ap->tpkt); 734 ap->tpkt = NULL; 735 clear_bit(XMIT_FULL, &ap->xmit_flags); 736 done = 1; 737 } 738 spin_unlock_bh(&ap->xmit_lock); 739 if (done) 740 ppp_output_wakeup(&ap->chan); 741 } 742 743 /* 744 * Receive-side routines. 745 */ 746 747 /* see how many ordinary chars there are at the start of buf */ 748 static inline int 749 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 750 { 751 int i, c; 752 753 for (i = 0; i < count; ++i) { 754 c = buf[i]; 755 if (c == PPP_ESCAPE || c == PPP_FLAG || 756 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 757 break; 758 } 759 return i; 760 } 761 762 /* called when a flag is seen - do end-of-packet processing */ 763 static void 764 process_input_packet(struct asyncppp *ap) 765 { 766 struct sk_buff *skb; 767 unsigned char *p; 768 unsigned int len, fcs; 769 770 skb = ap->rpkt; 771 if (ap->state & (SC_TOSS | SC_ESCAPE)) 772 goto err; 773 774 if (skb == NULL) 775 return; /* 0-length packet */ 776 777 /* check the FCS */ 778 p = skb->data; 779 len = skb->len; 780 if (len < 3) 781 goto err; /* too short */ 782 fcs = PPP_INITFCS; 783 for (; len > 0; --len) 784 fcs = PPP_FCS(fcs, *p++); 785 if (fcs != PPP_GOODFCS) 786 goto err; /* bad FCS */ 787 skb_trim(skb, skb->len - 2); 788 789 /* check for address/control and protocol compression */ 790 p = skb->data; 791 if (p[0] == PPP_ALLSTATIONS) { 792 /* chop off address/control */ 793 if (p[1] != PPP_UI || skb->len < 3) 794 goto err; 795 p = skb_pull(skb, 2); 796 } 797 798 /* If protocol field is not compressed, it can be LCP packet */ 799 if (!(p[0] & 0x01)) { 800 unsigned int proto; 801 802 if (skb->len < 2) 803 goto err; 804 proto = (p[0] << 8) + p[1]; 805 if (proto == PPP_LCP) 806 async_lcp_peek(ap, p, skb->len, 1); 807 } 808 809 /* queue the frame to be processed */ 810 skb->cb[0] = ap->state; 811 skb_queue_tail(&ap->rqueue, skb); 812 ap->rpkt = NULL; 813 ap->state = 0; 814 return; 815 816 err: 817 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 818 ap->state = SC_PREV_ERROR; 819 if (skb) { 820 /* make skb appear as freshly allocated */ 821 skb_trim(skb, 0); 822 skb_reserve(skb, - skb_headroom(skb)); 823 } 824 } 825 826 /* Called when the tty driver has data for us. Runs parallel with the 827 other ldisc functions but will not be re-entered */ 828 829 static void 830 ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 831 const char *flags, int count) 832 { 833 struct sk_buff *skb; 834 int c, i, j, n, s, f; 835 unsigned char *sp; 836 837 /* update bits used for 8-bit cleanness detection */ 838 if (~ap->rbits & SC_RCV_BITS) { 839 s = 0; 840 for (i = 0; i < count; ++i) { 841 c = buf[i]; 842 if (flags && flags[i] != 0) 843 continue; 844 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 845 c = ((c >> 4) ^ c) & 0xf; 846 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 847 } 848 ap->rbits |= s; 849 } 850 851 while (count > 0) { 852 /* scan through and see how many chars we can do in bulk */ 853 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 854 n = 1; 855 else 856 n = scan_ordinary(ap, buf, count); 857 858 f = 0; 859 if (flags && (ap->state & SC_TOSS) == 0) { 860 /* check the flags to see if any char had an error */ 861 for (j = 0; j < n; ++j) 862 if ((f = flags[j]) != 0) 863 break; 864 } 865 if (f != 0) { 866 /* start tossing */ 867 ap->state |= SC_TOSS; 868 869 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 870 /* stuff the chars in the skb */ 871 skb = ap->rpkt; 872 if (!skb) { 873 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 874 if (!skb) 875 goto nomem; 876 ap->rpkt = skb; 877 } 878 if (skb->len == 0) { 879 /* Try to get the payload 4-byte aligned. 