xref: /openbmc/linux/drivers/net/phy/sfp.c (revision ef97e774713fcd34c45f7a7426c7d8845394f7be)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RATE_SELECT,
28 	GPIO_MAX,
29 
30 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
31 	SFP_F_LOS = BIT(GPIO_LOS),
32 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
33 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
34 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
35 
36 	SFP_E_INSERT = 0,
37 	SFP_E_REMOVE,
38 	SFP_E_DEV_ATTACH,
39 	SFP_E_DEV_DETACH,
40 	SFP_E_DEV_DOWN,
41 	SFP_E_DEV_UP,
42 	SFP_E_TX_FAULT,
43 	SFP_E_TX_CLEAR,
44 	SFP_E_LOS_HIGH,
45 	SFP_E_LOS_LOW,
46 	SFP_E_TIMEOUT,
47 
48 	SFP_MOD_EMPTY = 0,
49 	SFP_MOD_ERROR,
50 	SFP_MOD_PROBE,
51 	SFP_MOD_WAITDEV,
52 	SFP_MOD_HPOWER,
53 	SFP_MOD_WAITPWR,
54 	SFP_MOD_PRESENT,
55 
56 	SFP_DEV_DETACHED = 0,
57 	SFP_DEV_DOWN,
58 	SFP_DEV_UP,
59 
60 	SFP_S_DOWN = 0,
61 	SFP_S_FAIL,
62 	SFP_S_WAIT,
63 	SFP_S_INIT,
64 	SFP_S_INIT_PHY,
65 	SFP_S_INIT_TX_FAULT,
66 	SFP_S_WAIT_LOS,
67 	SFP_S_LINK_UP,
68 	SFP_S_TX_FAULT,
69 	SFP_S_REINIT,
70 	SFP_S_TX_DISABLE,
71 };
72 
73 static const char  * const mod_state_strings[] = {
74 	[SFP_MOD_EMPTY] = "empty",
75 	[SFP_MOD_ERROR] = "error",
76 	[SFP_MOD_PROBE] = "probe",
77 	[SFP_MOD_WAITDEV] = "waitdev",
78 	[SFP_MOD_HPOWER] = "hpower",
79 	[SFP_MOD_WAITPWR] = "waitpwr",
80 	[SFP_MOD_PRESENT] = "present",
81 };
82 
83 static const char *mod_state_to_str(unsigned short mod_state)
84 {
85 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
86 		return "Unknown module state";
87 	return mod_state_strings[mod_state];
88 }
89 
90 static const char * const dev_state_strings[] = {
91 	[SFP_DEV_DETACHED] = "detached",
92 	[SFP_DEV_DOWN] = "down",
93 	[SFP_DEV_UP] = "up",
94 };
95 
96 static const char *dev_state_to_str(unsigned short dev_state)
97 {
98 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
99 		return "Unknown device state";
100 	return dev_state_strings[dev_state];
101 }
102 
103 static const char * const event_strings[] = {
104 	[SFP_E_INSERT] = "insert",
105 	[SFP_E_REMOVE] = "remove",
106 	[SFP_E_DEV_ATTACH] = "dev_attach",
107 	[SFP_E_DEV_DETACH] = "dev_detach",
108 	[SFP_E_DEV_DOWN] = "dev_down",
109 	[SFP_E_DEV_UP] = "dev_up",
110 	[SFP_E_TX_FAULT] = "tx_fault",
111 	[SFP_E_TX_CLEAR] = "tx_clear",
112 	[SFP_E_LOS_HIGH] = "los_high",
113 	[SFP_E_LOS_LOW] = "los_low",
114 	[SFP_E_TIMEOUT] = "timeout",
115 };
116 
117 static const char *event_to_str(unsigned short event)
118 {
119 	if (event >= ARRAY_SIZE(event_strings))
120 		return "Unknown event";
121 	return event_strings[event];
122 }
123 
124 static const char * const sm_state_strings[] = {
125 	[SFP_S_DOWN] = "down",
126 	[SFP_S_FAIL] = "fail",
127 	[SFP_S_WAIT] = "wait",
128 	[SFP_S_INIT] = "init",
129 	[SFP_S_INIT_PHY] = "init_phy",
130 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
131 	[SFP_S_WAIT_LOS] = "wait_los",
132 	[SFP_S_LINK_UP] = "link_up",
133 	[SFP_S_TX_FAULT] = "tx_fault",
134 	[SFP_S_REINIT] = "reinit",
135 	[SFP_S_TX_DISABLE] = "tx_disable",
136 };
137 
138 static const char *sm_state_to_str(unsigned short sm_state)
139 {
140 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
141 		return "Unknown state";
142 	return sm_state_strings[sm_state];
143 }
144 
145 static const char *gpio_names[] = {
146 	"mod-def0",
147 	"los",
148 	"tx-fault",
149 	"tx-disable",
150 	"rate-select0",
151 };
152 
153 static const enum gpiod_flags gpio_flags[] = {
154 	GPIOD_IN,
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_ASIS,
158 	GPIOD_ASIS,
159 };
160 
161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
162  * non-cooled module to initialise its laser safety circuitry. We wait
163  * an initial T_WAIT period before we check the tx fault to give any PHY
164  * on board (for a copper SFP) time to initialise.
165  */
166 #define T_WAIT			msecs_to_jiffies(50)
167 #define T_WAIT_ROLLBALL		msecs_to_jiffies(25000)
168 #define T_START_UP		msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170 
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US		10
175 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176 
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT		5
183 #define N_FAULT			5
184 
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY		msecs_to_jiffies(50)
189 #define R_PHY_RETRY		12
190 
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL		msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT	10
202 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW	12
204 
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
208  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
209  */
210 #define SFP_PHY_ADDR		22
211 #define SFP_PHY_ADDR_ROLLBALL	17
212 
213 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
214  * at a time. Some SFP modules and also some Linux I2C drivers do not like
215  * reads longer than 16 bytes.
216  */
217 #define SFP_EEPROM_BLOCK_SIZE	16
218 
219 struct sff_data {
220 	unsigned int gpios;
221 	bool (*module_supported)(const struct sfp_eeprom_id *id);
222 };
223 
224 struct sfp {
225 	struct device *dev;
226 	struct i2c_adapter *i2c;
227 	struct mii_bus *i2c_mii;
228 	struct sfp_bus *sfp_bus;
229 	enum mdio_i2c_proto mdio_protocol;
230 	struct phy_device *mod_phy;
231 	const struct sff_data *type;
232 	size_t i2c_block_size;
233 	u32 max_power_mW;
234 
235 	unsigned int (*get_state)(struct sfp *);
236 	void (*set_state)(struct sfp *, unsigned int);
237 	int (*read)(struct sfp *, bool, u8, void *, size_t);
238 	int (*write)(struct sfp *, bool, u8, void *, size_t);
239 
240 	struct gpio_desc *gpio[GPIO_MAX];
241 	int gpio_irq[GPIO_MAX];
242 
243 	bool need_poll;
244 
245 	struct mutex st_mutex;			/* Protects state */
246 	unsigned int state_hw_mask;
247 	unsigned int state_soft_mask;
248 	unsigned int state;
249 	struct delayed_work poll;
250 	struct delayed_work timeout;
251 	struct mutex sm_mutex;			/* Protects state machine */
252 	unsigned char sm_mod_state;
253 	unsigned char sm_mod_tries_init;
254 	unsigned char sm_mod_tries;
255 	unsigned char sm_dev_state;
256 	unsigned short sm_state;
257 	unsigned char sm_fault_retries;
258 	unsigned char sm_phy_retries;
259 
260 	struct sfp_eeprom_id id;
261 	unsigned int module_power_mW;
262 	unsigned int module_t_start_up;
263 	unsigned int module_t_wait;
264 	bool tx_fault_ignore;
265 
266 	const struct sfp_quirk *quirk;
267 
268 #if IS_ENABLED(CONFIG_HWMON)
269 	struct sfp_diag diag;
270 	struct delayed_work hwmon_probe;
271 	unsigned int hwmon_tries;
272 	struct device *hwmon_dev;
273 	char *hwmon_name;
274 #endif
275 
276 #if IS_ENABLED(CONFIG_DEBUG_FS)
277 	struct dentry *debugfs_dir;
278 #endif
279 };
280 
281 static bool sff_module_supported(const struct sfp_eeprom_id *id)
282 {
283 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
284 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
285 }
286 
287 static const struct sff_data sff_data = {
288 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
289 	.module_supported = sff_module_supported,
290 };
291 
292 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
293 {
294 	if (id->base.phys_id == SFF8024_ID_SFP &&
295 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
296 		return true;
297 
298 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
299 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
300 	 * as supported based on vendor name and pn match.
301 	 */
302 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
304 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
305 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
306 		return true;
307 
308 	return false;
309 }
310 
311 static const struct sff_data sfp_data = {
312 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
313 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
314 	.module_supported = sfp_module_supported,
315 };
316 
317 static const struct of_device_id sfp_of_match[] = {
318 	{ .compatible = "sff,sff", .data = &sff_data, },
319 	{ .compatible = "sff,sfp", .data = &sfp_data, },
320 	{ },
321 };
322 MODULE_DEVICE_TABLE(of, sfp_of_match);
323 
324 static void sfp_fixup_long_startup(struct sfp *sfp)
325 {
326 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
327 }
328 
329 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
330 {
331 	sfp->tx_fault_ignore = true;
332 }
333 
334 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
335 {
336 	/* Ignore the TX_FAULT and LOS signals on this module.
337 	 * these are possibly used for other purposes on this
338 	 * module, e.g. a serial port.
339 	 */
340 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
341 }
342 
343 static void sfp_fixup_rollball(struct sfp *sfp)
344 {
345 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
346 	sfp->module_t_wait = T_WAIT_ROLLBALL;
347 }
348 
349 static void sfp_fixup_rollball_cc(struct sfp *sfp)
350 {
351 	sfp_fixup_rollball(sfp);
352 
353 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
354 	 * burned in EEPROM. For PHY probing we need the correct one.
