1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PPP async serial channel driver for Linux. 4 * 5 * Copyright 1999 Paul Mackerras. 6 * 7 * This driver provides the encapsulation and framing for sending 8 * and receiving PPP frames over async serial lines. It relies on 9 * the generic PPP layer to give it frames to send and to process 10 * received frames. It implements the PPP line discipline. 11 * 12 * Part of the code in this driver was inspired by the old async-only 13 * PPP driver, written by Michael Callahan and Al Longyear, and 14 * subsequently hacked by Paul Mackerras. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/skbuff.h> 20 #include <linux/tty.h> 21 #include <linux/netdevice.h> 22 #include <linux/poll.h> 23 #include <linux/crc-ccitt.h> 24 #include <linux/ppp_defs.h> 25 #include <linux/ppp-ioctl.h> 26 #include <linux/ppp_channel.h> 27 #include <linux/spinlock.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/jiffies.h> 31 #include <linux/slab.h> 32 #include <asm/unaligned.h> 33 #include <linux/uaccess.h> 34 #include <asm/string.h> 35 36 #define PPP_VERSION "2.4.2" 37 38 #define OBUFSIZE 4096 39 40 /* Structure for storing local state. */ 41 struct asyncppp { 42 struct tty_struct *tty; 43 unsigned int flags; 44 unsigned int state; 45 unsigned int rbits; 46 int mru; 47 spinlock_t xmit_lock; 48 spinlock_t recv_lock; 49 unsigned long xmit_flags; 50 u32 xaccm[8]; 51 u32 raccm; 52 unsigned int bytes_sent; 53 unsigned int bytes_rcvd; 54 55 struct sk_buff *tpkt; 56 int tpkt_pos; 57 u16 tfcs; 58 unsigned char *optr; 59 unsigned char *olim; 60 unsigned long last_xmit; 61 62 struct sk_buff *rpkt; 63 int lcp_fcs; 64 struct sk_buff_head rqueue; 65 66 struct tasklet_struct tsk; 67 68 refcount_t refcnt; 69 struct completion dead; 70 struct ppp_channel chan; /* interface to generic ppp layer */ 71 unsigned char obuf[OBUFSIZE]; 72 }; 73 74 /* Bit numbers in xmit_flags */ 75 #define XMIT_WAKEUP 0 76 #define XMIT_FULL 1 77 #define XMIT_BUSY 2 78 79 /* State bits */ 80 #define SC_TOSS 1 81 #define SC_ESCAPE 2 82 #define SC_PREV_ERROR 4 83 84 /* Bits in rbits */ 85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 86 87 static int flag_time = HZ; 88 module_param(flag_time, int, 0); 89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 90 MODULE_LICENSE("GPL"); 91 MODULE_ALIAS_LDISC(N_PPP); 92 93 /* 94 * Prototypes. 95 */ 96 static int ppp_async_encode(struct asyncppp *ap); 97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 98 static int ppp_async_push(struct asyncppp *ap); 99 static void ppp_async_flush_output(struct asyncppp *ap); 100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 101 char *flags, int count); 102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 103 unsigned long arg); 104 static void ppp_async_process(struct tasklet_struct *t); 105 106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 107 int len, int inbound); 108 109 static const struct ppp_channel_ops async_ops = { 110 .start_xmit = ppp_async_send, 111 .ioctl = ppp_async_ioctl, 112 }; 113 114 /* 115 * Routines implementing the PPP line discipline. 116 */ 117 118 /* 119 * We have a potential race on dereferencing tty->disc_data, 120 * because the tty layer provides no locking at all - thus one 121 * cpu could be running ppp_asynctty_receive while another 122 * calls ppp_asynctty_close, which zeroes tty->disc_data and 123 * frees the memory that ppp_asynctty_receive is using. The best 124 * way to fix this is to use a rwlock in the tty struct, but for now 125 * we use a single global rwlock for all ttys in ppp line discipline. 