880 * This should match the 881 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 882 * process_input_packet, but we do not have 883 * enough chars here to test buf[1] and buf[2]. 884 */ 885 if (buf[0] != PPP_ALLSTATIONS) 886 skb_reserve(skb, 2 + (buf[0] & 1)); 887 } 888 if (n > skb_tailroom(skb)) { 889 /* packet overflowed MRU */ 890 ap->state |= SC_TOSS; 891 } else { 892 sp = skb_put_data(skb, buf, n); 893 if (ap->state & SC_ESCAPE) { 894 sp[0] ^= PPP_TRANS; 895 ap->state &= ~SC_ESCAPE; 896 } 897 } 898 } 899 900 if (n >= count) 901 break; 902 903 c = buf[n]; 904 if (flags != NULL && flags[n] != 0) { 905 ap->state |= SC_TOSS; 906 } else if (c == PPP_FLAG) { 907 process_input_packet(ap); 908 } else if (c == PPP_ESCAPE) { 909 ap->state |= SC_ESCAPE; 910 } else if (I_IXON(ap->tty)) { 911 if (c == START_CHAR(ap->tty)) 912 start_tty(ap->tty); 913 else if (c == STOP_CHAR(ap->tty)) 914 stop_tty(ap->tty); 915 } 916 /* otherwise it's a char in the recv ACCM */ 917 ++n; 918 919 buf += n; 920 if (flags) 921 flags += n; 922 count -= n; 923 } 924 return; 925 926 nomem: 927 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 928 ap->state |= SC_TOSS; 929 } 930 931 /* 932 * We look at LCP frames going past so that we can notice 933 * and react to the LCP configure-ack from the peer. 934 * In the situation where the peer has been sent a configure-ack 935 * already, LCP is up once it has sent its configure-ack 936 * so the immediately following packet can be sent with the 937 * configured LCP options. This allows us to process the following 938 * packet correctly without pppd needing to respond quickly. 939 * 940 * We only respond to the received configure-ack if we have just 941 * sent a configure-request, and the configure-ack contains the 942 * same data (this is checked using a 16-bit crc of the data). 943 */ 944 #define CONFREQ 1 /* LCP code field values */ 945 #define CONFACK 2 946 #define LCP_MRU 1 /* LCP option numbers */ 947 #define LCP_ASYNCMAP 2 948 949 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 950 int len, int inbound) 951 { 952 int dlen, fcs, i, code; 953 u32 val; 954 955 data += 2; /* skip protocol bytes */ 956 len -= 2; 957 if (len < 4) /* 4 = code, ID, length */ 958 return; 959 code = data[0]; 960 if (code != CONFACK && code != CONFREQ) 961 return; 962 dlen = get_unaligned_be16(data + 2); 963 if (len < dlen) 964 return; /* packet got truncated or length is bogus */ 965 966 if (code == (inbound? CONFACK: CONFREQ)) { 967 /* 968 * sent confreq or received confack: 969 * calculate the crc of the data from the ID field on. 970 */ 971 fcs = PPP_INITFCS; 972 for (i = 1; i < dlen; ++i) 973 fcs = PPP_FCS(fcs, data[i]); 974 975 if (!inbound) { 976 /* outbound confreq - remember the crc for later */ 977 ap->lcp_fcs = fcs; 978 return; 979 } 980 981 /* received confack, check the crc */ 982 fcs ^= ap->lcp_fcs; 983 ap->lcp_fcs = -1; 984 if (fcs != 0) 985 return; 986 } else if (inbound) 987 return; /* not interested in received confreq */ 988 989 /* process the options in the confack */ 990 data += 4; 991 dlen -= 4; 992 /* data[0] is code, data[1] is length */ 993 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 994 switch (data[0]) { 995 case LCP_MRU: 996 val = get_unaligned_be16(data + 2); 997 if (inbound) 998 ap->mru = val; 999 else 1000 ap->chan.mtu = val; 1001 break; 1002 case LCP_ASYNCMAP: 1003 val = get_unaligned_be32(data + 2); 1004 if (inbound) 1005 ap->raccm = val; 1006 else 1007 ap->xaccm[0] = val; 1008 break; 1009 } 1010 dlen -= data[1]; 1011 data += data[1]; 1012 } 1013 } 1014 1015 static void __exit ppp_async_cleanup(void) 1016 { 1017 tty_unregister_ldisc(&ppp_ldisc); 1018 } 1019 1020 module_init(ppp_async_init); 1021 module_exit(ppp_async_cleanup); 1022