1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/skbuff.h> 20 #include <linux/tty.h> 21 #include <linux/netdevice.h> 22 #include <linux/poll.h> 23 #include <linux/crc-ccitt.h> 24 #include <linux/ppp_defs.h> 25 #include <linux/ppp-ioctl.h> 26 #include <linux/ppp_channel.h> 27 #include <linux/spinlock.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/jiffies.h> 31 #include <linux/slab.h> 32 #include <asm/unaligned.h> 33 #include <linux/uaccess.h> 34 #include <asm/string.h> 35 36 #define PPP_VERSION "2.4.2" 37 38 #define OBUFSIZE 4096 39 40 /* Structure for storing local state. */ 41 struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72 }; 73 74 /* Bit numbers in xmit_flags */ 75 #define XMIT_WAKEUP 0 76 #define XMIT_FULL 1 77 #define XMIT_BUSY 2 78 79 /* State bits */ 80 #define SC_TOSS 1 81 #define SC_ESCAPE 2 82 #define SC_PREV_ERROR 4 83 84 /* Bits in rbits */ 85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87 static int flag_time = HZ; 88 module_param(flag_time, int, 0); 89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90 MODULE_LICENSE("GPL"); 91 MODULE_ALIAS_LDISC(N_PPP); 92 93 /* 94 * Prototypes. 95 */ 96 static int ppp_async_encode(struct asyncppp *ap); 97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98 static int ppp_async_push(struct asyncppp *ap); 99 static void ppp_async_flush_output(struct asyncppp *ap); 100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 const u8 *flags, int count); 102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104 static void ppp_async_process(struct tasklet_struct *t); 105 106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109 static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112 }; 113 114 /* 115 * Routines implementing the PPP line discipline. 116 */ 117 118 /* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130 static DEFINE_RWLOCK(disc_data_lock); 131 132 static struct asyncppp *ap_get(struct tty_struct *tty) 133 { 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142 } 143 144 static void ap_put(struct asyncppp *ap) 145 { 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148 } 149 150 /* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154 static int 155 ppp_asynctty_open(struct tty_struct *tty) 156 { 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_setup(&ap->tsk, ppp_async_process); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204 } 205 206 /* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214 static void 215 ppp_asynctty_close(struct tty_struct *tty) 216 { 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242 } 243 244 /* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250 static void ppp_asynctty_hangup(struct tty_struct *tty) 251 { 252 ppp_asynctty_close(tty); 253 } 254 255 /* 256 * Read does nothing - no data is ever available this way. 257 * Pppd reads and writes packets via /dev/ppp instead. 258 */ 259 static ssize_t 260 ppp_asynctty_read(struct tty_struct *tty, struct file *file, u8 *buf, 261 size_t count, void **cookie, unsigned long offset) 262 { 263 return -EAGAIN; 264 } 265 266 /* 267 * Write on the tty does nothing, the packets all come in 268 * from the ppp generic stuff. 269 */ 270 static ssize_t 271 ppp_asynctty_write(struct tty_struct *tty, struct file *file, const u8 *buf, 272 size_t count) 273 { 274 return -EAGAIN; 275 } 276 277 /* 278 * Called in process context only. May be re-entered by multiple 279 * ioctl calling threads. 