xref: /openbmc/linux/drivers/net/phy/sfp.c (revision ef01c26d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state;
261 
262 	struct delayed_work poll;
263 	struct delayed_work timeout;
264 	struct mutex sm_mutex;			/* Protects state machine */
265 	unsigned char sm_mod_state;
266 	unsigned char sm_mod_tries_init;
267 	unsigned char sm_mod_tries;
268 	unsigned char sm_dev_state;
269 	unsigned short sm_state;
270 	unsigned char sm_fault_retries;
271 	unsigned char sm_phy_retries;
272 
273 	struct sfp_eeprom_id id;
274 	unsigned int module_power_mW;
275 	unsigned int module_t_start_up;
276 	unsigned int module_t_wait;
277 
278 	unsigned int rate_kbd;
279 	unsigned int rs_threshold_kbd;
280 	unsigned int rs_state_mask;
281 
282 	bool have_a2;
283 	bool tx_fault_ignore;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 	sfp->tx_fault_ignore = true;
351 }
352 
353 // For 10GBASE-T short-reach modules
354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359 
360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365 
366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 	sfp_fixup_10gbaset_30m(sfp);
369 
370 	// These SFPs need 4 seconds before the PHY can be accessed
371 	sfp_fixup_rollball_proto(sfp, 4);
372 }
373 
374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 	/* Ignore the TX_FAULT and LOS signals on this module.
377 	 * these are possibly used for other purposes on this
378 	 * module, e.g. a serial port.
379 	 */
380 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382 
383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 	// Rollball SFPs need 25 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 25);
387 }
388 
389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 	sfp_fixup_rollball(sfp);
392 
393 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394 	 * burned in EEPROM. For PHY probing we need the correct one.
395 	 */
396 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398 
399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 				unsigned long *modes,
401 				unsigned long *interfaces)
402 {
403 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406 
407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 				      unsigned long *modes,
409 				      unsigned long *interfaces)
410 {
411 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413 
414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 			       unsigned long *modes,
416 			       unsigned long *interfaces)
417 {
418 	/* Copper 2.5G SFP */
419 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 	sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423 
424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 				      unsigned long *modes,
426 				      unsigned long *interfaces)
427 {
428 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 	 * types including 10G Ethernet which is not truth. So clear all claimed
430 	 * modes and set only one mode which module supports: 1000baseX_Full.
431 	 */
432 	linkmode_zero(modes);
433 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435 
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440 
441 static const struct sfp_quirk sfp_quirks[] = {
442 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 	// report 2500MBd NRZ in their EEPROM
444 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445 
446 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 	// NRZ in their EEPROM
448 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 		  sfp_fixup_long_startup),
450 
451 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 	// Rollball protocol to talk to the PHY.
453 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454 
455 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456 	// NRZ in their EEPROM
457 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458 		  sfp_fixup_ignore_tx_fault),
459 
460 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461 
462 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463 	// 2600MBd in their EERPOM
464 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465 
466 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467 	// their EEPROM
468 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469 		  sfp_fixup_ignore_tx_fault),
470 
471 	// FS 2.5G Base-T
472 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
473 
474 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
475 	// 2500MBd NRZ in their EEPROM
476 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
477 
478 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
479 
480 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
481 	// Rollball protocol to talk to the PHY.
482 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
483 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
484 
485 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
486 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
487 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
488 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
489 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
490 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
491 };
492 
493 static size_t sfp_strlen(const char *str, size_t maxlen)
494 {
495 	size_t size, i;
496 
497 	/* Trailing characters should be filled with space chars, but
498 	 * some manufacturers can't read SFF-8472 and use NUL.
499 	 */
500 	for (i = 0, size = 0; i < maxlen; i++)
501 		if (str[i] != ' ' && str[i] != '\0')
502 			size = i + 1;
503 
504 	return size;
505 }
506 
507 static bool sfp_match(const char *qs, const char *str, size_t len)
508 {
509 	if (!qs)
510 		return true;
511 	if (strlen(qs) != len)
512 		return false;
513 	return !strncmp(qs, str, len);
514 }
515 
516 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
517 {
518 	const struct sfp_quirk *q;
519 	unsigned int i;
520 	size_t vs, ps;
521 
522 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
523 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
524 
525 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
526 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
527 		    sfp_match(q->part, id->base.vendor_pn, ps))
528 			return q;
529 
530 	return NULL;
531 }
532 
533 static unsigned long poll_jiffies;
534 
535 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
536 {
537 	unsigned int i, state, v;
538 
539 	for (i = state = 0; i < GPIO_MAX; i++) {
540 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
541 			continue;
542 
543 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
544 		if (v)
545 			state |= BIT(i);
546 	}
547 
548 	return state;
549 }
550 
551 static unsigned int sff_gpio_get_state(struct sfp *sfp)
552 {
553 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
554 }
555 
556 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
557 {
558 	unsigned int drive;
559 
560 	if (state & SFP_F_PRESENT)
561 		/* If the module is present, drive the requested signals */
562 		drive = sfp->state_hw_drive;
563 	else
564 		/* Otherwise, let them float to the pull-ups */
565 		drive = 0;
566 
567 	if (sfp->gpio[GPIO_TX_DISABLE]) {
568 		if (drive & SFP_F_TX_DISABLE)
569 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
570 					       state & SFP_F_TX_DISABLE);
571 		else
572 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
573 	}
574 
575 	if (sfp->gpio[GPIO_RS0]) {
576 		if (drive & SFP_F_RS0)
577 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
578 					       state & SFP_F_RS0);
579 		else
580 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
581 	}
582 
583 	if (sfp->gpio[GPIO_RS1]) {
584 		if (drive & SFP_F_RS1)
585 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
586 					       state & SFP_F_RS1);
587 		else
588 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
589 	}
590 }
591 
592 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
593 			size_t len)
594 {
595 	struct i2c_msg msgs[2];
596 	u8 bus_addr = a2 ? 0x51 : 0x50;
597 	size_t block_size = sfp->i2c_block_size;
598 	size_t this_len;
599 	int ret;
600 
601 	msgs[0].addr = bus_addr;
602 	msgs[0].flags = 0;
603 	msgs[0].len = 1;
604 	msgs[0].buf = &dev_addr;
605 	msgs[1].addr = bus_addr;
606 	msgs[1].flags = I2C_M_RD;
607 	msgs[1].len = len;
608 	msgs[1].buf = buf;
609 
610 	while (len) {