126 * 127 * FIXME: this is no longer true. The _close path for the ldisc is 128 * now guaranteed to be sane. 129 */ 130 static DEFINE_RWLOCK(disc_data_lock); 131 132 static struct asyncppp *ap_get(struct tty_struct *tty) 133 { 134 struct asyncppp *ap; 135 136 read_lock(&disc_data_lock); 137 ap = tty->disc_data; 138 if (ap != NULL) 139 refcount_inc(&ap->refcnt); 140 read_unlock(&disc_data_lock); 141 return ap; 142 } 143 144 static void ap_put(struct asyncppp *ap) 145 { 146 if (refcount_dec_and_test(&ap->refcnt)) 147 complete(&ap->dead); 148 } 149 150 /* 151 * Called when a tty is put into PPP line discipline. Called in process 152 * context. 153 */ 154 static int 155 ppp_asynctty_open(struct tty_struct *tty) 156 { 157 struct asyncppp *ap; 158 int err; 159 int speed; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_setup(&ap->tsk, ppp_async_process); 183 184 refcount_set(&ap->refcnt, 1); 185 init_completion(&ap->dead); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 speed = tty_get_baud_rate(tty); 191 ap->chan.speed = speed; 192 err = ppp_register_channel(&ap->chan); 193 if (err) 194 goto out_free; 195 196 tty->disc_data = ap; 197 tty->receive_room = 65536; 198 return 0; 199 200 out_free: 201 kfree(ap); 202 out: 203 return err; 204 } 205 206 /* 207 * Called when the tty is put into another line discipline 208 * or it hangs up. We have to wait for any cpu currently 209 * executing in any of the other ppp_asynctty_* routines to 210 * finish before we can call ppp_unregister_channel and free 211 * the asyncppp struct. This routine must be called from 212 * process context, not interrupt or softirq context. 213 */ 214 static void 215 ppp_asynctty_close(struct tty_struct *tty) 216 { 217 struct asyncppp *ap; 218 219 write_lock_irq(&disc_data_lock); 220 ap = tty->disc_data; 221 tty->disc_data = NULL; 222 write_unlock_irq(&disc_data_lock); 223 if (!ap) 224 return; 225 226 /* 227 * We have now ensured that nobody can start using ap from now 228 * on, but we have to wait for all existing users to finish. 229 * Note that ppp_unregister_channel ensures that no calls to 230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 231 * by the time it returns. 232 */ 233 if (!refcount_dec_and_test(&ap->refcnt)) 234 wait_for_completion(&ap->dead); 235 tasklet_kill(&ap->tsk); 236 237 ppp_unregister_channel(&ap->chan); 238 kfree_skb(ap->rpkt); 239 skb_queue_purge(&ap->rqueue); 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242 } 243 244 /* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250 static int ppp_asynctty_hangup(struct tty_struct *tty) 251 { 252 ppp_asynctty_close(tty); 253 return 0; 254 } 255 256 /* 257 * Read does nothing - no data is ever available this way. 258 * Pppd reads and writes packets via /dev/ppp instead. 259 */ 260 static ssize_t 261 ppp_asynctty_read(struct tty_struct *tty, struct file *file, 262 unsigned char *buf, size_t count, 263 void **cookie, unsigned long offset) 264 { 265 return -EAGAIN; 266 } 267 268 /* 269 * Write on the tty does nothing, the packets all come in 270 * from the ppp generic stuff. 271 */ 272 static ssize_t 273 ppp_asynctty_write(struct tty_struct *tty, struct file *file, 274 const unsigned char *buf, size_t count) 275 { 276 return -EAGAIN; 277 } 278 279 /* 280 * Called in process context only. May be re-entered by multiple 281 * ioctl calling threads. 