355 	 */
356 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
357 }
358 
359 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
360 				unsigned long *modes,
361 				unsigned long *interfaces)
362 {
363 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
364 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
365 }
366 
367 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
368 				      unsigned long *modes,
369 				      unsigned long *interfaces)
370 {
371 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
372 	 * types including 10G Ethernet which is not truth. So clear all claimed
373 	 * modes and set only one mode which module supports: 1000baseX_Full.
374 	 */
375 	linkmode_zero(modes);
376 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
377 }
378 
379 #define SFP_QUIRK(_v, _p, _m, _f) \
380 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
381 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
382 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
383 
384 static const struct sfp_quirk sfp_quirks[] = {
385 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
386 	// report 2500MBd NRZ in their EEPROM
387 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
388 
389 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
390 	// NRZ in their EEPROM
391 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
392 		  sfp_fixup_long_startup),
393 
394 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
395 
396 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
397 	// 2600MBd in their EERPOM
398 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
399 
400 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
401 	// their EEPROM
402 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
403 		  sfp_fixup_ignore_tx_fault),
404 
405 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
406 	// 2500MBd NRZ in their EEPROM
407 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
408 
409 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
410 
411 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
412 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
413 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
414 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
415 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
416 };
417 
418 static size_t sfp_strlen(const char *str, size_t maxlen)
419 {
420 	size_t size, i;
421 
422 	/* Trailing characters should be filled with space chars, but
423 	 * some manufacturers can't read SFF-8472 and use NUL.
424 	 */
425 	for (i = 0, size = 0; i < maxlen; i++)
426 		if (str[i] != ' ' && str[i] != '\0')
427 			size = i + 1;
428 
429 	return size;
430 }
431 
432 static bool sfp_match(const char *qs, const char *str, size_t len)
433 {
434 	if (!qs)
435 		return true;
436 	if (strlen(qs) != len)
437 		return false;
438 	return !strncmp(qs, str, len);
439 }
440 
441 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
442 {
443 	const struct sfp_quirk *q;
444 	unsigned int i;
445 	size_t vs, ps;
446 
447 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
448 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
449 
450 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
451 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
452 		    sfp_match(q->part, id->base.vendor_pn, ps))
453 			return q;
454 
455 	return NULL;
456 }
457 
458 static unsigned long poll_jiffies;
459 
460 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
461 {
462 	unsigned int i, state, v;
463 
464 	for (i = state = 0; i < GPIO_MAX; i++) {
465 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
466 			continue;
467 
468 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
469 		if (v)
470 			state |= BIT(i);
471 	}
472 
473 	return state;
474 }
475 
476 static unsigned int sff_gpio_get_state(struct sfp *sfp)
477 {
478 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
479 }
480 
481 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
482 {
483 	if (state & SFP_F_PRESENT) {
484 		/* If the module is present, drive the signals */
485 		if (sfp->gpio[GPIO_TX_DISABLE])
486 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
487 					       state & SFP_F_TX_DISABLE);
488 		if (state & SFP_F_RATE_SELECT)
489 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
490 					       state & SFP_F_RATE_SELECT);
491 	} else {
492 		/* Otherwise, let them float to the pull-ups */
493 		if (sfp->gpio[GPIO_TX_DISABLE])
494 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
495 		if (state & SFP_F_RATE_SELECT)
496 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
497 	}
498 }
499 
500 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
501 			size_t len)
502 {
503 	struct i2c_msg msgs[2];
504 	u8 bus_addr = a2 ? 0x51 : 0x50;
505 	size_t block_size = sfp->i2c_block_size;
506 	size_t this_len;
507 	int ret;
508 
509 	msgs[0].addr = bus_addr;
510 	msgs[0].flags = 0;
511 	msgs[0].len = 1;
512 	msgs[0].buf = &dev_addr;
513 	msgs[1].addr = bus_addr;
514 	msgs[1].flags = I2C_M_RD;
515 	msgs[1].len = len;
516 	msgs[1].buf = buf;
517 
518 	while (len) {
519 		this_len = len;
520 		if (this_len > block_size)
521 			this_len = block_size;
522 
523 		msgs[1].len = this_len;
524 
525 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
526 		if (ret < 0)
527 			return ret;
528 
529 		if (ret != ARRAY_SIZE(msgs))
530 			break;
531 
532 		msgs[1].buf += this_len;
533 		dev_addr += this_len;
534 		len -= this_len;
535 	}
536 
537 	return msgs[1].buf - (u8 *)buf;
538 }
539 
540 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
541 	size_t len)
542 {
543 	struct i2c_msg msgs[1];
544 	u8 bus_addr = a2 ? 0x51 : 0x50;
545 	int ret;
546 
547 	msgs[0].addr = bus_addr;
548 	msgs[0].flags = 0;
549 	msgs[0].len = 1 + len;
550 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
551 	if (!msgs[0].buf)
552 		return -ENOMEM;
553 
554 	msgs[0].buf[0] = dev_addr;
555 	memcpy(&msgs[0].buf[1], buf, len);
556 
557 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
558 
559 	kfree(msgs[0].buf);
560 
561 	if (ret < 0)
562 		return ret;
563 
564 	return ret == ARRAY_SIZE(msgs) ? len : 0;
565 }
566 
567 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
568 {
569 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
570 		return -EINVAL;
571 
572 	sfp->i2c = i2c;
573 	sfp->read = sfp_i2c_read;
574 	sfp->write = sfp_i2c_write;
575 
576 	return 0;
577 }
578 
579 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
580 {
581 	struct mii_bus *i2c_mii;
582 	int ret;
583 
584 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
585 	if (IS_ERR(i2c_mii))
586 		return PTR_ERR(i2c_mii);
587 
588 	i2c_mii->name = "SFP I2C Bus";
589 	i2c_mii->phy_mask = ~0;
590 
591 	ret = mdiobus_register(i2c_mii);
592 	if (ret < 0) {
593 		mdiobus_free(i2c_mii);
594 		return ret;
595 	}
596 
597 	sfp->i2c_mii = i2c_mii;
598 
599 	return 0;
600 }
601 
602 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
603 {
604 	mdiobus_unregister(sfp->i2c_mii);
605 	sfp->i2c_mii = NULL;
606 }
607 
608 /* Interface */
609 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
610 {
611 	return sfp->read(sfp, a2, addr, buf, len);
612 }
613 
614 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
615 {
616 	return sfp->write(sfp, a2, addr, buf, len);
617 }
618 
619 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
620 {
621 	int ret;
622 	u8 old, v;
623 
624 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
625 	if (ret != sizeof(old))
626 		return ret;
627 
628 	v = (old & ~mask) | (val & mask);
629 	if (v == old)
630 		return sizeof(v);
631 
632 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
633 }
634 
635 static unsigned int sfp_soft_get_state(struct sfp *sfp)
636 {
637 	unsigned int state = 0;
638 	u8 status;
639 	int ret;
640 
641 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
642 	if (ret == sizeof(status)) {
643 		if (status & SFP_STATUS_RX_LOS)
644 			state |= SFP_F_LOS;
645 		if (status & SFP_STATUS_TX_FAULT)
646 			state |= SFP_F_TX_FAULT;
647 	} else {
648 		dev_err_ratelimited(sfp->dev,
649 				    "failed to read SFP soft status: %pe\n",
650 				    ERR_PTR(ret));
651 		/* Preserve the current state */
652 		state = sfp->state;
653 	}
654 
655 	return state & sfp->state_soft_mask;
656 }
657 
658 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
659 {
660 	u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
661 	u8 val = 0;
662 
663 	if (state & SFP_F_TX_DISABLE)
664 		val |= SFP_STATUS_TX_DISABLE_FORCE;
665 
666 
667 	sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
668 }
669 
670 static void sfp_soft_start_poll(struct sfp *sfp)
671 {
672 	const struct sfp_eeprom_id *id = &sfp->id;
673 	unsigned int mask = 0;
674 
675 	sfp->state_soft_mask = 0;
676 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
677 		mask |= SFP_F_TX_DISABLE;
678 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
679 		mask |= SFP_F_TX_FAULT;
680 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
681 		mask |= SFP_F_LOS;
682 
683 	// Poll the soft state for hardware pins we want to ignore
684 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
685 
686 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
687 	    !sfp->need_poll)
688 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
689 }
690 
691 static void sfp_soft_stop_poll(struct sfp *sfp)
692 {
693 	sfp->state_soft_mask = 0;
694 }
695 
696 static unsigned int sfp_get_state(struct sfp *sfp)
697 {
698 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
699 	unsigned int state;
700 
701 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
702 	if (state & SFP_F_PRESENT && soft)
703 		state |= sfp_soft_get_state(sfp);
704 
705 	return state;
706 }
707 
708 static void sfp_set_state(struct sfp *sfp, unsigned int state)
709 {
710 	sfp->set_state(sfp, state);
711 
712 	if (state & SFP_F_PRESENT &&
713 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
714 		sfp_soft_set_state(sfp, state);
715 }
716 
717 static unsigned int sfp_check(void *buf, size_t len)
718 {
719 	u8 *p, check;
720 
721 	for (p = buf, check = 0; len; p++, len--)
722 		check += *p;
723 
724 	return check;
725 }
726 
727 /* hwmon */
728 #if IS_ENABLED(CONFIG_HWMON)
729 static umode_t sfp_hwmon_is_visible(const void *data,
730 				    enum hwmon_sensor_types type,
731 				    u32 attr, int channel)
732 {
733 	const struct sfp *sfp = data;
734 
735 	switch (type) {
736 	case hwmon_temp:
737 		switch (attr) {
738 		case hwmon_temp_min_alarm:
739 		case hwmon_temp_max_alarm:
740 		case hwmon_temp_lcrit_alarm:
741 		case hwmon_temp_crit_alarm:
742 		case hwmon_temp_min:
743 		case hwmon_temp_max:
744 		case hwmon_temp_lcrit:
745 		case hwmon_temp_crit:
746 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
747 				return 0;
748 			fallthrough;
749 		case hwmon_temp_input:
750 		case hwmon_temp_label:
751 			return 0444;
752 		default:
753 			return 0;
754 		}
755 	case hwmon_in:
756 		switch (attr) {
757 		case hwmon_in_min_alarm:
758 		case hwmon_in_max_alarm:
759 		case hwmon_in_lcrit_alarm:
760 		case hwmon_in_crit_alarm:
761 		case hwmon_in_min:
762 		case hwmon_in_max:
763 		case hwmon_in_lcrit:
764 		case hwmon_in_crit:
765 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
766 				return 0;
767 			fallthrough;
768 		case hwmon_in_input:
769 		case hwmon_in_label:
770 			return 0444;
771 		default:
772 			return 0;
773 		}
774 	case hwmon_curr:
775 		switch (attr) {
776 		case hwmon_curr_min_alarm:
777 		case hwmon_curr_max_alarm:
778 		case hwmon_curr_lcrit_alarm:
779 		case hwmon_curr_crit_alarm:
780 		case hwmon_curr_min:
781 		case hwmon_curr_max:
782 		case hwmon_curr_lcrit:
783 		case hwmon_curr_crit:
784 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
785 				return 0;
786 			fallthrough;
787 		case hwmon_curr_input:
788 		case hwmon_curr_label:
789 			return 0444;
790 		default:
791 			return 0;
792 		}
793 	case hwmon_power:
794 		/* External calibration of receive power requires
795 		 * floating point arithmetic. Doing that in the kernel
796 		 * is not easy, so just skip it. If the module does
797 		 * not require external calibration, we can however
798 		 * show receiver power, since FP is then not needed.
