xref: /openbmc/linux/drivers/net/ppp/ppp_async.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PPP async serial channel driver for Linux.
4  *
5  * Copyright 1999 Paul Mackerras.
6  *
7  * This driver provides the encapsulation and framing for sending
8  * and receiving PPP frames over async serial lines.  It relies on
9  * the generic PPP layer to give it frames to send and to process
10  * received frames.  It implements the PPP line discipline.
11  *
12  * Part of the code in this driver was inspired by the old async-only
13  * PPP driver, written by Michael Callahan and Al Longyear, and
14  * subsequently hacked by Paul Mackerras.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/skbuff.h>
20 #include <linux/tty.h>
21 #include <linux/netdevice.h>
22 #include <linux/poll.h>
23 #include <linux/crc-ccitt.h>
24 #include <linux/ppp_defs.h>
25 #include <linux/ppp-ioctl.h>
26 #include <linux/ppp_channel.h>
27 #include <linux/spinlock.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/slab.h>
32 #include <asm/unaligned.h>
33 #include <linux/uaccess.h>
34 #include <asm/string.h>
35 
36 #define PPP_VERSION	"2.4.2"
37 
38 #define OBUFSIZE	4096
39 
40 /* Structure for storing local state. */
41 struct asyncppp {
42 	struct tty_struct *tty;
43 	unsigned int	flags;
44 	unsigned int	state;
45 	unsigned int	rbits;
46 	int		mru;
47 	spinlock_t	xmit_lock;
48 	spinlock_t	recv_lock;
49 	unsigned long	xmit_flags;
50 	u32		xaccm[8];
51 	u32		raccm;
52 	unsigned int	bytes_sent;
53 	unsigned int	bytes_rcvd;
54 
55 	struct sk_buff	*tpkt;
56 	int		tpkt_pos;
57 	u16		tfcs;
58 	unsigned char	*optr;
59 	unsigned char	*olim;
60 	unsigned long	last_xmit;
61 
62 	struct sk_buff	*rpkt;
63 	int		lcp_fcs;
64 	struct sk_buff_head rqueue;
65 
66 	struct tasklet_struct tsk;
67 
68 	refcount_t	refcnt;
69 	struct completion dead;
70 	struct ppp_channel chan;	/* interface to generic ppp layer */
71 	unsigned char	obuf[OBUFSIZE];
72 };
73 
74 /* Bit numbers in xmit_flags */
75 #define XMIT_WAKEUP	0
76 #define XMIT_FULL	1
77 #define XMIT_BUSY	2
78 
79 /* State bits */
80 #define SC_TOSS		1
81 #define SC_ESCAPE	2
82 #define SC_PREV_ERROR	4
83 
84 /* Bits in rbits */
85 #define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86 
87 static int flag_time = HZ;
88 module_param(flag_time, int, 0);
89 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
90 MODULE_LICENSE("GPL");
91 MODULE_ALIAS_LDISC(N_PPP);
92 
93 /*
94  * Prototypes.
95  */
96 static int ppp_async_encode(struct asyncppp *ap);
97 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
98 static int ppp_async_push(struct asyncppp *ap);
99 static void ppp_async_flush_output(struct asyncppp *ap);
100 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
101 			    const char *flags, int count);
102 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
103 			   unsigned long arg);
104 static void ppp_async_process(struct tasklet_struct *t);
105 
106 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
107 			   int len, int inbound);
108 
109 static const struct ppp_channel_ops async_ops = {
110 	.start_xmit = ppp_async_send,
111 	.ioctl      = ppp_async_ioctl,
112 };
113 
114 /*
115  * Routines implementing the PPP line discipline.
116  */
117 
118 /*
119  * We have a potential race on dereferencing tty->disc_data,
120  * because the tty layer provides no locking at all - thus one
121  * cpu could be running ppp_asynctty_receive while another
122  * calls ppp_asynctty_close, which zeroes tty->disc_data and
123  * frees the memory that ppp_asynctty_receive is using.  The best
124  * way to fix this is to use a rwlock in the tty struct, but for now
125  * we use a single global rwlock for all ttys in ppp line discipline.