282 */ 283 284 static int 285 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, 286 unsigned int cmd, unsigned long arg) 287 { 288 struct asyncppp *ap = ap_get(tty); 289 int err, val; 290 int __user *p = (int __user *)arg; 291 292 if (!ap) 293 return -ENXIO; 294 err = -EFAULT; 295 switch (cmd) { 296 case PPPIOCGCHAN: 297 err = -EFAULT; 298 if (put_user(ppp_channel_index(&ap->chan), p)) 299 break; 300 err = 0; 301 break; 302 303 case PPPIOCGUNIT: 304 err = -EFAULT; 305 if (put_user(ppp_unit_number(&ap->chan), p)) 306 break; 307 err = 0; 308 break; 309 310 case TCFLSH: 311 /* flush our buffers and the serial port's buffer */ 312 if (arg == TCIOFLUSH || arg == TCOFLUSH) 313 ppp_async_flush_output(ap); 314 err = n_tty_ioctl_helper(tty, file, cmd, arg); 315 break; 316 317 case FIONREAD: 318 val = 0; 319 if (put_user(val, p)) 320 break; 321 err = 0; 322 break; 323 324 default: 325 /* Try the various mode ioctls */ 326 err = tty_mode_ioctl(tty, file, cmd, arg); 327 } 328 329 ap_put(ap); 330 return err; 331 } 332 333 /* No kernel lock - fine */ 334 static __poll_t 335 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 336 { 337 return 0; 338 } 339 340 /* May sleep, don't call from interrupt level or with interrupts disabled */ 341 static void 342 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 343 char *cflags, int count) 344 { 345 struct asyncppp *ap = ap_get(tty); 346 unsigned long flags; 347 348 if (!ap) 349 return; 350 spin_lock_irqsave(&ap->recv_lock, flags); 351 ppp_async_input(ap, buf, cflags, count); 352 spin_unlock_irqrestore(&ap->recv_lock, flags); 353 if (!skb_queue_empty(&ap->rqueue)) 354 tasklet_schedule(&ap->tsk); 355 ap_put(ap); 356 tty_unthrottle(tty); 357 } 358 359 static void 360 ppp_asynctty_wakeup(struct tty_struct *tty) 361 { 362 struct asyncppp *ap = ap_get(tty); 363 364 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 365 if (!ap) 366 return; 367 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 368 tasklet_schedule(&ap->tsk); 369 ap_put(ap); 370 } 371 372 373 static struct tty_ldisc_ops ppp_ldisc = { 374 .owner = THIS_MODULE, 375 .name = "ppp", 376 .open = ppp_asynctty_open, 377 .close = ppp_asynctty_close, 378 .hangup = ppp_asynctty_hangup, 379 .read = ppp_asynctty_read, 380 .write = ppp_asynctty_write, 381 .ioctl = ppp_asynctty_ioctl, 382 .poll = ppp_asynctty_poll, 383 .receive_buf = ppp_asynctty_receive, 384 .write_wakeup = ppp_asynctty_wakeup, 385 }; 386 387 static int __init 388 ppp_async_init(void) 389 { 390 int err; 391 392 err = tty_register_ldisc(N_PPP, &ppp_ldisc); 393 if (err != 0) 394 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 395 err); 396 return err; 397 } 398 399 /* 400 * The following routines provide the PPP channel interface. 401 */ 402 static int 403 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 404 { 405 struct asyncppp *ap = chan->private; 406 void __user *argp = (void __user *)arg; 407 int __user *p = argp; 408 int err, val; 409 u32 accm[8]; 410 411 err = -EFAULT; 412 switch (cmd) { 413 case PPPIOCGFLAGS: 414 val = ap->flags | ap->rbits; 415 if (put_user(val, p)) 416 break; 417 err = 0; 418 break; 419 case PPPIOCSFLAGS: 420 if (get_user(val, p)) 421 break; 422 ap->flags = val & ~SC_RCV_BITS; 423 spin_lock_irq(&ap->recv_lock); 424 ap->rbits = val & SC_RCV_BITS; 425 spin_unlock_irq(&ap->recv_lock); 426 err = 0; 427 break; 428 429 case PPPIOCGASYNCMAP: 430 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 431 break; 432 err = 0; 433 break; 434 case PPPIOCSASYNCMAP: 435 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 436 break; 437 err = 0; 438 break; 439 440 case PPPIOCGRASYNCMAP: 441 if (put_user(ap->raccm, (u32 __user *)argp)) 442 break; 443 err = 0; 444 break; 445 case PPPIOCSRASYNCMAP: 446 if (get_user(ap->raccm, (u32 __user *)argp)) 447 break; 448 err = 0; 449 break; 450 451 case PPPIOCGXASYNCMAP: 452 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 453 break; 454 err = 0; 455 break; 456 case PPPIOCSXASYNCMAP: 457 if (copy_from_user(accm, argp, sizeof(accm))) 458 break; 459 