1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RATE_SELECT, 28 GPIO_MAX, 29 30 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 31 SFP_F_LOS = BIT(GPIO_LOS), 32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 35 36 SFP_E_INSERT = 0, 37 SFP_E_REMOVE, 38 SFP_E_DEV_ATTACH, 39 SFP_E_DEV_DETACH, 40 SFP_E_DEV_DOWN, 41 SFP_E_DEV_UP, 42 SFP_E_TX_FAULT, 43 SFP_E_TX_CLEAR, 44 SFP_E_LOS_HIGH, 45 SFP_E_LOS_LOW, 46 SFP_E_TIMEOUT, 47 48 SFP_MOD_EMPTY = 0, 49 SFP_MOD_ERROR, 50 SFP_MOD_PROBE, 51 SFP_MOD_WAITDEV, 52 SFP_MOD_HPOWER, 53 SFP_MOD_WAITPWR, 54 SFP_MOD_PRESENT, 55 56 SFP_DEV_DETACHED = 0, 57 SFP_DEV_DOWN, 58 SFP_DEV_UP, 59 60 SFP_S_DOWN = 0, 61 SFP_S_FAIL, 62 SFP_S_WAIT, 63 SFP_S_INIT, 64 SFP_S_INIT_PHY, 65 SFP_S_INIT_TX_FAULT, 66 SFP_S_WAIT_LOS, 67 SFP_S_LINK_UP, 68 SFP_S_TX_FAULT, 69 SFP_S_REINIT, 70 SFP_S_TX_DISABLE, 71 }; 72 73 static const char * const mod_state_strings[] = { 74 [SFP_MOD_EMPTY] = "empty", 75 [SFP_MOD_ERROR] = "error", 76 [SFP_MOD_PROBE] = "probe", 77 [SFP_MOD_WAITDEV] = "waitdev", 78 [SFP_MOD_HPOWER] = "hpower", 79 [SFP_MOD_WAITPWR] = "waitpwr", 80 [SFP_MOD_PRESENT] = "present", 81 }; 82 83 static const char *mod_state_to_str(unsigned short mod_state) 84 { 85 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 86 return "Unknown module state"; 87 return mod_state_strings[mod_state]; 88 } 89 90 static const char * const dev_state_strings[] = { 91 [SFP_DEV_DETACHED] = "detached", 92 [SFP_DEV_DOWN] = "down", 93 [SFP_DEV_UP] = "up", 94 }; 95 96 static const char *dev_state_to_str(unsigned short dev_state) 97 { 98 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 99 return "Unknown device state"; 100 return dev_state_strings[dev_state]; 101 } 102 103 static const char * const event_strings[] = { 104 [SFP_E_INSERT] = "insert", 105 [SFP_E_REMOVE] = "remove", 106 [SFP_E_DEV_ATTACH] = "dev_attach", 107 [SFP_E_DEV_DETACH] = "dev_detach", 108 [SFP_E_DEV_DOWN] = "dev_down", 109 [SFP_E_DEV_UP] = "dev_up", 110 [SFP_E_TX_FAULT] = "tx_fault", 111 [SFP_E_TX_CLEAR] = "tx_clear", 112 [SFP_E_LOS_HIGH] = "los_high", 113 [SFP_E_LOS_LOW] = "los_low", 114 [SFP_E_TIMEOUT] = "timeout", 115 }; 116 117 static const char *event_to_str(unsigned short event) 118 { 119 if (event >= ARRAY_SIZE(event_strings)) 120 return "Unknown event"; 121 return event_strings[event]; 122 } 123 124 static const char * const sm_state_strings[] = { 125 [SFP_S_DOWN] = "down", 126 [SFP_S_FAIL] = "fail", 127 [SFP_S_WAIT] = "wait", 128 [SFP_S_INIT] = "init", 129 [SFP_S_INIT_PHY] = "init_phy", 130 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 131 [SFP_S_WAIT_LOS] = "wait_los", 132 [SFP_S_LINK_UP] = "link_up", 133 [SFP_S_TX_FAULT] = "tx_fault", 134 [SFP_S_REINIT] = "reinit", 135 [SFP_S_TX_DISABLE] = "tx_disable", 136 }; 137 138 static const char *sm_state_to_str(unsigned short sm_state) 139 { 140 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 141 return "Unknown state"; 142 return sm_state_strings[sm_state]; 143 } 144 145 static const char *gpio_names[] = { 146 "mod-def0", 147 "los", 148 "tx-fault", 149 "tx-disable", 150 "rate-select0", 151 }; 152 153 static const enum gpiod_flags gpio_flags[] = { 154 GPIOD_IN, 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_ASIS, 158 GPIOD_ASIS, 159 }; 160 161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 162 * non-cooled module to initialise its laser safety circuitry. We wait 163 * an initial T_WAIT period before we check the tx fault to give any PHY 164 * on board (for a copper SFP) time to initialise. 165 */ 166 #define T_WAIT msecs_to_jiffies(50) 167 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 208 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 209 */ 210 #define SFP_PHY_ADDR 22 211 #define SFP_PHY_ADDR_ROLLBALL 17 212 213 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 214 * at a time. Some SFP modules and also some Linux I2C drivers do not like 215 * reads longer than 16 bytes. 216 */ 217 #define SFP_EEPROM_BLOCK_SIZE 16 218 219 struct sff_data { 220 unsigned int gpios; 221 bool (*module_supported)(const struct sfp_eeprom_id *id); 222 }; 223 224 struct sfp { 225 struct device *dev; 226 struct i2c_adapter *i2c; 227 struct mii_bus *i2c_mii; 228 struct sfp_bus *sfp_bus; 229 enum mdio_i2c_proto mdio_protocol; 230 struct phy_device *mod_phy; 231 const struct sff_data *type; 232 size_t i2c_block_size; 233 u32 max_power_mW; 234 235 unsigned int (*get_state)(struct sfp *); 236 void (*set_state)(struct sfp *, unsigned int); 237 int (*read)(struct sfp *, bool, u8, void *, size_t); 238 int (*write)(struct sfp *, bool, u8, void *, size_t); 239 240 struct gpio_desc *gpio[GPIO_MAX]; 241 int gpio_irq[GPIO_MAX]; 242 243 bool need_poll; 244 245 struct mutex st_mutex; /* Protects state */ 246 unsigned int state_hw_mask; 247 unsigned int state_soft_mask; 248 unsigned int state; 249 struct delayed_work poll; 250 struct delayed_work timeout; 251 struct mutex sm_mutex; /* Protects state machine */ 252 unsigned char sm_mod_state; 253 unsigned char sm_mod_tries_init; 254 unsigned char sm_mod_tries; 255 unsigned char sm_dev_state; 256 unsigned short sm_state; 257 unsigned char sm_fault_retries; 258 unsigned char sm_phy_retries; 259 260 struct sfp_eeprom_id id; 261 unsigned int module_power_mW; 262 unsigned int module_t_start_up; 263 unsigned int module_t_wait; 264 265 bool have_a2; 266 bool tx_fault_ignore; 267 268 const struct sfp_quirk *quirk; 269 270 #if IS_ENABLED(CONFIG_HWMON) 271 struct sfp_diag diag; 272 struct delayed_work hwmon_probe; 273 unsigned int hwmon_tries; 274 struct device *hwmon_dev; 275 char *hwmon_name; 276 #endif 277 278 #if IS_ENABLED(CONFIG_DEBUG_FS) 279 struct dentry *debugfs_dir; 280 #endif 281 }; 282 283 static bool sff_module_supported(const struct sfp_eeprom_id *id) 284 { 285 return id->base.phys_id == SFF8024_ID_SFF_8472 && 286 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 287 } 288 289 static const struct sff_data sff_data = { 290 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 291 .module_supported = sff_module_supported, 292 }; 293 294 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 295 { 296 if (id->base.phys_id == SFF8024_ID_SFP && 297 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 298 return true; 299 300 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 301 * phys id SFF instead of SFP. Therefore mark this module explicitly 302 * as supported based on vendor name and pn match. 303 */ 304 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 305 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 306 !memcmp(id->base.vendor_name, "UBNT ", 16) && 307 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 308 return true; 309 310 return false; 311 } 312 313 static const struct sff_data sfp_data = { 314 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 315 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 316 .module_supported = sfp_module_supported, 317 }; 318 319 static const struct of_device_id sfp_of_match[] = { 320 { .compatible = "sff,sff", .data = &sff_data, }, 321 { .compatible = "sff,sfp", .data = &sfp_data, }, 322 { }, 323 }; 324 MODULE_DEVICE_TABLE(of, sfp_of_match); 325 326 static void sfp_fixup_long_startup(struct sfp *sfp) 327 { 328 sfp->module_t_start_up = T_START_UP_BAD_GPON; 329 } 330 331 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 332 { 333 sfp->tx_fault_ignore = true; 334 } 335 336 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 337 { 338 /* Ignore the TX_FAULT and LOS signals on this module. 339 * these are possibly used for other purposes on this 340 * module, e.g. a serial port. 341 */ 342 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 343 } 344 345 static void sfp_fixup_rollball(struct sfp *sfp) 346 { 347 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 348 sfp->module_t_wait = T_WAIT_ROLLBALL; 349 } 350 351 static void sfp_fixup_rollball_cc(struct sfp *sfp) 352 { 353 sfp_fixup_rollball(sfp); 354 355 /* Some RollBall SFPs may have wrong (zero) extended compliance code 356 * burned in EEPROM. For PHY probing we need the correct one. 357 */ 358 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 359 } 360 361 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 362 unsigned long *modes, 363 unsigned long *interfaces) 364 { 365 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 366 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 367 } 368 369 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 370 unsigned long *modes, 371 unsigned long *interfaces) 372 { 373 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 374 } 375 376 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 377 unsigned long *modes, 378 unsigned long *interfaces) 379 { 380 /* Copper 2.5G SFP */ 381 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 382 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 383 sfp_quirk_disable_autoneg(id, modes, interfaces); 384 } 385 386 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 387 unsigned long *modes, 388 unsigned long *interfaces) 389 { 390 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 391 * types including 10G Ethernet which is not truth. So clear all claimed 392 * modes and set only one mode which module supports: 1000baseX_Full. 393 */ 394 linkmode_zero(modes); 395 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 396 } 397 398 #define SFP_QUIRK(_v, _p, _m, _f) \ 399 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 400 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 401 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 402 403 static const struct sfp_quirk sfp_quirks[] = { 404 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 405 // report 2500MBd NRZ in their EEPROM 406 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 407 408 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 409 // NRZ in their EEPROM 410 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 411 sfp_fixup_long_startup), 412 413 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 414 415 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 416 // 2600MBd in their EERPOM 417 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 418 419 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 420 // their EEPROM 421 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 422 sfp_fixup_ignore_tx_fault), 423 424 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 425 // 2500MBd NRZ in their EEPROM 426 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 427 428 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 429 430 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 431 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 432 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 433 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 434 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 435 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 436 }; 437 438 static size_t sfp_strlen(const char *str, size_t maxlen) 439 { 440 size_t size, i; 441 442 /* Trailing characters should be filled with space chars, but 443 * some manufacturers can't read SFF-8472 and use NUL. 444 */ 445 for (i = 0, size = 0; i < maxlen; i++) 446 if (str[i] != ' ' && str[i] != '\0') 447 size = i + 1; 448 449 return size; 450 } 451 452 static bool sfp_match(const char *qs, const char *str, size_t len) 453 { 454 if (!qs) 455 return true; 456 if (strlen(qs) != len) 457 return false; 458 return !strncmp(qs, str, len); 459 } 460 461 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 462 { 463 const struct sfp_quirk *q; 464 unsigned int i; 465 size_t vs, ps; 466 467 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 468 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 469 470 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 471 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 472 sfp_match(q->part, id->base.vendor_pn, ps)) 473 return q; 474 475 return NULL; 476 } 477 478 static unsigned long poll_jiffies; 479 480 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 481 { 482 unsigned int i, state, v; 483 484 for (i = state = 0; i < GPIO_MAX; i++) { 485 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 486 continue; 487 488 v = gpiod_get_value_cansleep(sfp->gpio[i]); 489 if (v) 490 state |= BIT(i); 491 } 492 493 return state; 494 } 495 496 static unsigned int sff_gpio_get_state(struct sfp *sfp) 497 { 498 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 499 } 500 501 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 502 { 503 if (state & SFP_F_PRESENT) { 504 /* If the module is present, drive the signals */ 505 if (sfp->gpio[GPIO_TX_DISABLE]) 506 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 507 state & SFP_F_TX_DISABLE); 508 if (state & SFP_F_RATE_SELECT) 509 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 510 state & SFP_F_RATE_SELECT); 511 } else { 512 /* Otherwise, let them float to the pull-ups */ 513 if (sfp->gpio[GPIO_TX_DISABLE]) 514 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 515 if (state & SFP_F_RATE_SELECT) 516 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 517 } 518 } 519 520 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 521 size_t len) 522 { 523 struct i2c_msg msgs[2]; 524 u8 bus_addr = a2 ? 0x51 : 0x50; 525 size_t block_size = sfp->i2c_block_size; 526 size_t this_len; 527 int ret; 528 529 msgs[0].addr = bus_addr; 530 msgs[0].flags = 0; 531 msgs[0].len = 1; 532 msgs[0].buf = &dev_addr; 533 msgs[1].addr = bus_addr; 534 msgs[1].flags = I2C_M_RD; 535 msgs[1].len = len; 536 msgs[1].buf = buf; 537 538 while (len) { 539 this_len = len; 540 if (this_len > block_size) 541 this_len = block_size; 542 543 msgs[1].len = this_len; 544 545 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 546 if (ret < 0) 547 return ret; 548 549 if (ret != ARRAY_SIZE(msgs)) 550 break; 551 552 msgs[1].buf += this_len; 553 dev_addr += this_len; 554 len -= this_len; 555 } 556 557 return msgs[1].buf - (u8 *)buf; 558 } 559 560 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 561 size_t len) 562 { 563 struct i2c_msg msgs[1]; 564 u8 bus_addr = a2 ? 0x51 : 0x50; 565 int ret; 566 567 msgs[0].addr = bus_addr; 568 msgs[0].flags = 0; 569 msgs[0].len = 1 + len; 570 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 571 if (!msgs[0].buf) 572 return -ENOMEM; 573 574 msgs[0].buf[0] = dev_addr; 575 memcpy(&msgs[0].buf[1], buf, len); 576 577 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 578 579 kfree(msgs[0].buf); 580 581 if (ret < 0) 582 return ret; 583 584 return ret == ARRAY_SIZE(msgs) ? len : 0; 585 } 586 587 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 588 { 589 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 590 return -EINVAL; 591 592 sfp->i2c = i2c; 593 sfp->read = sfp_i2c_read; 594 sfp->write = sfp_i2c_write; 595 596 return 0; 597 } 598 599 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 600 { 601 struct mii_bus *i2c_mii; 602 int ret; 603 604 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 605 if (IS_ERR(i2c_mii)) 606 return PTR_ERR(i2c_mii); 607 608 i2c_mii->name = "SFP I2C Bus"; 609 i2c_mii->phy_mask = ~0; 610 611 ret = mdiobus_register(i2c_mii); 612 if (ret < 0) { 613 mdiobus_free(i2c_mii); 614 return ret; 615 } 616 617 sfp->i2c_mii = i2c_mii; 618 619 return 0; 620 } 621 622 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 623 { 624 mdiobus_unregister(sfp->i2c_mii); 625 sfp->i2c_mii = NULL; 626 } 627 628 /* Interface */ 629 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 630 { 631 return sfp->read(sfp, a2, addr, buf, len); 632 } 633 634 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 635 { 636 return sfp->write(sfp, a2, addr, buf, len); 637 } 638 639 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 640 { 641 int ret; 642 u8 old, v; 643 644 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 645 if (ret != sizeof(old)) 646 return ret; 647 648 v = (old & ~mask) | (val & mask); 649 if (v == old) 650 return sizeof(v); 651 652 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 653 } 654 655 static unsigned int sfp_soft_get_state(struct sfp *sfp) 656 { 657 unsigned int state = 0; 658 u8 status; 659 int ret; 660 661 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 662 if (ret == sizeof(status)) { 663 if (status & SFP_STATUS_RX_LOS) 664 state |= SFP_F_LOS; 665 if (status & SFP_STATUS_TX_FAULT) 666 state |= SFP_F_TX_FAULT; 667 } else { 668 dev_err_ratelimited(sfp->dev, 669 "failed to read SFP soft status: %pe\n", 670 ERR_PTR(ret)); 671 /* Preserve the current state */ 672 state = sfp->state; 673 } 674 675 return state & sfp->state_soft_mask; 676 } 677 678 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 679 { 680 u8 mask = SFP_STATUS_TX_DISABLE_FORCE; 681 u8 val = 0; 682 683 if (state & SFP_F_TX_DISABLE) 684 val |= SFP_STATUS_TX_DISABLE_FORCE; 685 686 687 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 688 } 689 690 static void sfp_soft_start_poll(struct sfp *sfp) 691 { 692 const struct sfp_eeprom_id *id = &sfp->id; 693 unsigned int mask = 0; 694 695 sfp->state_soft_mask = 0; 696 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 697 mask |= SFP_F_TX_DISABLE; 698 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 699 mask |= SFP_F_TX_FAULT; 700 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 701 mask |= SFP_F_LOS; 702 703 // Poll the soft state for hardware pins we want to ignore 704 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 705 706 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 707 !sfp->need_poll) 708 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 709 } 710 711 static void sfp_soft_stop_poll(struct sfp *sfp) 712 { 713 sfp->state_soft_mask = 0; 714 } 715 716 static unsigned int sfp_get_state(struct sfp *sfp) 717 { 718 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 719 unsigned int state; 720 721 state = sfp->get_state(sfp) & sfp->state_hw_mask; 722 if (state & SFP_F_PRESENT && soft) 723 state |= sfp_soft_get_state(sfp); 724 725 return state; 726 } 727 728 static void sfp_set_state(struct sfp *sfp, unsigned int state) 729 { 730 sfp->set_state(sfp, state); 731 732 if (state & SFP_F_PRESENT && 733 sfp->state_soft_mask & SFP_F_TX_DISABLE) 734 sfp_soft_set_state(sfp, state); 735 } 736 737 static unsigned int sfp_check(void *buf, size_t len) 738 { 739 u8 *p, check; 740 741 for (p = buf, check = 0; len; p++, len--) 742 check += *p; 743 744 return check; 745 } 746 747 /* hwmon */ 748 #if IS_ENABLED(CONFIG_HWMON) 749 static umode_t sfp_hwmon_is_visible(const void *data, 750 enum hwmon_sensor_types type, 751 u32 attr, int channel) 752 { 753 const struct sfp *sfp = data; 754 755 switch (type) { 756 case hwmon_temp: 757 switch (attr) { 758 case hwmon_temp_min_alarm: 759 case hwmon_temp_max_alarm: 760 case hwmon_temp_lcrit_alarm: 761 case hwmon_temp_crit_alarm: 762 case hwmon_temp_min: 763 case hwmon_temp_max: 764 case hwmon_temp_lcrit: 765 case hwmon_temp_crit: 766 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 767 return 0; 768 fallthrough; 769 case hwmon_temp_input: 770 case hwmon_temp_label: 771 return 0444; 772 default: 773 return 0; 774 } 775 case hwmon_in: 776 switch (attr) { 777 case hwmon_in_min_alarm: 778 case hwmon_in_max_alarm: 779 case hwmon_in_lcrit_alarm: 780 case hwmon_in_crit_alarm: 781 case hwmon_in_min: 782 case hwmon_in_max: 783 case hwmon_in_lcrit: 784 case hwmon_in_crit: 785 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 786 return 0; 787 fallthrough; 788 case hwmon_in_input: 789 case hwmon_in_label: 790 return 0444; 791 default: 792 return 0; 793 } 794 case hwmon_curr: 795 switch (attr) { 796 case hwmon_curr_min_alarm: 797 case hwmon_curr_max_alarm: 798 case hwmon_curr_lcrit_alarm: 799 case hwmon_curr_crit_alarm: 800 case hwmon_curr_min: 801 case hwmon_curr_max: 802 case hwmon_curr_lcrit: 803 case hwmon_curr_crit: 804 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 805 return 0; 806 fallthrough; 807 case hwmon_curr_input: 808 case hwmon_curr_label: 809 return 0444; 810 default: 811 return 0; 812 } 813 case hwmon_power: 814 /* External calibration of receive power requires 815 * floating point arithmetic. Doing that in the kernel 816 * is not easy, so just skip it. If the module does 817 * not require external calibration, we can however 818 * show receiver power, since FP is then not needed. 