126  *
127  * FIXME: this is no longer true. The _close path for the ldisc is
128  * now guaranteed to be sane.
129  */
130 static DEFINE_RWLOCK(disc_data_lock);
131 
132 static struct asyncppp *ap_get(struct tty_struct *tty)
133 {
134 	struct asyncppp *ap;
135 
136 	read_lock(&disc_data_lock);
137 	ap = tty->disc_data;
138 	if (ap != NULL)
139 		refcount_inc(&ap->refcnt);
140 	read_unlock(&disc_data_lock);
141 	return ap;
142 }
143 
144 static void ap_put(struct asyncppp *ap)
145 {
146 	if (refcount_dec_and_test(&ap->refcnt))
147 		complete(&ap->dead);
148 }
149 
150 /*
151  * Called when a tty is put into PPP line discipline. Called in process
152  * context.
153  */
154 static int
155 ppp_asynctty_open(struct tty_struct *tty)
156 {
157 	struct asyncppp *ap;
158 	int err;
159 	int speed;
160 
161 	if (tty->ops->write == NULL)
162 		return -EOPNOTSUPP;
163 
164 	err = -ENOMEM;
165 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
166 	if (!ap)
167 		goto out;
168 
169 	/* initialize the asyncppp structure */
170 	ap->tty = tty;
171 	ap->mru = PPP_MRU;
172 	spin_lock_init(&ap->xmit_lock);
173 	spin_lock_init(&ap->recv_lock);
174 	ap->xaccm[0] = ~0U;
175 	ap->xaccm[3] = 0x60000000U;
176 	ap->raccm = ~0U;
177 	ap->optr = ap->obuf;
178 	ap->olim = ap->obuf;
179 	ap->lcp_fcs = -1;
180 
181 	skb_queue_head_init(&ap->rqueue);
182 	tasklet_setup(&ap->tsk, ppp_async_process);
183 
184 	refcount_set(&ap->refcnt, 1);
185 	init_completion(&ap->dead);
186 
187 	ap->chan.private = ap;
188 	ap->chan.ops = &async_ops;
189 	ap->chan.mtu = PPP_MRU;
190 	speed = tty_get_baud_rate(tty);
191 	ap->chan.speed = speed;
192 	err = ppp_register_channel(&ap->chan);
193 	if (err)
194 		goto out_free;
195 
196 	tty->disc_data = ap;
197 	tty->receive_room = 65536;
198 	return 0;
199 
200  out_free:
201 	kfree(ap);
202  out:
203 	return err;
204 }
205 
206 /*
207  * Called when the tty is put into another line discipline
208  * or it hangs up.  We have to wait for any cpu currently
209  * executing in any of the other ppp_asynctty_* routines to
210  * finish before we can call ppp_unregister_channel and free
211  * the asyncppp struct.  This routine must be called from
212  * process context, not interrupt or softirq context.
213  */
214 static void
215 ppp_asynctty_close(struct tty_struct *tty)
216 {
217 	struct asyncppp *ap;
218 
219 	write_lock_irq(&disc_data_lock);
220 	ap = tty->disc_data;
221 	tty->disc_data = NULL;
222 	write_unlock_irq(&disc_data_lock);
223 	if (!ap)
224 		return;
225 
226 	/*
227 	 * We have now ensured that nobody can start using ap from now
228 	 * on, but we have to wait for all existing users to finish.
229 	 * Note that ppp_unregister_channel ensures that no calls to
230 	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
231 	 * by the time it returns.
232 	 */
233 	if (!refcount_dec_and_test(&ap->refcnt))
234 		wait_for_completion(&ap->dead);
235 	tasklet_kill(&ap->tsk);
236 
237 	ppp_unregister_channel(&ap->chan);
238 	kfree_skb(ap->rpkt);
239 	skb_queue_purge(&ap->rqueue);
240 	kfree_skb(ap->tpkt);
241 	kfree(ap);
242 }
243 
244 /*
245  * Called on tty hangup in process context.
246  *
247  * Wait for I/O to driver to complete and unregister PPP channel.
248  * This is already done by the close routine, so just call that.