280 */ 281 282 static int 283 ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) 284 { 285 struct asyncppp *ap = ap_get(tty); 286 int err, val; 287 int __user *p = (int __user *)arg; 288 289 if (!ap) 290 return -ENXIO; 291 err = -EFAULT; 292 switch (cmd) { 293 case PPPIOCGCHAN: 294 err = -EFAULT; 295 if (put_user(ppp_channel_index(&ap->chan), p)) 296 break; 297 err = 0; 298 break; 299 300 case PPPIOCGUNIT: 301 err = -EFAULT; 302 if (put_user(ppp_unit_number(&ap->chan), p)) 303 break; 304 err = 0; 305 break; 306 307 case TCFLSH: 308 /* flush our buffers and the serial port's buffer */ 309 if (arg == TCIOFLUSH || arg == TCOFLUSH) 310 ppp_async_flush_output(ap); 311 err = n_tty_ioctl_helper(tty, cmd, arg); 312 break; 313 314 case FIONREAD: 315 val = 0; 316 if (put_user(val, p)) 317 break; 318 err = 0; 319 break; 320 321 default: 322 /* Try the various mode ioctls */ 323 err = tty_mode_ioctl(tty, cmd, arg); 324 } 325 326 ap_put(ap); 327 return err; 328 } 329 330 /* May sleep, don't call from interrupt level or with interrupts disabled */ 331 static void 332 ppp_asynctty_receive(struct tty_struct *tty, const u8 *buf, const u8 *cflags, 333 size_t count) 334 { 335 struct asyncppp *ap = ap_get(tty); 336 unsigned long flags; 337 338 if (!ap) 339 return; 340 spin_lock_irqsave(&ap->recv_lock, flags); 341 ppp_async_input(ap, buf, cflags, count); 342 spin_unlock_irqrestore(&ap->recv_lock, flags); 343 if (!skb_queue_empty(&ap->rqueue)) 344 tasklet_schedule(&ap->tsk); 345 ap_put(ap); 346 tty_unthrottle(tty); 347 } 348 349 static void 350 ppp_asynctty_wakeup(struct tty_struct *tty) 351 { 352 struct asyncppp *ap = ap_get(tty); 353 354 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 355 if (!ap) 356 return; 357 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 358 tasklet_schedule(&ap->tsk); 359 ap_put(ap); 360 } 361 362 363 static struct tty_ldisc_ops ppp_ldisc = { 364 .owner = THIS_MODULE, 365 .num = N_PPP, 366 .name = "ppp", 367 .open = ppp_asynctty_open, 368 .close = ppp_asynctty_close, 369 .hangup = ppp_asynctty_hangup, 370 .read = ppp_asynctty_read, 371 .write = ppp_asynctty_write, 372 .ioctl = ppp_asynctty_ioctl, 373 .receive_buf = ppp_asynctty_receive, 374 .write_wakeup = ppp_asynctty_wakeup, 375 }; 376 377 static int __init 378 ppp_async_init(void) 379 { 380 int err; 381 382 err = tty_register_ldisc(&ppp_ldisc); 383 if (err != 0) 384 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 385 err); 386 return err; 387 } 388 389 /* 390 * The following routines provide the PPP channel interface. 391 */ 392 static int 393 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 394 { 395 struct asyncppp *ap = chan->private; 396 void __user *argp = (void __user *)arg; 397 int __user *p = argp; 398 int err, val; 399 u32 accm[8]; 400 401 err = -EFAULT; 402 switch (cmd) { 403 case PPPIOCGFLAGS: 404 val = ap->flags | ap->rbits; 405 if (put_user(val, p)) 406 break; 407 err = 0; 408 break; 409 case PPPIOCSFLAGS: 410 if (get_user(val, p)) 411 break; 412 ap->flags = val & ~SC_RCV_BITS; 413 spin_lock_irq(&ap->recv_lock); 414 ap->rbits = val & SC_RCV_BITS; 415 spin_unlock_irq(&ap->recv_lock); 416 err = 0; 417 break; 418 419 case PPPIOCGASYNCMAP: 420 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 421 break; 422 err = 0; 423 break; 424 case PPPIOCSASYNCMAP: 425 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 426 break; 427 err = 0; 428 break; 429 430 case PPPIOCGRASYNCMAP: 431 if (put_user(ap->raccm, (u32 __user *)argp)) 432 break; 433 err = 0; 434 break; 435 case PPPIOCSRASYNCMAP: 436 if (get_user(ap->raccm, (u32 __user *)argp)) 437 break; 438 err = 0; 439 break; 440 441 case PPPIOCGXASYNCMAP: 442 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 443 break; 444 err = 0; 445 break; 446 case PPPIOCSXASYNCMAP: 447 if (copy_from_user(accm, argp, sizeof(accm))) 448 break; 449 