819 */ 820 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 821 channel == 1) 822 return 0; 823 switch (attr) { 824 case hwmon_power_min_alarm: 825 case hwmon_power_max_alarm: 826 case hwmon_power_lcrit_alarm: 827 case hwmon_power_crit_alarm: 828 case hwmon_power_min: 829 case hwmon_power_max: 830 case hwmon_power_lcrit: 831 case hwmon_power_crit: 832 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 833 return 0; 834 fallthrough; 835 case hwmon_power_input: 836 case hwmon_power_label: 837 return 0444; 838 default: 839 return 0; 840 } 841 default: 842 return 0; 843 } 844 } 845 846 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 847 { 848 __be16 val; 849 int err; 850 851 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 852 if (err < 0) 853 return err; 854 855 *value = be16_to_cpu(val); 856 857 return 0; 858 } 859 860 static void sfp_hwmon_to_rx_power(long *value) 861 { 862 *value = DIV_ROUND_CLOSEST(*value, 10); 863 } 864 865 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 866 long *value) 867 { 868 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 869 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 870 } 871 872 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 873 { 874 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 875 be16_to_cpu(sfp->diag.cal_t_offset), value); 876 877 if (*value >= 0x8000) 878 *value -= 0x10000; 879 880 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 881 } 882 883 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 884 { 885 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 886 be16_to_cpu(sfp->diag.cal_v_offset), value); 887 888 *value = DIV_ROUND_CLOSEST(*value, 10); 889 } 890 891 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 892 { 893 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 894 be16_to_cpu(sfp->diag.cal_txi_offset), value); 895 896 *value = DIV_ROUND_CLOSEST(*value, 500); 897 } 898 899 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 900 { 901 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 902 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 903 904 *value = DIV_ROUND_CLOSEST(*value, 10); 905 } 906 907 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 908 { 909 int err; 910 911 err = sfp_hwmon_read_sensor(sfp, reg, value); 912 if (err < 0) 913 return err; 914 915 sfp_hwmon_calibrate_temp(sfp, value); 916 917 return 0; 918 } 919 920 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 921 { 922 int err; 923 924 err = sfp_hwmon_read_sensor(sfp, reg, value); 925 if (err < 0) 926 return err; 927 928 sfp_hwmon_calibrate_vcc(sfp, value); 929 930 return 0; 931 } 932 933 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 934 { 935 int err; 936 937 err = sfp_hwmon_read_sensor(sfp, reg, value); 938 if (err < 0) 939 return err; 940 941 sfp_hwmon_calibrate_bias(sfp, value); 942 943 return 0; 944 } 945 946 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 947 { 948 int err; 949 950 err = sfp_hwmon_read_sensor(sfp, reg, value); 951 if (err < 0) 952 return err; 953 954 sfp_hwmon_calibrate_tx_power(sfp, value); 955 956 return 0; 957 } 958 959 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 960 { 961 int err; 962 963 err = sfp_hwmon_read_sensor(sfp, reg, value); 964 if (err < 0) 965 return err; 966 967 sfp_hwmon_to_rx_power(value); 968 969 return 0; 970 } 971 972 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 973 { 974 u8 status; 975 int err; 976 977 switch (attr) { 978 case hwmon_temp_input: 979 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 980 981 case hwmon_temp_lcrit: 982 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 983 sfp_hwmon_calibrate_temp(sfp, value); 984 return 0; 985 986 case hwmon_temp_min: 987 *value = be16_to_cpu(sfp->diag.temp_low_warn); 988 sfp_hwmon_calibrate_temp(sfp, value); 989 return 0; 990 case hwmon_temp_max: 991 *value = be16_to_cpu(sfp->diag.temp_high_warn); 992 sfp_hwmon_calibrate_temp(sfp, value); 993 return 0; 994 995 case hwmon_temp_crit: 996 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 997 sfp_hwmon_calibrate_temp(sfp, value); 998 return 0; 999 1000 case hwmon_temp_lcrit_alarm: 1001 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1002 if (err < 0) 1003 return err; 1004 1005 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1006 return 0; 1007 1008 case hwmon_temp_min_alarm: 1009 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1010 if (err < 0) 1011 return err; 1012 1013 *value = !!(status & SFP_WARN0_TEMP_LOW); 1014 return 0; 1015 1016 case hwmon_temp_max_alarm: 1017 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1018 if (err < 0) 1019 return err; 1020 1021 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1022 return 0; 1023 1024 case hwmon_temp_crit_alarm: 1025 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1026 if (err < 0) 1027 return err; 1028 1029 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1030 return 0; 1031 default: 1032 return -EOPNOTSUPP; 1033 } 1034 1035 return -EOPNOTSUPP; 1036 } 1037 1038 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1039 { 1040 u8 status; 1041 int err; 1042 1043 switch (attr) { 1044 case hwmon_in_input: 1045 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1046 1047 case hwmon_in_lcrit: 1048 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1049 sfp_hwmon_calibrate_vcc(sfp, value); 1050 return 0; 1051 1052 case hwmon_in_min: 1053 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1054 sfp_hwmon_calibrate_vcc(sfp, value); 1055 return 0; 1056 1057 case hwmon_in_max: 1058 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1059 sfp_hwmon_calibrate_vcc(sfp, value); 1060 return 0; 1061 1062 case hwmon_in_crit: 1063 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1064 sfp_hwmon_calibrate_vcc(sfp, value); 1065 return 0; 1066 1067 case hwmon_in_lcrit_alarm: 1068 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1069 if (err < 0) 1070 return err; 1071 1072 *value = !!(status & SFP_ALARM0_VCC_LOW); 1073 return 0; 1074 1075 case hwmon_in_min_alarm: 1076 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1077 if (err < 0) 1078 return err; 1079 1080 *value = !!(status & SFP_WARN0_VCC_LOW); 1081 return 0; 1082 1083 case hwmon_in_max_alarm: 1084 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1085 if (err < 0) 1086 return err; 1087 1088 *value = !!(status & SFP_WARN0_VCC_HIGH); 1089 return 0; 1090 1091 case hwmon_in_crit_alarm: 1092 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1093 if (err < 0) 1094 return err; 1095 1096 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1097 return 0; 1098 default: 1099 return -EOPNOTSUPP; 1100 } 1101 1102 return -EOPNOTSUPP; 1103 } 1104 1105 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1106 { 1107 u8 status; 1108 int err; 1109 1110 switch (attr) { 1111 case hwmon_curr_input: 1112 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1113 1114 case hwmon_curr_lcrit: 1115 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1116 sfp_hwmon_calibrate_bias(sfp, value); 1117 return 0; 1118 1119 case hwmon_curr_min: 1120 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1121 sfp_hwmon_calibrate_bias(sfp, value); 1122 return 0; 1123 1124 case hwmon_curr_max: 1125 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1126 sfp_hwmon_calibrate_bias(sfp, value); 1127 return 0; 1128 1129 case hwmon_curr_crit: 1130 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1131 sfp_hwmon_calibrate_bias(sfp, value); 1132 return 0; 1133 1134 case hwmon_curr_lcrit_alarm: 1135 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1136 if (err < 0) 1137 return err; 1138 1139 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1140 return 0; 1141 1142 case hwmon_curr_min_alarm: 1143 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1144 if (err < 0) 1145 return err; 1146 1147 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1148 return 0; 1149 1150 case hwmon_curr_max_alarm: 1151 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1152 if (err < 0) 1153 return err; 1154 1155 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1156 return 0; 1157 1158 case hwmon_curr_crit_alarm: 1159 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1160 if (err < 0) 1161 return err; 1162 1163 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1164 return 0; 1165 default: 1166 return -EOPNOTSUPP; 1167 } 1168 1169 return -EOPNOTSUPP; 1170 } 1171 1172 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1173 { 1174 u8 status; 1175 int err; 1176 1177 switch (attr) { 1178 case hwmon_power_input: 1179 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1180 1181 case hwmon_power_lcrit: 1182 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1183 