611 		this_len = len;
612 		if (this_len > block_size)
613 			this_len = block_size;
614 
615 		msgs[1].len = this_len;
616 
617 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
618 		if (ret < 0)
619 			return ret;
620 
621 		if (ret != ARRAY_SIZE(msgs))
622 			break;
623 
624 		msgs[1].buf += this_len;
625 		dev_addr += this_len;
626 		len -= this_len;
627 	}
628 
629 	return msgs[1].buf - (u8 *)buf;
630 }
631 
632 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
633 	size_t len)
634 {
635 	struct i2c_msg msgs[1];
636 	u8 bus_addr = a2 ? 0x51 : 0x50;
637 	int ret;
638 
639 	msgs[0].addr = bus_addr;
640 	msgs[0].flags = 0;
641 	msgs[0].len = 1 + len;
642 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
643 	if (!msgs[0].buf)
644 		return -ENOMEM;
645 
646 	msgs[0].buf[0] = dev_addr;
647 	memcpy(&msgs[0].buf[1], buf, len);
648 
649 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650 
651 	kfree(msgs[0].buf);
652 
653 	if (ret < 0)
654 		return ret;
655 
656 	return ret == ARRAY_SIZE(msgs) ? len : 0;
657 }
658 
659 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
660 {
661 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
662 		return -EINVAL;
663 
664 	sfp->i2c = i2c;
665 	sfp->read = sfp_i2c_read;
666 	sfp->write = sfp_i2c_write;
667 
668 	return 0;
669 }
670 
671 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
672 {
673 	struct mii_bus *i2c_mii;
674 	int ret;
675 
676 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
677 	if (IS_ERR(i2c_mii))
678 		return PTR_ERR(i2c_mii);
679 
680 	i2c_mii->name = "SFP I2C Bus";
681 	i2c_mii->phy_mask = ~0;
682 
683 	ret = mdiobus_register(i2c_mii);
684 	if (ret < 0) {
685 		mdiobus_free(i2c_mii);
686 		return ret;
687 	}
688 
689 	sfp->i2c_mii = i2c_mii;
690 
691 	return 0;
692 }
693 
694 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
695 {
696 	mdiobus_unregister(sfp->i2c_mii);
697 	sfp->i2c_mii = NULL;
698 }
699 
700 /* Interface */
701 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
702 {
703 	return sfp->read(sfp, a2, addr, buf, len);
704 }
705 
706 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
707 {
708 	return sfp->write(sfp, a2, addr, buf, len);
709 }
710 
711 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
712 {
713 	int ret;
714 	u8 old, v;
715 
716 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
717 	if (ret != sizeof(old))
718 		return ret;
719 
720 	v = (old & ~mask) | (val & mask);
721 	if (v == old)
722 		return sizeof(v);
723 
724 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
725 }
726 
727 static unsigned int sfp_soft_get_state(struct sfp *sfp)
728 {
729 	unsigned int state = 0;
730 	u8 status;
731 	int ret;
732 
733 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
734 	if (ret == sizeof(status)) {
735 		if (status & SFP_STATUS_RX_LOS)
736 			state |= SFP_F_LOS;
737 		if (status & SFP_STATUS_TX_FAULT)
738 			state |= SFP_F_TX_FAULT;
739 	} else {
740 		dev_err_ratelimited(sfp->dev,
741 				    "failed to read SFP soft status: %pe\n",
742 				    ERR_PTR(ret));
743 		/* Preserve the current state */
744 		state = sfp->state;
745 	}
746 
747 	return state & sfp->state_soft_mask;
748 }
749 
750 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
751 			       unsigned int soft)
752 {
753 	u8 mask = 0;
754 	u8 val = 0;
755 
756 	if (soft & SFP_F_TX_DISABLE)
757 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
758 	if (state & SFP_F_TX_DISABLE)
759 		val |= SFP_STATUS_TX_DISABLE_FORCE;
760 
761 	if (soft & SFP_F_RS0)
762 		mask |= SFP_STATUS_RS0_SELECT;
763 	if (state & SFP_F_RS0)
764 		val |= SFP_STATUS_RS0_SELECT;
765 
766 	if (mask)
767 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
768 
769 	val = mask = 0;
770 	if (soft & SFP_F_RS1)
771 		mask |= SFP_EXT_STATUS_RS1_SELECT;
772 	if (state & SFP_F_RS1)
773 		val |= SFP_EXT_STATUS_RS1_SELECT;
774 
775 	if (mask)
776 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
777 }
778 
779 static void sfp_soft_start_poll(struct sfp *sfp)
780 {
781 	const struct sfp_eeprom_id *id = &sfp->id;
782 	unsigned int mask = 0;
783 
784 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
785 		mask |= SFP_F_TX_DISABLE;
786 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
787 		mask |= SFP_F_TX_FAULT;
788 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
789 		mask |= SFP_F_LOS;
790 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
791 		mask |= sfp->rs_state_mask;
792 
793 	mutex_lock(&sfp->st_mutex);
794 	// Poll the soft state for hardware pins we want to ignore
795 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
796 
797 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
798 	    !sfp->need_poll)
799 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
800 	mutex_unlock(&sfp->st_mutex);
801 }
802 
803 static void sfp_soft_stop_poll(struct sfp *sfp)
804 {
805 	mutex_lock(&sfp->st_mutex);
806 	sfp->state_soft_mask = 0;
807 	mutex_unlock(&sfp->st_mutex);
808 }
809 
810 /* sfp_get_state() - must be called with st_mutex held, or in the
811  * initialisation path.
812  */
813 static unsigned int sfp_get_state(struct sfp *sfp)
814 {
815 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
816 	unsigned int state;
817 
818 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
819 	if (state & SFP_F_PRESENT && soft)
820 		state |= sfp_soft_get_state(sfp);
821 
822 	return state;
823 }
824 
825 /* sfp_set_state() - must be called with st_mutex held, or in the
826  * initialisation path.
827  */
828 static void sfp_set_state(struct sfp *sfp, unsigned int state)
829 {
830 	unsigned int soft;
831 
832 	sfp->set_state(sfp, state);
833 
834 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
835 	if (state & SFP_F_PRESENT && soft)
836 		sfp_soft_set_state(sfp, state, soft);
837 }
838 
839 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
840 {
841 	mutex_lock(&sfp->st_mutex);
842 	sfp->state = (sfp->state & ~mask) | set;
843 	sfp_set_state(sfp, sfp->state);
844 	mutex_unlock(&sfp->st_mutex);
845 }
846 
847 static unsigned int sfp_check(void *buf, size_t len)
848 {
849 	u8 *p, check;
850 
851 	for (p = buf, check = 0; len; p++, len--)
852 		check += *p;
853 
854 	return check;
855 }
856 
857 /* hwmon */
858 #if IS_ENABLED(CONFIG_HWMON)
859 static umode_t sfp_hwmon_is_visible(const void *data,
860 				    enum hwmon_sensor_types type,
861 				    u32 attr, int channel)
862 {
863 	const struct sfp *sfp = data;
864 
865 	switch (type) {
866 	case hwmon_temp:
867 		switch (attr) {
868 		case hwmon_temp_min_alarm:
869 		case hwmon_temp_max_alarm:
870 		case hwmon_temp_lcrit_alarm:
871 		case hwmon_temp_crit_alarm:
872 		case hwmon_temp_min:
873 		case hwmon_temp_max:
874 		case hwmon_temp_lcrit:
875 		case hwmon_temp_crit:
876 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
877 				return 0;
878 			fallthrough;
879 		case hwmon_temp_input:
880 		case hwmon_temp_label:
881 			return 0444;
882 		default:
883 			return 0;
884 		}
885 	case hwmon_in:
886 		switch (attr) {
887 		case hwmon_in_min_alarm:
888 		case hwmon_in_max_alarm:
889 		case hwmon_in_lcrit_alarm:
890 		case hwmon_in_crit_alarm:
891 		case hwmon_in_min:
892 		case hwmon_in_max:
893 		case hwmon_in_lcrit:
894 		case hwmon_in_crit:
895 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
896 				return 0;
897 			fallthrough;
898 		case hwmon_in_input:
899 		case hwmon_in_label:
900 			return 0444;
901 		default:
902 			return 0;
903 		}
904 	case hwmon_curr:
905 		switch (attr) {
906 		case hwmon_curr_min_alarm:
907 		case hwmon_curr_max_alarm:
908 		case hwmon_curr_lcrit_alarm:
909 		case hwmon_curr_crit_alarm:
910 		case hwmon_curr_min:
911 		case hwmon_curr_max:
912 		case hwmon_curr_lcrit:
913 		case hwmon_curr_crit:
914 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
915 				return 0;
916 			fallthrough;
917 		case hwmon_curr_input:
918 		case hwmon_curr_label:
919 			return 0444;
920 		default:
921 			return 0;
922 		}
923 	case hwmon_power:
924 		/* External calibration of receive power requires
925 		 * floating point arithmetic. Doing that in the kernel
926 		 * is not easy, so just skip it. If the module does
927 		 * not require external calibration, we can however
928 		 * show receiver power, since FP is then not needed.