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 450 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 451 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 452 err = 0; 453 break; 454 455 case PPPIOCGMRU: 456 if (put_user(ap->mru, p)) 457 break; 458 err = 0; 459 break; 460 case PPPIOCSMRU: 461 if (get_user(val, p)) 462 break; 463 if (val < PPP_MRU) 464 val = PPP_MRU; 465 ap->mru = val; 466 err = 0; 467 break; 468 469 default: 470 err = -ENOTTY; 471 } 472 473 return err; 474 } 475 476 /* 477 * This is called at softirq level to deliver received packets 478 * to the ppp_generic code, and to tell the ppp_generic code 479 * if we can accept more output now. 480 */ 481 static void ppp_async_process(struct tasklet_struct *t) 482 { 483 struct asyncppp *ap = from_tasklet(ap, t, tsk); 484 struct sk_buff *skb; 485 486 /* process received packets */ 487 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 488 if (skb->cb[0]) 489 ppp_input_error(&ap->chan, 0); 490 ppp_input(&ap->chan, skb); 491 } 492 493 /* try to push more stuff out */ 494 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 495 ppp_output_wakeup(&ap->chan); 496 } 497 498 /* 499 * Procedures for encapsulation and framing. 500 */ 501 502 /* 503 * Procedure to encode the data for async serial transmission. 504 * Does octet stuffing (escaping), puts the address/control bytes 505 * on if A/C compression is disabled, and does protocol compression. 506 * Assumes ap->tpkt != 0 on entry. 507 * Returns 1 if we finished the current frame, 0 otherwise. 508 */ 509 510 #define PUT_BYTE(ap, buf, c, islcp) do { \ 511 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 512 *buf++ = PPP_ESCAPE; \ 513 *buf++ = c ^ PPP_TRANS; \ 514 } else \ 515 *buf++ = c; \ 516 } while (0) 517 518 static int 519 ppp_async_encode(struct asyncppp *ap) 520 { 521 int fcs, i, count, c, proto; 522 unsigned char *buf, *buflim; 523 unsigned char *data; 524 int islcp; 525 526 buf = ap->obuf; 527 ap->olim = buf; 528 ap->optr = buf; 529 i = ap->tpkt_pos; 530 data = ap->tpkt->data; 531 count = ap->tpkt->len; 532 fcs = ap->tfcs; 533 proto = get_unaligned_be16(data); 534 535 /* 536 * LCP packets with code values between 1 (configure-reqest) 537 * and 7 (code-reject) must be sent as though no options 538 * had been negotiated. 539 */ 540 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 541 542 if (i == 0) { 543 if (islcp) 544 async_lcp_peek(ap, data, count, 0); 545 546 /* 547 * Start of a new packet - insert the leading FLAG 548 * character if necessary. 549 */ 550 if (islcp || flag_time == 0 || 551 time_after_eq(jiffies, ap->last_xmit + flag_time)) 552 *buf++ = PPP_FLAG; 553 ap->last_xmit = jiffies; 554 fcs = PPP_INITFCS; 555 556 /* 557 * Put in the address/control bytes if necessary 558 */ 559 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 560 PUT_BYTE(ap, buf, 0xff, islcp); 561 fcs = PPP_FCS(fcs, 0xff); 562 PUT_BYTE(ap, buf, 0x03, islcp); 563 fcs = PPP_FCS(fcs, 0x03); 564 } 565 } 566 567 /* 568 * Once we put in the last byte, we need to put in the FCS 569 * and closing flag, so make sure there is at least 7 bytes 570 * of free space in the output buffer. 571 */ 572 buflim = ap->obuf + OBUFSIZE - 6; 573 while (i < count && buf < buflim) { 574 c = data[i++]; 575 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 576 continue; /* compress protocol field */ 577 fcs = PPP_FCS(fcs, c); 578 PUT_BYTE(ap, buf, c, islcp); 579 } 580 581 if (i < count) { 582 /* 583 * Remember where we are up to in this packet. 