sfp_hwmon_calibrate_tx_power(sfp, value); 1184 return 0; 1185 1186 case hwmon_power_min: 1187 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1188 sfp_hwmon_calibrate_tx_power(sfp, value); 1189 return 0; 1190 1191 case hwmon_power_max: 1192 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1193 sfp_hwmon_calibrate_tx_power(sfp, value); 1194 return 0; 1195 1196 case hwmon_power_crit: 1197 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1198 sfp_hwmon_calibrate_tx_power(sfp, value); 1199 return 0; 1200 1201 case hwmon_power_lcrit_alarm: 1202 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1203 if (err < 0) 1204 return err; 1205 1206 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1207 return 0; 1208 1209 case hwmon_power_min_alarm: 1210 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1211 if (err < 0) 1212 return err; 1213 1214 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1215 return 0; 1216 1217 case hwmon_power_max_alarm: 1218 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1219 if (err < 0) 1220 return err; 1221 1222 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1223 return 0; 1224 1225 case hwmon_power_crit_alarm: 1226 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1227 if (err < 0) 1228 return err; 1229 1230 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1231 return 0; 1232 default: 1233 return -EOPNOTSUPP; 1234 } 1235 1236 return -EOPNOTSUPP; 1237 } 1238 1239 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1240 { 1241 u8 status; 1242 int err; 1243 1244 switch (attr) { 1245 case hwmon_power_input: 1246 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1247 1248 case hwmon_power_lcrit: 1249 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1250 sfp_hwmon_to_rx_power(value); 1251 return 0; 1252 1253 case hwmon_power_min: 1254 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1255 sfp_hwmon_to_rx_power(value); 1256 return 0; 1257 1258 case hwmon_power_max: 1259 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1260 sfp_hwmon_to_rx_power(value); 1261 return 0; 1262 1263 case hwmon_power_crit: 1264 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1265 sfp_hwmon_to_rx_power(value); 1266 return 0; 1267 1268 case hwmon_power_lcrit_alarm: 1269 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1270 if (err < 0) 1271 return err; 1272 1273 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1274 return 0; 1275 1276 case hwmon_power_min_alarm: 1277 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1278 if (err < 0) 1279 return err; 1280 1281 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1282 return 0; 1283 1284 case hwmon_power_max_alarm: 1285 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1286 if (err < 0) 1287 return err; 1288 1289 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1290 return 0; 1291 1292 case hwmon_power_crit_alarm: 1293 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1294 if (err < 0) 1295 return err; 1296 1297 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1298 return 0; 1299 default: 1300 return -EOPNOTSUPP; 1301 } 1302 1303 return -EOPNOTSUPP; 1304 } 1305 1306 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1307 u32 attr, int channel, long *value) 1308 { 1309 struct sfp *sfp = dev_get_drvdata(dev); 1310 1311 switch (type) { 1312 case hwmon_temp: 1313 return sfp_hwmon_temp(sfp, attr, value); 1314 case hwmon_in: 1315 return sfp_hwmon_vcc(sfp, attr, value); 1316 case hwmon_curr: 1317 return sfp_hwmon_bias(sfp, attr, value); 1318 case hwmon_power: 1319 switch (channel) { 1320 case 0: 1321 return sfp_hwmon_tx_power(sfp, attr, value); 1322 case 1: 1323 return sfp_hwmon_rx_power(sfp, attr, value); 1324 default: 1325 return -EOPNOTSUPP; 1326 } 1327 default: 1328 return -EOPNOTSUPP; 1329 } 1330 } 1331 1332 static const char *const sfp_hwmon_power_labels[] = { 1333 "TX_power", 1334 "RX_power", 1335 }; 1336 1337 static int sfp_hwmon_read_string(struct device *dev, 1338 enum hwmon_sensor_types type, 1339 u32 attr, int channel, const char **str) 1340 { 1341 switch (type) { 1342 case hwmon_curr: 1343 switch (attr) { 1344 case hwmon_curr_label: 1345 *str = "bias"; 1346 return 0; 1347 default: 1348 return -EOPNOTSUPP; 1349 } 1350 break; 1351 case hwmon_temp: 1352 switch (attr) { 1353 case hwmon_temp_label: 1354 *str = "temperature"; 1355 return 0; 1356 default: 1357 return -EOPNOTSUPP; 1358 } 1359 break; 1360 case hwmon_in: 1361 switch (attr) { 1362 case hwmon_in_label: 1363 *str = "VCC"; 1364 return 0; 1365 default: 1366 return -EOPNOTSUPP; 1367 } 1368 break; 1369 case hwmon_power: 1370 switch (attr) { 1371 case hwmon_power_label: 1372 *str = sfp_hwmon_power_labels[channel]; 1373 return 0; 1374 default: 1375 return -EOPNOTSUPP; 1376 } 1377 break; 1378 default: 1379 return -EOPNOTSUPP; 1380 } 1381 1382 return -EOPNOTSUPP; 1383 } 1384 1385 static const struct hwmon_ops sfp_hwmon_ops = { 1386 .is_visible = sfp_hwmon_is_visible, 1387 .read = sfp_hwmon_read, 1388 .read_string = sfp_hwmon_read_string, 1389 }; 1390 1391 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1392 HWMON_CHANNEL_INFO(chip, 1393 HWMON_C_REGISTER_TZ), 1394 HWMON_CHANNEL_INFO(in, 1395 HWMON_I_INPUT | 1396 HWMON_I_MAX | HWMON_I_MIN | 1397 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1398 HWMON_I_CRIT | HWMON_I_LCRIT | 1399 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1400 HWMON_I_LABEL), 1401 HWMON_CHANNEL_INFO(temp, 1402 HWMON_T_INPUT | 1403 HWMON_T_MAX | HWMON_T_MIN | 1404 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1405 HWMON_T_CRIT | HWMON_T_LCRIT | 1406 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1407 HWMON_T_LABEL), 1408 HWMON_CHANNEL_INFO(curr, 1409 HWMON_C_INPUT | 1410 HWMON_C_MAX | HWMON_C_MIN | 1411 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1412 HWMON_C_CRIT | HWMON_C_LCRIT | 1413 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1414 HWMON_C_LABEL), 1415 HWMON_CHANNEL_INFO(power, 1416 /* Transmit power */ 1417 HWMON_P_INPUT | 1418 HWMON_P_MAX | HWMON_P_MIN | 1419 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1420 HWMON_P_CRIT | HWMON_P_LCRIT | 1421 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1422 HWMON_P_LABEL, 1423 /* Receive power */ 1424 HWMON_P_INPUT | 1425 HWMON_P_MAX | HWMON_P_MIN | 1426 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1427 HWMON_P_CRIT | HWMON_P_LCRIT | 1428 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1429 HWMON_P_LABEL), 1430 NULL, 1431 }; 1432 1433 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1434 .ops = &sfp_hwmon_ops, 1435 .info = sfp_hwmon_info, 1436 }; 1437 1438 static void sfp_hwmon_probe(struct work_struct *work) 1439 { 1440 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1441 int err; 1442 1443 /* hwmon interface needs to access 16bit registers in atomic way to 1444 * guarantee coherency of the diagnostic monitoring data. If it is not 1445 * possible to guarantee coherency because EEPROM is broken in such way 1446 * that does not support atomic 16bit read operation then we have to 1447 * skip registration of hwmon device. 1448 */ 1449 if (sfp->i2c_block_size < 2) { 1450 dev_info(sfp->dev, 1451 "skipping hwmon device registration due to broken EEPROM\n"); 1452 dev_info(sfp->dev, 1453 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1454 return; 1455 } 1456 1457 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1458 if (err < 0) { 1459 if (sfp->hwmon_tries--) { 1460 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1461 T_PROBE_RETRY_SLOW); 1462 } else { 1463 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1464 ERR_PTR(err)); 1465 } 1466 return; 1467 } 1468 1469 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1470 if (IS_ERR(sfp->hwmon_name)) { 1471 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1472 return; 1473 } 1474 1475 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1476 sfp->hwmon_name, sfp, 1477 &sfp_hwmon_chip_info, 1478 NULL); 1479 if (IS_ERR(sfp->hwmon_dev)) 1480 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1481 PTR_ERR(sfp->hwmon_dev)); 1482 } 1483 1484 static int sfp_hwmon_insert(struct sfp *sfp) 1485 { 1486 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1487 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1488 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1489 } 1490 1491 return 0; 1492 } 1493 1494 static void sfp_hwmon_remove(struct sfp *sfp) 1495 { 1496 cancel_delayed_work_sync(&sfp->hwmon_probe); 1497 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1498 hwmon_device_unregister(sfp->hwmon_dev); 1499 sfp->hwmon_dev = NULL; 1500 kfree(sfp->hwmon_name); 1501 } 1502 } 1503 1504 static int sfp_hwmon_init(struct sfp *sfp) 1505 { 1506 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1507 1508 return 0; 1509 } 1510 1511 static void sfp_hwmon_exit(struct sfp *sfp) 1512 { 1513 cancel_delayed_work_sync(&sfp->hwmon_probe); 1514 } 1515 #else 1516 static int sfp_hwmon_insert(struct sfp *sfp) 1517 { 1518 return 0; 1519 } 1520 1521 static void sfp_hwmon_remove(struct sfp *sfp) 1522 { 1523 } 1524 1525 static int sfp_hwmon_init(struct sfp *sfp) 1526 { 1527 return 0; 1528 } 1529 1530 static void sfp_hwmon_exit(struct sfp *sfp) 1531 { 1532 } 1533 #endif 1534 1535 /* Helpers */ 1536 static void sfp_module_tx_disable(struct sfp *sfp) 1537 { 1538 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1539 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1540 sfp->state |= SFP_F_TX_DISABLE; 1541 sfp_set_state(sfp, sfp->state); 1542 } 1543 1544 static void sfp_module_tx_enable(struct sfp *sfp) 1545 { 1546 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1547 