249  */
250 static int ppp_asynctty_hangup(struct tty_struct *tty)
251 {
252 	ppp_asynctty_close(tty);
253 	return 0;
254 }
255 
256 /*
257  * Read does nothing - no data is ever available this way.
258  * Pppd reads and writes packets via /dev/ppp instead.
259  */
260 static ssize_t
261 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
262 		  unsigned char *buf, size_t count,
263 		  void **cookie, unsigned long offset)
264 {
265 	return -EAGAIN;
266 }
267 
268 /*
269  * Write on the tty does nothing, the packets all come in
270  * from the ppp generic stuff.
271  */
272 static ssize_t
273 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
274 		   const unsigned char *buf, size_t count)
275 {
276 	return -EAGAIN;
277 }
278 
279 /*
280  * Called in process context only. May be re-entered by multiple
281  * ioctl calling threads.
282  */
283 
284 static int
285 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
286 		   unsigned int cmd, unsigned long arg)
287 {
288 	struct asyncppp *ap = ap_get(tty);
289 	int err, val;
290 	int __user *p = (int __user *)arg;
291 
292 	if (!ap)
293 		return -ENXIO;
294 	err = -EFAULT;
295 	switch (cmd) {
296 	case PPPIOCGCHAN:
297 		err = -EFAULT;
298 		if (put_user(ppp_channel_index(&ap->chan), p))
299 			break;
300 		err = 0;
301 		break;
302 
303 	case PPPIOCGUNIT:
304 		err = -EFAULT;
305 		if (put_user(ppp_unit_number(&ap->chan), p))
306 			break;
307 		err = 0;
308 		break;
309 
310 	case TCFLSH:
311 		/* flush our buffers and the serial port's buffer */
312 		if (arg == TCIOFLUSH || arg == TCOFLUSH)
313 			ppp_async_flush_output(ap);
314 		err = n_tty_ioctl_helper(tty, file, cmd, arg);
315 		break;
316 
317 	case FIONREAD:
318 		val = 0;
319 		if (put_user(val, p))
320 			break;
321 		err = 0;
322 		break;
323 
324 	default:
325 		/* Try the various mode ioctls */
326 		err = tty_mode_ioctl(tty, file, cmd, arg);
327 	}
328 
329 	ap_put(ap);
330 	return err;
331 }
332 
333 /* No kernel lock - fine */
334 static __poll_t
335 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
336 {
337 	return 0;
338 }
339 
340 /* May sleep, don't call from interrupt level or with interrupts disabled */
341 static void
342 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
343 		  const char *cflags, int count)
344 {
345 	struct asyncppp *ap = ap_get(tty);
346 	unsigned long flags;
347 
348 	if (!ap)
349 		return;
350 	spin_lock_irqsave(&ap->recv_lock, flags);
351 	ppp_async_input(ap, buf, cflags, count);
352 	spin_unlock_irqrestore(&ap->recv_lock, flags);
353 	if (!skb_queue_empty(&ap->rqueue))
354 		tasklet_schedule(&ap->tsk);
355 	ap_put(ap);
356 	tty_unthrottle(tty);
357 }
358 
359 static void
360 ppp_asynctty_wakeup(struct tty_struct *tty)
361 {
362 	struct asyncppp *ap = ap_get(tty);
363 
364 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
365 	if (!ap)
366 		return;
367 	set_bit(XMIT_WAKEUP, &ap->xmit_flags);
368 	tasklet_schedule(&ap->tsk);
369 	ap_put(ap);
370 }
371 
372 
373 static struct tty_ldisc_ops ppp_ldisc = {
374 	.owner  = THIS_MODULE,
375 	.num	= N_PPP,
376 	.name	= "ppp",
377 	.open	= ppp_asynctty_open,
378 	.close	= ppp_asynctty_close,
379 	.hangup	= ppp_asynctty_hangup,
380 	.read	= ppp_asynctty_read,
381 	.write	= ppp_asynctty_write,
382 	.ioctl	= ppp_asynctty_ioctl,
383 	.poll	= ppp_asynctty_poll,
384 	.receive_buf = ppp_asynctty_receive,
385 	.write_wakeup = ppp_asynctty_wakeup,
386 };
387 
388 static int __init
389 ppp_async_init(void)
390 {
391 	int err;
392 
393 	err = tty_register_ldisc(&ppp_ldisc);
394 	if (err != 0)
395 		printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
396 		       err);
397 	return err;
398 }
399 
400 /*
401  * The following routines provide the PPP channel interface.