799 		 */
800 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
801 		    channel == 1)
802 			return 0;
803 		switch (attr) {
804 		case hwmon_power_min_alarm:
805 		case hwmon_power_max_alarm:
806 		case hwmon_power_lcrit_alarm:
807 		case hwmon_power_crit_alarm:
808 		case hwmon_power_min:
809 		case hwmon_power_max:
810 		case hwmon_power_lcrit:
811 		case hwmon_power_crit:
812 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
813 				return 0;
814 			fallthrough;
815 		case hwmon_power_input:
816 		case hwmon_power_label:
817 			return 0444;
818 		default:
819 			return 0;
820 		}
821 	default:
822 		return 0;
823 	}
824 }
825 
826 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
827 {
828 	__be16 val;
829 	int err;
830 
831 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
832 	if (err < 0)
833 		return err;
834 
835 	*value = be16_to_cpu(val);
836 
837 	return 0;
838 }
839 
840 static void sfp_hwmon_to_rx_power(long *value)
841 {
842 	*value = DIV_ROUND_CLOSEST(*value, 10);
843 }
844 
845 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
846 				long *value)
847 {
848 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
849 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
850 }
851 
852 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
853 {
854 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
855 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
856 
857 	if (*value >= 0x8000)
858 		*value -= 0x10000;
859 
860 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
861 }
862 
863 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
864 {
865 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
866 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
867 
868 	*value = DIV_ROUND_CLOSEST(*value, 10);
869 }
870 
871 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
872 {
873 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
874 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
875 
876 	*value = DIV_ROUND_CLOSEST(*value, 500);
877 }
878 
879 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
880 {
881 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
882 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
883 
884 	*value = DIV_ROUND_CLOSEST(*value, 10);
885 }
886 
887 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
888 {
889 	int err;
890 
891 	err = sfp_hwmon_read_sensor(sfp, reg, value);
892 	if (err < 0)
893 		return err;
894 
895 	sfp_hwmon_calibrate_temp(sfp, value);
896 
897 	return 0;
898 }
899 
900 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
901 {
902 	int err;
903 
904 	err = sfp_hwmon_read_sensor(sfp, reg, value);
905 	if (err < 0)
906 		return err;
907 
908 	sfp_hwmon_calibrate_vcc(sfp, value);
909 
910 	return 0;
911 }
912 
913 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
914 {
915 	int err;
916 
917 	err = sfp_hwmon_read_sensor(sfp, reg, value);
918 	if (err < 0)
919 		return err;
920 
921 	sfp_hwmon_calibrate_bias(sfp, value);
922 
923 	return 0;
924 }
925 
926 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
927 {
928 	int err;
929 
930 	err = sfp_hwmon_read_sensor(sfp, reg, value);
931 	if (err < 0)
932 		return err;
933 
934 	sfp_hwmon_calibrate_tx_power(sfp, value);
935 
936 	return 0;
937 }
938 
939 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
940 {
941 	int err;
942 
943 	err = sfp_hwmon_read_sensor(sfp, reg, value);
944 	if (err < 0)
945 		return err;
946 
947 	sfp_hwmon_to_rx_power(value);
948 
949 	return 0;
950 }
951 
952 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
953 {
954 	u8 status;
955 	int err;
956 
957 	switch (attr) {
958 	case hwmon_temp_input:
959 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
960 
961 	case hwmon_temp_lcrit:
962 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
963 		sfp_hwmon_calibrate_temp(sfp, value);
964 		return 0;
965 
966 	case hwmon_temp_min:
967 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
968 		sfp_hwmon_calibrate_temp(sfp, value);
969 		return 0;
970 	case hwmon_temp_max:
971 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
972 		sfp_hwmon_calibrate_temp(sfp, value);
973 		return 0;
974 
975 	case hwmon_temp_crit:
976 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
977 		sfp_hwmon_calibrate_temp(sfp, value);
978 		return 0;
979 
980 	case hwmon_temp_lcrit_alarm:
981 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
982 		if (err < 0)
983 			return err;
984 
985 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
986 		return 0;
987 
988 	case hwmon_temp_min_alarm:
989 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
990 		if (err < 0)
991 			return err;
992 
993 		*value = !!(status & SFP_WARN0_TEMP_LOW);
994 		return 0;
995 
996 	case hwmon_temp_max_alarm:
997 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
998 		if (err < 0)
999 			return err;
1000 
1001 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1002 		return 0;
1003 
1004 	case hwmon_temp_crit_alarm:
1005 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1006 		if (err < 0)
1007 			return err;
1008 
1009 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1010 		return 0;
1011 	default:
1012 		return -EOPNOTSUPP;
1013 	}
1014 
1015 	return -EOPNOTSUPP;
1016 }
1017 
1018 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1019 {
1020 	u8 status;
1021 	int err;
1022 
1023 	switch (attr) {
1024 	case hwmon_in_input:
1025 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1026 
1027 	case hwmon_in_lcrit:
1028 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1029 		sfp_hwmon_calibrate_vcc(sfp, value);
1030 		return 0;
1031 
1032 	case hwmon_in_min:
1033 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1034 		sfp_hwmon_calibrate_vcc(sfp, value);
1035 		return 0;
1036 
1037 	case hwmon_in_max:
1038 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1039 		sfp_hwmon_calibrate_vcc(sfp, value);
1040 		return 0;
1041 
1042 	case hwmon_in_crit:
1043 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1044 		sfp_hwmon_calibrate_vcc(sfp, value);
1045 		return 0;
1046 
1047 	case hwmon_in_lcrit_alarm:
1048 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1049 		if (err < 0)
1050 			return err;
1051 
1052 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1053 		return 0;
1054 
1055 	case hwmon_in_min_alarm:
1056 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1057 		if (err < 0)
1058 			return err;
1059 
1060 		*value = !!(status & SFP_WARN0_VCC_LOW);
1061 		return 0;
1062 
1063 	case hwmon_in_max_alarm:
1064 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1065 		if (err < 0)
1066 			return err;
1067 
1068 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1069 		return 0;
1070 
1071 	case hwmon_in_crit_alarm:
1072 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1073 		if (err < 0)
1074 			return err;
1075 
1076 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1077 		return 0;
1078 	default:
1079 		return -EOPNOTSUPP;
1080 	}
1081 
1082 	return -EOPNOTSUPP;
1083 }
1084 
1085 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1086 {
1087 	u8 status;
1088 	int err;
1089 
1090 	switch (attr) {
1091 	case hwmon_curr_input:
1092 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1093 
1094 	case hwmon_curr_lcrit:
1095 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1096 		sfp_hwmon_calibrate_bias(sfp, value);
1097 		return 0;
1098 
1099 	case hwmon_curr_min:
1100 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1101 		sfp_hwmon_calibrate_bias(sfp, value);
1102 		return 0;
1103 
1104 	case hwmon_curr_max:
1105 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1106 		sfp_hwmon_calibrate_bias(sfp, value);
1107 		return 0;
1108 
1109 	case hwmon_curr_crit:
1110 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1111 		sfp_hwmon_calibrate_bias(sfp, value);
1112 		return 0;
1113 
1114 	case hwmon_curr_lcrit_alarm:
1115 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1116 		if (err < 0)
1117 			return err;
1118 
1119 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1120 		return 0;
1121 
1122 	case hwmon_curr_min_alarm:
1123 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124 		if (err < 0)
1125 			return err;
1126 
1127 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1128 		return 0;
1129 
1130 	case hwmon_curr_max_alarm:
1131 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1132 		if (err < 0)
1133 			return err;
1134 
1135 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1136 		return 0;
1137 
1138 	case hwmon_curr_crit_alarm:
1139 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1140 		if (err < 0)
1141 			return err;
1142 
1143 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1144 		return 0;
1145 	default:
1146 		return -EOPNOTSUPP;
1147 	}
1148 
1149 	return -EOPNOTSUPP;
1150 }
1151 
1152 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1153 {
1154 	u8 status;
1155 	int err;
1156 
1157 	switch (attr) {
1158 	case hwmon_power_input:
1159 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1160 
1161 	case hwmon_power_lcrit:
