1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/skbuff.h> 20 #include <linux/tty.h> 21 #include <linux/netdevice.h> 22 #include <linux/poll.h> 23 #include <linux/crc-ccitt.h> 24 #include <linux/ppp_defs.h> 25 #include <linux/ppp-ioctl.h> 26 #include <linux/ppp_channel.h> 27 #include <linux/spinlock.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/jiffies.h> 31 #include <linux/slab.h> 32 #include <asm/unaligned.h> 33 #include <linux/uaccess.h> 34 #include <asm/string.h> 35 36 #define PPP_VERSION "2.4.2" 37 38 #define OBUFSIZE 4096 39 40 /* Structure for storing local state. */ 41 struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72 }; 73 74 /* Bit numbers in xmit_flags */ 75 #define XMIT_WAKEUP 0 76 #define XMIT_FULL 1 77 #define XMIT_BUSY 2 78 79 /* State bits */ 80 #define SC_TOSS 1 81 #define SC_ESCAPE 2 82 #define SC_PREV_ERROR 4 83 84 /* Bits in rbits */ 85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87 static int flag_time = HZ; 88 module_param(flag_time, int, 0); 89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90 MODULE_LICENSE("GPL"); 91 MODULE_ALIAS_LDISC(N_PPP); 92 93 /* 94 * Prototypes. 95 */ 96 static int ppp_async_encode(struct asyncppp *ap); 97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98 static int ppp_async_push(struct asyncppp *ap); 99 static void ppp_async_flush_output(struct asyncppp *ap); 100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 const char *flags, int count); 102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104 static void ppp_async_process(struct tasklet_struct *t); 105 106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109 static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112 }; 113 114 /* 115 * Routines implementing the PPP line discipline. 116 */ 117 118 /* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130 static DEFINE_RWLOCK(disc_data_lock); 131 132 static struct asyncppp *ap_get(struct tty_struct *tty) 133 { 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142 } 143 144 static void ap_put(struct asyncppp *ap) 145 { 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148 } 149 150 /* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154 static int 155 ppp_asynctty_open(struct tty_struct *tty) 156 { 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_setup(&ap->tsk, ppp_async_process); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204 } 205 206 /* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214 static void 215 ppp_asynctty_close(struct tty_struct *tty) 216 { 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242 } 243 244 /* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250 static int ppp_asynctty_hangup(struct tty_struct *tty) 251 { 252 ppp_asynctty_close(tty); 253 return 0; 254 } 255 256 /* 257 * Read does nothing - no data is ever available this way. 258 * Pppd reads and writes packets via /dev/ppp instead. 259 */ 260 static ssize_t 261 ppp_asynctty_read(struct tty_struct *tty, struct file *file, 262 unsigned char *buf, size_t count, 263 void **cookie, unsigned long offset) 264 { 265 return -EAGAIN; 266 } 267 268 /* 269 * Write on the tty does nothing, the packets all come in 270 * from the ppp generic stuff. 271 */ 272 static ssize_t 273 ppp_asynctty_write(struct tty_struct *tty, struct file *file, 274 const unsigned char *buf, size_t count) 275 { 276 return -EAGAIN; 277 } 278 279 /* 280 * Called in process context only. May be re-entered by multiple 281 * ioctl calling threads. 