402  */
403 static int
404 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
405 {
406 	struct asyncppp *ap = chan->private;
407 	void __user *argp = (void __user *)arg;
408 	int __user *p = argp;
409 	int err, val;
410 	u32 accm[8];
411 
412 	err = -EFAULT;
413 	switch (cmd) {
414 	case PPPIOCGFLAGS:
415 		val = ap->flags | ap->rbits;
416 		if (put_user(val, p))
417 			break;
418 		err = 0;
419 		break;
420 	case PPPIOCSFLAGS:
421 		if (get_user(val, p))
422 			break;
423 		ap->flags = val & ~SC_RCV_BITS;
424 		spin_lock_irq(&ap->recv_lock);
425 		ap->rbits = val & SC_RCV_BITS;
426 		spin_unlock_irq(&ap->recv_lock);
427 		err = 0;
428 		break;
429 
430 	case PPPIOCGASYNCMAP:
431 		if (put_user(ap->xaccm[0], (u32 __user *)argp))
432 			break;
433 		err = 0;
434 		break;
435 	case PPPIOCSASYNCMAP:
436 		if (get_user(ap->xaccm[0], (u32 __user *)argp))
437 			break;
438 		err = 0;
439 		break;
440 
441 	case PPPIOCGRASYNCMAP:
442 		if (put_user(ap->raccm, (u32 __user *)argp))
443 			break;
444 		err = 0;
445 		break;
446 	case PPPIOCSRASYNCMAP:
447 		if (get_user(ap->raccm, (u32 __user *)argp))
448 			break;
449 		err = 0;
450 		break;
451 
452 	case PPPIOCGXASYNCMAP:
453 		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
454 			break;
455 		err = 0;
456 		break;
457 	case PPPIOCSXASYNCMAP:
458 		if (copy_from_user(accm, argp, sizeof(accm)))
459 			break;
460 		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */
461 		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */
462 		memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
463 		err = 0;
464 		break;
465 
466 	case PPPIOCGMRU:
467 		if (put_user(ap->mru, p))
468 			break;
469 		err = 0;
470 		break;
471 	case PPPIOCSMRU:
472 		if (get_user(val, p))
473 			break;
474 		if (val < PPP_MRU)
475 			val = PPP_MRU;
476 		ap->mru = val;
477 		err = 0;
478 		break;
479 
480 	default:
481 		err = -ENOTTY;
482 	}
483 
484 	return err;
485 }
486 
487 /*
488  * This is called at softirq level to deliver received packets
489  * to the ppp_generic code, and to tell the ppp_generic code
490  * if we can accept more output now.
491  */
492 static void ppp_async_process(struct tasklet_struct *t)
493 {
494 	struct asyncppp *ap = from_tasklet(ap, t, tsk);
495 	struct sk_buff *skb;
496 
497 	/* process received packets */
498 	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
499 		if (skb->cb[0])
500 			ppp_input_error(&ap->chan, 0);
501 		ppp_input(&ap->chan, skb);
502 	}
503 
504 	/* try to push more stuff out */
505 	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
506 		ppp_output_wakeup(&ap->chan);
507 }
508 
509 /*
510  * Procedures for encapsulation and framing.
511  */
512 
513 /*
514  * Procedure to encode the data for async serial transmission.
515  * Does octet stuffing (escaping), puts the address/control bytes
516  * on if A/C compression is disabled, and does protocol compression.
517  * Assumes ap->tpkt != 0 on entry.
518  * Returns 1 if we finished the current frame, 0 otherwise.