1162 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1163 		sfp_hwmon_calibrate_tx_power(sfp, value);
1164 		return 0;
1165 
1166 	case hwmon_power_min:
1167 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1168 		sfp_hwmon_calibrate_tx_power(sfp, value);
1169 		return 0;
1170 
1171 	case hwmon_power_max:
1172 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1173 		sfp_hwmon_calibrate_tx_power(sfp, value);
1174 		return 0;
1175 
1176 	case hwmon_power_crit:
1177 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1178 		sfp_hwmon_calibrate_tx_power(sfp, value);
1179 		return 0;
1180 
1181 	case hwmon_power_lcrit_alarm:
1182 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1183 		if (err < 0)
1184 			return err;
1185 
1186 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1187 		return 0;
1188 
1189 	case hwmon_power_min_alarm:
1190 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191 		if (err < 0)
1192 			return err;
1193 
1194 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1195 		return 0;
1196 
1197 	case hwmon_power_max_alarm:
1198 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1199 		if (err < 0)
1200 			return err;
1201 
1202 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1203 		return 0;
1204 
1205 	case hwmon_power_crit_alarm:
1206 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1207 		if (err < 0)
1208 			return err;
1209 
1210 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1211 		return 0;
1212 	default:
1213 		return -EOPNOTSUPP;
1214 	}
1215 
1216 	return -EOPNOTSUPP;
1217 }
1218 
1219 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1220 {
1221 	u8 status;
1222 	int err;
1223 
1224 	switch (attr) {
1225 	case hwmon_power_input:
1226 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1227 
1228 	case hwmon_power_lcrit:
1229 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1230 		sfp_hwmon_to_rx_power(value);
1231 		return 0;
1232 
1233 	case hwmon_power_min:
1234 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1235 		sfp_hwmon_to_rx_power(value);
1236 		return 0;
1237 
1238 	case hwmon_power_max:
1239 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1240 		sfp_hwmon_to_rx_power(value);
1241 		return 0;
1242 
1243 	case hwmon_power_crit:
1244 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1245 		sfp_hwmon_to_rx_power(value);
1246 		return 0;
1247 
1248 	case hwmon_power_lcrit_alarm:
1249 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1250 		if (err < 0)
1251 			return err;
1252 
1253 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1254 		return 0;
1255 
1256 	case hwmon_power_min_alarm:
1257 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1258 		if (err < 0)
1259 			return err;
1260 
1261 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1262 		return 0;
1263 
1264 	case hwmon_power_max_alarm:
1265 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1266 		if (err < 0)
1267 			return err;
1268 
1269 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1270 		return 0;
1271 
1272 	case hwmon_power_crit_alarm:
1273 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1274 		if (err < 0)
1275 			return err;
1276 
1277 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1278 		return 0;
1279 	default:
1280 		return -EOPNOTSUPP;
1281 	}
1282 
1283 	return -EOPNOTSUPP;
1284 }
1285 
1286 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1287 			  u32 attr, int channel, long *value)
1288 {
1289 	struct sfp *sfp = dev_get_drvdata(dev);
1290 
1291 	switch (type) {
1292 	case hwmon_temp:
1293 		return sfp_hwmon_temp(sfp, attr, value);
1294 	case hwmon_in:
1295 		return sfp_hwmon_vcc(sfp, attr, value);
1296 	case hwmon_curr:
1297 		return sfp_hwmon_bias(sfp, attr, value);
1298 	case hwmon_power:
1299 		switch (channel) {
1300 		case 0:
1301 			return sfp_hwmon_tx_power(sfp, attr, value);
1302 		case 1:
1303 			return sfp_hwmon_rx_power(sfp, attr, value);
1304 		default:
1305 			return -EOPNOTSUPP;
1306 		}
1307 	default:
1308 		return -EOPNOTSUPP;
1309 	}
1310 }
1311 
1312 static const char *const sfp_hwmon_power_labels[] = {
1313 	"TX_power",
1314 	"RX_power",
1315 };
1316 
1317 static int sfp_hwmon_read_string(struct device *dev,
1318 				 enum hwmon_sensor_types type,
1319 				 u32 attr, int channel, const char **str)
1320 {
1321 	switch (type) {
1322 	case hwmon_curr:
1323 		switch (attr) {
1324 		case hwmon_curr_label:
1325 			*str = "bias";
1326 			return 0;
1327 		default:
1328 			return -EOPNOTSUPP;
1329 		}
1330 		break;
1331 	case hwmon_temp:
1332 		switch (attr) {
1333 		case hwmon_temp_label:
1334 			*str = "temperature";
1335 			return 0;
1336 		default:
1337 			return -EOPNOTSUPP;
1338 		}
1339 		break;
1340 	case hwmon_in:
1341 		switch (attr) {
1342 		case hwmon_in_label:
1343 			*str = "VCC";
1344 			return 0;
1345 		default:
1346 			return -EOPNOTSUPP;
1347 		}
1348 		break;
1349 	case hwmon_power:
1350 		switch (attr) {
1351 		case hwmon_power_label:
1352 			*str = sfp_hwmon_power_labels[channel];
1353 			return 0;
1354 		default:
1355 			return -EOPNOTSUPP;
1356 		}
1357 		break;
1358 	default:
1359 		return -EOPNOTSUPP;
1360 	}
1361 
1362 	return -EOPNOTSUPP;
1363 }
1364 
1365 static const struct hwmon_ops sfp_hwmon_ops = {
1366 	.is_visible = sfp_hwmon_is_visible,
1367 	.read = sfp_hwmon_read,
1368 	.read_string = sfp_hwmon_read_string,
1369 };
1370 
1371 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1372 	HWMON_CHANNEL_INFO(chip,
1373 			   HWMON_C_REGISTER_TZ),
1374 	HWMON_CHANNEL_INFO(in,
1375 			   HWMON_I_INPUT |
1376 			   HWMON_I_MAX | HWMON_I_MIN |
1377 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1378 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1379 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1380 			   HWMON_I_LABEL),
1381 	HWMON_CHANNEL_INFO(temp,
1382 			   HWMON_T_INPUT |
1383 			   HWMON_T_MAX | HWMON_T_MIN |
1384 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1385 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1386 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1387 			   HWMON_T_LABEL),
1388 	HWMON_CHANNEL_INFO(curr,
1389 			   HWMON_C_INPUT |
1390 			   HWMON_C_MAX | HWMON_C_MIN |
1391 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1392 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1393 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1394 			   HWMON_C_LABEL),
1395 	HWMON_CHANNEL_INFO(power,
1396 			   /* Transmit power */
1397 			   HWMON_P_INPUT |
1398 			   HWMON_P_MAX | HWMON_P_MIN |
1399 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1400 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1401 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1402 			   HWMON_P_LABEL,
1403 			   /* Receive power */
1404 			   HWMON_P_INPUT |
1405 			   HWMON_P_MAX | HWMON_P_MIN |
1406 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1407 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1408 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1409 			   HWMON_P_LABEL),
1410 	NULL,
1411 };
1412 
1413 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1414 	.ops = &sfp_hwmon_ops,
1415 	.info = sfp_hwmon_info,
1416 };
1417 
1418 static void sfp_hwmon_probe(struct work_struct *work)
1419 {
1420 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1421 	int err;
1422 
1423 	/* hwmon interface needs to access 16bit registers in atomic way to
1424 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1425 	 * possible to guarantee coherency because EEPROM is broken in such way
1426 	 * that does not support atomic 16bit read operation then we have to
1427 	 * skip registration of hwmon device.
1428 	 */
1429 	if (sfp->i2c_block_size < 2) {
1430 		dev_info(sfp->dev,
1431 			 "skipping hwmon device registration due to broken EEPROM\n");
1432 		dev_info(sfp->dev,
1433 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1434 		return;
1435 	}
1436 
1437 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1438 	if (err < 0) {
1439 		if (sfp->hwmon_tries--) {
1440 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1441 					 T_PROBE_RETRY_SLOW);
1442 		} else {
1443 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1444 				 ERR_PTR(err));
1445 		}
1446 		return;
1447 	}
1448 
1449 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1450 	if (IS_ERR(sfp->hwmon_name)) {
1451 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1452 		return;
1453 	}
1454 
1455 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1456 							 sfp->hwmon_name, sfp,
1457 							 &sfp_hwmon_chip_info,
1458 							 NULL);
1459 	if (IS_ERR(sfp->hwmon_dev))
1460 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1461 			PTR_ERR(sfp->hwmon_dev));
1462 }
1463 
1464 static int sfp_hwmon_insert(struct sfp *sfp)
1465 {
1466 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1467 		return 0;
1468 
1469 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1470 		return 0;
1471 
1472 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1473 		/* This driver in general does not support address
1474 		 * change.