282 */ 283 284 static int 285 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, 286 unsigned int cmd, unsigned long arg) 287 { 288 struct asyncppp *ap = ap_get(tty); 289 int err, val; 290 int __user *p = (int __user *)arg; 291 292 if (!ap) 293 return -ENXIO; 294 err = -EFAULT; 295 switch (cmd) { 296 case PPPIOCGCHAN: 297 err = -EFAULT; 298 if (put_user(ppp_channel_index(&ap->chan), p)) 299 break; 300 err = 0; 301 break; 302 303 case PPPIOCGUNIT: 304 err = -EFAULT; 305 if (put_user(ppp_unit_number(&ap->chan), p)) 306 break; 307 err = 0; 308 break; 309 310 case TCFLSH: 311 /* flush our buffers and the serial port's buffer */ 312 if (arg == TCIOFLUSH || arg == TCOFLUSH) 313 ppp_async_flush_output(ap); 314 err = n_tty_ioctl_helper(tty, file, cmd, arg); 315 break; 316 317 case FIONREAD: 318 val = 0; 319 if (put_user(val, p)) 320 break; 321 err = 0; 322 break; 323 324 default: 325 /* Try the various mode ioctls */ 326 err = tty_mode_ioctl(tty, file, cmd, arg); 327 } 328 329 ap_put(ap); 330 return err; 331 } 332 333 /* No kernel lock - fine */ 334 static __poll_t 335 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 336 { 337 return 0; 338 } 339 340 /* May sleep, don't call from interrupt level or with interrupts disabled */ 341 static void 342 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 343 const char *cflags, int count) 344 { 345 struct asyncppp *ap = ap_get(tty); 346 unsigned long flags; 347 348 if (!ap) 349 return; 350 spin_lock_irqsave(&ap->recv_lock, flags); 351 ppp_async_input(ap, buf, cflags, count); 352 spin_unlock_irqrestore(&ap->recv_lock, flags); 353 if (!skb_queue_empty(&ap->rqueue)) 354 tasklet_schedule(&ap->tsk); 355 ap_put(ap); 356 tty_unthrottle(tty); 357 } 358 359 static void 360 ppp_asynctty_wakeup(struct tty_struct *tty) 361 { 362 struct asyncppp *ap = ap_get(tty); 363 364 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 365 if (!ap) 366 return; 367 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 368 tasklet_schedule(&ap->tsk); 369 ap_put(ap); 370 } 371 372 373 static struct tty_ldisc_ops ppp_ldisc = { 374 .owner = THIS_MODULE, 375 .num = N_PPP, 376 .name = "ppp", 377 .open = ppp_asynctty_open, 378 .close = ppp_asynctty_close, 379 .hangup = ppp_asynctty_hangup, 380 .read = ppp_asynctty_read, 381 .write = ppp_asynctty_write, 382 .ioctl = ppp_asynctty_ioctl, 383 .poll = ppp_asynctty_poll, 384 .receive_buf = ppp_asynctty_receive, 385 .write_wakeup = ppp_asynctty_wakeup, 386 }; 387 388 static int __init 389 ppp_async_init(void) 390 { 391 int err; 392 393 err = tty_register_ldisc(&ppp_ldisc); 394 if (err != 0) 395 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 396 err); 397 return err; 398 } 399 400 /* 401 * The following routines provide the PPP channel interface. 402 */ 403 static int 404 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 405 { 406 struct asyncppp *ap = chan->private; 407 void __user *argp = (void __user *)arg; 408 int __user *p = argp; 409 int err, val; 410 u32 accm[8]; 411 412 err = -EFAULT; 413 switch (cmd) { 414 case PPPIOCGFLAGS: 415 val = ap->flags | ap->rbits; 416 if (put_user(val, p)) 417 break; 418 err = 0; 419 break; 420 case PPPIOCSFLAGS: 421 if (get_user(val, p)) 422 break; 423 ap->flags = val & ~SC_RCV_BITS; 424 spin_lock_irq(&ap->recv_lock); 425 ap->rbits = val & SC_RCV_BITS; 426 spin_unlock_irq(&ap->recv_lock); 427 err = 0; 428 break; 429 430 case PPPIOCGASYNCMAP: 431 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 432 break; 433 err = 0; 434 break; 435 case PPPIOCSASYNCMAP: 436 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 437 break; 438 err = 0; 439 break; 440 441 case PPPIOCGRASYNCMAP: 442 if (put_user(ap->raccm, (u32 __user *)argp)) 443 break; 444 err = 0; 445 break; 446 case PPPIOCSRASYNCMAP: 447 if (get_user(ap->raccm, (u32 __user *)argp)) 448 break; 449 err = 0; 450 break; 451 452 case PPPIOCGXASYNCMAP: 453 