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 460 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 461 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 462 err = 0; 463 break; 464 465 case PPPIOCGMRU: 466 if (put_user(ap->mru, p)) 467 break; 468 err = 0; 469 break; 470 case PPPIOCSMRU: 471 if (get_user(val, p)) 472 break; 473 if (val < PPP_MRU) 474 val = PPP_MRU; 475 ap->mru = val; 476 err = 0; 477 break; 478 479 default: 480 err = -ENOTTY; 481 } 482 483 return err; 484 } 485 486 /* 487 * This is called at softirq level to deliver received packets 488 * to the ppp_generic code, and to tell the ppp_generic code 489 * if we can accept more output now. 490 */ 491 static void ppp_async_process(struct tasklet_struct *t) 492 { 493 struct asyncppp *ap = from_tasklet(ap, t, tsk); 494 struct sk_buff *skb; 495 496 /* process received packets */ 497 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 498 if (skb->cb[0]) 499 ppp_input_error(&ap->chan, 0); 500 ppp_input(&ap->chan, skb); 501 } 502 503 /* try to push more stuff out */ 504 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 505 ppp_output_wakeup(&ap->chan); 506 } 507 508 /* 509 * Procedures for encapsulation and framing. 510 */ 511 512 /* 513 * Procedure to encode the data for async serial transmission. 514 * Does octet stuffing (escaping), puts the address/control bytes 515 * on if A/C compression is disabled, and does protocol compression. 516 * Assumes ap->tpkt != 0 on entry. 517 * Returns 1 if we finished the current frame, 0 otherwise. 518 */ 519 520 #define PUT_BYTE(ap, buf, c, islcp) do { \ 521 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 522 *buf++ = PPP_ESCAPE; \ 523 *buf++ = c ^ PPP_TRANS; \ 524 } else \ 525 *buf++ = c; \ 526 } while (0) 527 528 static int 529 ppp_async_encode(struct asyncppp *ap) 530 { 531 int fcs, i, count, c, proto; 532 unsigned char *buf, *buflim; 533 unsigned char *data; 534 int islcp; 535 536 buf = ap->obuf; 537 ap->olim = buf; 538 ap->optr = buf; 539 i = ap->tpkt_pos; 540 data = ap->tpkt->data; 541 count = ap->tpkt->len; 542 fcs = ap->tfcs; 543 proto = get_unaligned_be16(data); 544 545 /* 546 * LCP packets with code values between 1 (configure-reqest) 547 * and 7 (code-reject) must be sent as though no options 548 * had been negotiated. 549 */ 550 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 551 552 if (i == 0) { 553 if (islcp) 554 async_lcp_peek(ap, data, count, 0); 555 556 /* 557 * Start of a new packet - insert the leading FLAG 558 * character if necessary. 559 */ 560 if (islcp || flag_time == 0 || 561 time_after_eq(jiffies, ap->last_xmit + flag_time)) 562 *buf++ = PPP_FLAG; 563 ap->last_xmit = jiffies; 564 fcs = PPP_INITFCS; 565 566 /* 567 * Put in the address/control bytes if necessary 568 */ 569 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 570 PUT_BYTE(ap, buf, 0xff, islcp); 571 fcs = PPP_FCS(fcs, 0xff); 572 PUT_BYTE(ap, buf, 0x03, islcp); 573 fcs = PPP_FCS(fcs, 0x03); 574 } 575 } 576 577 /* 578 * Once we put in the last byte, we need to put in the FCS 579 * and closing flag, so make sure there is at least 7 bytes 580 * of free space in the output buffer. 581 */ 582 buflim = ap->obuf + OBUFSIZE - 6; 583 while (i < count && buf < buflim) { 584 c = data[i++]; 585 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 586 continue; /* compress protocol field */ 587 fcs = PPP_FCS(fcs, c); 588 PUT_BYTE(ap, buf, c, islcp); 589 } 590 591 if (i < count) { 592 /* 593 * Remember where we are up to in this packet. 