929 		 */
930 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
931 		    channel == 1)
932 			return 0;
933 		switch (attr) {
934 		case hwmon_power_min_alarm:
935 		case hwmon_power_max_alarm:
936 		case hwmon_power_lcrit_alarm:
937 		case hwmon_power_crit_alarm:
938 		case hwmon_power_min:
939 		case hwmon_power_max:
940 		case hwmon_power_lcrit:
941 		case hwmon_power_crit:
942 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
943 				return 0;
944 			fallthrough;
945 		case hwmon_power_input:
946 		case hwmon_power_label:
947 			return 0444;
948 		default:
949 			return 0;
950 		}
951 	default:
952 		return 0;
953 	}
954 }
955 
956 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
957 {
958 	__be16 val;
959 	int err;
960 
961 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
962 	if (err < 0)
963 		return err;
964 
965 	*value = be16_to_cpu(val);
966 
967 	return 0;
968 }
969 
970 static void sfp_hwmon_to_rx_power(long *value)
971 {
972 	*value = DIV_ROUND_CLOSEST(*value, 10);
973 }
974 
975 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
976 				long *value)
977 {
978 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
979 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
980 }
981 
982 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
983 {
984 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
985 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
986 
987 	if (*value >= 0x8000)
988 		*value -= 0x10000;
989 
990 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
991 }
992 
993 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
994 {
995 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
996 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
997 
998 	*value = DIV_ROUND_CLOSEST(*value, 10);
999 }
1000 
1001 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1002 {
1003 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1004 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1005 
1006 	*value = DIV_ROUND_CLOSEST(*value, 500);
1007 }
1008 
1009 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1010 {
1011 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1012 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1013 
1014 	*value = DIV_ROUND_CLOSEST(*value, 10);
1015 }
1016 
1017 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1018 {
1019 	int err;
1020 
1021 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1022 	if (err < 0)
1023 		return err;
1024 
1025 	sfp_hwmon_calibrate_temp(sfp, value);
1026 
1027 	return 0;
1028 }
1029 
1030 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1031 {
1032 	int err;
1033 
1034 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1035 	if (err < 0)
1036 		return err;
1037 
1038 	sfp_hwmon_calibrate_vcc(sfp, value);
1039 
1040 	return 0;
1041 }
1042 
1043 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1044 {
1045 	int err;
1046 
1047 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1048 	if (err < 0)
1049 		return err;
1050 
1051 	sfp_hwmon_calibrate_bias(sfp, value);
1052 
1053 	return 0;
1054 }
1055 
1056 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1057 {
1058 	int err;
1059 
1060 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1061 	if (err < 0)
1062 		return err;
1063 
1064 	sfp_hwmon_calibrate_tx_power(sfp, value);
1065 
1066 	return 0;
1067 }
1068 
1069 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1070 {
1071 	int err;
1072 
1073 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1074 	if (err < 0)
1075 		return err;
1076 
1077 	sfp_hwmon_to_rx_power(value);
1078 
1079 	return 0;
1080 }
1081 
1082 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1083 {
1084 	u8 status;
1085 	int err;
1086 
1087 	switch (attr) {
1088 	case hwmon_temp_input:
1089 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1090 
1091 	case hwmon_temp_lcrit:
1092 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1093 		sfp_hwmon_calibrate_temp(sfp, value);
1094 		return 0;
1095 
1096 	case hwmon_temp_min:
1097 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1098 		sfp_hwmon_calibrate_temp(sfp, value);
1099 		return 0;
1100 	case hwmon_temp_max:
1101 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1102 		sfp_hwmon_calibrate_temp(sfp, value);
1103 		return 0;
1104 
1105 	case hwmon_temp_crit:
1106 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1107 		sfp_hwmon_calibrate_temp(sfp, value);
1108 		return 0;
1109 
1110 	case hwmon_temp_lcrit_alarm:
1111 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1112 		if (err < 0)
1113 			return err;
1114 
1115 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1116 		return 0;
1117 
1118 	case hwmon_temp_min_alarm:
1119 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1120 		if (err < 0)
1121 			return err;
1122 
1123 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1124 		return 0;
1125 
1126 	case hwmon_temp_max_alarm:
1127 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1128 		if (err < 0)
1129 			return err;
1130 
1131 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1132 		return 0;
1133 
1134 	case hwmon_temp_crit_alarm:
1135 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1136 		if (err < 0)
1137 			return err;
1138 
1139 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1140 		return 0;
1141 	default:
1142 		return -EOPNOTSUPP;
1143 	}
1144 
1145 	return -EOPNOTSUPP;
1146 }
1147 
1148 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1149 {
1150 	u8 status;
1151 	int err;
1152 
1153 	switch (attr) {
1154 	case hwmon_in_input:
1155 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1156 
1157 	case hwmon_in_lcrit:
1158 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1159 		sfp_hwmon_calibrate_vcc(sfp, value);
1160 		return 0;
1161 
1162 	case hwmon_in_min:
1163 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1164 		sfp_hwmon_calibrate_vcc(sfp, value);
1165 		return 0;
1166 
1167 	case hwmon_in_max:
1168 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1169 		sfp_hwmon_calibrate_vcc(sfp, value);
1170 		return 0;
1171 
1172 	case hwmon_in_crit:
1173 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1174 		sfp_hwmon_calibrate_vcc(sfp, value);
1175 		return 0;
1176 
1177 	case hwmon_in_lcrit_alarm:
1178 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1179 		if (err < 0)
1180 			return err;
1181 
1182 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1183 		return 0;
1184 
1185 	case hwmon_in_min_alarm:
1186 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1187 		if (err < 0)
1188 			return err;
1189 
1190 		*value = !!(status & SFP_WARN0_VCC_LOW);
1191 		return 0;
1192 
1193 	case hwmon_in_max_alarm:
1194 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1195 		if (err < 0)
1196 			return err;
1197 
1198 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1199 		return 0;
1200 
1201 	case hwmon_in_crit_alarm:
1202 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1203 		if (err < 0)
1204 			return err;
1205 
1206 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1207 		return 0;
1208 	default:
1209 		return -EOPNOTSUPP;
1210 	}
1211 
1212 	return -EOPNOTSUPP;
1213 }
1214 
1215 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1216 {
1217 	u8 status;
1218 	int err;
1219 
1220 	switch (attr) {
1221 	case hwmon_curr_input:
1222 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1223 
1224 	case hwmon_curr_lcrit:
1225 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1226 		sfp_hwmon_calibrate_bias(sfp, value);
1227 		return 0;
1228 
1229 	case hwmon_curr_min:
1230 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1231 		sfp_hwmon_calibrate_bias(sfp, value);
1232 		return 0;
1233 
1234 	case hwmon_curr_max:
1235 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1236 		sfp_hwmon_calibrate_bias(sfp, value);
1237 		return 0;
1238 
1239 	case hwmon_curr_crit:
1240 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1241 		sfp_hwmon_calibrate_bias(sfp, value);
1242 		return 0;
1243 
1244 	case hwmon_curr_lcrit_alarm:
1245 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1246 		if (err < 0)
1247 			return err;
1248 
1249 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1250 		return 0;
1251 
1252 	case hwmon_curr_min_alarm:
1253 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1254 		if (err < 0)
1255 			return err;
1256 
1257 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1258 		return 0;