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1548 sfp->state &= ~SFP_F_TX_DISABLE; 1549 sfp_set_state(sfp, sfp->state); 1550 } 1551 1552 #if IS_ENABLED(CONFIG_DEBUG_FS) 1553 static int sfp_debug_state_show(struct seq_file *s, void *data) 1554 { 1555 struct sfp *sfp = s->private; 1556 1557 seq_printf(s, "Module state: %s\n", 1558 mod_state_to_str(sfp->sm_mod_state)); 1559 seq_printf(s, "Module probe attempts: %d %d\n", 1560 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1561 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1562 seq_printf(s, "Device state: %s\n", 1563 dev_state_to_str(sfp->sm_dev_state)); 1564 seq_printf(s, "Main state: %s\n", 1565 sm_state_to_str(sfp->sm_state)); 1566 seq_printf(s, "Fault recovery remaining retries: %d\n", 1567 sfp->sm_fault_retries); 1568 seq_printf(s, "PHY probe remaining retries: %d\n", 1569 sfp->sm_phy_retries); 1570 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1571 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1572 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1573 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1574 return 0; 1575 } 1576 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1577 1578 static void sfp_debugfs_init(struct sfp *sfp) 1579 { 1580 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1581 1582 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1583 &sfp_debug_state_fops); 1584 } 1585 1586 static void sfp_debugfs_exit(struct sfp *sfp) 1587 { 1588 debugfs_remove_recursive(sfp->debugfs_dir); 1589 } 1590 #else 1591 static void sfp_debugfs_init(struct sfp *sfp) 1592 { 1593 } 1594 1595 static void sfp_debugfs_exit(struct sfp *sfp) 1596 { 1597 } 1598 #endif 1599 1600 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1601 { 1602 unsigned int state = sfp->state; 1603 1604 if (state & SFP_F_TX_DISABLE) 1605 return; 1606 1607 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1608 1609 udelay(T_RESET_US); 1610 1611 sfp_set_state(sfp, state); 1612 } 1613 1614 /* SFP state machine */ 1615 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1616 { 1617 if (timeout) 1618 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1619 timeout); 1620 else 1621 cancel_delayed_work(&sfp->timeout); 1622 } 1623 1624 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1625 unsigned int timeout) 1626 { 1627 sfp->sm_state = state; 1628 sfp_sm_set_timer(sfp, timeout); 1629 } 1630 1631 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1632 unsigned int timeout) 1633 { 1634 sfp->sm_mod_state = state; 1635 sfp_sm_set_timer(sfp, timeout); 1636 } 1637 1638 static void sfp_sm_phy_detach(struct sfp *sfp) 1639 { 1640 sfp_remove_phy(sfp->sfp_bus); 1641 phy_device_remove(sfp->mod_phy); 1642 phy_device_free(sfp->mod_phy); 1643 sfp->mod_phy = NULL; 1644 } 1645 1646 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1647 { 1648 struct phy_device *phy; 1649 int err; 1650 1651 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1652 if (phy == ERR_PTR(-ENODEV)) 1653 return PTR_ERR(phy); 1654 if (IS_ERR(phy)) { 1655 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1656 return PTR_ERR(phy); 1657 } 1658 1659 err = phy_device_register(phy); 1660 if (err) { 1661 phy_device_free(phy); 1662 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1663 ERR_PTR(err)); 1664 return err; 1665 } 1666 1667 err = sfp_add_phy(sfp->sfp_bus, phy); 1668 if (err) { 1669 phy_device_remove(phy); 1670 phy_device_free(phy); 1671 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1672 return err; 1673 } 1674 1675 sfp->mod_phy = phy; 1676 1677 return 0; 1678 } 1679 1680 static void sfp_sm_link_up(struct sfp *sfp) 1681 { 1682 sfp_link_up(sfp->sfp_bus); 1683 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1684 } 1685 1686 static void sfp_sm_link_down(struct sfp *sfp) 1687 { 1688 sfp_link_down(sfp->sfp_bus); 1689 } 1690 1691 static void sfp_sm_link_check_los(struct sfp *sfp) 1692 { 1693 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1694 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1695 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1696 bool los = false; 1697 1698 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1699 * are set, we assume that no LOS signal is available. If both are 1700 * set, we assume LOS is not implemented (and is meaningless.) 1701 */ 1702 if (los_options == los_inverted) 1703 los = !(sfp->state & SFP_F_LOS); 1704 else if (los_options == los_normal) 1705 los = !!(sfp->state & SFP_F_LOS); 1706 1707 if (los) 1708 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1709 else 1710 sfp_sm_link_up(sfp); 1711 } 1712 1713 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1714 { 1715 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1716 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1717 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1718 1719 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1720 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1721 } 1722 1723 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1724 { 1725 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1726 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1727 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1728 1729 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1730 (los_options == los_normal && event == SFP_E_LOS_LOW); 1731 } 1732 1733 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1734 { 1735 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1736 dev_err(sfp->dev, 1737 "module persistently indicates fault, disabling\n"); 1738 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1739 } else { 1740 if (warn) 1741 dev_err(sfp->dev, "module transmit fault indicated\n"); 1742 1743 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1744 } 1745 } 1746 1747 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1748 { 1749 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1750 return sfp_i2c_mdiobus_create(sfp); 1751 1752 return 0; 1753 } 1754 1755 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1756 * normally sits at I2C bus address 0x56, and may either be a clause 22 1757 * or clause 45 PHY. 1758 * 1759 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1760 * negotiation enabled, but some may be in 1000base-X - which is for the 1761 * PHY driver to determine. 1762 * 1763 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1764 * mode according to the negotiated line speed. 1765 */ 1766 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1767 { 1768 int err = 0; 1769 1770 switch (sfp->mdio_protocol) { 1771 case MDIO_I2C_NONE: 1772 break; 1773 1774 case MDIO_I2C_MARVELL_C22: 1775 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1776 break; 1777 1778 case MDIO_I2C_C45: 1779 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1780 break; 1781 1782 case MDIO_I2C_ROLLBALL: 1783 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1784 break; 1785 } 1786 1787 return err; 1788 } 1789 1790 static int sfp_module_parse_power(struct sfp *sfp) 1791 { 1792 u32 power_mW = 1000; 1793 bool supports_a2; 1794 1795 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1796 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1797 power_mW = 1500; 1798 /* Added in Rev 11.9, but there is no compliance code for this */ 1799 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1800 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1801 power_mW = 2000; 1802 1803 /* Power level 1 modules (max. 1W) are always supported. */ 1804 if (power_mW <= 1000) { 1805 sfp->module_power_mW = power_mW; 1806 return 0; 1807 } 1808 1809 supports_a2 = sfp->id.ext.sff8472_compliance != 1810 SFP_SFF8472_COMPLIANCE_NONE || 1811 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1812 1813 if (power_mW > sfp->max_power_mW) { 1814 /* Module power specification exceeds the allowed maximum. */ 1815 if (!supports_a2) { 1816 /* The module appears not to implement bus address 1817 * 0xa2, so assume that the module powers up in the 1818 * indicated mode. 1819 */ 1820 dev_err(sfp->dev, 1821 "Host does not support %u.%uW modules\n", 1822 power_mW / 1000, (power_mW / 100) % 10); 1823 return -EINVAL; 1824 } else { 1825 dev_warn(sfp->dev, 1826 "Host does not support %u.%uW modules, module left in power mode 1\n", 1827 power_mW / 1000, (power_mW / 100) % 10); 1828 return 0; 1829 } 1830 } 1831 1832 if (!supports_a2) { 1833 /* The module power level is below the host maximum and the 1834 * module appears not to implement bus address 0xa2, so assume 1835 * that the module powers up in the indicated mode. 1836 */ 1837 return 0; 1838 } 1839 1840 /* If the module requires a higher power mode, but also requires 1841 * an address change sequence, warn the user that the module may 1842 * not be functional. 