519  */
520 
521 #define PUT_BYTE(ap, buf, c, islcp)	do {		\
522 	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
523 		*buf++ = PPP_ESCAPE;			\
524 		*buf++ = c ^ PPP_TRANS;			\
525 	} else						\
526 		*buf++ = c;				\
527 } while (0)
528 
529 static int
530 ppp_async_encode(struct asyncppp *ap)
531 {
532 	int fcs, i, count, c, proto;
533 	unsigned char *buf, *buflim;
534 	unsigned char *data;
535 	int islcp;
536 
537 	buf = ap->obuf;
538 	ap->olim = buf;
539 	ap->optr = buf;
540 	i = ap->tpkt_pos;
541 	data = ap->tpkt->data;
542 	count = ap->tpkt->len;
543 	fcs = ap->tfcs;
544 	proto = get_unaligned_be16(data);
545 
546 	/*
547 	 * LCP packets with code values between 1 (configure-reqest)
548 	 * and 7 (code-reject) must be sent as though no options
549 	 * had been negotiated.
550 	 */
551 	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
552 
553 	if (i == 0) {
554 		if (islcp)
555 			async_lcp_peek(ap, data, count, 0);
556 
557 		/*
558 		 * Start of a new packet - insert the leading FLAG
559 		 * character if necessary.
560 		 */
561 		if (islcp || flag_time == 0 ||
562 		    time_after_eq(jiffies, ap->last_xmit + flag_time))
563 			*buf++ = PPP_FLAG;
564 		ap->last_xmit = jiffies;
565 		fcs = PPP_INITFCS;
566 
567 		/*
568 		 * Put in the address/control bytes if necessary
569 		 */
570 		if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
571 			PUT_BYTE(ap, buf, 0xff, islcp);
572 			fcs = PPP_FCS(fcs, 0xff);
573 			PUT_BYTE(ap, buf, 0x03, islcp);
574 			fcs = PPP_FCS(fcs, 0x03);
575 		}
576 	}
577 
578 	/*
579 	 * Once we put in the last byte, we need to put in the FCS
580 	 * and closing flag, so make sure there is at least 7 bytes
581 	 * of free space in the output buffer.
582 	 */
583 	buflim = ap->obuf + OBUFSIZE - 6;
584 	while (i < count && buf < buflim) {
585 		c = data[i++];
586 		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
587 			continue;	/* compress protocol field */
588 		fcs = PPP_FCS(fcs, c);
589 		PUT_BYTE(ap, buf, c, islcp);
590 	}
591 
592 	if (i < count) {
593 		/*
594 		 * Remember where we are up to in this packet.
595 		 */
596 		ap->olim = buf;
597 		ap->tpkt_pos = i;
598 		ap->tfcs = fcs;
599 		return 0;
600 	}
601 
602 	/*
603 	 * We have finished the packet.  Add the FCS and flag.
604 	 */
605 	fcs = ~fcs;
606 	c = fcs & 0xff;
607 	PUT_BYTE(ap, buf, c, islcp);
608 	c = (fcs >> 8) & 0xff;
609 	PUT_BYTE(ap, buf, c, islcp);
610 	*buf++ = PPP_FLAG;
611 	ap->olim = buf;
612 
613 	consume_skb(ap->tpkt);
614 	ap->tpkt = NULL;
615 	return 1;
616 }
617 
618 /*
619  * Transmit-side routines.
620  */
621 
622 /*
623  * Send a packet to the peer over an async tty line.
624  * Returns 1 iff the packet was accepted.
625  * If the packet was not accepted, we will call ppp_output_wakeup
626  * at some later time.
627  */
628 static int
629 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
630 {
631 	struct asyncppp *ap = chan->private;
632 
633 	ppp_async_push(ap);
634 
635 	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
636 		return 0;	/* already full */
637 	ap->tpkt = skb;
638 	ap->tpkt_pos = 0;
639 
640 	ppp_async_push(ap);
641 	return 1;
642 }
643 
644 /*
645  * Push as much data as possible out to the tty.
646  */
647 static int
648 ppp_async_push(struct asyncppp *ap)
649 {
650 	int avail, sent, done = 0;
651 	struct tty_struct *tty = ap->tty;
652 	int tty_stuffed = 0;
653 
654 	/*
655 	 * We can get called recursively here if the tty write
656 	 * function calls our wakeup function.  This can happen
657 	 * for example on a pty with both the master and slave
658 	 * set to PPP line discipline.