1259 
1260 	case hwmon_curr_max_alarm:
1261 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1262 		if (err < 0)
1263 			return err;
1264 
1265 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1266 		return 0;
1267 
1268 	case hwmon_curr_crit_alarm:
1269 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1270 		if (err < 0)
1271 			return err;
1272 
1273 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1274 		return 0;
1275 	default:
1276 		return -EOPNOTSUPP;
1277 	}
1278 
1279 	return -EOPNOTSUPP;
1280 }
1281 
1282 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1283 {
1284 	u8 status;
1285 	int err;
1286 
1287 	switch (attr) {
1288 	case hwmon_power_input:
1289 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1290 
1291 	case hwmon_power_lcrit:
1292 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1293 		sfp_hwmon_calibrate_tx_power(sfp, value);
1294 		return 0;
1295 
1296 	case hwmon_power_min:
1297 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1298 		sfp_hwmon_calibrate_tx_power(sfp, value);
1299 		return 0;
1300 
1301 	case hwmon_power_max:
1302 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1303 		sfp_hwmon_calibrate_tx_power(sfp, value);
1304 		return 0;
1305 
1306 	case hwmon_power_crit:
1307 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1308 		sfp_hwmon_calibrate_tx_power(sfp, value);
1309 		return 0;
1310 
1311 	case hwmon_power_lcrit_alarm:
1312 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1313 		if (err < 0)
1314 			return err;
1315 
1316 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1317 		return 0;
1318 
1319 	case hwmon_power_min_alarm:
1320 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1321 		if (err < 0)
1322 			return err;
1323 
1324 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1325 		return 0;
1326 
1327 	case hwmon_power_max_alarm:
1328 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1329 		if (err < 0)
1330 			return err;
1331 
1332 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1333 		return 0;
1334 
1335 	case hwmon_power_crit_alarm:
1336 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1337 		if (err < 0)
1338 			return err;
1339 
1340 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1341 		return 0;
1342 	default:
1343 		return -EOPNOTSUPP;
1344 	}
1345 
1346 	return -EOPNOTSUPP;
1347 }
1348 
1349 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1350 {
1351 	u8 status;
1352 	int err;
1353 
1354 	switch (attr) {
1355 	case hwmon_power_input:
1356 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1357 
1358 	case hwmon_power_lcrit:
1359 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1360 		sfp_hwmon_to_rx_power(value);
1361 		return 0;
1362 
1363 	case hwmon_power_min:
1364 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1365 		sfp_hwmon_to_rx_power(value);
1366 		return 0;
1367 
1368 	case hwmon_power_max:
1369 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1370 		sfp_hwmon_to_rx_power(value);
1371 		return 0;
1372 
1373 	case hwmon_power_crit:
1374 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1375 		sfp_hwmon_to_rx_power(value);
1376 		return 0;
1377 
1378 	case hwmon_power_lcrit_alarm:
1379 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1380 		if (err < 0)
1381 			return err;
1382 
1383 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1384 		return 0;
1385 
1386 	case hwmon_power_min_alarm:
1387 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1388 		if (err < 0)
1389 			return err;
1390 
1391 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1392 		return 0;
1393 
1394 	case hwmon_power_max_alarm:
1395 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1396 		if (err < 0)
1397 			return err;
1398 
1399 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1400 		return 0;
1401 
1402 	case hwmon_power_crit_alarm:
1403 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1404 		if (err < 0)
1405 			return err;
1406 
1407 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1408 		return 0;
1409 	default:
1410 		return -EOPNOTSUPP;
1411 	}
1412 
1413 	return -EOPNOTSUPP;
1414 }
1415 
1416 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1417 			  u32 attr, int channel, long *value)
1418 {
1419 	struct sfp *sfp = dev_get_drvdata(dev);
1420 
1421 	switch (type) {
1422 	case hwmon_temp:
1423 		return sfp_hwmon_temp(sfp, attr, value);
1424 	case hwmon_in:
1425 		return sfp_hwmon_vcc(sfp, attr, value);
1426 	case hwmon_curr:
1427 		return sfp_hwmon_bias(sfp, attr, value);
1428 	case hwmon_power:
1429 		switch (channel) {
1430 		case 0:
1431 			return sfp_hwmon_tx_power(sfp, attr, value);
1432 		case 1:
1433 			return sfp_hwmon_rx_power(sfp, attr, value);
1434 		default:
1435 			return -EOPNOTSUPP;
1436 		}
1437 	default:
1438 		return -EOPNOTSUPP;
1439 	}
1440 }
1441 
1442 static const char *const sfp_hwmon_power_labels[] = {
1443 	"TX_power",
1444 	"RX_power",
1445 };
1446 
1447 static int sfp_hwmon_read_string(struct device *dev,
1448 				 enum hwmon_sensor_types type,
1449 				 u32 attr, int channel, const char **str)
1450 {
1451 	switch (type) {
1452 	case hwmon_curr:
1453 		switch (attr) {
1454 		case hwmon_curr_label:
1455 			*str = "bias";
1456 			return 0;
1457 		default:
1458 			return -EOPNOTSUPP;
1459 		}
1460 		break;
1461 	case hwmon_temp:
1462 		switch (attr) {
1463 		case hwmon_temp_label:
1464 			*str = "temperature";
1465 			return 0;
1466 		default:
1467 			return -EOPNOTSUPP;
1468 		}
1469 		break;
1470 	case hwmon_in:
1471 		switch (attr) {
1472 		case hwmon_in_label:
1473 			*str = "VCC";
1474 			return 0;
1475 		default:
1476 			return -EOPNOTSUPP;
1477 		}
1478 		break;
1479 	case hwmon_power:
1480 		switch (attr) {
1481 		case hwmon_power_label:
1482 			*str = sfp_hwmon_power_labels[channel];
1483 			return 0;
1484 		default:
1485 			return -EOPNOTSUPP;
1486 		}
1487 		break;
1488 	default:
1489 		return -EOPNOTSUPP;
1490 	}
1491 
1492 	return -EOPNOTSUPP;
1493 }
1494 
1495 static const struct hwmon_ops sfp_hwmon_ops = {
1496 	.is_visible = sfp_hwmon_is_visible,
1497 	.read = sfp_hwmon_read,
1498 	.read_string = sfp_hwmon_read_string,
1499 };
1500 
1501 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1502 	HWMON_CHANNEL_INFO(chip,
1503 			   HWMON_C_REGISTER_TZ),
1504 	HWMON_CHANNEL_INFO(in,
1505 			   HWMON_I_INPUT |
1506 			   HWMON_I_MAX | HWMON_I_MIN |
1507 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1508 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1509 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1510 			   HWMON_I_LABEL),
1511 	HWMON_CHANNEL_INFO(temp,
1512 			   HWMON_T_INPUT |
1513 			   HWMON_T_MAX | HWMON_T_MIN |
1514 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1515 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1516 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1517 			   HWMON_T_LABEL),
1518 	HWMON_CHANNEL_INFO(curr,
1519 			   HWMON_C_INPUT |
1520 			   HWMON_C_MAX | HWMON_C_MIN |
1521 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1522 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1523 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1524 			   HWMON_C_LABEL),
1525 	HWMON_CHANNEL_INFO(power,
1526 			   /* Transmit power */
1527 			   HWMON_P_INPUT |
1528 			   HWMON_P_MAX | HWMON_P_MIN |
1529 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1530 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1531 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1532 			   HWMON_P_LABEL,
1533 			   /* Receive power */
1534 			   HWMON_P_INPUT |
1535 			   HWMON_P_MAX | HWMON_P_MIN |
1536 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1537 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1538 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1539 			   HWMON_P_LABEL),
1540 	NULL,
1541 };
1542 
1543 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1544 	.ops = &sfp_hwmon_ops,
1545 	.info = sfp_hwmon_info,
1546 };
1547 
1548 static void sfp_hwmon_probe(struct work_struct *work)
1549 {
1550 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1551 	int err;
1552 
1553 	/* hwmon interface needs to access 16bit registers in atomic way to
1554 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1555 	 * possible to guarantee coherency because EEPROM is broken in such way
1556 	 * that does not support atomic 16bit read operation then we have to
1557 	 * skip registration of hwmon device.