1843 */ 1844 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1845 dev_warn(sfp->dev, 1846 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1847 power_mW / 1000, (power_mW / 100) % 10); 1848 return 0; 1849 } 1850 1851 sfp->module_power_mW = power_mW; 1852 1853 return 0; 1854 } 1855 1856 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1857 { 1858 int err; 1859 1860 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1861 SFP_EXT_STATUS_PWRLVL_SELECT, 1862 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1863 if (err != sizeof(u8)) { 1864 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1865 enable ? "en" : "dis", ERR_PTR(err)); 1866 return -EAGAIN; 1867 } 1868 1869 if (enable) 1870 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1871 sfp->module_power_mW / 1000, 1872 (sfp->module_power_mW / 100) % 10); 1873 1874 return 0; 1875 } 1876 1877 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1878 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1879 * not support multibyte reads from the EEPROM. Each multi-byte read 1880 * operation returns just one byte of EEPROM followed by zeros. There is 1881 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1882 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1883 * name and vendor id into EEPROM, so there is even no way to detect if 1884 * module is V-SOL V2801F. Therefore check for those zeros in the read 1885 * data and then based on check switch to reading EEPROM to one byte 1886 * at a time. 1887 */ 1888 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1889 { 1890 size_t i, block_size = sfp->i2c_block_size; 1891 1892 /* Already using byte IO */ 1893 if (block_size == 1) 1894 return false; 1895 1896 for (i = 1; i < len; i += block_size) { 1897 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1898 return false; 1899 } 1900 return true; 1901 } 1902 1903 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1904 { 1905 u8 check; 1906 int err; 1907 1908 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1909 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1910 id->base.connector != SFF8024_CONNECTOR_LC) { 1911 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1912 id->base.phys_id = SFF8024_ID_SFF_8472; 1913 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1914 id->base.connector = SFF8024_CONNECTOR_LC; 1915 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1916 if (err != 3) { 1917 dev_err(sfp->dev, 1918 "Failed to rewrite module EEPROM: %pe\n", 1919 ERR_PTR(err)); 1920 return err; 1921 } 1922 1923 /* Cotsworks modules have been found to require a delay between write operations. */ 1924 mdelay(50); 1925 1926 /* Update base structure checksum */ 1927 check = sfp_check(&id->base, sizeof(id->base) - 1); 1928 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1929 if (err != 1) { 1930 dev_err(sfp->dev, 1931 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1932 ERR_PTR(err)); 1933 return err; 1934 } 1935 } 1936 return 0; 1937 } 1938 1939 static int sfp_module_parse_sff8472(struct sfp *sfp) 1940 { 1941 /* If the module requires address swap mode, warn about it */ 1942 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1943 dev_warn(sfp->dev, 1944 "module address swap to access page 0xA2 is not supported.\n"); 1945 else 1946 sfp->have_a2 = true; 1947 1948 return 0; 1949 } 1950 1951 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1952 { 1953 /* SFP module inserted - read I2C data */ 1954 struct sfp_eeprom_id id; 1955 bool cotsworks_sfbg; 1956 bool cotsworks; 1957 u8 check; 1958 int ret; 1959 1960 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 1961 1962 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1963 if (ret < 0) { 1964 if (report) 1965 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1966 ERR_PTR(ret)); 1967 return -EAGAIN; 1968 } 1969 1970 if (ret != sizeof(id.base)) { 1971 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1972 return -EAGAIN; 1973 } 1974 1975 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1976 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1977 * that EEPROM supports atomic 16bit read operation for diagnostic 1978 * fields, so do not switch to one byte reading at a time unless it 1979 * is really required and we have no other option. 1980 */ 1981 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1982 dev_info(sfp->dev, 1983 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1984 dev_info(sfp->dev, 1985 "Switching to reading EEPROM to one byte at a time\n"); 1986 sfp->i2c_block_size = 1; 1987 1988 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1989 if (ret < 0) { 1990 if (report) 1991 dev_err(sfp->dev, 1992 "failed to read EEPROM: %pe\n", 1993 ERR_PTR(ret)); 1994 return -EAGAIN; 1995 } 1996 1997 if (ret != sizeof(id.base)) { 1998 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1999 ERR_PTR(ret)); 2000 return -EAGAIN; 2001 } 2002 } 2003 2004 /* Cotsworks do not seem to update the checksums when they 2005 * do the final programming with the final module part number, 2006 * serial number and date code. 2007 */ 2008 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2009 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2010 2011 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2012 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2013 * Cotsworks PN matches and bytes are not correct. 2014 */ 2015 if (cotsworks && cotsworks_sfbg) { 2016 ret = sfp_cotsworks_fixup_check(sfp, &id); 2017 if (ret < 0) 2018 return ret; 2019 } 2020 2021 /* Validate the checksum over the base structure */ 2022 check = sfp_check(&id.base, sizeof(id.base) - 1); 2023 if (check != id.base.cc_base) { 2024 if (cotsworks) { 2025 dev_warn(sfp->dev, 2026 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2027 check, id.base.cc_base); 2028 } else { 2029 dev_err(sfp->dev, 2030 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2031 check, id.base.cc_base); 2032 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2033 16, 1, &id, sizeof(id), true); 2034 return -EINVAL; 2035 } 2036 } 2037 2038 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2039 if (ret < 0) { 2040 if (report) 2041 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2042 ERR_PTR(ret)); 2043 return -EAGAIN; 2044 } 2045 2046 if (ret != sizeof(id.ext)) { 2047 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2048 return -EAGAIN; 2049 } 2050 2051 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2052 if (check != id.ext.cc_ext) { 2053 if (cotsworks) { 2054 dev_warn(sfp->dev, 2055 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2056 check, id.ext.cc_ext); 2057 } else { 2058 dev_err(sfp->dev, 2059 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2060 check, id.ext.cc_ext); 2061 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2062 16, 1, &id, sizeof(id), true); 2063 memset(&id.ext, 0, sizeof(id.ext)); 2064 } 2065 } 2066 2067 sfp->id = id; 2068 2069 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2070 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2071 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2072 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2073 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2074 (int)sizeof(id.ext.datecode), id.ext.datecode); 2075 2076 /* Check whether we support this module */ 2077 if (!sfp->type->module_supported(&id)) { 2078 dev_err(sfp->dev, 2079 "module is not supported - phys id 0x%02x 0x%02x\n", 2080 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2081 return -EINVAL; 2082 } 2083 2084 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2085 ret = sfp_module_parse_sff8472(sfp); 2086 if (ret < 0) 2087 return ret; 2088 } 2089 2090 /* Parse the module power requirement */ 2091 ret = sfp_module_parse_power(sfp); 2092 if (ret < 0) 2093 return ret; 2094 2095 /* Initialise state bits to use from hardware */ 2096 sfp->state_hw_mask = SFP_F_PRESENT; 2097 if (sfp->gpio[GPIO_TX_DISABLE]) 2098 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2099 if (sfp->gpio[GPIO_TX_FAULT]) 2100 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2101 if (sfp->gpio[GPIO_LOS]) 2102 sfp->state_hw_mask |= SFP_F_LOS; 2103 2104 sfp->module_t_start_up = T_START_UP; 2105 sfp->module_t_wait = T_WAIT; 2106 2107 sfp->tx_fault_ignore = false; 2108 2109 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2110 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2111 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2112 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2113 sfp->mdio_protocol = MDIO_I2C_C45; 2114 else if (sfp->id.base.e1000_base_t) 2115 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2116 else 2117 sfp->mdio_protocol = MDIO_I2C_NONE; 2118 2119 sfp->quirk = sfp_lookup_quirk(&id); 2120 if (sfp->quirk && sfp->quirk->fixup) 2121 sfp->quirk->fixup(sfp); 2122 2123 return 0; 2124 } 2125 2126 static void sfp_sm_mod_remove(struct sfp *sfp) 2127 { 2128 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2129 sfp_module_remove(sfp->sfp_bus); 2130 2131 sfp_hwmon_remove(sfp); 2132 2133 memset(&sfp->id, 0, sizeof(sfp->id)); 2134 sfp->module_power_mW = 0; 2135 sfp->have_a2 = false; 2136 2137 dev_info(sfp->dev, "module removed\n"); 2138 } 2139 2140 /* This state machine tracks the upstream's state */ 2141 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2142 { 2143 switch (sfp->sm_dev_state) { 2144 default: 2145 if (event == SFP_E_DEV_ATTACH) 2146 sfp->sm_dev_state = SFP_DEV_DOWN; 2147 break; 2148 2149 case SFP_DEV_DOWN: 2150 if (event == SFP_E_DEV_DETACH) 2151 sfp->sm_dev_state = SFP_DEV_DETACHED; 2152 else if (event == SFP_E_DEV_UP) 2153 sfp->sm_dev_state = SFP_DEV_UP; 2154 break; 2155 2156 case SFP_DEV_UP: 2157 if (event == SFP_E_DEV_DETACH) 2158 sfp->sm_dev_state = SFP_DEV_DETACHED; 2159 else if (event == SFP_E_DEV_DOWN) 2160 sfp->sm_dev_state = SFP_DEV_DOWN; 2161 break; 2162 } 2163 } 2164 2165 /* This state machine tracks the insert/remove state of the module, probes 2166 * the on-board EEPROM, and sets up the power level. 