594 */ 595 ap->olim = buf; 596 ap->tpkt_pos = i; 597 ap->tfcs = fcs; 598 return 0; 599 } 600 601 /* 602 * We have finished the packet. Add the FCS and flag. 603 */ 604 fcs = ~fcs; 605 c = fcs & 0xff; 606 PUT_BYTE(ap, buf, c, islcp); 607 c = (fcs >> 8) & 0xff; 608 PUT_BYTE(ap, buf, c, islcp); 609 *buf++ = PPP_FLAG; 610 ap->olim = buf; 611 612 consume_skb(ap->tpkt); 613 ap->tpkt = NULL; 614 return 1; 615 } 616 617 /* 618 * Transmit-side routines. 619 */ 620 621 /* 622 * Send a packet to the peer over an async tty line. 623 * Returns 1 iff the packet was accepted. 624 * If the packet was not accepted, we will call ppp_output_wakeup 625 * at some later time. 626 */ 627 static int 628 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 629 { 630 struct asyncppp *ap = chan->private; 631 632 ppp_async_push(ap); 633 634 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 635 return 0; /* already full */ 636 ap->tpkt = skb; 637 ap->tpkt_pos = 0; 638 639 ppp_async_push(ap); 640 return 1; 641 } 642 643 /* 644 * Push as much data as possible out to the tty. 645 */ 646 static int 647 ppp_async_push(struct asyncppp *ap) 648 { 649 int avail, sent, done = 0; 650 struct tty_struct *tty = ap->tty; 651 int tty_stuffed = 0; 652 653 /* 654 * We can get called recursively here if the tty write 655 * function calls our wakeup function. This can happen 656 * for example on a pty with both the master and slave 657 * set to PPP line discipline. 658 * We use the XMIT_BUSY bit to detect this and get out, 659 * leaving the XMIT_WAKEUP bit set to tell the other 660 * instance that it may now be able to write more now. 661 */ 662 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 663 return 0; 664 spin_lock_bh(&ap->xmit_lock); 665 for (;;) { 666 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 667 tty_stuffed = 0; 668 if (!tty_stuffed && ap->optr < ap->olim) { 669 avail = ap->olim - ap->optr; 670 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 671 sent = tty->ops->write(tty, ap->optr, avail); 672 if (sent < 0) 673 goto flush; /* error, e.g. loss of CD */ 674 ap->optr += sent; 675 if (sent < avail) 676 tty_stuffed = 1; 677 continue; 678 } 679 if (ap->optr >= ap->olim && ap->tpkt) { 680 if (ppp_async_encode(ap)) { 681 /* finished processing ap->tpkt */ 682 clear_bit(XMIT_FULL, &ap->xmit_flags); 683 done = 1; 684 } 685 continue; 686 } 687 /* 688 * We haven't made any progress this time around. 689 * Clear XMIT_BUSY to let other callers in, but 690 * after doing so we have to check if anyone set 691 * XMIT_WAKEUP since we last checked it. If they 692 * did, we should try again to set XMIT_BUSY and go 693 * around again in case XMIT_BUSY was still set when 694 * the other caller tried. 695 */ 696 clear_bit(XMIT_BUSY, &ap->xmit_flags); 697 /* any more work to do? if not, exit the loop */ 698 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || 699 (!tty_stuffed && ap->tpkt))) 700 break; 701 /* more work to do, see if we can do it now */ 702 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 703 break; 704 } 705 spin_unlock_bh(&ap->xmit_lock); 706 return done; 707 708 flush: 709 clear_bit(XMIT_BUSY, &ap->xmit_flags); 710 if (ap->tpkt) { 711 kfree_skb(ap->tpkt); 712 ap->tpkt = NULL; 713 clear_bit(XMIT_FULL, &ap->xmit_flags); 714 done = 1; 715 } 716 ap->optr = ap->olim; 717 spin_unlock_bh(&ap->xmit_lock); 718 return done; 719 } 720 721 /* 722 * Flush output from our internal buffers. 723 * Called for the TCFLSH ioctl. Can be entered in parallel 724 * but this is covered by the xmit_lock. 725 */ 726 static void 727 ppp_async_flush_output(struct asyncppp *ap) 728 { 729 int done = 0; 730 731 spin_lock_bh(&ap->xmit_lock); 732 ap->optr = ap->olim; 733 if (ap->tpkt != NULL) { 734 kfree_skb(ap->tpkt); 735 ap->tpkt = NULL; 736 clear_bit(XMIT_FULL, &ap->xmit_flags); 737 done = 1; 738 } 739 spin_unlock_bh(&ap->xmit_lock); 740 if (done) 741 ppp_output_wakeup(&ap->chan); 742 } 743 744 /* 745 * Receive-side routines. 