1558 	 */
1559 	if (sfp->i2c_block_size < 2) {
1560 		dev_info(sfp->dev,
1561 			 "skipping hwmon device registration due to broken EEPROM\n");
1562 		dev_info(sfp->dev,
1563 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1564 		return;
1565 	}
1566 
1567 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1568 	if (err < 0) {
1569 		if (sfp->hwmon_tries--) {
1570 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1571 					 T_PROBE_RETRY_SLOW);
1572 		} else {
1573 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1574 				 ERR_PTR(err));
1575 		}
1576 		return;
1577 	}
1578 
1579 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1580 	if (IS_ERR(sfp->hwmon_name)) {
1581 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1582 		return;
1583 	}
1584 
1585 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1586 							 sfp->hwmon_name, sfp,
1587 							 &sfp_hwmon_chip_info,
1588 							 NULL);
1589 	if (IS_ERR(sfp->hwmon_dev))
1590 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1591 			PTR_ERR(sfp->hwmon_dev));
1592 }
1593 
1594 static int sfp_hwmon_insert(struct sfp *sfp)
1595 {
1596 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1597 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1598 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static void sfp_hwmon_remove(struct sfp *sfp)
1605 {
1606 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1607 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1608 		hwmon_device_unregister(sfp->hwmon_dev);
1609 		sfp->hwmon_dev = NULL;
1610 		kfree(sfp->hwmon_name);
1611 	}
1612 }
1613 
1614 static int sfp_hwmon_init(struct sfp *sfp)
1615 {
1616 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1617 
1618 	return 0;
1619 }
1620 
1621 static void sfp_hwmon_exit(struct sfp *sfp)
1622 {
1623 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1624 }
1625 #else
1626 static int sfp_hwmon_insert(struct sfp *sfp)
1627 {
1628 	return 0;
1629 }
1630 
1631 static void sfp_hwmon_remove(struct sfp *sfp)
1632 {
1633 }
1634 
1635 static int sfp_hwmon_init(struct sfp *sfp)
1636 {
1637 	return 0;
1638 }
1639 
1640 static void sfp_hwmon_exit(struct sfp *sfp)
1641 {
1642 }
1643 #endif
1644 
1645 /* Helpers */
1646 static void sfp_module_tx_disable(struct sfp *sfp)
1647 {
1648 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1649 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1650 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1651 }
1652 
1653 static void sfp_module_tx_enable(struct sfp *sfp)
1654 {
1655 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1656 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1657 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1658 }
1659 
1660 #if IS_ENABLED(CONFIG_DEBUG_FS)
1661 static int sfp_debug_state_show(struct seq_file *s, void *data)
1662 {
1663 	struct sfp *sfp = s->private;
1664 
1665 	seq_printf(s, "Module state: %s\n",
1666 		   mod_state_to_str(sfp->sm_mod_state));
1667 	seq_printf(s, "Module probe attempts: %d %d\n",
1668 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1669 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1670 	seq_printf(s, "Device state: %s\n",
1671 		   dev_state_to_str(sfp->sm_dev_state));
1672 	seq_printf(s, "Main state: %s\n",
1673 		   sm_state_to_str(sfp->sm_state));
1674 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1675 		   sfp->sm_fault_retries);
1676 	seq_printf(s, "PHY probe remaining retries: %d\n",
1677 		   sfp->sm_phy_retries);
1678 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1679 	seq_printf(s, "Rate select threshold: %u kBd\n",
1680 		   sfp->rs_threshold_kbd);
1681 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1682 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1683 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1684 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1685 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1686 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1687 	return 0;
1688 }
1689 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1690 
1691 static void sfp_debugfs_init(struct sfp *sfp)
1692 {
1693 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1694 
1695 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1696 			    &sfp_debug_state_fops);
1697 }
1698 
1699 static void sfp_debugfs_exit(struct sfp *sfp)
1700 {
1701 	debugfs_remove_recursive(sfp->debugfs_dir);
1702 }
1703 #else
1704 static void sfp_debugfs_init(struct sfp *sfp)
1705 {
1706 }
1707 
1708 static void sfp_debugfs_exit(struct sfp *sfp)
1709 {
1710 }
1711 #endif
1712 
1713 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1714 {
1715 	unsigned int state;
1716 
1717 	mutex_lock(&sfp->st_mutex);
1718 	state = sfp->state;
1719 	if (!(state & SFP_F_TX_DISABLE)) {
1720 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1721 
1722 		udelay(T_RESET_US);
1723 
1724 		sfp_set_state(sfp, state);
1725 	}
1726 	mutex_unlock(&sfp->st_mutex);
1727 }
1728 
1729 /* SFP state machine */
1730 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1731 {
1732 	if (timeout)
1733 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1734 				 timeout);
1735 	else
1736 		cancel_delayed_work(&sfp->timeout);
1737 }
1738 
1739 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1740 			unsigned int timeout)
1741 {
1742 	sfp->sm_state = state;
1743 	sfp_sm_set_timer(sfp, timeout);
1744 }
1745 
1746 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1747 			    unsigned int timeout)
1748 {
1749 	sfp->sm_mod_state = state;
1750 	sfp_sm_set_timer(sfp, timeout);
1751 }
1752 
1753 static void sfp_sm_phy_detach(struct sfp *sfp)
1754 {
1755 	sfp_remove_phy(sfp->sfp_bus);
1756 	phy_device_remove(sfp->mod_phy);
1757 	phy_device_free(sfp->mod_phy);
1758 	sfp->mod_phy = NULL;
1759 }
1760 
1761 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1762 {
1763 	struct phy_device *phy;
1764 	int err;
1765 
1766 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1767 	if (phy == ERR_PTR(-ENODEV))
1768 		return PTR_ERR(phy);
1769 	if (IS_ERR(phy)) {
1770 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1771 		return PTR_ERR(phy);
1772 	}
1773 
1774 	/* Mark this PHY as being on a SFP module */
1775 	phy->is_on_sfp_module = true;
1776 
1777 	err = phy_device_register(phy);
1778 	if (err) {
1779 		phy_device_free(phy);
1780 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1781 			ERR_PTR(err));
1782 		return err;
1783 	}
1784 
1785 	err = sfp_add_phy(sfp->sfp_bus, phy);
1786 	if (err) {
1787 		phy_device_remove(phy);
1788 		phy_device_free(phy);
1789 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1790 		return err;
1791 	}
1792 
1793 	sfp->mod_phy = phy;
1794 
1795 	return 0;
1796 }
1797 
1798 static void sfp_sm_link_up(struct sfp *sfp)
1799 {
1800 	sfp_link_up(sfp->sfp_bus);
1801 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1802 }
1803 
1804 static void sfp_sm_link_down(struct sfp *sfp)
1805 {
1806 	sfp_link_down(sfp->sfp_bus);
1807 }
1808 
1809 static void sfp_sm_link_check_los(struct sfp *sfp)
1810 {
1811 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1812 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1813 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1814 	bool los = false;
1815 
1816 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1817 	 * are set, we assume that no LOS signal is available. If both are
1818 	 * set, we assume LOS is not implemented (and is meaningless.)