2167 */ 2168 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2169 { 2170 int err; 2171 2172 /* Handle remove event globally, it resets this state machine */ 2173 if (event == SFP_E_REMOVE) { 2174 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2175 sfp_sm_mod_remove(sfp); 2176 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2177 return; 2178 } 2179 2180 /* Handle device detach globally */ 2181 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2182 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2183 if (sfp->module_power_mW > 1000 && 2184 sfp->sm_mod_state > SFP_MOD_HPOWER) 2185 sfp_sm_mod_hpower(sfp, false); 2186 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2187 return; 2188 } 2189 2190 switch (sfp->sm_mod_state) { 2191 default: 2192 if (event == SFP_E_INSERT) { 2193 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2194 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2195 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2196 } 2197 break; 2198 2199 case SFP_MOD_PROBE: 2200 /* Wait for T_PROBE_INIT to time out */ 2201 if (event != SFP_E_TIMEOUT) 2202 break; 2203 2204 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2205 if (err == -EAGAIN) { 2206 if (sfp->sm_mod_tries_init && 2207 --sfp->sm_mod_tries_init) { 2208 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2209 break; 2210 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2211 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2212 dev_warn(sfp->dev, 2213 "please wait, module slow to respond\n"); 2214 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2215 break; 2216 } 2217 } 2218 if (err < 0) { 2219 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2220 break; 2221 } 2222 2223 /* Force a poll to re-read the hardware signal state after 2224 * sfp_sm_mod_probe() changed state_hw_mask. 2225 */ 2226 mod_delayed_work(system_wq, &sfp->poll, 1); 2227 2228 err = sfp_hwmon_insert(sfp); 2229 if (err) 2230 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2231 ERR_PTR(err)); 2232 2233 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2234 fallthrough; 2235 case SFP_MOD_WAITDEV: 2236 /* Ensure that the device is attached before proceeding */ 2237 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2238 break; 2239 2240 /* Report the module insertion to the upstream device */ 2241 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2242 sfp->quirk); 2243 if (err < 0) { 2244 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2245 break; 2246 } 2247 2248 /* If this is a power level 1 module, we are done */ 2249 if (sfp->module_power_mW <= 1000) 2250 goto insert; 2251 2252 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2253 fallthrough; 2254 case SFP_MOD_HPOWER: 2255 /* Enable high power mode */ 2256 err = sfp_sm_mod_hpower(sfp, true); 2257 if (err < 0) { 2258 if (err != -EAGAIN) { 2259 sfp_module_remove(sfp->sfp_bus); 2260 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2261 } else { 2262 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2263 } 2264 break; 2265 } 2266 2267 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2268 break; 2269 2270 case SFP_MOD_WAITPWR: 2271 /* Wait for T_HPOWER_LEVEL to time out */ 2272 if (event != SFP_E_TIMEOUT) 2273 break; 2274 2275 insert: 2276 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2277 break; 2278 2279 case SFP_MOD_PRESENT: 2280 case SFP_MOD_ERROR: 2281 break; 2282 } 2283 } 2284 2285 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2286 { 2287 unsigned long timeout; 2288 int ret; 2289 2290 /* Some events are global */ 2291 if (sfp->sm_state != SFP_S_DOWN && 2292 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2293 sfp->sm_dev_state != SFP_DEV_UP)) { 2294 if (sfp->sm_state == SFP_S_LINK_UP && 2295 sfp->sm_dev_state == SFP_DEV_UP) 2296 sfp_sm_link_down(sfp); 2297 if (sfp->sm_state > SFP_S_INIT) 2298 sfp_module_stop(sfp->sfp_bus); 2299 if (sfp->mod_phy) 2300 sfp_sm_phy_detach(sfp); 2301 if (sfp->i2c_mii) 2302 sfp_i2c_mdiobus_destroy(sfp); 2303 sfp_module_tx_disable(sfp); 2304 sfp_soft_stop_poll(sfp); 2305 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2306 return; 2307 } 2308 2309 /* The main state machine */ 2310 switch (sfp->sm_state) { 2311 case SFP_S_DOWN: 2312 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2313 sfp->sm_dev_state != SFP_DEV_UP) 2314 break; 2315 2316 /* Only use the soft state bits if we have access to the A2h 2317 * memory, which implies that we have some level of SFF-8472 2318 * compliance. 2319 */ 2320 if (sfp->have_a2) 2321 sfp_soft_start_poll(sfp); 2322 2323 sfp_module_tx_enable(sfp); 2324 2325 /* Initialise the fault clearance retries */ 2326 sfp->sm_fault_retries = N_FAULT_INIT; 2327 2328 /* We need to check the TX_FAULT state, which is not defined 2329 * while TX_DISABLE is asserted. The earliest we want to do 2330 * anything (such as probe for a PHY) is 50ms (or more on 2331 * specific modules). 2332 */ 2333 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2334 break; 2335 2336 case SFP_S_WAIT: 2337 if (event != SFP_E_TIMEOUT) 2338 break; 2339 2340 if (sfp->state & SFP_F_TX_FAULT) { 2341 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2342 * from the TX_DISABLE deassertion for the module to 2343 * initialise, which is indicated by TX_FAULT 2344 * deasserting. 2345 */ 2346 timeout = sfp->module_t_start_up; 2347 if (timeout > sfp->module_t_wait) 2348 timeout -= sfp->module_t_wait; 2349 else 2350 timeout = 1; 2351 2352 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2353 } else { 2354 /* TX_FAULT is not asserted, assume the module has 2355 * finished initialising. 2356 */ 2357 goto init_done; 2358 } 2359 break; 2360 2361 case SFP_S_INIT: 2362 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2363 /* TX_FAULT is still asserted after t_init 2364 * or t_start_up, so assume there is a fault. 2365 */ 2366 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2367 sfp->sm_fault_retries == N_FAULT_INIT); 2368 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2369 init_done: 2370 /* Create mdiobus and start trying for PHY */ 2371 ret = sfp_sm_add_mdio_bus(sfp); 2372 if (ret < 0) { 2373 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2374 break; 2375 } 2376 sfp->sm_phy_retries = R_PHY_RETRY; 2377 goto phy_probe; 2378 } 2379 break; 2380 2381 case SFP_S_INIT_PHY: 2382 if (event != SFP_E_TIMEOUT) 2383 break; 2384 phy_probe: 2385 /* TX_FAULT deasserted or we timed out with TX_FAULT 2386 * clear. Probe for the PHY and check the LOS state. 2387 */ 2388 ret = sfp_sm_probe_for_phy(sfp); 2389 if (ret == -ENODEV) { 2390 if (--sfp->sm_phy_retries) { 2391 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2392 break; 2393 } else { 2394 dev_info(sfp->dev, "no PHY detected\n"); 2395 } 2396 } else if (ret) { 2397 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2398 break; 2399 } 2400 if (sfp_module_start(sfp->sfp_bus)) { 2401 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2402 break; 2403 } 2404 sfp_sm_link_check_los(sfp); 2405 2406 /* Reset the fault retry count */ 2407 sfp->sm_fault_retries = N_FAULT; 2408 break; 2409 2410 case SFP_S_INIT_TX_FAULT: 2411 if (event == SFP_E_TIMEOUT) { 2412 sfp_module_tx_fault_reset(sfp); 2413 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2414 } 2415 break; 2416 2417 case SFP_S_WAIT_LOS: 2418 if (event == SFP_E_TX_FAULT) 2419 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2420 else if (sfp_los_event_inactive(sfp, event)) 2421 sfp_sm_link_up(sfp); 2422 break; 2423 2424 case SFP_S_LINK_UP: 2425 if (event == SFP_E_TX_FAULT) { 2426 sfp_sm_link_down(sfp); 2427 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2428 } else if (sfp_los_event_active(sfp, event)) { 2429 sfp_sm_link_down(sfp); 2430 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2431 } 2432 break; 2433 2434 case SFP_S_TX_FAULT: 2435 if (event == SFP_E_TIMEOUT) { 2436 sfp_module_tx_fault_reset(sfp); 2437 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2438 } 2439 break; 2440 2441 case SFP_S_REINIT: 2442 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2443 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2444 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2445 dev_info(sfp->dev, "module transmit fault recovered\n"); 2446 sfp_sm_link_check_los(sfp); 2447 } 2448 break; 2449 2450 case SFP_S_TX_DISABLE: 2451 break; 2452 } 2453 } 2454 2455 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2456 { 2457 mutex_lock(&sfp->sm_mutex); 2458 2459 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2460 mod_state_to_str(sfp->sm_mod_state), 2461 dev_state_to_str(sfp->sm_dev_state), 2462 sm_state_to_str(sfp->sm_state), 2463 event_to_str(event)); 2464 2465 sfp_sm_device(sfp, event); 2466 sfp_sm_module(sfp, event); 2467 sfp_sm_main(sfp, event); 2468 2469 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2470 mod_state_to_str(sfp->sm_mod_state), 2471 dev_state_to_str(sfp->sm_dev_state), 2472 sm_state_to_str(sfp->sm_state)); 2473 2474 mutex_unlock(&sfp->sm_mutex); 2475 } 2476 2477 static void sfp_attach(struct sfp *sfp) 2478 { 2479 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2480 } 2481 2482 static void sfp_detach(struct sfp *sfp) 2483 { 2484 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2485 } 2486 2487 static void sfp_start(struct sfp *sfp) 2488 { 2489 sfp_sm_event(sfp, SFP_E_DEV_UP); 2490 } 2491 2492 static void sfp_stop(struct sfp *sfp) 2493 { 2494 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2495 } 2496 2497 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2498 { 2499 /* locking... and check module is present */ 2500 2501 if (sfp->id.ext.sff8472_compliance && 2502 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2503 modinfo->type = ETH_MODULE_SFF_8472; 2504 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2505 } else { 2506 modinfo->type = ETH_MODULE_SFF_8079; 2507 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2508 } 2509 return 0; 2510 } 2511 2512 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2513 u8 *data) 2514 { 2515 unsigned int first, last, len; 2516 int ret; 2517 2518 if (!