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 454 break; 455 err = 0; 456 break; 457 case PPPIOCSXASYNCMAP: 458 if (copy_from_user(accm, argp, sizeof(accm))) 459 break; 460 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 461 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 462 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 463 err = 0; 464 break; 465 466 case PPPIOCGMRU: 467 if (put_user(ap->mru, p)) 468 break; 469 err = 0; 470 break; 471 case PPPIOCSMRU: 472 if (get_user(val, p)) 473 break; 474 if (val < PPP_MRU) 475 val = PPP_MRU; 476 ap->mru = val; 477 err = 0; 478 break; 479 480 default: 481 err = -ENOTTY; 482 } 483 484 return err; 485 } 486 487 /* 488 * This is called at softirq level to deliver received packets 489 * to the ppp_generic code, and to tell the ppp_generic code 490 * if we can accept more output now. 491 */ 492 static void ppp_async_process(struct tasklet_struct *t) 493 { 494 struct asyncppp *ap = from_tasklet(ap, t, tsk); 495 struct sk_buff *skb; 496 497 /* process received packets */ 498 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 499 if (skb->cb[0]) 500 ppp_input_error(&ap->chan, 0); 501 ppp_input(&ap->chan, skb); 502 } 503 504 /* try to push more stuff out */ 505 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 506 ppp_output_wakeup(&ap->chan); 507 } 508 509 /* 510 * Procedures for encapsulation and framing. 511 */ 512 513 /* 514 * Procedure to encode the data for async serial transmission. 515 * Does octet stuffing (escaping), puts the address/control bytes 516 * on if A/C compression is disabled, and does protocol compression. 517 * Assumes ap->tpkt != 0 on entry. 518 * Returns 1 if we finished the current frame, 0 otherwise. 519 */ 520 521 #define PUT_BYTE(ap, buf, c, islcp) do { \ 522 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 523 *buf++ = PPP_ESCAPE; \ 524 *buf++ = c ^ PPP_TRANS; \ 525 } else \ 526 *buf++ = c; \ 527 } while (0) 528 529 static int 530 ppp_async_encode(struct asyncppp *ap) 531 { 532 int fcs, i, count, c, proto; 533 unsigned char *buf, *buflim; 534 unsigned char *data; 535 int islcp; 536 537 buf = ap->obuf; 538 ap->olim = buf; 539 ap->optr = buf; 540 i = ap->tpkt_pos; 541 data = ap->tpkt->data; 542 count = ap->tpkt->len; 543 fcs = ap->tfcs; 544 proto = get_unaligned_be16(data); 545 546 /* 547 * LCP packets with code values between 1 (configure-reqest) 548 * and 7 (code-reject) must be sent as though no options 549 * had been negotiated. 550 */ 551 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 552 553 if (i == 0) { 554 if (islcp) 555 async_lcp_peek(ap, data, count, 0); 556 557 /* 558 * Start of a new packet - insert the leading FLAG 559 * character if necessary. 560 */ 561 if (islcp || flag_time == 0 || 562 time_after_eq(jiffies, ap->last_xmit + flag_time)) 563 *buf++ = PPP_FLAG; 564 ap->last_xmit = jiffies; 565 fcs = PPP_INITFCS; 566 567 /* 568 * Put in the address/control bytes if necessary 569 */ 570 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 571 PUT_BYTE(ap, buf, 0xff, islcp); 572 fcs = PPP_FCS(fcs, 0xff); 573 PUT_BYTE(ap, buf, 0x03, islcp); 574 fcs = PPP_FCS(fcs, 0x03); 575 } 576 } 577 578 /* 579 * Once we put in the last byte, we need to put in the FCS 580 * and closing flag, so make sure there is at least 7 bytes 581 * of free space in the output buffer. 582 */ 583 buflim = ap->obuf + OBUFSIZE - 6; 584 while (i < count && buf < buflim) { 585 c = data[i++]; 586 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 587 continue; /* compress protocol field */ 588 fcs = PPP_FCS(fcs, c); 589 PUT_BYTE(ap, buf, c, islcp); 590 } 591 592 if (i < count) { 593 /* 594 * Remember where we are up to in this packet. 