659 	 * We use the XMIT_BUSY bit to detect this and get out,
660 	 * leaving the XMIT_WAKEUP bit set to tell the other
661 	 * instance that it may now be able to write more now.
662 	 */
663 	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
664 		return 0;
665 	spin_lock_bh(&ap->xmit_lock);
666 	for (;;) {
667 		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
668 			tty_stuffed = 0;
669 		if (!tty_stuffed && ap->optr < ap->olim) {
670 			avail = ap->olim - ap->optr;
671 			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
672 			sent = tty->ops->write(tty, ap->optr, avail);
673 			if (sent < 0)
674 				goto flush;	/* error, e.g. loss of CD */
675 			ap->optr += sent;
676 			if (sent < avail)
677 				tty_stuffed = 1;
678 			continue;
679 		}
680 		if (ap->optr >= ap->olim && ap->tpkt) {
681 			if (ppp_async_encode(ap)) {
682 				/* finished processing ap->tpkt */
683 				clear_bit(XMIT_FULL, &ap->xmit_flags);
684 				done = 1;
685 			}
686 			continue;
687 		}
688 		/*
689 		 * We haven't made any progress this time around.
690 		 * Clear XMIT_BUSY to let other callers in, but
691 		 * after doing so we have to check if anyone set
692 		 * XMIT_WAKEUP since we last checked it.  If they
693 		 * did, we should try again to set XMIT_BUSY and go
694 		 * around again in case XMIT_BUSY was still set when
695 		 * the other caller tried.
696 		 */
697 		clear_bit(XMIT_BUSY, &ap->xmit_flags);
698 		/* any more work to do? if not, exit the loop */
699 		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
700 		      (!tty_stuffed && ap->tpkt)))
701 			break;
702 		/* more work to do, see if we can do it now */
703 		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
704 			break;
705 	}
706 	spin_unlock_bh(&ap->xmit_lock);
707 	return done;
708 
709 flush:
710 	clear_bit(XMIT_BUSY, &ap->xmit_flags);
711 	if (ap->tpkt) {
712 		kfree_skb(ap->tpkt);
713 		ap->tpkt = NULL;
714 		clear_bit(XMIT_FULL, &ap->xmit_flags);
715 		done = 1;
716 	}
717 	ap->optr = ap->olim;
718 	spin_unlock_bh(&ap->xmit_lock);
719 	return done;
720 }
721 
722 /*
723  * Flush output from our internal buffers.
724  * Called for the TCFLSH ioctl. Can be entered in parallel
725  * but this is covered by the xmit_lock.
726  */
727 static void
728 ppp_async_flush_output(struct asyncppp *ap)
729 {
730 	int done = 0;
731 
732 	spin_lock_bh(&ap->xmit_lock);
733 	ap->optr = ap->olim;
734 	if (ap->tpkt != NULL) {
735 		kfree_skb(ap->tpkt);
736 		ap->tpkt = NULL;
737 		clear_bit(XMIT_FULL, &ap->xmit_flags);
738 		done = 1;
739 	}
740 	spin_unlock_bh(&ap->xmit_lock);
741 	if (done)
742 		ppp_output_wakeup(&ap->chan);
743 }
744 
745 /*
746  * Receive-side routines.