1819 	 */
1820 	if (los_options == los_inverted)
1821 		los = !(sfp->state & SFP_F_LOS);
1822 	else if (los_options == los_normal)
1823 		los = !!(sfp->state & SFP_F_LOS);
1824 
1825 	if (los)
1826 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1827 	else
1828 		sfp_sm_link_up(sfp);
1829 }
1830 
1831 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1832 {
1833 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1834 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1835 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1836 
1837 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1838 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1839 }
1840 
1841 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1842 {
1843 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1844 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1845 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1846 
1847 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1848 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1849 }
1850 
1851 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1852 {
1853 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1854 		dev_err(sfp->dev,
1855 			"module persistently indicates fault, disabling\n");
1856 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1857 	} else {
1858 		if (warn)
1859 			dev_err(sfp->dev, "module transmit fault indicated\n");
1860 
1861 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1862 	}
1863 }
1864 
1865 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1866 {
1867 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1868 		return sfp_i2c_mdiobus_create(sfp);
1869 
1870 	return 0;
1871 }
1872 
1873 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1874  * normally sits at I2C bus address 0x56, and may either be a clause 22
1875  * or clause 45 PHY.
1876  *
1877  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1878  * negotiation enabled, but some may be in 1000base-X - which is for the
1879  * PHY driver to determine.
1880  *
1881  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1882  * mode according to the negotiated line speed.
1883  */
1884 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1885 {
1886 	int err = 0;
1887 
1888 	switch (sfp->mdio_protocol) {
1889 	case MDIO_I2C_NONE:
1890 		break;
1891 
1892 	case MDIO_I2C_MARVELL_C22:
1893 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1894 		break;
1895 
1896 	case MDIO_I2C_C45:
1897 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1898 		break;
1899 
1900 	case MDIO_I2C_ROLLBALL:
1901 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1902 		break;
1903 	}
1904 
1905 	return err;
1906 }
1907 
1908 static int sfp_module_parse_power(struct sfp *sfp)
1909 {
1910 	u32 power_mW = 1000;
1911 	bool supports_a2;
1912 
1913 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1914 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1915 		power_mW = 1500;
1916 	/* Added in Rev 11.9, but there is no compliance code for this */
1917 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1918 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1919 		power_mW = 2000;
1920 
1921 	/* Power level 1 modules (max. 1W) are always supported. */
1922 	if (power_mW <= 1000) {
1923 		sfp->module_power_mW = power_mW;
1924 		return 0;
1925 	}
1926 
1927 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1928 				SFP_SFF8472_COMPLIANCE_NONE ||
1929 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1930 
1931 	if (power_mW > sfp->max_power_mW) {
1932 		/* Module power specification exceeds the allowed maximum. */
1933 		if (!supports_a2) {
1934 			/* The module appears not to implement bus address
1935 			 * 0xa2, so assume that the module powers up in the
1936 			 * indicated mode.
1937 			 */
1938 			dev_err(sfp->dev,
1939 				"Host does not support %u.%uW modules\n",
1940 				power_mW / 1000, (power_mW / 100) % 10);
1941 			return -EINVAL;
1942 		} else {
1943 			dev_warn(sfp->dev,
1944 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1945 				 power_mW / 1000, (power_mW / 100) % 10);
1946 			return 0;
1947 		}
1948 	}
1949 
1950 	if (!supports_a2) {
1951 		/* The module power level is below the host maximum and the
1952 		 * module appears not to implement bus address 0xa2, so assume
1953 		 * that the module powers up in the indicated mode.
1954 		 */
1955 		return 0;
1956 	}
1957 
1958 	/* If the module requires a higher power mode, but also requires
1959 	 * an address change sequence, warn the user that the module may
1960 	 * not be functional.
1961 	 */
1962 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1963 		dev_warn(sfp->dev,
1964 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1965 			 power_mW / 1000, (power_mW / 100) % 10);
1966 		return 0;
1967 	}
1968 
1969 	sfp->module_power_mW = power_mW;
1970 
1971 	return 0;
1972 }
1973 
1974 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1975 {
1976 	int err;
1977 
1978 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1979 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1980 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1981 	if (err != sizeof(u8)) {
1982 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1983 			enable ? "en" : "dis", ERR_PTR(err));
1984 		return -EAGAIN;
1985 	}
1986 
1987 	if (enable)
1988 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1989 			 sfp->module_power_mW / 1000,
1990 			 (sfp->module_power_mW / 100) % 10);
1991 
1992 	return 0;
1993 }
1994 
1995 static void sfp_module_parse_rate_select(struct sfp *sfp)
1996 {
1997 	u8 rate_id;
1998 
1999 	sfp->rs_threshold_kbd = 0;
2000 	sfp->rs_state_mask = 0;
2001 
2002 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2003 		/* No support for RateSelect */
2004 		return;
2005 
2006 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2007 	 * rate is not well specified, so always select "Full Bandwidth", but
2008 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2009 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2010 	 * This method exists prior to SFF-8472.
2011 	 */
2012 	sfp->rs_state_mask = SFP_F_RS0;
2013 	sfp->rs_threshold_kbd = 1594;
2014 
2015 	/* Parse the rate identifier, which is complicated due to history:
2016 	 * SFF-8472 rev 9.5 marks this field as reserved.
2017 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2018 	 *  compliance is not required.
2019 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2020 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2021 	 * and even values.
2022 	 */
2023 	rate_id = sfp->id.base.rate_id;
2024 	if (rate_id == 0)
2025 		/* Unspecified */
2026 		return;
2027 
2028 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2029 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2030 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2031 	 */
2032 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2033 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2034 	    rate_id == 3)
2035 		rate_id = SFF_RID_8431;
2036 
2037 	if (rate_id & SFF_RID_8079) {
2038 		/* SFF-8079 RateSelect / Application Select in conjunction with
2039 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2040 		 * with only bit 0 used, which takes precedence over SFF-8472.
2041 		 */
2042 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2043 			/* SFF-8079 Part 1 - rate selection between Fibre
2044 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2045 			 * is high for 2125, so we have to subtract 1 to
2046 			 * include it.
2047 			 */
2048 			sfp->rs_threshold_kbd = 2125 - 1;
2049 			sfp->rs_state_mask = SFP_F_RS0;
2050 		}
2051 		return;
2052 	}
2053 
2054 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2055 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2056 		return;
2057 
2058 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2059 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2060 	 */
2061 	switch (rate_id) {
2062 	case SFF_RID_8431_RX_ONLY:
2063 		sfp->rs_threshold_kbd = 4250;
2064 		sfp->rs_state_mask = SFP_F_RS0;
2065 		break;
2066 
2067 	case SFF_RID_8431_TX_ONLY:
2068 		sfp->rs_threshold_kbd = 4250;
2069 		sfp->rs_state_mask = SFP_F_RS1;
2070 		break;
2071 
2072 	case SFF_RID_8431:
2073 		sfp->rs_threshold_kbd = 4250;
2074 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2075 		break;
2076 
2077 	case SFF_RID_10G8G:
2078 		sfp->rs_threshold_kbd = 9000;
2079 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2080 		break;
2081 	}
2082 }
2083 
2084 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2085  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2086  * not support multibyte reads from the EEPROM. Each multi-byte read
2087  * operation returns just one byte of EEPROM followed by zeros. There is
2088  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2089  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2090  * name and vendor id into EEPROM, so there is even no way to detect if
2091  * module is V-SOL V2801F. Therefore check for those zeros in the read
2092  * data and then based on check switch to reading EEPROM to one byte
2093  * at a time.