1475 		 */
1476 		return 0;
1477 
1478 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1479 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1480 
1481 	return 0;
1482 }
1483 
1484 static void sfp_hwmon_remove(struct sfp *sfp)
1485 {
1486 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1487 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1488 		hwmon_device_unregister(sfp->hwmon_dev);
1489 		sfp->hwmon_dev = NULL;
1490 		kfree(sfp->hwmon_name);
1491 	}
1492 }
1493 
1494 static int sfp_hwmon_init(struct sfp *sfp)
1495 {
1496 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1497 
1498 	return 0;
1499 }
1500 
1501 static void sfp_hwmon_exit(struct sfp *sfp)
1502 {
1503 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1504 }
1505 #else
1506 static int sfp_hwmon_insert(struct sfp *sfp)
1507 {
1508 	return 0;
1509 }
1510 
1511 static void sfp_hwmon_remove(struct sfp *sfp)
1512 {
1513 }
1514 
1515 static int sfp_hwmon_init(struct sfp *sfp)
1516 {
1517 	return 0;
1518 }
1519 
1520 static void sfp_hwmon_exit(struct sfp *sfp)
1521 {
1522 }
1523 #endif
1524 
1525 /* Helpers */
1526 static void sfp_module_tx_disable(struct sfp *sfp)
1527 {
1528 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1529 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1530 	sfp->state |= SFP_F_TX_DISABLE;
1531 	sfp_set_state(sfp, sfp->state);
1532 }
1533 
1534 static void sfp_module_tx_enable(struct sfp *sfp)
1535 {
1536 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1537 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1538 	sfp->state &= ~SFP_F_TX_DISABLE;
1539 	sfp_set_state(sfp, sfp->state);
1540 }
1541 
1542 #if IS_ENABLED(CONFIG_DEBUG_FS)
1543 static int sfp_debug_state_show(struct seq_file *s, void *data)
1544 {
1545 	struct sfp *sfp = s->private;
1546 
1547 	seq_printf(s, "Module state: %s\n",
1548 		   mod_state_to_str(sfp->sm_mod_state));
1549 	seq_printf(s, "Module probe attempts: %d %d\n",
1550 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1551 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1552 	seq_printf(s, "Device state: %s\n",
1553 		   dev_state_to_str(sfp->sm_dev_state));
1554 	seq_printf(s, "Main state: %s\n",
1555 		   sm_state_to_str(sfp->sm_state));
1556 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1557 		   sfp->sm_fault_retries);
1558 	seq_printf(s, "PHY probe remaining retries: %d\n",
1559 		   sfp->sm_phy_retries);
1560 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1561 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1562 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1563 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1564 	return 0;
1565 }
1566 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1567 
1568 static void sfp_debugfs_init(struct sfp *sfp)
1569 {
1570 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1571 
1572 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1573 			    &sfp_debug_state_fops);
1574 }
1575 
1576 static void sfp_debugfs_exit(struct sfp *sfp)
1577 {
1578 	debugfs_remove_recursive(sfp->debugfs_dir);
1579 }
1580 #else
1581 static void sfp_debugfs_init(struct sfp *sfp)
1582 {
1583 }
1584 
1585 static void sfp_debugfs_exit(struct sfp *sfp)
1586 {
1587 }
1588 #endif
1589 
1590 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1591 {
1592 	unsigned int state = sfp->state;
1593 
1594 	if (state & SFP_F_TX_DISABLE)
1595 		return;
1596 
1597 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1598 
1599 	udelay(T_RESET_US);
1600 
1601 	sfp_set_state(sfp, state);
1602 }
1603 
1604 /* SFP state machine */
1605 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1606 {
1607 	if (timeout)
1608 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1609 				 timeout);
1610 	else
1611 		cancel_delayed_work(&sfp->timeout);
1612 }
1613 
1614 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1615 			unsigned int timeout)
1616 {
1617 	sfp->sm_state = state;
1618 	sfp_sm_set_timer(sfp, timeout);
1619 }
1620 
1621 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1622 			    unsigned int timeout)
1623 {
1624 	sfp->sm_mod_state = state;
1625 	sfp_sm_set_timer(sfp, timeout);
1626 }
1627 
1628 static void sfp_sm_phy_detach(struct sfp *sfp)
1629 {
1630 	sfp_remove_phy(sfp->sfp_bus);
1631 	phy_device_remove(sfp->mod_phy);
1632 	phy_device_free(sfp->mod_phy);
1633 	sfp->mod_phy = NULL;
1634 }
1635 
1636 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1637 {
1638 	struct phy_device *phy;
1639 	int err;
1640 
1641 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1642 	if (phy == ERR_PTR(-ENODEV))
1643 		return PTR_ERR(phy);
1644 	if (IS_ERR(phy)) {
1645 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1646 		return PTR_ERR(phy);
1647 	}
1648 
1649 	err = phy_device_register(phy);
1650 	if (err) {
1651 		phy_device_free(phy);
1652 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1653 			ERR_PTR(err));
1654 		return err;
1655 	}
1656 
1657 	err = sfp_add_phy(sfp->sfp_bus, phy);
1658 	if (err) {
1659 		phy_device_remove(phy);
1660 		phy_device_free(phy);
1661 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1662 		return err;
1663 	}
1664 
1665 	sfp->mod_phy = phy;
1666 
1667 	return 0;
1668 }
1669 
1670 static void sfp_sm_link_up(struct sfp *sfp)
1671 {
1672 	sfp_link_up(sfp->sfp_bus);
1673 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1674 }
1675 
1676 static void sfp_sm_link_down(struct sfp *sfp)
1677 {
1678 	sfp_link_down(sfp->sfp_bus);
1679 }
1680 
1681 static void sfp_sm_link_check_los(struct sfp *sfp)
1682 {
1683 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1684 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1685 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1686 	bool los = false;
1687 
1688 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1689 	 * are set, we assume that no LOS signal is available. If both are
1690 	 * set, we assume LOS is not implemented (and is meaningless.)
1691 	 */
1692 	if (los_options == los_inverted)
1693 		los = !(sfp->state & SFP_F_LOS);
1694 	else if (los_options == los_normal)
1695 		los = !!(sfp->state & SFP_F_LOS);
1696 
1697 	if (los)
1698 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1699 	else
1700 		sfp_sm_link_up(sfp);
1701 }
1702 
1703 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1704 {
1705 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1706 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1707 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1708 
1709 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1710 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1711 }
1712 
1713 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1714 {
1715 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1716 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1717 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1718 
1719 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1720 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1721 }
1722 
1723 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1724 {
1725 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1726 		dev_err(sfp->dev,
1727 			"module persistently indicates fault, disabling\n");
1728 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1729 	} else {
1730 		if (warn)
1731 			dev_err(sfp->dev, "module transmit fault indicated\n");
1732 
1733 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1734 	}
1735 }
1736 
1737 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1738 {
1739 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1740 		return sfp_i2c_mdiobus_create(sfp);
1741 
1742 	return 0;
1743 }
1744 
1745 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1746  * normally sits at I2C bus address 0x56, and may either be a clause 22
1747  * or clause 45 PHY.
1748  *
1749  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1750  * negotiation enabled, but some may be in 1000base-X - which is for the
1751  * PHY driver to determine.
1752  *
1753  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1754  * mode according to the negotiated line speed.
1755  */
1756 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1757 {
1758 	int err = 0;
1759 
1760 	switch (sfp->mdio_protocol) {
1761 	case MDIO_I2C_NONE:
1762 		break;
1763 
1764 	case MDIO_I2C_MARVELL_C22:
1765 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1766 		break;
1767 
1768 	case MDIO_I2C_C45:
1769 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1770 		break;
1771 
1772 	case MDIO_I2C_ROLLBALL:
1773 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1774 		break;
1775 	}
1776 
1777 	return err;
1778 }
1779 
1780 static int sfp_module_parse_power(struct sfp *sfp)
1781 {
1782 	u32 power_mW = 1000;
1783 	bool supports_a2;
1784 
1785 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1786 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1787 		power_mW = 1500;
1788 	/* Added in Rev 11.9, but there is no compliance code for this */
1789 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1790 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1791 		power_mW = 2000;
1792 
1793 	/* Power level 1 modules (max. 1W) are always supported. */
1794 	if (power_mW <= 1000) {
1795 		sfp->module_power_mW = power_mW;
1796 		return 0;
1797 	}
1798 
1799 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1800 				SFP_SFF8472_COMPLIANCE_NONE ||
1801 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1802 
1803 	if (power_mW > sfp->max_power_mW) {
1804 		/* Module power specification exceeds the allowed maximum. */
1805 		if (!supports_a2) {
1806 			/* The module appears not to implement bus address
1807 			 * 0xa2, so assume that the module powers up in the
1808 			 * indicated mode.
1809 			 */
1810 			dev_err(sfp->dev,
1811 				"Host does not support %u.%uW modules\n",
1812 				power_mW / 1000, (power_mW / 100) % 10);
1813 			return -EINVAL;
1814 		} else {
1815 			dev_warn(sfp->dev,
1816 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1817 				 power_mW / 1000, (power_mW / 100) % 10);
1818 			return 0;
1819 		}
1820 	}
1821 
1822 	if (!supports_a2) {
1823 		/* The module power level is below the host maximum and the
1824 		 * module appears not to implement bus address 0xa2, so assume
1825 		 * that the module powers up in the indicated mode.
1826 		 */
1827 		return 0;
1828 	}
1829 
1830 	/* If the module requires a higher power mode, but also requires
1831 	 * an address change sequence, warn the user that the module may
1832 	 * not be functional.
1833 	 */
1834 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1835 		dev_warn(sfp->dev,
1836 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1837 			 power_mW / 1000, (power_mW / 100) % 10);
1838 		return 0;
1839 	}
1840 
1841 	sfp->module_power_mW = power_mW;
1842 
1843 	return 0;
1844 }
1845 
1846 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1847 {
1848 	int err;
1849 
1850 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1851 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1852 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1853 	if (err != sizeof(u8)) {
1854 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1855 			enable ? "en" : "dis", ERR_PTR(err));
1856 		return -EAGAIN;
1857 	}
1858 
1859 	if (enable)
1860 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1861 			 sfp->module_power_mW / 1000,
1862 			 (sfp->module_power_mW / 100) % 10);
1863 
1864 	return 0;
1865 }
1866 
1867 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1868  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1869  * not support multibyte reads from the EEPROM. Each multi-byte read
1870  * operation returns just one byte of EEPROM followed by zeros. There is
1871  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1872  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1873  * name and vendor id into EEPROM, so there is even no way to detect if
1874  * module is V-SOL V2801F. Therefore check for those zeros in the read
1875  * data and then based on check switch to reading EEPROM to one byte
1876  * at a time.