747  */
748 
749 /* see how many ordinary chars there are at the start of buf */
750 static inline int
751 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
752 {
753 	int i, c;
754 
755 	for (i = 0; i < count; ++i) {
756 		c = buf[i];
757 		if (c == PPP_ESCAPE || c == PPP_FLAG ||
758 		    (c < 0x20 && (ap->raccm & (1 << c)) != 0))
759 			break;
760 	}
761 	return i;
762 }
763 
764 /* called when a flag is seen - do end-of-packet processing */
765 static void
766 process_input_packet(struct asyncppp *ap)
767 {
768 	struct sk_buff *skb;
769 	unsigned char *p;
770 	unsigned int len, fcs;
771 
772 	skb = ap->rpkt;
773 	if (ap->state & (SC_TOSS | SC_ESCAPE))
774 		goto err;
775 
776 	if (skb == NULL)
777 		return;		/* 0-length packet */
778 
779 	/* check the FCS */
780 	p = skb->data;
781 	len = skb->len;
782 	if (len < 3)
783 		goto err;	/* too short */
784 	fcs = PPP_INITFCS;
785 	for (; len > 0; --len)
786 		fcs = PPP_FCS(fcs, *p++);
787 	if (fcs != PPP_GOODFCS)
788 		goto err;	/* bad FCS */
789 	skb_trim(skb, skb->len - 2);
790 
791 	/* check for address/control and protocol compression */
792 	p = skb->data;
793 	if (p[0] == PPP_ALLSTATIONS) {
794 		/* chop off address/control */
795 		if (p[1] != PPP_UI || skb->len < 3)
796 			goto err;
797 		p = skb_pull(skb, 2);
798 	}
799 
800 	/* If protocol field is not compressed, it can be LCP packet */
801 	if (!(p[0] & 0x01)) {
802 		unsigned int proto;
803 
804 		if (skb->len < 2)
805 			goto err;
806 		proto = (p[0] << 8) + p[1];
807 		if (proto == PPP_LCP)
808 			async_lcp_peek(ap, p, skb->len, 1);
809 	}
810 
811 	/* queue the frame to be processed */
812 	skb->cb[0] = ap->state;
813 	skb_queue_tail(&ap->rqueue, skb);
814 	ap->rpkt = NULL;
815 	ap->state = 0;
816 	return;
817 
818  err:
819 	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
820 	ap->state = SC_PREV_ERROR;
821 	if (skb) {
822 		/* make skb appear as freshly allocated */
823 		skb_trim(skb, 0);
824 		skb_reserve(skb, - skb_headroom(skb));
825 	}
826 }
827 
828 /* Called when the tty driver has data for us. Runs parallel with the
829    other ldisc functions but will not be re-entered */
830 
831 static void
832 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
833 		const char *flags, int count)
834 {
835 	struct sk_buff *skb;
836 	int c, i, j, n, s, f;
837 	unsigned char *sp;
838 
839 	/* update bits used for 8-bit cleanness detection */
840 	if (~ap->rbits & SC_RCV_BITS) {
841 		s = 0;
842 		for (i = 0; i < count; ++i) {
843 			c = buf[i];
844 			if (flags && flags[i] != 0)
845 				continue;
846 			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
847 			c = ((c >> 4) ^ c) & 0xf;
848 			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
849 		}
850 		ap->rbits |= s;
851 	}
852 
853 	while (count > 0) {
854 		/* scan through and see how many chars we can do in bulk */
855 		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
856 			n = 1;
857 		else
858 			n = scan_ordinary(ap, buf, count);
859 
860 		f = 0;
861 		if (flags && (ap->state & SC_TOSS) == 0) {
862 			/* check the flags to see if any char had an error */
863 			for (j = 0; j < n; ++j)
864 				if ((f = flags[j]) != 0)
865 					break;
866 		}
867 		if (f != 0) {
868 			/* start tossing */
869 			ap->state |= SC_TOSS;
870 
871 		} else if (n > 0 && (ap->state & SC_TOSS) == 0) {
872 			/* stuff the chars in the skb */
873 			skb = ap->rpkt;
874 			if (!skb) {
875 				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
876 				if (!skb)
877 					goto nomem;
878 				ap->rpkt = skb;
879 			}
880 			if (skb->len == 0) {
881 				/* Try to get the payload 4-byte aligned.
882 				 * This should match the
883 				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
884 				 * process_input_packet, but we do not have
885 				 * enough chars here to test buf[1] and buf[2].