595 */ 596 ap->olim = buf; 597 ap->tpkt_pos = i; 598 ap->tfcs = fcs; 599 return 0; 600 } 601 602 /* 603 * We have finished the packet. Add the FCS and flag. 604 */ 605 fcs = ~fcs; 606 c = fcs & 0xff; 607 PUT_BYTE(ap, buf, c, islcp); 608 c = (fcs >> 8) & 0xff; 609 PUT_BYTE(ap, buf, c, islcp); 610 *buf++ = PPP_FLAG; 611 ap->olim = buf; 612 613 consume_skb(ap->tpkt); 614 ap->tpkt = NULL; 615 return 1; 616 } 617 618 /* 619 * Transmit-side routines. 620 */ 621 622 /* 623 * Send a packet to the peer over an async tty line. 624 * Returns 1 iff the packet was accepted. 625 * If the packet was not accepted, we will call ppp_output_wakeup 626 * at some later time. 627 */ 628 static int 629 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 630 { 631 struct asyncppp *ap = chan->private; 632 633 ppp_async_push(ap); 634 635 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 636 return 0; /* already full */ 637 ap->tpkt = skb; 638 ap->tpkt_pos = 0; 639 640 ppp_async_push(ap); 641 return 1; 642 } 643 644 /* 645 * Push as much data as possible out to the tty. 646 */ 647 static int 648 ppp_async_push(struct asyncppp *ap) 649 { 650 int avail, sent, done = 0; 651 struct tty_struct *tty = ap->tty; 652 int tty_stuffed = 0; 653 654 /* 655 * We can get called recursively here if the tty write 656 * function calls our wakeup function. This can happen 657 * for example on a pty with both the master and slave 658 * set to PPP line discipline. 659 * We use the XMIT_BUSY bit to detect this and get out, 660 * leaving the XMIT_WAKEUP bit set to tell the other 661 * instance that it may now be able to write more now. 662 */ 663 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 664 return 0; 665 spin_lock_bh(&ap->xmit_lock); 666 for (;;) { 667 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 668 tty_stuffed = 0; 669 if (!tty_stuffed && ap->optr < ap->olim) { 670 avail = ap->olim - ap->optr; 671 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 672 sent = tty->ops->write(tty, ap->optr, avail); 673 if (sent < 0) 674 goto flush; /* error, e.g. loss of CD */ 675 ap->optr += sent; 676 if (sent < avail) 677 tty_stuffed = 1; 678 continue; 679 } 680 if (ap->optr >= ap->olim && ap->tpkt) { 681 if (ppp_async_encode(ap)) { 682 /* finished processing ap->tpkt */ 683 clear_bit(XMIT_FULL, &ap->xmit_flags); 684 done = 1; 685 } 686 continue; 687 } 688 /* 689 * We haven't made any progress this time around. 690 * Clear XMIT_BUSY to let other callers in, but 691 * after doing so we have to check if anyone set 692 * XMIT_WAKEUP since we last checked it. If they 693 * did, we should try again to set XMIT_BUSY and go 694 * around again in case XMIT_BUSY was still set when 695 * the other caller tried. 696 */ 697 clear_bit(XMIT_BUSY, &ap->xmit_flags); 698 /* any more work to do? if not, exit the loop */ 699 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 700 (!tty_stuffed && ap->tpkt))) 701 break; 702 /* more work to do, see if we can do it now */ 703 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 704 break; 705 } 706 spin_unlock_bh(&ap->xmit_lock); 707 return done; 708 709 flush: 710 clear_bit(XMIT_BUSY, &ap->xmit_flags); 711 if (ap->tpkt) { 712 kfree_skb(ap->tpkt); 713 ap->tpkt = NULL; 714 clear_bit(XMIT_FULL, &ap->xmit_flags); 715 done = 1; 716 } 717 ap->optr = ap->olim; 718 spin_unlock_bh(&ap->xmit_lock); 719 return done; 720 } 721 722 /* 723 * Flush output from our internal buffers. 724 * Called for the TCFLSH ioctl. Can be entered in parallel 725 * but this is covered by the xmit_lock. 726 */ 727 static void 728 ppp_async_flush_output(struct asyncppp *ap) 729 { 730 int done = 0; 731 732 spin_lock_bh(&ap->xmit_lock); 733 ap->optr = ap->olim; 734 if (ap->tpkt != NULL) { 735 kfree_skb(ap->tpkt); 736 ap->tpkt = NULL; 737 clear_bit(XMIT_FULL, &ap->xmit_flags); 738 done = 1; 739 } 740 spin_unlock_bh(&ap->xmit_lock); 741 if (done) 742 ppp_output_wakeup(&ap->chan); 743 } 744 745 /* 746 * Receive-side routines. 