1877  */
1878 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1879 {
1880 	size_t i, block_size = sfp->i2c_block_size;
1881 
1882 	/* Already using byte IO */
1883 	if (block_size == 1)
1884 		return false;
1885 
1886 	for (i = 1; i < len; i += block_size) {
1887 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1888 			return false;
1889 	}
1890 	return true;
1891 }
1892 
1893 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1894 {
1895 	u8 check;
1896 	int err;
1897 
1898 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1899 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1900 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1901 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1902 		id->base.phys_id = SFF8024_ID_SFF_8472;
1903 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1904 		id->base.connector = SFF8024_CONNECTOR_LC;
1905 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1906 		if (err != 3) {
1907 			dev_err(sfp->dev,
1908 				"Failed to rewrite module EEPROM: %pe\n",
1909 				ERR_PTR(err));
1910 			return err;
1911 		}
1912 
1913 		/* Cotsworks modules have been found to require a delay between write operations. */
1914 		mdelay(50);
1915 
1916 		/* Update base structure checksum */
1917 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1918 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1919 		if (err != 1) {
1920 			dev_err(sfp->dev,
1921 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1922 				ERR_PTR(err));
1923 			return err;
1924 		}
1925 	}
1926 	return 0;
1927 }
1928 
1929 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1930 {
1931 	/* SFP module inserted - read I2C data */
1932 	struct sfp_eeprom_id id;
1933 	bool cotsworks_sfbg;
1934 	bool cotsworks;
1935 	u8 check;
1936 	int ret;
1937 
1938 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1939 
1940 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1941 	if (ret < 0) {
1942 		if (report)
1943 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1944 				ERR_PTR(ret));
1945 		return -EAGAIN;
1946 	}
1947 
1948 	if (ret != sizeof(id.base)) {
1949 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1950 		return -EAGAIN;
1951 	}
1952 
1953 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1954 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1955 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1956 	 * fields, so do not switch to one byte reading at a time unless it
1957 	 * is really required and we have no other option.
1958 	 */
1959 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1960 		dev_info(sfp->dev,
1961 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1962 		dev_info(sfp->dev,
1963 			 "Switching to reading EEPROM to one byte at a time\n");
1964 		sfp->i2c_block_size = 1;
1965 
1966 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1967 		if (ret < 0) {
1968 			if (report)
1969 				dev_err(sfp->dev,
1970 					"failed to read EEPROM: %pe\n",
1971 					ERR_PTR(ret));
1972 			return -EAGAIN;
1973 		}
1974 
1975 		if (ret != sizeof(id.base)) {
1976 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
1977 				ERR_PTR(ret));
1978 			return -EAGAIN;
1979 		}
1980 	}
1981 
1982 	/* Cotsworks do not seem to update the checksums when they
1983 	 * do the final programming with the final module part number,
1984 	 * serial number and date code.
1985 	 */
1986 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1987 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1988 
1989 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1990 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1991 	 * Cotsworks PN matches and bytes are not correct.
1992 	 */
1993 	if (cotsworks && cotsworks_sfbg) {
1994 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1995 		if (ret < 0)
1996 			return ret;
1997 	}
1998 
1999 	/* Validate the checksum over the base structure */
2000 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2001 	if (check != id.base.cc_base) {
2002 		if (cotsworks) {
2003 			dev_warn(sfp->dev,
2004 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2005 				 check, id.base.cc_base);
2006 		} else {
2007 			dev_err(sfp->dev,
2008 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2009 				check, id.base.cc_base);
2010 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2011 				       16, 1, &id, sizeof(id), true);
2012 			return -EINVAL;
2013 		}
2014 	}
2015 
2016 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2017 	if (ret < 0) {
2018 		if (report)
2019 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2020 				ERR_PTR(ret));
2021 		return -EAGAIN;
2022 	}
2023 
2024 	if (ret != sizeof(id.ext)) {
2025 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2026 		return -EAGAIN;
2027 	}
2028 
2029 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2030 	if (check != id.ext.cc_ext) {
2031 		if (cotsworks) {
2032 			dev_warn(sfp->dev,
2033 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2034 				 check, id.ext.cc_ext);
2035 		} else {
2036 			dev_err(sfp->dev,
2037 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2038 				check, id.ext.cc_ext);
2039 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2040 				       16, 1, &id, sizeof(id), true);
2041 			memset(&id.ext, 0, sizeof(id.ext));
2042 		}
2043 	}
2044 
2045 	sfp->id = id;
2046 
2047 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2048 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2049 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2050 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2051 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2052 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2053 
2054 	/* Check whether we support this module */
2055 	if (!sfp->type->module_supported(&id)) {
2056 		dev_err(sfp->dev,
2057 			"module is not supported - phys id 0x%02x 0x%02x\n",
2058 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2059 		return -EINVAL;
2060 	}
2061 
2062 	/* If the module requires address swap mode, warn about it */
2063 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2064 		dev_warn(sfp->dev,
2065 			 "module address swap to access page 0xA2 is not supported.\n");
2066 
2067 	/* Parse the module power requirement */
2068 	ret = sfp_module_parse_power(sfp);
2069 	if (ret < 0)
2070 		return ret;
2071 
2072 	/* Initialise state bits to use from hardware */
2073 	sfp->state_hw_mask = SFP_F_PRESENT;
2074 	if (sfp->gpio[GPIO_TX_DISABLE])
2075 		sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2076 	if (sfp->gpio[GPIO_TX_FAULT])
2077 		sfp->state_hw_mask |= SFP_F_TX_FAULT;
2078 	if (sfp->gpio[GPIO_LOS])
2079 		sfp->state_hw_mask |= SFP_F_LOS;
2080 
2081 	sfp->module_t_start_up = T_START_UP;
2082 	sfp->module_t_wait = T_WAIT;
2083 
2084 	sfp->tx_fault_ignore = false;
2085 
2086 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2087 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2088 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2089 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2090 		sfp->mdio_protocol = MDIO_I2C_C45;
2091 	else if (sfp->id.base.e1000_base_t)
2092 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2093 	else
2094 		sfp->mdio_protocol = MDIO_I2C_NONE;
2095 
2096 	sfp->quirk = sfp_lookup_quirk(&id);
2097 	if (sfp->quirk && sfp->quirk->fixup)
2098 		sfp->quirk->fixup(sfp);
2099 
2100 	return 0;
2101 }
2102 
2103 static void sfp_sm_mod_remove(struct sfp *sfp)
2104 {
2105 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2106 		sfp_module_remove(sfp->sfp_bus);
2107 
2108 	sfp_hwmon_remove(sfp);
2109 
2110 	memset(&sfp->id, 0, sizeof(sfp->id));
2111 	sfp->module_power_mW = 0;
2112 
2113 	dev_info(sfp->dev, "module removed\n");
2114 }
2115 
2116 /* This state machine tracks the upstream's state */
2117 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2118 {
2119 	switch (sfp->sm_dev_state) {
2120 	default:
2121 		if (event == SFP_E_DEV_ATTACH)
2122 			sfp->sm_dev_state = SFP_DEV_DOWN;
2123 		break;
2124 
2125 	case SFP_DEV_DOWN:
2126 		if (event == SFP_E_DEV_DETACH)
2127 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2128 		else if (event == SFP_E_DEV_UP)
2129 			sfp->sm_dev_state = SFP_DEV_UP;
2130 		break;
2131 
2132 	case SFP_DEV_UP:
2133 		if (event == SFP_E_DEV_DETACH)
2134 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2135 		else if (event == SFP_E_DEV_DOWN)
2136 			sfp->sm_dev_state = SFP_DEV_DOWN;
2137 		break;
2138 	}
2139 }
2140 
2141 /* This state machine tracks the insert/remove state of the module, probes
2142  * the on-board EEPROM, and sets up the power level.
2143  */
2144 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2145 {
2146 	int err;
2147 
2148 	/* Handle remove event globally, it resets this state machine */
2149 	if (event == SFP_E_REMOVE) {
2150 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2151 			sfp_sm_mod_remove(sfp);
2152 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2153 		return;
2154 	}
2155 
2156 	/* Handle device detach globally */
2157 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2158 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2159 		if (sfp->module_power_mW > 1000 &&
2160 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2161 			sfp_sm_mod_hpower(sfp, false);
2162 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2163 		return;
2164 	}
2165 
2166 	switch (sfp->sm_mod_state) {
2167 	default:
2168 		if (event == SFP_E_INSERT) {
2169 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2170 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2171 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2172 		}
2173 		break;
2174 
2175 	case SFP_MOD_PROBE:
2176 		/* Wait for T_PROBE_INIT to time out */
2177 		if (event != SFP_E_TIMEOUT)
2178 			break;
2179 
2180 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2181 		if (err == -EAGAIN) {
2182 			if (sfp->sm_mod_tries_init &&
2183 			   --sfp->sm_mod_tries_init) {
2184 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2185 				break;
2186 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2187 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2188 					dev_warn(sfp->dev,
2189 						 "please wait, module slow to respond\n");
2190 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2191 				break;
2192 			}
2193 		}
2194 		if (err < 0) {
2195 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2196 			break;
2197 		}
2198 
2199 		/* Force a poll to re-read the hardware signal state after
2200 		 * sfp_sm_mod_probe() changed state_hw_mask.