746 */ 747 748 /* see how many ordinary chars there are at the start of buf */ 749 static inline int 750 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 751 { 752 int i, c; 753 754 for (i = 0; i < count; ++i) { 755 c = buf[i]; 756 if (c == PPP_ESCAPE || c == PPP_FLAG || 757 (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 758 break; 759 } 760 return i; 761 } 762 763 /* called when a flag is seen - do end-of-packet processing */ 764 static void 765 process_input_packet(struct asyncppp *ap) 766 { 767 struct sk_buff *skb; 768 unsigned char *p; 769 unsigned int len, fcs; 770 771 skb = ap->rpkt; 772 if (ap->state & (SC_TOSS | SC_ESCAPE)) 773 goto err; 774 775 if (skb == NULL) 776 return; /* 0-length packet */ 777 778 /* check the FCS */ 779 p = skb->data; 780 len = skb->len; 781 if (len < 3) 782 goto err; /* too short */ 783 fcs = PPP_INITFCS; 784 for (; len > 0; --len) 785 fcs = PPP_FCS(fcs, *p++); 786 if (fcs != PPP_GOODFCS) 787 goto err; /* bad FCS */ 788 skb_trim(skb, skb->len - 2); 789 790 /* check for address/control and protocol compression */ 791 p = skb->data; 792 if (p[0] == PPP_ALLSTATIONS) { 793 /* chop off address/control */ 794 if (p[1] != PPP_UI || skb->len < 3) 795 goto err; 796 p = skb_pull(skb, 2); 797 } 798 799 /* If protocol field is not compressed, it can be LCP packet */ 800 if (!(p[0] & 0x01)) { 801 unsigned int proto; 802 803 if (skb->len < 2) 804 goto err; 805 proto = (p[0] << 8) + p[1]; 806 if (proto == PPP_LCP) 807 async_lcp_peek(ap, p, skb->len, 1); 808 } 809 810 /* queue the frame to be processed */ 811 skb->cb[0] = ap->state; 812 skb_queue_tail(&ap->rqueue, skb); 813 ap->rpkt = NULL; 814 ap->state = 0; 815 return; 816 817 err: 818 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 819 ap->state = SC_PREV_ERROR; 820 if (skb) { 821 /* make skb appear as freshly allocated */ 822 skb_trim(skb, 0); 823 skb_reserve(skb, - skb_headroom(skb)); 824 } 825 } 826 827 /* Called when the tty driver has data for us. Runs parallel with the 828 other ldisc functions but will not be re-entered */ 829 830 static void 831 ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 832 char *flags, int count) 833 { 834 struct sk_buff *skb; 835 int c, i, j, n, s, f; 836 unsigned char *sp; 837 838 /* update bits used for 8-bit cleanness detection */ 839 if (~ap->rbits & SC_RCV_BITS) { 840 s = 0; 841 for (i = 0; i < count; ++i) { 842 c = buf[i]; 843 if (flags && flags[i] != 0) 844 continue; 845 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 846 c = ((c >> 4) ^ c) & 0xf; 847 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 848 } 849 ap->rbits |= s; 850 } 851 852 while (count > 0) { 853 /* scan through and see how many chars we can do in bulk */ 854 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 855 n = 1; 856 else 857 n = scan_ordinary(ap, buf, count); 858 859 f = 0; 860 if (flags && (ap->state & SC_TOSS) == 0) { 861 /* check the flags to see if any char had an error */ 862 for (j = 0; j < n; ++j) 863 if ((f = flags[j]) != 0) 864 break; 865 } 866 if (f != 0) { 867 /* start tossing */ 868 ap->state |= SC_TOSS; 869 870 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 871 /* stuff the chars in the skb */ 872 skb = ap->rpkt; 873 if (!skb) { 874 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 875 if (!skb) 876 goto nomem; 877 ap->rpkt = skb; 878 } 879 if (skb->len == 0) { 880 /* Try to get the payload 4-byte aligned. 881 * This should match the 882 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 883 * process_input_packet, but we do not have 884 * enough chars here to test buf[1] and buf[2]. 