747 */ 748 749 /* see how many ordinary chars there are at the start of buf */ 750 static inline int 751 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 752 { 753 int i, c; 754 755 for (i = 0; i < count; ++i) { 756 c = buf[i]; 757 if (c == PPP_ESCAPE || c == PPP_FLAG || 758 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 759 break; 760 } 761 return i; 762 } 763 764 /* called when a flag is seen - do end-of-packet processing */ 765 static void 766 process_input_packet(struct asyncppp *ap) 767 { 768 struct sk_buff *skb; 769 unsigned char *p; 770 unsigned int len, fcs; 771 772 skb = ap->rpkt; 773 if (ap->state & (SC_TOSS | SC_ESCAPE)) 774 goto err; 775 776 if (skb == NULL) 777 return; /* 0-length packet */ 778 779 /* check the FCS */ 780 p = skb->data; 781 len = skb->len; 782 if (len < 3) 783 goto err; /* too short */ 784 fcs = PPP_INITFCS; 785 for (; len > 0; --len) 786 fcs = PPP_FCS(fcs, *p++); 787 if (fcs != PPP_GOODFCS) 788 goto err; /* bad FCS */ 789 skb_trim(skb, skb->len - 2); 790 791 /* check for address/control and protocol compression */ 792 p = skb->data; 793 if (p[0] == PPP_ALLSTATIONS) { 794 /* chop off address/control */ 795 if (p[1] != PPP_UI || skb->len < 3) 796 goto err; 797 p = skb_pull(skb, 2); 798 } 799 800 /* If protocol field is not compressed, it can be LCP packet */ 801 if (!(p[0] & 0x01)) { 802 unsigned int proto; 803 804 if (skb->len < 2) 805 goto err; 806 proto = (p[0] << 8) + p[1]; 807 if (proto == PPP_LCP) 808 async_lcp_peek(ap, p, skb->len, 1); 809 } 810 811 /* queue the frame to be processed */ 812 skb->cb[0] = ap->state; 813 skb_queue_tail(&ap->rqueue, skb); 814 ap->rpkt = NULL; 815 ap->state = 0; 816 return; 817 818 err: 819 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 820 ap->state = SC_PREV_ERROR; 821 if (skb) { 822 /* make skb appear as freshly allocated */ 823 skb_trim(skb, 0); 824 skb_reserve(skb, - skb_headroom(skb)); 825 } 826 } 827 828 /* Called when the tty driver has data for us. Runs parallel with the 829 other ldisc functions but will not be re-entered */ 830 831 static void 832 ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 833 const char *flags, int count) 834 { 835 struct sk_buff *skb; 836 int c, i, j, n, s, f; 837 unsigned char *sp; 838 839 /* update bits used for 8-bit cleanness detection */ 840 if (~ap->rbits & SC_RCV_BITS) { 841 s = 0; 842 for (i = 0; i < count; ++i) { 843 c = buf[i]; 844 if (flags && flags[i] != 0) 845 continue; 846 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 847 c = ((c >> 4) ^ c) & 0xf; 848 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 849 } 850 ap->rbits |= s; 851 } 852 853 while (count > 0) { 854 /* scan through and see how many chars we can do in bulk */ 855 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 856 n = 1; 857 else 858 n = scan_ordinary(ap, buf, count); 859 860 f = 0; 861 if (flags && (ap->state & SC_TOSS) == 0) { 862 /* check the flags to see if any char had an error */ 863 for (j = 0; j < n; ++j) 864 if ((f = flags[j]) != 0) 865 break; 866 } 867 if (f != 0) { 868 /* start tossing */ 869 ap->state |= SC_TOSS; 870 871 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 872 /* stuff the chars in the skb */ 873 skb = ap->rpkt; 874 if (!skb) { 875 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 876 if (!skb) 877 goto nomem; 878 ap->rpkt = skb; 879 } 880 if (skb->len == 0) { 881 /* Try to get the payload 4-byte aligned. 