584 */ 585 ap->olim = buf; 586 ap->tpkt_pos = i; 587 ap->tfcs = fcs; 588 return 0; 589 } 590 591 /* 592 * We have finished the packet. Add the FCS and flag. 593 */ 594 fcs = ~fcs; 595 c = fcs & 0xff; 596 PUT_BYTE(ap, buf, c, islcp); 597 c = (fcs >> 8) & 0xff; 598 PUT_BYTE(ap, buf, c, islcp); 599 *buf++ = PPP_FLAG; 600 ap->olim = buf; 601 602 consume_skb(ap->tpkt); 603 ap->tpkt = NULL; 604 return 1; 605 } 606 607 /* 608 * Transmit-side routines. 609 */ 610 611 /* 612 * Send a packet to the peer over an async tty line. 613 * Returns 1 iff the packet was accepted. 614 * If the packet was not accepted, we will call ppp_output_wakeup 615 * at some later time. 616 */ 617 static int 618 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 619 { 620 struct asyncppp *ap = chan->private; 621 622 ppp_async_push(ap); 623 624 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 625 return 0; /* already full */ 626 ap->tpkt = skb; 627 ap->tpkt_pos = 0; 628 629 ppp_async_push(ap); 630 return 1; 631 } 632 633 /* 634 * Push as much data as possible out to the tty. 635 */ 636 static int 637 ppp_async_push(struct asyncppp *ap) 638 { 639 int avail, sent, done = 0; 640 struct tty_struct *tty = ap->tty; 641 int tty_stuffed = 0; 642 643 /* 644 * We can get called recursively here if the tty write 645 * function calls our wakeup function. This can happen 646 * for example on a pty with both the master and slave 647 * set to PPP line discipline. 648 * We use the XMIT_BUSY bit to detect this and get out, 649 * leaving the XMIT_WAKEUP bit set to tell the other 650 * instance that it may now be able to write more now. 651 */ 652 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 653 return 0; 654 spin_lock_bh(&ap->xmit_lock); 655 for (;;) { 656 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 657 tty_stuffed = 0; 658 if (!tty_stuffed && ap->optr < ap->olim) { 659 avail = ap->olim - ap->optr; 660 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 661 sent = tty->ops->write(tty, ap->optr, avail); 662 if (sent < 0) 663 goto flush; /* error, e.g. loss of CD */ 664 ap->optr += sent; 665 if (sent < avail) 666 tty_stuffed = 1; 667 continue; 668 } 669 if (ap->optr >= ap->olim && ap->tpkt) { 670 if (ppp_async_encode(ap)) { 671 /* finished processing ap->tpkt */ 672 clear_bit(XMIT_FULL, &ap->xmit_flags); 673 done = 1; 674 } 675 continue; 676 } 677 /* 678 * We haven't made any progress this time around. 679 * Clear XMIT_BUSY to let other callers in, but 680 * after doing so we have to check if anyone set 681 * XMIT_WAKEUP since we last checked it. If they 682 * did, we should try again to set XMIT_BUSY and go 683 * around again in case XMIT_BUSY was still set when 684 * the other caller tried. 685 */ 686 clear_bit(XMIT_BUSY, &ap->xmit_flags); 687 /* any more work to do? if not, exit the loop */ 688 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 689 (!tty_stuffed && ap->tpkt))) 690 break; 691 /* more work to do, see if we can do it now */ 692 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 693 break; 694 } 695 spin_unlock_bh(&ap->xmit_lock); 696 return done; 697 698 flush: 699 clear_bit(XMIT_BUSY, &ap->xmit_flags); 700 if (ap->tpkt) { 701 kfree_skb(ap->tpkt); 702 ap->tpkt = NULL; 703 clear_bit(XMIT_FULL, &ap->xmit_flags); 704 done = 1; 705 } 706 ap->optr = ap->olim; 707 spin_unlock_bh(&ap->xmit_lock); 708 return done; 709 } 710 711 /* 712 * Flush output from our internal buffers. 713 * Called for the TCFLSH ioctl. Can be entered in parallel 714 * but this is covered by the xmit_lock. 715 */ 716 static void 717 ppp_async_flush_output(struct asyncppp *ap) 718 { 719 int done = 0; 720 721 spin_lock_bh(&ap->xmit_lock); 722 ap->optr = ap->olim; 723 if (ap->tpkt != NULL) { 724 kfree_skb(ap->tpkt); 725 ap->tpkt = NULL; 726 clear_bit(XMIT_FULL, &ap->xmit_flags); 727 done = 1; 728 } 729 spin_unlock_bh(&ap->xmit_lock); 730 if (done) 731 ppp_output_wakeup(&ap->chan); 732 } 733 734 /* 735 * Receive-side routines. 