2201 		 */
2202 		mod_delayed_work(system_wq, &sfp->poll, 1);
2203 
2204 		err = sfp_hwmon_insert(sfp);
2205 		if (err)
2206 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2207 				 ERR_PTR(err));
2208 
2209 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2210 		fallthrough;
2211 	case SFP_MOD_WAITDEV:
2212 		/* Ensure that the device is attached before proceeding */
2213 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2214 			break;
2215 
2216 		/* Report the module insertion to the upstream device */
2217 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2218 					sfp->quirk);
2219 		if (err < 0) {
2220 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2221 			break;
2222 		}
2223 
2224 		/* If this is a power level 1 module, we are done */
2225 		if (sfp->module_power_mW <= 1000)
2226 			goto insert;
2227 
2228 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2229 		fallthrough;
2230 	case SFP_MOD_HPOWER:
2231 		/* Enable high power mode */
2232 		err = sfp_sm_mod_hpower(sfp, true);
2233 		if (err < 0) {
2234 			if (err != -EAGAIN) {
2235 				sfp_module_remove(sfp->sfp_bus);
2236 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2237 			} else {
2238 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2239 			}
2240 			break;
2241 		}
2242 
2243 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2244 		break;
2245 
2246 	case SFP_MOD_WAITPWR:
2247 		/* Wait for T_HPOWER_LEVEL to time out */
2248 		if (event != SFP_E_TIMEOUT)
2249 			break;
2250 
2251 	insert:
2252 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2253 		break;
2254 
2255 	case SFP_MOD_PRESENT:
2256 	case SFP_MOD_ERROR:
2257 		break;
2258 	}
2259 }
2260 
2261 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2262 {
2263 	unsigned long timeout;
2264 	int ret;
2265 
2266 	/* Some events are global */
2267 	if (sfp->sm_state != SFP_S_DOWN &&
2268 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2269 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2270 		if (sfp->sm_state == SFP_S_LINK_UP &&
2271 		    sfp->sm_dev_state == SFP_DEV_UP)
2272 			sfp_sm_link_down(sfp);
2273 		if (sfp->sm_state > SFP_S_INIT)
2274 			sfp_module_stop(sfp->sfp_bus);
2275 		if (sfp->mod_phy)
2276 			sfp_sm_phy_detach(sfp);
2277 		if (sfp->i2c_mii)
2278 			sfp_i2c_mdiobus_destroy(sfp);
2279 		sfp_module_tx_disable(sfp);
2280 		sfp_soft_stop_poll(sfp);
2281 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2282 		return;
2283 	}
2284 
2285 	/* The main state machine */
2286 	switch (sfp->sm_state) {
2287 	case SFP_S_DOWN:
2288 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2289 		    sfp->sm_dev_state != SFP_DEV_UP)
2290 			break;
2291 
2292 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2293 			sfp_soft_start_poll(sfp);
2294 
2295 		sfp_module_tx_enable(sfp);
2296 
2297 		/* Initialise the fault clearance retries */
2298 		sfp->sm_fault_retries = N_FAULT_INIT;
2299 
2300 		/* We need to check the TX_FAULT state, which is not defined
2301 		 * while TX_DISABLE is asserted. The earliest we want to do
2302 		 * anything (such as probe for a PHY) is 50ms (or more on
2303 		 * specific modules).
2304 		 */
2305 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2306 		break;
2307 
2308 	case SFP_S_WAIT:
2309 		if (event != SFP_E_TIMEOUT)
2310 			break;
2311 
2312 		if (sfp->state & SFP_F_TX_FAULT) {
2313 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2314 			 * from the TX_DISABLE deassertion for the module to
2315 			 * initialise, which is indicated by TX_FAULT
2316 			 * deasserting.
2317 			 */
2318 			timeout = sfp->module_t_start_up;
2319 			if (timeout > sfp->module_t_wait)
2320 				timeout -= sfp->module_t_wait;
2321 			else
2322 				timeout = 1;
2323 
2324 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2325 		} else {
2326 			/* TX_FAULT is not asserted, assume the module has
2327 			 * finished initialising.
2328 			 */
2329 			goto init_done;
2330 		}
2331 		break;
2332 
2333 	case SFP_S_INIT:
2334 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2335 			/* TX_FAULT is still asserted after t_init
2336 			 * or t_start_up, so assume there is a fault.
2337 			 */
2338 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2339 				     sfp->sm_fault_retries == N_FAULT_INIT);
2340 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2341 	init_done:
2342 			/* Create mdiobus and start trying for PHY */
2343 			ret = sfp_sm_add_mdio_bus(sfp);
2344 			if (ret < 0) {
2345 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2346 				break;
2347 			}
2348 			sfp->sm_phy_retries = R_PHY_RETRY;
2349 			goto phy_probe;
2350 		}
2351 		break;
2352 
2353 	case SFP_S_INIT_PHY:
2354 		if (event != SFP_E_TIMEOUT)
2355 			break;
2356 	phy_probe:
2357 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2358 		 * clear.  Probe for the PHY and check the LOS state.
2359 		 */
2360 		ret = sfp_sm_probe_for_phy(sfp);
2361 		if (ret == -ENODEV) {
2362 			if (--sfp->sm_phy_retries) {
2363 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2364 				break;
2365 			} else {
2366 				dev_info(sfp->dev, "no PHY detected\n");
2367 			}
2368 		} else if (ret) {
2369 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2370 			break;
2371 		}
2372 		if (sfp_module_start(sfp->sfp_bus)) {
2373 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2374 			break;
2375 		}
2376 		sfp_sm_link_check_los(sfp);
2377 
2378 		/* Reset the fault retry count */
2379 		sfp->sm_fault_retries = N_FAULT;
2380 		break;
2381 
2382 	case SFP_S_INIT_TX_FAULT:
2383 		if (event == SFP_E_TIMEOUT) {
2384 			sfp_module_tx_fault_reset(sfp);
2385 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2386 		}
2387 		break;
2388 
2389 	case SFP_S_WAIT_LOS:
2390 		if (event == SFP_E_TX_FAULT)
2391 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2392 		else if (sfp_los_event_inactive(sfp, event))
2393 			sfp_sm_link_up(sfp);
2394 		break;
2395 
2396 	case SFP_S_LINK_UP:
2397 		if (event == SFP_E_TX_FAULT) {
2398 			sfp_sm_link_down(sfp);
2399 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2400 		} else if (sfp_los_event_active(sfp, event)) {
2401 			sfp_sm_link_down(sfp);
2402 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2403 		}
2404 		break;
2405 
2406 	case SFP_S_TX_FAULT:
2407 		if (event == SFP_E_TIMEOUT) {
2408 			sfp_module_tx_fault_reset(sfp);
2409 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2410 		}
2411 		break;
2412 
2413 	case SFP_S_REINIT:
2414 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2415 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2416 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2417 			dev_info(sfp->dev, "module transmit fault recovered\n");
2418 			sfp_sm_link_check_los(sfp);
2419 		}
2420 		break;
2421 
2422 	case SFP_S_TX_DISABLE:
2423 		break;
2424 	}
2425 }
2426 
2427 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2428 {
2429 	mutex_lock(&sfp->sm_mutex);
2430 
2431 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2432 		mod_state_to_str(sfp->sm_mod_state),
2433 		dev_state_to_str(sfp->sm_dev_state),
2434 		sm_state_to_str(sfp->sm_state),
2435 		event_to_str(event));
2436 
2437 	sfp_sm_device(sfp, event);
2438 	sfp_sm_module(sfp, event);
2439 	sfp_sm_main(sfp, event);
2440 
2441 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2442 		mod_state_to_str(sfp->sm_mod_state),
2443 		dev_state_to_str(sfp->sm_dev_state),
2444 		sm_state_to_str(sfp->sm_state));
2445 
2446 	mutex_unlock(&sfp->sm_mutex);
2447 }
2448 
2449 static void sfp_attach(struct sfp *sfp)
2450 {
2451 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2452 }
2453 
2454 static void sfp_detach(struct sfp *sfp)
2455 {
2456 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2457 }
2458 
2459 static void sfp_start(struct sfp *sfp)
2460 {
2461 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2462 }
2463 
2464 static void sfp_stop(struct sfp *sfp)
2465 {
2466 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2467 }
2468 
2469 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2470 {
2471 	/* locking... and check module is present */
2472 
2473 	if (sfp->id.ext.sff8472_compliance &&
2474 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2475 		modinfo->type = ETH_MODULE_SFF_8472;
2476 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2477 	} else {
2478 		modinfo->type = ETH_MODULE_SFF_8079;
2479 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2480 	}
2481 	return 0;
2482 }
2483 
2484 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2485 			     u8 *data)
2486 {
2487 	unsigned int first, last, len;
2488 	int ret;
2489 
2490 	if (!(sfp->state & SFP_F_PRESENT))
2491 		return -ENODEV;
2492 
2493 	if (ee->len == 0)
2494 		return -EINVAL;
2495 
2496 	first = ee->offset;
2497 	last = ee->offset + ee->len;
2498 	if (first < ETH_MODULE_SFF_8079_LEN) {
2499 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2500 		len -= first;
2501 
2502 		ret = sfp_read(sfp, false, first, data, len);
2503 		if (ret < 0)
2504 			return ret;
2505 
2506 		first += len;
2507 		data += len;
2508 	}
2509 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2510 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2511 		len -= first;
2512 		first -= ETH_MODULE_SFF_8079_LEN;
2513 
2514 		ret = sfp_read(sfp, true, first, data, len);
2515 		if (ret < 0)
2516 			return ret;
2517 	}
2518 	return 0;
2519 }
2520 
2521 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2522 				     const struct ethtool_module_eeprom *page,