2094  */
2095 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2096 {
2097 	size_t i, block_size = sfp->i2c_block_size;
2098 
2099 	/* Already using byte IO */
2100 	if (block_size == 1)
2101 		return false;
2102 
2103 	for (i = 1; i < len; i += block_size) {
2104 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2105 			return false;
2106 	}
2107 	return true;
2108 }
2109 
2110 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2111 {
2112 	u8 check;
2113 	int err;
2114 
2115 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2116 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2117 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2118 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2119 		id->base.phys_id = SFF8024_ID_SFF_8472;
2120 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2121 		id->base.connector = SFF8024_CONNECTOR_LC;
2122 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2123 		if (err != 3) {
2124 			dev_err(sfp->dev,
2125 				"Failed to rewrite module EEPROM: %pe\n",
2126 				ERR_PTR(err));
2127 			return err;
2128 		}
2129 
2130 		/* Cotsworks modules have been found to require a delay between write operations. */
2131 		mdelay(50);
2132 
2133 		/* Update base structure checksum */
2134 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2135 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2136 		if (err != 1) {
2137 			dev_err(sfp->dev,
2138 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2139 				ERR_PTR(err));
2140 			return err;
2141 		}
2142 	}
2143 	return 0;
2144 }
2145 
2146 static int sfp_module_parse_sff8472(struct sfp *sfp)
2147 {
2148 	/* If the module requires address swap mode, warn about it */
2149 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2150 		dev_warn(sfp->dev,
2151 			 "module address swap to access page 0xA2 is not supported.\n");
2152 	else
2153 		sfp->have_a2 = true;
2154 
2155 	return 0;
2156 }
2157 
2158 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2159 {
2160 	/* SFP module inserted - read I2C data */
2161 	struct sfp_eeprom_id id;
2162 	bool cotsworks_sfbg;
2163 	unsigned int mask;
2164 	bool cotsworks;
2165 	u8 check;
2166 	int ret;
2167 
2168 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2169 
2170 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2171 	if (ret < 0) {
2172 		if (report)
2173 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2174 				ERR_PTR(ret));
2175 		return -EAGAIN;
2176 	}
2177 
2178 	if (ret != sizeof(id.base)) {
2179 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2180 		return -EAGAIN;
2181 	}
2182 
2183 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2184 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2185 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2186 	 * fields, so do not switch to one byte reading at a time unless it
2187 	 * is really required and we have no other option.
2188 	 */
2189 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2190 		dev_info(sfp->dev,
2191 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2192 		dev_info(sfp->dev,
2193 			 "Switching to reading EEPROM to one byte at a time\n");
2194 		sfp->i2c_block_size = 1;
2195 
2196 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2197 		if (ret < 0) {
2198 			if (report)
2199 				dev_err(sfp->dev,
2200 					"failed to read EEPROM: %pe\n",
2201 					ERR_PTR(ret));
2202 			return -EAGAIN;
2203 		}
2204 
2205 		if (ret != sizeof(id.base)) {
2206 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2207 				ERR_PTR(ret));
2208 			return -EAGAIN;
2209 		}
2210 	}
2211 
2212 	/* Cotsworks do not seem to update the checksums when they
2213 	 * do the final programming with the final module part number,
2214 	 * serial number and date code.
2215 	 */
2216 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2217 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2218 
2219 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2220 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2221 	 * Cotsworks PN matches and bytes are not correct.
2222 	 */
2223 	if (cotsworks && cotsworks_sfbg) {
2224 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2225 		if (ret < 0)
2226 			return ret;
2227 	}
2228 
2229 	/* Validate the checksum over the base structure */
2230 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2231 	if (check != id.base.cc_base) {
2232 		if (cotsworks) {
2233 			dev_warn(sfp->dev,
2234 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2235 				 check, id.base.cc_base);
2236 		} else {
2237 			dev_err(sfp->dev,
2238 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2239 				check, id.base.cc_base);
2240 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2241 				       16, 1, &id, sizeof(id), true);
2242 			return -EINVAL;
2243 		}
2244 	}
2245 
2246 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2247 	if (ret < 0) {
2248 		if (report)
2249 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2250 				ERR_PTR(ret));
2251 		return -EAGAIN;
2252 	}
2253 
2254 	if (ret != sizeof(id.ext)) {
2255 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2256 		return -EAGAIN;
2257 	}
2258 
2259 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2260 	if (check != id.ext.cc_ext) {
2261 		if (cotsworks) {
2262 			dev_warn(sfp->dev,
2263 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2264 				 check, id.ext.cc_ext);
2265 		} else {
2266 			dev_err(sfp->dev,
2267 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2268 				check, id.ext.cc_ext);
2269 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2270 				       16, 1, &id, sizeof(id), true);
2271 			memset(&id.ext, 0, sizeof(id.ext));
2272 		}
2273 	}
2274 
2275 	sfp->id = id;
2276 
2277 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2278 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2279 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2280 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2281 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2282 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2283 
2284 	/* Check whether we support this module */
2285 	if (!sfp->type->module_supported(&id)) {
2286 		dev_err(sfp->dev,
2287 			"module is not supported - phys id 0x%02x 0x%02x\n",
2288 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2289 		return -EINVAL;
2290 	}
2291 
2292 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2293 		ret = sfp_module_parse_sff8472(sfp);
2294 		if (ret < 0)
2295 			return ret;
2296 	}
2297 
2298 	/* Parse the module power requirement */
2299 	ret = sfp_module_parse_power(sfp);
2300 	if (ret < 0)
2301 		return ret;
2302 
2303 	sfp_module_parse_rate_select(sfp);
2304 
2305 	mask = SFP_F_PRESENT;
2306 	if (sfp->gpio[GPIO_TX_DISABLE])
2307 		mask |= SFP_F_TX_DISABLE;
2308 	if (sfp->gpio[GPIO_TX_FAULT])
2309 		mask |= SFP_F_TX_FAULT;
2310 	if (sfp->gpio[GPIO_LOS])
2311 		mask |= SFP_F_LOS;
2312 	if (sfp->gpio[GPIO_RS0])
2313 		mask |= SFP_F_RS0;
2314 	if (sfp->gpio[GPIO_RS1])
2315 		mask |= SFP_F_RS1;
2316 
2317 	sfp->module_t_start_up = T_START_UP;
2318 	sfp->module_t_wait = T_WAIT;
2319 
2320 	sfp->tx_fault_ignore = false;
2321 
2322 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2323 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2324 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2325 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2326 		sfp->mdio_protocol = MDIO_I2C_C45;
2327 	else if (sfp->id.base.e1000_base_t)
2328 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2329 	else
2330 		sfp->mdio_protocol = MDIO_I2C_NONE;
2331 
2332 	sfp->quirk = sfp_lookup_quirk(&id);
2333 
2334 	mutex_lock(&sfp->st_mutex);
2335 	/* Initialise state bits to use from hardware */
2336 	sfp->state_hw_mask = mask;
2337 
2338 	/* We want to drive the rate select pins that the module is using */
2339 	sfp->state_hw_drive |= sfp->rs_state_mask;
2340 
2341 	if (sfp->quirk && sfp->quirk->fixup)
2342 		sfp->quirk->fixup(sfp);
2343 	mutex_unlock(&sfp->st_mutex);
2344 
2345 	return 0;
2346 }
2347 
2348 static void sfp_sm_mod_remove(struct sfp *sfp)
2349 {
2350 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2351 		sfp_module_remove(sfp->sfp_bus);
2352 
2353 	sfp_hwmon_remove(sfp);
2354 
2355 	memset(&sfp->id, 0, sizeof(sfp->id));
2356 	sfp->module_power_mW = 0;
2357 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2358 	sfp->have_a2 = false;
2359 
2360 	dev_info(sfp->dev, "module removed\n");
2361 }
2362 
2363 /* This state machine tracks the upstream's state */
2364 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2365 {
2366 	switch (sfp->sm_dev_state) {
2367 	default:
2368 		if (event == SFP_E_DEV_ATTACH)
2369 			sfp->sm_dev_state = SFP_DEV_DOWN;
2370 		break;
2371 
2372 	case SFP_DEV_DOWN:
2373 		if (event == SFP_E_DEV_DETACH)
2374 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2375 		else if (event == SFP_E_DEV_UP)
2376 			sfp->sm_dev_state = SFP_DEV_UP;
2377 		break;
2378 
2379 	case SFP_DEV_UP:
2380 		if (event == SFP_E_DEV_DETACH)
2381 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2382 		else if (event == SFP_E_DEV_DOWN)
2383 			sfp->sm_dev_state = SFP_DEV_DOWN;
2384 		break;
2385 	}
2386 }
2387 
2388 /* This state machine tracks the insert/remove state of the module, probes
2389  * the on-board EEPROM, and sets up the power level.