736 */ 737 738 /* see how many ordinary chars there are at the start of buf */ 739 static inline int 740 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 741 { 742 int i, c; 743 744 for (i = 0; i < count; ++i) { 745 c = buf[i]; 746 if (c == PPP_ESCAPE || c == PPP_FLAG || 747 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 748 break; 749 } 750 return i; 751 } 752 753 /* called when a flag is seen - do end-of-packet processing */ 754 static void 755 process_input_packet(struct asyncppp *ap) 756 { 757 struct sk_buff *skb; 758 unsigned char *p; 759 unsigned int len, fcs; 760 761 skb = ap->rpkt; 762 if (ap->state & (SC_TOSS | SC_ESCAPE)) 763 goto err; 764 765 if (skb == NULL) 766 return; /* 0-length packet */ 767 768 /* check the FCS */ 769 p = skb->data; 770 len = skb->len; 771 if (len < 3) 772 goto err; /* too short */ 773 fcs = PPP_INITFCS; 774 for (; len > 0; --len) 775 fcs = PPP_FCS(fcs, *p++); 776 if (fcs != PPP_GOODFCS) 777 goto err; /* bad FCS */ 778 skb_trim(skb, skb->len - 2); 779 780 /* check for address/control and protocol compression */ 781 p = skb->data; 782 if (p[0] == PPP_ALLSTATIONS) { 783 /* chop off address/control */ 784 if (p[1] != PPP_UI || skb->len < 3) 785 goto err; 786 p = skb_pull(skb, 2); 787 } 788 789 /* If protocol field is not compressed, it can be LCP packet */ 790 if (!(p[0] & 0x01)) { 791 unsigned int proto; 792 793 if (skb->len < 2) 794 goto err; 795 proto = (p[0] << 8) + p[1]; 796 if (proto == PPP_LCP) 797 async_lcp_peek(ap, p, skb->len, 1); 798 } 799 800 /* queue the frame to be processed */ 801 skb->cb[0] = ap->state; 802 skb_queue_tail(&ap->rqueue, skb); 803 ap->rpkt = NULL; 804 ap->state = 0; 805 return; 806 807 err: 808 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 809 ap->state = SC_PREV_ERROR; 810 if (skb) { 811 /* make skb appear as freshly allocated */ 812 skb_trim(skb, 0); 813 skb_reserve(skb, - skb_headroom(skb)); 814 } 815 } 816 817 /* Called when the tty driver has data for us. Runs parallel with the 818 other ldisc functions but will not be re-entered */ 819 820 static void 821 ppp_async_input(struct asyncppp *ap, const u8 *buf, const u8 *flags, int count) 822 { 823 struct sk_buff *skb; 824 int c, i, j, n, s, f; 825 unsigned char *sp; 826 827 /* update bits used for 8-bit cleanness detection */ 828 if (~ap->rbits & SC_RCV_BITS) { 829 s = 0; 830 for (i = 0; i < count; ++i) { 831 c = buf[i]; 832 if (flags && flags[i] != 0) 833 continue; 834 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 835 c = ((c >> 4) ^ c) & 0xf; 836 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 837 } 838 ap->rbits |= s; 839 } 840 841 while (count > 0) { 842 /* scan through and see how many chars we can do in bulk */ 843 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 844 n = 1; 845 else 846 n = scan_ordinary(ap, buf, count); 847 848 f = 0; 849 if (flags && (ap->state & SC_TOSS) == 0) { 850 /* check the flags to see if any char had an error */ 851 for (j = 0; j < n; ++j) 852 if ((f = flags[j]) != 0) 853 break; 854 } 855 if (f != 0) { 856 /* start tossing */ 857 ap->state |= SC_TOSS; 858 859 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 860 /* stuff the chars in the skb */ 861 skb = ap->rpkt; 862 if (!skb) { 863 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 864 if (!skb) 865 goto nomem; 866 ap->rpkt = skb; 867 } 868 if (skb->len == 0) { 869 /* Try to get the payload 4-byte aligned. 