(sfp->state & SFP_F_PRESENT)) 2519 return -ENODEV; 2520 2521 if (ee->len == 0) 2522 return -EINVAL; 2523 2524 first = ee->offset; 2525 last = ee->offset + ee->len; 2526 if (first < ETH_MODULE_SFF_8079_LEN) { 2527 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2528 len -= first; 2529 2530 ret = sfp_read(sfp, false, first, data, len); 2531 if (ret < 0) 2532 return ret; 2533 2534 first += len; 2535 data += len; 2536 } 2537 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2538 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2539 len -= first; 2540 first -= ETH_MODULE_SFF_8079_LEN; 2541 2542 ret = sfp_read(sfp, true, first, data, len); 2543 if (ret < 0) 2544 return ret; 2545 } 2546 return 0; 2547 } 2548 2549 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2550 const struct ethtool_module_eeprom *page, 2551 struct netlink_ext_ack *extack) 2552 { 2553 if (!(sfp->state & SFP_F_PRESENT)) 2554 return -ENODEV; 2555 2556 if (page->bank) { 2557 NL_SET_ERR_MSG(extack, "Banks not supported"); 2558 return -EOPNOTSUPP; 2559 } 2560 2561 if (page->page) { 2562 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2563 return -EOPNOTSUPP; 2564 } 2565 2566 if (page->i2c_address != 0x50 && 2567 page->i2c_address != 0x51) { 2568 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2569 return -EOPNOTSUPP; 2570 } 2571 2572 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2573 page->data, page->length); 2574 }; 2575 2576 static const struct sfp_socket_ops sfp_module_ops = { 2577 .attach = sfp_attach, 2578 .detach = sfp_detach, 2579 .start = sfp_start, 2580 .stop = sfp_stop, 2581 .module_info = sfp_module_info, 2582 .module_eeprom = sfp_module_eeprom, 2583 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2584 }; 2585 2586 static void sfp_timeout(struct work_struct *work) 2587 { 2588 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2589 2590 rtnl_lock(); 2591 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2592 rtnl_unlock(); 2593 } 2594 2595 static void sfp_check_state(struct sfp *sfp) 2596 { 2597 unsigned int state, i, changed; 2598 2599 mutex_lock(&sfp->st_mutex); 2600 state = sfp_get_state(sfp); 2601 changed = state ^ sfp->state; 2602 if (sfp->tx_fault_ignore) 2603 changed &= SFP_F_PRESENT | SFP_F_LOS; 2604 else 2605 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2606 2607 for (i = 0; i < GPIO_MAX; i++) 2608 if (changed & BIT(i)) 2609 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2610 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2611 2612 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2613 sfp->state = state; 2614 2615 rtnl_lock(); 2616 if (changed & SFP_F_PRESENT) 2617 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2618 SFP_E_INSERT : SFP_E_REMOVE); 2619 2620 if (changed & SFP_F_TX_FAULT) 2621 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2622 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2623 2624 if (changed & SFP_F_LOS) 2625 sfp_sm_event(sfp, state & SFP_F_LOS ? 2626 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2627 rtnl_unlock(); 2628 mutex_unlock(&sfp->st_mutex); 2629 } 2630 2631 static irqreturn_t sfp_irq(int irq, void *data) 2632 { 2633 struct sfp *sfp = data; 2634 2635 sfp_check_state(sfp); 2636 2637 return IRQ_HANDLED; 2638 } 2639 2640 static void sfp_poll(struct work_struct *work) 2641 { 2642 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2643 2644 sfp_check_state(sfp); 2645 2646 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2647 sfp->need_poll) 2648 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2649 } 2650 2651 static struct sfp *sfp_alloc(struct device *dev) 2652 { 2653 struct sfp *sfp; 2654 2655 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2656 if (!sfp) 2657 return ERR_PTR(-ENOMEM); 2658 2659 sfp->dev = dev; 2660 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2661 2662 mutex_init(&sfp->sm_mutex); 2663 mutex_init(&sfp->st_mutex); 2664 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2665 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2666 2667 sfp_hwmon_init(sfp); 2668 2669 return sfp; 2670 } 2671 2672 static void sfp_cleanup(void *data) 2673 { 2674 struct sfp *sfp = data; 2675 2676 sfp_hwmon_exit(sfp); 2677 2678 cancel_delayed_work_sync(&sfp->poll); 2679 cancel_delayed_work_sync(&sfp->timeout); 2680 if (sfp->i2c_mii) { 2681 mdiobus_unregister(sfp->i2c_mii); 2682 mdiobus_free(sfp->i2c_mii); 2683 } 2684 if (sfp->i2c) 2685 i2c_put_adapter(sfp->i2c); 2686 kfree(sfp); 2687 } 2688 2689 static int sfp_i2c_get(struct sfp *sfp) 2690 { 2691 struct fwnode_handle *h; 2692 struct i2c_adapter *i2c; 2693 int err; 2694 2695 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2696 if (IS_ERR(h)) { 2697 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2698 return -ENODEV; 2699 } 2700 2701 i2c = i2c_get_adapter_by_fwnode(h); 2702 if (!i2c) { 2703 err = -EPROBE_DEFER; 2704 goto put; 2705 } 2706 2707 err = sfp_i2c_configure(sfp, i2c); 2708 if (err) 2709 i2c_put_adapter(i2c); 2710 put: 2711 fwnode_handle_put(h); 2712 return err; 2713 } 2714 2715 static int sfp_probe(struct platform_device *pdev) 2716 { 2717 const struct sff_data *sff; 2718 char *sfp_irq_name; 2719 struct sfp *sfp; 2720 int err, i; 2721 2722 sfp = sfp_alloc(&pdev->dev); 2723 if (IS_ERR(sfp)) 2724 return PTR_ERR(sfp); 2725 2726 platform_set_drvdata(pdev, sfp); 2727 2728 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2729 if (err < 0) 2730 return err; 2731 2732 sff = device_get_match_data(sfp->dev); 2733 if (!sff) 2734 sff = &sfp_data; 2735 2736 sfp->type = sff; 2737 2738 err = sfp_i2c_get(sfp); 2739 if (err) 2740 return err; 2741 2742 for (i = 0; i < GPIO_MAX; i++) 2743 if (sff->gpios & BIT(i)) { 2744 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2745 gpio_names[i], gpio_flags[i]); 2746 if (IS_ERR(sfp->gpio[i])) 2747 return PTR_ERR(sfp->gpio[i]); 2748 } 2749 2750 sfp->state_hw_mask = SFP_F_PRESENT; 2751 2752 sfp->get_state = sfp_gpio_get_state; 2753 sfp->set_state = sfp_gpio_set_state; 2754 2755 /* Modules that have no detect signal are always present */ 2756 if (!(sfp->gpio[GPIO_MODDEF0])) 2757 sfp->get_state = sff_gpio_get_state; 2758 2759 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2760 &sfp->max_power_mW); 2761 if (sfp->max_power_mW < 1000) { 2762 if (sfp->max_power_mW) 2763 dev_warn(sfp->dev, 2764 "Firmware bug: host maximum power should be at least 1W\n"); 2765 sfp->max_power_mW = 1000; 2766 } 2767 2768 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2769 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2770 2771 /* Get the initial state, and always signal TX disable, 2772 * since the network interface will not be up. 2773 */ 2774 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2775 2776 if (sfp->gpio[GPIO_RATE_SELECT] && 2777 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2778 sfp->state |= SFP_F_RATE_SELECT; 2779 sfp_set_state(sfp, sfp->state); 2780 sfp_module_tx_disable(sfp); 2781 if (sfp->state & SFP_F_PRESENT) { 2782 rtnl_lock(); 2783 sfp_sm_event(sfp, SFP_E_INSERT); 2784 rtnl_unlock(); 2785 } 2786 2787 for (i = 0; i < GPIO_MAX; i++) { 2788 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2789 continue; 2790 2791 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2792 if (sfp->gpio_irq[i] < 0) { 2793 sfp->gpio_irq[i] = 0; 2794 sfp->need_poll = true; 2795 continue; 2796 } 2797 2798 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2799 "%s-%s", dev_name(sfp->dev), 2800 gpio_names[i]); 2801 2802 if (!sfp_irq_name) 2803 return -ENOMEM; 2804 2805 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2806 NULL, sfp_irq, 2807 IRQF_ONESHOT | 2808 IRQF_TRIGGER_RISING | 2809 IRQF_TRIGGER_FALLING, 2810 sfp_irq_name, sfp); 2811 if (err) { 2812 sfp->gpio_irq[i] = 0; 2813 sfp->need_poll = true; 2814 } 2815 } 2816 2817 if (sfp->need_poll) 2818 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2819 2820 /* We could have an issue in cases no Tx disable pin is available or 2821 * wired as modules using a laser as their light source will continue to 2822 * be active when the fiber is removed. This could be a safety issue and 2823 * we should at least warn the user about that. 2824 */ 2825 if (!sfp->gpio[GPIO_TX_DISABLE]) 2826 dev_warn(sfp->dev, 2827 "No tx_disable pin: SFP modules will always be emitting.\n"); 2828 2829 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2830 if (!sfp->sfp_bus) 2831 return -ENOMEM; 2832 2833 sfp_debugfs_init(sfp); 2834 2835 return 0; 2836 } 2837 2838 static int sfp_remove(struct platform_device *pdev) 2839 { 2840 struct sfp *sfp = platform_get_drvdata(pdev); 2841 2842 sfp_debugfs_exit(sfp); 2843 sfp_unregister_socket(sfp->sfp_bus); 2844 2845 rtnl_lock(); 2846 sfp_sm_event(sfp, SFP_E_REMOVE); 2847 rtnl_unlock(); 2848 2849 return 0; 2850 } 2851 2852 static void sfp_shutdown(struct platform_device *pdev) 2853 { 2854 struct sfp *sfp = platform_get_drvdata(pdev); 2855 int i; 2856 2857 for (i = 0; i < GPIO_MAX; i++) { 2858 if (!sfp->gpio_irq[i]) 2859 continue; 2860 2861 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2862 } 2863 2864 cancel_delayed_work_sync(&sfp->poll); 2865 cancel_delayed_work_sync(&sfp->timeout); 2866 } 2867 2868 static struct platform_driver sfp_driver = { 2869 .probe = sfp_probe, 2870 .remove = sfp_remove, 2871 .shutdown = sfp_shutdown, 2872 .driver = { 2873 .name = "sfp", 2874 .of_match_table = sfp_of_match, 2875 }, 2876 }; 2877 2878 static int sfp_init(void) 2879 { 2880 poll_jiffies = msecs_to_jiffies(100); 2881 2882 return platform_driver_register(&sfp_driver); 2883 } 2884 module_init(sfp_init); 2885 2886 static void sfp_exit(void) 2887 { 2888 platform_driver_unregister(&sfp_driver); 2889 } 2890 module_exit(sfp_exit); 2891 2892 MODULE_ALIAS("platform:sfp"); 2893 MODULE_AUTHOR("Russell King"); 2894 MODULE_LICENSE("GPL v2"); 2895