2523 				     struct netlink_ext_ack *extack)
2524 {
2525 	if (!(sfp->state & SFP_F_PRESENT))
2526 		return -ENODEV;
2527 
2528 	if (page->bank) {
2529 		NL_SET_ERR_MSG(extack, "Banks not supported");
2530 		return -EOPNOTSUPP;
2531 	}
2532 
2533 	if (page->page) {
2534 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2535 		return -EOPNOTSUPP;
2536 	}
2537 
2538 	if (page->i2c_address != 0x50 &&
2539 	    page->i2c_address != 0x51) {
2540 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2541 		return -EOPNOTSUPP;
2542 	}
2543 
2544 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2545 			page->data, page->length);
2546 };
2547 
2548 static const struct sfp_socket_ops sfp_module_ops = {
2549 	.attach = sfp_attach,
2550 	.detach = sfp_detach,
2551 	.start = sfp_start,
2552 	.stop = sfp_stop,
2553 	.module_info = sfp_module_info,
2554 	.module_eeprom = sfp_module_eeprom,
2555 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2556 };
2557 
2558 static void sfp_timeout(struct work_struct *work)
2559 {
2560 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2561 
2562 	rtnl_lock();
2563 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2564 	rtnl_unlock();
2565 }
2566 
2567 static void sfp_check_state(struct sfp *sfp)
2568 {
2569 	unsigned int state, i, changed;
2570 
2571 	mutex_lock(&sfp->st_mutex);
2572 	state = sfp_get_state(sfp);
2573 	changed = state ^ sfp->state;
2574 	if (sfp->tx_fault_ignore)
2575 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2576 	else
2577 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2578 
2579 	for (i = 0; i < GPIO_MAX; i++)
2580 		if (changed & BIT(i))
2581 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2582 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2583 
2584 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2585 	sfp->state = state;
2586 
2587 	rtnl_lock();
2588 	if (changed & SFP_F_PRESENT)
2589 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2590 				SFP_E_INSERT : SFP_E_REMOVE);
2591 
2592 	if (changed & SFP_F_TX_FAULT)
2593 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2594 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2595 
2596 	if (changed & SFP_F_LOS)
2597 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2598 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2599 	rtnl_unlock();
2600 	mutex_unlock(&sfp->st_mutex);
2601 }
2602 
2603 static irqreturn_t sfp_irq(int irq, void *data)
2604 {
2605 	struct sfp *sfp = data;
2606 
2607 	sfp_check_state(sfp);
2608 
2609 	return IRQ_HANDLED;
2610 }
2611 
2612 static void sfp_poll(struct work_struct *work)
2613 {
2614 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2615 
2616 	sfp_check_state(sfp);
2617 
2618 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2619 	    sfp->need_poll)
2620 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2621 }
2622 
2623 static struct sfp *sfp_alloc(struct device *dev)
2624 {
2625 	struct sfp *sfp;
2626 
2627 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2628 	if (!sfp)
2629 		return ERR_PTR(-ENOMEM);
2630 
2631 	sfp->dev = dev;
2632 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2633 
2634 	mutex_init(&sfp->sm_mutex);
2635 	mutex_init(&sfp->st_mutex);
2636 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2637 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2638 
2639 	sfp_hwmon_init(sfp);
2640 
2641 	return sfp;
2642 }
2643 
2644 static void sfp_cleanup(void *data)
2645 {
2646 	struct sfp *sfp = data;
2647 
2648 	sfp_hwmon_exit(sfp);
2649 
2650 	cancel_delayed_work_sync(&sfp->poll);
2651 	cancel_delayed_work_sync(&sfp->timeout);
2652 	if (sfp->i2c_mii) {
2653 		mdiobus_unregister(sfp->i2c_mii);
2654 		mdiobus_free(sfp->i2c_mii);
2655 	}
2656 	if (sfp->i2c)
2657 		i2c_put_adapter(sfp->i2c);
2658 	kfree(sfp);
2659 }
2660 
2661 static int sfp_i2c_get(struct sfp *sfp)
2662 {
2663 	struct fwnode_handle *h;
2664 	struct i2c_adapter *i2c;
2665 	int err;
2666 
2667 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2668 	if (IS_ERR(h)) {
2669 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2670 		return -ENODEV;
2671 	}
2672 
2673 	i2c = i2c_get_adapter_by_fwnode(h);
2674 	if (!i2c) {
2675 		err = -EPROBE_DEFER;
2676 		goto put;
2677 	}
2678 
2679 	err = sfp_i2c_configure(sfp, i2c);
2680 	if (err)
2681 		i2c_put_adapter(i2c);
2682 put:
2683 	fwnode_handle_put(h);
2684 	return err;
2685 }
2686 
2687 static int sfp_probe(struct platform_device *pdev)
2688 {
2689 	const struct sff_data *sff;
2690 	char *sfp_irq_name;
2691 	struct sfp *sfp;
2692 	int err, i;
2693 
2694 	sfp = sfp_alloc(&pdev->dev);
2695 	if (IS_ERR(sfp))
2696 		return PTR_ERR(sfp);
2697 
2698 	platform_set_drvdata(pdev, sfp);
2699 
2700 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2701 	if (err < 0)
2702 		return err;
2703 
2704 	sff = device_get_match_data(sfp->dev);
2705 	if (!sff)
2706 		sff = &sfp_data;
2707 
2708 	sfp->type = sff;
2709 
2710 	err = sfp_i2c_get(sfp);
2711 	if (err)
2712 		return err;
2713 
2714 	for (i = 0; i < GPIO_MAX; i++)
2715 		if (sff->gpios & BIT(i)) {
2716 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2717 					   gpio_names[i], gpio_flags[i]);
2718 			if (IS_ERR(sfp->gpio[i]))
2719 				return PTR_ERR(sfp->gpio[i]);
2720 		}
2721 
2722 	sfp->state_hw_mask = SFP_F_PRESENT;
2723 
2724 	sfp->get_state = sfp_gpio_get_state;
2725 	sfp->set_state = sfp_gpio_set_state;
2726 
2727 	/* Modules that have no detect signal are always present */
2728 	if (!(sfp->gpio[GPIO_MODDEF0]))
2729 		sfp->get_state = sff_gpio_get_state;
2730 
2731 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2732 				 &sfp->max_power_mW);
2733 	if (sfp->max_power_mW < 1000) {
2734 		if (sfp->max_power_mW)
2735 			dev_warn(sfp->dev,
2736 				 "Firmware bug: host maximum power should be at least 1W\n");
2737 		sfp->max_power_mW = 1000;
2738 	}
2739 
2740 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2741 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2742 
2743 	/* Get the initial state, and always signal TX disable,
2744 	 * since the network interface will not be up.
2745 	 */
2746 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2747 
2748 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2749 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2750 		sfp->state |= SFP_F_RATE_SELECT;
2751 	sfp_set_state(sfp, sfp->state);
2752 	sfp_module_tx_disable(sfp);
2753 	if (sfp->state & SFP_F_PRESENT) {
2754 		rtnl_lock();
2755 		sfp_sm_event(sfp, SFP_E_INSERT);
2756 		rtnl_unlock();
2757 	}
2758 
2759 	for (i = 0; i < GPIO_MAX; i++) {
2760 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2761 			continue;
2762 
2763 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2764 		if (sfp->gpio_irq[i] < 0) {
2765 			sfp->gpio_irq[i] = 0;
2766 			sfp->need_poll = true;
2767 			continue;
2768 		}
2769 
2770 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2771 					      "%s-%s", dev_name(sfp->dev),
2772 					      gpio_names[i]);
2773 
2774 		if (!sfp_irq_name)
2775 			return -ENOMEM;
2776 
2777 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2778 						NULL, sfp_irq,
2779 						IRQF_ONESHOT |
2780 						IRQF_TRIGGER_RISING |
2781 						IRQF_TRIGGER_FALLING,
2782 						sfp_irq_name, sfp);
2783 		if (err) {
2784 			sfp->gpio_irq[i] = 0;
2785 			sfp->need_poll = true;
2786 		}
2787 	}
2788 
2789 	if (sfp->need_poll)
2790 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2791 
2792 	/* We could have an issue in cases no Tx disable pin is available or
2793 	 * wired as modules using a laser as their light source will continue to
2794 	 * be active when the fiber is removed. This could be a safety issue and
2795 	 * we should at least warn the user about that.
2796 	 */
2797 	if (!sfp->gpio[GPIO_TX_DISABLE])
2798 		dev_warn(sfp->dev,
2799 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2800 
2801 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2802 	if (!sfp->sfp_bus)
2803 		return -ENOMEM;
2804 
2805 	sfp_debugfs_init(sfp);
2806 
2807 	return 0;
2808 }
2809 
2810 static int sfp_remove(struct platform_device *pdev)
2811 {
2812 	struct sfp *sfp = platform_get_drvdata(pdev);
2813 
2814 	sfp_debugfs_exit(sfp);
2815 	sfp_unregister_socket(sfp->sfp_bus);
2816 
2817 	rtnl_lock();
2818 	sfp_sm_event(sfp, SFP_E_REMOVE);
2819 	rtnl_unlock();
2820 
2821 	return 0;
2822 }
2823 
2824 static void sfp_shutdown(struct platform_device *pdev)
2825 {
2826 	struct sfp *sfp = platform_get_drvdata(pdev);
2827 	int i;
2828 
2829 	for (i = 0; i < GPIO_MAX; i++) {
2830 		if (!sfp->gpio_irq[i])
2831 			continue;
2832 
2833 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2834 	}
2835 
2836 	cancel_delayed_work_sync(&sfp->poll);
2837 	cancel_delayed_work_sync(&sfp->timeout);
2838 }
2839 
2840 static struct platform_driver sfp_driver = {
2841 	.probe = sfp_probe,
2842 	.remove = sfp_remove,
2843 	.shutdown = sfp_shutdown,
2844 	.driver = {
2845 		.name = "sfp",
2846 		.of_match_table = sfp_of_match,
2847 	},
2848 };
2849 
2850 static int sfp_init(void)
2851 {
2852 	poll_jiffies = msecs_to_jiffies(100);
2853 
2854 	return platform_driver_register(&sfp_driver);
2855 }
2856 module_init(sfp_init);
2857 
2858 static void sfp_exit(void)
2859 {
2860 	platform_driver_unregister(&sfp_driver);
2861 }
2862 module_exit(sfp_exit);
2863 
2864 MODULE_ALIAS("platform:sfp");
2865 MODULE_AUTHOR("Russell King");
2866 MODULE_LICENSE("GPL v2");
2867