882 * This should match the 883 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 884 * process_input_packet, but we do not have 885 * enough chars here to test buf[1] and buf[2]. 886 */ 887 if (buf[0] != PPP_ALLSTATIONS) 888 skb_reserve(skb, 2 + (buf[0] & 1)); 889 } 890 if (n > skb_tailroom(skb)) { 891 /* packet overflowed MRU */ 892 ap->state |= SC_TOSS; 893 } else { 894 sp = skb_put_data(skb, buf, n); 895 if (ap->state & SC_ESCAPE) { 896 sp[0] ^= PPP_TRANS; 897 ap->state &= ~SC_ESCAPE; 898 } 899 } 900 } 901 902 if (n >= count) 903 break; 904 905 c = buf[n]; 906 if (flags != NULL && flags[n] != 0) { 907 ap->state |= SC_TOSS; 908 } else if (c == PPP_FLAG) { 909 process_input_packet(ap); 910 } else if (c == PPP_ESCAPE) { 911 ap->state |= SC_ESCAPE; 912 } else if (I_IXON(ap->tty)) { 913 if (c == START_CHAR(ap->tty)) 914 start_tty(ap->tty); 915 else if (c == STOP_CHAR(ap->tty)) 916 stop_tty(ap->tty); 917 } 918 /* otherwise it's a char in the recv ACCM */ 919 ++n; 920 921 buf += n; 922 if (flags) 923 flags += n; 924 count -= n; 925 } 926 return; 927 928 nomem: 929 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 930 ap->state |= SC_TOSS; 931 } 932 933 /* 934 * We look at LCP frames going past so that we can notice 935 * and react to the LCP configure-ack from the peer. 936 * In the situation where the peer has been sent a configure-ack 937 * already, LCP is up once it has sent its configure-ack 938 * so the immediately following packet can be sent with the 939 * configured LCP options. This allows us to process the following 940 * packet correctly without pppd needing to respond quickly. 941 * 942 * We only respond to the received configure-ack if we have just 943 * sent a configure-request, and the configure-ack contains the 944 * same data (this is checked using a 16-bit crc of the data). 945 */ 946 #define CONFREQ 1 /* LCP code field values */ 947 #define CONFACK 2 948 #define LCP_MRU 1 /* LCP option numbers */ 949 #define LCP_ASYNCMAP 2 950 951 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 952 int len, int inbound) 953 { 954 int dlen, fcs, i, code; 955 u32 val; 956 957 data += 2; /* skip protocol bytes */ 958 len -= 2; 959 if (len < 4) /* 4 = code, ID, length */ 960 return; 961 code = data[0]; 962 if (code != CONFACK && code != CONFREQ) 963 return; 964 dlen = get_unaligned_be16(data + 2); 965 if (len < dlen) 966 return; /* packet got truncated or length is bogus */ 967 968 if (code == (inbound? CONFACK: CONFREQ)) { 969 /* 970 * sent confreq or received confack: 971 * calculate the crc of the data from the ID field on. 972 */ 973 fcs = PPP_INITFCS; 974 for (i = 1; i < dlen; ++i) 975 fcs = PPP_FCS(fcs, data[i]); 976 977 if (!inbound) { 978 /* outbound confreq - remember the crc for later */ 979 ap->lcp_fcs = fcs; 980 return; 981 } 982 983 /* received confack, check the crc */ 984 fcs ^= ap->lcp_fcs; 985 ap->lcp_fcs = -1; 986 if (fcs != 0) 987 return; 988 } else if (inbound) 989 return; /* not interested in received confreq */ 990 991 /* process the options in the confack */ 992 data += 4; 993 dlen -= 4; 994 /* data[0] is code, data[1] is length */ 995 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 996 switch (data[0]) { 997 case LCP_MRU: 998 val = get_unaligned_be16(data + 2); 999 if (inbound) 1000 ap->mru = val; 1001 else 1002 ap->chan.mtu = val; 1003 break; 1004 case LCP_ASYNCMAP: 1005 val = get_unaligned_be32(data + 2); 1006 if (inbound) 1007 ap->raccm = val; 1008 else 1009 ap->xaccm[0] = val; 1010 break; 1011 } 1012 dlen -= data[1]; 1013 data += data[1]; 1014 } 1015 } 1016 1017 static void __exit ppp_async_cleanup(void) 1018 { 1019 tty_unregister_ldisc(&ppp_ldisc); 1020 } 1021 1022 module_init(ppp_async_init); 1023 module_exit(ppp_async_cleanup); 1024