885 */ 886 if (buf[0] != PPP_ALLSTATIONS) 887 skb_reserve(skb, 2 + (buf[0] & 1)); 888 } 889 if (n > skb_tailroom(skb)) { 890 /* packet overflowed MRU */ 891 ap->state |= SC_TOSS; 892 } else { 893 sp = skb_put_data(skb, buf, n); 894 if (ap->state & SC_ESCAPE) { 895 sp[0] ^= PPP_TRANS; 896 ap->state &= ~SC_ESCAPE; 897 } 898 } 899 } 900 901 if (n >= count) 902 break; 903 904 c = buf[n]; 905 if (flags != NULL && flags[n] != 0) { 906 ap->state |= SC_TOSS; 907 } else if (c == PPP_FLAG) { 908 process_input_packet(ap); 909 } else if (c == PPP_ESCAPE) { 910 ap->state |= SC_ESCAPE; 911 } else if (I_IXON(ap->tty)) { 912 if (c == START_CHAR(ap->tty)) 913 start_tty(ap->tty); 914 else if (c == STOP_CHAR(ap->tty)) 915 stop_tty(ap->tty); 916 } 917 /* otherwise it's a char in the recv ACCM */ 918 ++n; 919 920 buf += n; 921 if (flags) 922 flags += n; 923 count -= n; 924 } 925 return; 926 927 nomem: 928 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 929 ap->state |= SC_TOSS; 930 } 931 932 /* 933 * We look at LCP frames going past so that we can notice 934 * and react to the LCP configure-ack from the peer. 935 * In the situation where the peer has been sent a configure-ack 936 * already, LCP is up once it has sent its configure-ack 937 * so the immediately following packet can be sent with the 938 * configured LCP options. This allows us to process the following 939 * packet correctly without pppd needing to respond quickly. 940 * 941 * We only respond to the received configure-ack if we have just 942 * sent a configure-request, and the configure-ack contains the 943 * same data (this is checked using a 16-bit crc of the data). 944 */ 945 #define CONFREQ 1 /* LCP code field values */ 946 #define CONFACK 2 947 #define LCP_MRU 1 /* LCP option numbers */ 948 #define LCP_ASYNCMAP 2 949 950 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 951 int len, int inbound) 952 { 953 int dlen, fcs, i, code; 954 u32 val; 955 956 data += 2; /* skip protocol bytes */ 957 len -= 2; 958 if (len < 4) /* 4 = code, ID, length */ 959 return; 960 code = data[0]; 961 if (code != CONFACK && code != CONFREQ) 962 return; 963 dlen = get_unaligned_be16(data + 2); 964 if (len < dlen) 965 return; /* packet got truncated or length is bogus */ 966 967 if (code == (inbound? CONFACK: CONFREQ)) { 968 /* 969 * sent confreq or received confack: 970 * calculate the crc of the data from the ID field on. 971 */ 972 fcs = PPP_INITFCS; 973 for (i = 1; i < dlen; ++i) 974 fcs = PPP_FCS(fcs, data[i]); 975 976 if (!inbound) { 977 /* outbound confreq - remember the crc for later */ 978 ap->lcp_fcs = fcs; 979 return; 980 } 981 982 /* received confack, check the crc */ 983 fcs ^= ap->lcp_fcs; 984 ap->lcp_fcs = -1; 985 if (fcs != 0) 986 return; 987 } else if (inbound) 988 return; /* not interested in received confreq */ 989 990 /* process the options in the confack */ 991 data += 4; 992 dlen -= 4; 993 /* data[0] is code, data[1] is length */ 994 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 995 switch (data[0]) { 996 case LCP_MRU: 997 val = get_unaligned_be16(data + 2); 998 if (inbound) 999 ap->mru = val; 1000 else 1001 ap->chan.mtu = val; 1002 break; 1003 case LCP_ASYNCMAP: 1004 val = get_unaligned_be32(data + 2); 1005 if (inbound) 1006 ap->raccm = val; 1007 else 1008 ap->xaccm[0] = val; 1009 break; 1010 } 1011 dlen -= data[1]; 1012 data += data[1]; 1013 } 1014 } 1015 1016 static void __exit ppp_async_cleanup(void) 1017 { 1018 if (tty_unregister_ldisc(N_PPP) != 0) 1019 printk(KERN_ERR "failed to unregister PPP line discipline\n"); 1020 } 1021 1022 module_init(ppp_async_init); 1023 module_exit(ppp_async_cleanup); 1024