886 				 */
887 				if (buf[0] != PPP_ALLSTATIONS)
888 					skb_reserve(skb, 2 + (buf[0] & 1));
889 			}
890 			if (n > skb_tailroom(skb)) {
891 				/* packet overflowed MRU */
892 				ap->state |= SC_TOSS;
893 			} else {
894 				sp = skb_put_data(skb, buf, n);
895 				if (ap->state & SC_ESCAPE) {
896 					sp[0] ^= PPP_TRANS;
897 					ap->state &= ~SC_ESCAPE;
898 				}
899 			}
900 		}
901 
902 		if (n >= count)
903 			break;
904 
905 		c = buf[n];
906 		if (flags != NULL && flags[n] != 0) {
907 			ap->state |= SC_TOSS;
908 		} else if (c == PPP_FLAG) {
909 			process_input_packet(ap);
910 		} else if (c == PPP_ESCAPE) {
911 			ap->state |= SC_ESCAPE;
912 		} else if (I_IXON(ap->tty)) {
913 			if (c == START_CHAR(ap->tty))
914 				start_tty(ap->tty);
915 			else if (c == STOP_CHAR(ap->tty))
916 				stop_tty(ap->tty);
917 		}
918 		/* otherwise it's a char in the recv ACCM */
919 		++n;
920 
921 		buf += n;
922 		if (flags)
923 			flags += n;
924 		count -= n;
925 	}
926 	return;
927 
928  nomem:
929 	printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
930 	ap->state |= SC_TOSS;
931 }
932 
933 /*
934  * We look at LCP frames going past so that we can notice
935  * and react to the LCP configure-ack from the peer.
936  * In the situation where the peer has been sent a configure-ack
937  * already, LCP is up once it has sent its configure-ack
938  * so the immediately following packet can be sent with the
939  * configured LCP options.  This allows us to process the following
940  * packet correctly without pppd needing to respond quickly.
941  *
942  * We only respond to the received configure-ack if we have just
943  * sent a configure-request, and the configure-ack contains the
944  * same data (this is checked using a 16-bit crc of the data).
945  */
946 #define CONFREQ		1	/* LCP code field values */
947 #define CONFACK		2
948 #define LCP_MRU		1	/* LCP option numbers */
949 #define LCP_ASYNCMAP	2
950 
951 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
952 			   int len, int inbound)
953 {
954 	int dlen, fcs, i, code;
955 	u32 val;
956 
957 	data += 2;		/* skip protocol bytes */
958 	len -= 2;
959 	if (len < 4)		/* 4 = code, ID, length */
960 		return;
961 	code = data[0];
962 	if (code != CONFACK && code != CONFREQ)
963 		return;
964 	dlen = get_unaligned_be16(data + 2);
965 	if (len < dlen)
966 		return;		/* packet got truncated or length is bogus */
967 
968 	if (code == (inbound? CONFACK: CONFREQ)) {
969 		/*
970 		 * sent confreq or received confack:
971 		 * calculate the crc of the data from the ID field on.
972 		 */
973 		fcs = PPP_INITFCS;
974 		for (i = 1; i < dlen; ++i)
975 			fcs = PPP_FCS(fcs, data[i]);
976 
977 		if (!inbound) {
978 			/* outbound confreq - remember the crc for later */
979 			ap->lcp_fcs = fcs;
980 			return;
981 		}
982 
983 		/* received confack, check the crc */
984 		fcs ^= ap->lcp_fcs;
985 		ap->lcp_fcs = -1;
986 		if (fcs != 0)
987 			return;
988 	} else if (inbound)
989 		return;	/* not interested in received confreq */
990 
991 	/* process the options in the confack */
992 	data += 4;
993 	dlen -= 4;
994 	/* data[0] is code, data[1] is length */
995 	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
996 		switch (data[0]) {
997 		case LCP_MRU:
998 			val = get_unaligned_be16(data + 2);
999 			if (inbound)
1000 				ap->mru = val;
1001 			else
1002 				ap->chan.mtu = val;
1003 			break;
1004 		case LCP_ASYNCMAP:
1005 			val = get_unaligned_be32(data + 2);
1006 			if (inbound)
1007 				ap->raccm = val;
1008 			else
1009 				ap->xaccm[0] = val;
1010 			break;
1011 		}
1012 		dlen -= data[1];
1013 		data += data[1];
1014 	}
1015 }
1016 
1017 static void __exit ppp_async_cleanup(void)
1018 {
1019 	tty_unregister_ldisc(&ppp_ldisc);
1020 }
1021 
1022 module_init(ppp_async_init);
1023 module_exit(ppp_async_cleanup);
1024