870 * This should match the 871 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 872 * process_input_packet, but we do not have 873 * enough chars here to test buf[1] and buf[2]. 874 */ 875 if (buf[0] != PPP_ALLSTATIONS) 876 skb_reserve(skb, 2 + (buf[0] & 1)); 877 } 878 if (n > skb_tailroom(skb)) { 879 /* packet overflowed MRU */ 880 ap->state |= SC_TOSS; 881 } else { 882 sp = skb_put_data(skb, buf, n); 883 if (ap->state & SC_ESCAPE) { 884 sp[0] ^= PPP_TRANS; 885 ap->state &= ~SC_ESCAPE; 886 } 887 } 888 } 889 890 if (n >= count) 891 break; 892 893 c = buf[n]; 894 if (flags != NULL && flags[n] != 0) { 895 ap->state |= SC_TOSS; 896 } else if (c == PPP_FLAG) { 897 process_input_packet(ap); 898 } else if (c == PPP_ESCAPE) { 899 ap->state |= SC_ESCAPE; 900 } else if (I_IXON(ap->tty)) { 901 if (c == START_CHAR(ap->tty)) 902 start_tty(ap->tty); 903 else if (c == STOP_CHAR(ap->tty)) 904 stop_tty(ap->tty); 905 } 906 /* otherwise it's a char in the recv ACCM */ 907 ++n; 908 909 buf += n; 910 if (flags) 911 flags += n; 912 count -= n; 913 } 914 return; 915 916 nomem: 917 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 918 ap->state |= SC_TOSS; 919 } 920 921 /* 922 * We look at LCP frames going past so that we can notice 923 * and react to the LCP configure-ack from the peer. 924 * In the situation where the peer has been sent a configure-ack 925 * already, LCP is up once it has sent its configure-ack 926 * so the immediately following packet can be sent with the 927 * configured LCP options. This allows us to process the following 928 * packet correctly without pppd needing to respond quickly. 929 * 930 * We only respond to the received configure-ack if we have just 931 * sent a configure-request, and the configure-ack contains the 932 * same data (this is checked using a 16-bit crc of the data). 933 */ 934 #define CONFREQ 1 /* LCP code field values */ 935 #define CONFACK 2 936 #define LCP_MRU 1 /* LCP option numbers */ 937 #define LCP_ASYNCMAP 2 938 939 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 940 int len, int inbound) 941 { 942 int dlen, fcs, i, code; 943 u32 val; 944 945 data += 2; /* skip protocol bytes */ 946 len -= 2; 947 if (len < 4) /* 4 = code, ID, length */ 948 return; 949 code = data[0]; 950 if (code != CONFACK && code != CONFREQ) 951 return; 952 dlen = get_unaligned_be16(data + 2); 953 if (len < dlen) 954 return; /* packet got truncated or length is bogus */ 955 956 if (code == (inbound? CONFACK: CONFREQ)) { 957 /* 958 * sent confreq or received confack: 959 * calculate the crc of the data from the ID field on. 960 */ 961 fcs = PPP_INITFCS; 962 for (i = 1; i < dlen; ++i) 963 fcs = PPP_FCS(fcs, data[i]); 964 965 if (!inbound) { 966 /* outbound confreq - remember the crc for later */ 967 ap->lcp_fcs = fcs; 968 return; 969 } 970 971 /* received confack, check the crc */ 972 fcs ^= ap->lcp_fcs; 973 ap->lcp_fcs = -1; 974 if (fcs != 0) 975 return; 976 } else if (inbound) 977 return; /* not interested in received confreq */ 978 979 /* process the options in the confack */ 980 data += 4; 981 dlen -= 4; 982 /* data[0] is code, data[1] is length */ 983 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 984 switch (data[0]) { 985 case LCP_MRU: 986 val = get_unaligned_be16(data + 2); 987 if (inbound) 988 ap->mru = val; 989 else 990 ap->chan.mtu = val; 991 break; 992 case LCP_ASYNCMAP: 993 val = get_unaligned_be32(data + 2); 994 if (inbound) 995 ap->raccm = val; 996 else 997 ap->xaccm[0] = val; 998 break; 999 } 1000 dlen -= data[1]; 1001 data += data[1]; 1002 } 1003 } 1004 1005 static void __exit ppp_async_cleanup(void) 1006 { 1007 tty_unregister_ldisc(&ppp_ldisc); 1008 } 1009 1010 module_init(ppp_async_init); 1011 module_exit(ppp_async_cleanup); 1012