2390  */
2391 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2392 {
2393 	int err;
2394 
2395 	/* Handle remove event globally, it resets this state machine */
2396 	if (event == SFP_E_REMOVE) {
2397 		sfp_sm_mod_remove(sfp);
2398 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2399 		return;
2400 	}
2401 
2402 	/* Handle device detach globally */
2403 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2404 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2405 		if (sfp->module_power_mW > 1000 &&
2406 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2407 			sfp_sm_mod_hpower(sfp, false);
2408 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2409 		return;
2410 	}
2411 
2412 	switch (sfp->sm_mod_state) {
2413 	default:
2414 		if (event == SFP_E_INSERT) {
2415 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2416 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2417 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2418 		}
2419 		break;
2420 
2421 	case SFP_MOD_PROBE:
2422 		/* Wait for T_PROBE_INIT to time out */
2423 		if (event != SFP_E_TIMEOUT)
2424 			break;
2425 
2426 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2427 		if (err == -EAGAIN) {
2428 			if (sfp->sm_mod_tries_init &&
2429 			   --sfp->sm_mod_tries_init) {
2430 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2431 				break;
2432 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2433 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2434 					dev_warn(sfp->dev,
2435 						 "please wait, module slow to respond\n");
2436 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2437 				break;
2438 			}
2439 		}
2440 		if (err < 0) {
2441 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2442 			break;
2443 		}
2444 
2445 		/* Force a poll to re-read the hardware signal state after
2446 		 * sfp_sm_mod_probe() changed state_hw_mask.
2447 		 */
2448 		mod_delayed_work(system_wq, &sfp->poll, 1);
2449 
2450 		err = sfp_hwmon_insert(sfp);
2451 		if (err)
2452 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2453 				 ERR_PTR(err));
2454 
2455 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2456 		fallthrough;
2457 	case SFP_MOD_WAITDEV:
2458 		/* Ensure that the device is attached before proceeding */
2459 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2460 			break;
2461 
2462 		/* Report the module insertion to the upstream device */
2463 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2464 					sfp->quirk);
2465 		if (err < 0) {
2466 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2467 			break;
2468 		}
2469 
2470 		/* If this is a power level 1 module, we are done */
2471 		if (sfp->module_power_mW <= 1000)
2472 			goto insert;
2473 
2474 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2475 		fallthrough;
2476 	case SFP_MOD_HPOWER:
2477 		/* Enable high power mode */
2478 		err = sfp_sm_mod_hpower(sfp, true);
2479 		if (err < 0) {
2480 			if (err != -EAGAIN) {
2481 				sfp_module_remove(sfp->sfp_bus);
2482 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2483 			} else {
2484 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2485 			}
2486 			break;
2487 		}
2488 
2489 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2490 		break;
2491 
2492 	case SFP_MOD_WAITPWR:
2493 		/* Wait for T_HPOWER_LEVEL to time out */
2494 		if (event != SFP_E_TIMEOUT)
2495 			break;
2496 
2497 	insert:
2498 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2499 		break;
2500 
2501 	case SFP_MOD_PRESENT:
2502 	case SFP_MOD_ERROR:
2503 		break;
2504 	}
2505 }
2506 
2507 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2508 {
2509 	unsigned long timeout;
2510 	int ret;
2511 
2512 	/* Some events are global */
2513 	if (sfp->sm_state != SFP_S_DOWN &&
2514 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2515 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2516 		if (sfp->sm_state == SFP_S_LINK_UP &&
2517 		    sfp->sm_dev_state == SFP_DEV_UP)
2518 			sfp_sm_link_down(sfp);
2519 		if (sfp->sm_state > SFP_S_INIT)
2520 			sfp_module_stop(sfp->sfp_bus);
2521 		if (sfp->mod_phy)
2522 			sfp_sm_phy_detach(sfp);
2523 		if (sfp->i2c_mii)
2524 			sfp_i2c_mdiobus_destroy(sfp);
2525 		sfp_module_tx_disable(sfp);
2526 		sfp_soft_stop_poll(sfp);
2527 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2528 		return;
2529 	}
2530 
2531 	/* The main state machine */
2532 	switch (sfp->sm_state) {
2533 	case SFP_S_DOWN:
2534 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2535 		    sfp->sm_dev_state != SFP_DEV_UP)
2536 			break;
2537 
2538 		/* Only use the soft state bits if we have access to the A2h
2539 		 * memory, which implies that we have some level of SFF-8472
2540 		 * compliance.
2541 		 */
2542 		if (sfp->have_a2)
2543 			sfp_soft_start_poll(sfp);
2544 
2545 		sfp_module_tx_enable(sfp);
2546 
2547 		/* Initialise the fault clearance retries */
2548 		sfp->sm_fault_retries = N_FAULT_INIT;
2549 
2550 		/* We need to check the TX_FAULT state, which is not defined
2551 		 * while TX_DISABLE is asserted. The earliest we want to do
2552 		 * anything (such as probe for a PHY) is 50ms (or more on
2553 		 * specific modules).
2554 		 */
2555 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2556 		break;
2557 
2558 	case SFP_S_WAIT:
2559 		if (event != SFP_E_TIMEOUT)
2560 			break;
2561 
2562 		if (sfp->state & SFP_F_TX_FAULT) {
2563 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2564 			 * from the TX_DISABLE deassertion for the module to
2565 			 * initialise, which is indicated by TX_FAULT
2566 			 * deasserting.
2567 			 */
2568 			timeout = sfp->module_t_start_up;
2569 			if (timeout > sfp->module_t_wait)
2570 				timeout -= sfp->module_t_wait;
2571 			else
2572 				timeout = 1;
2573 
2574 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2575 		} else {
2576 			/* TX_FAULT is not asserted, assume the module has
2577 			 * finished initialising.
2578 			 */
2579 			goto init_done;
2580 		}
2581 		break;
2582 
2583 	case SFP_S_INIT:
2584 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2585 			/* TX_FAULT is still asserted after t_init
2586 			 * or t_start_up, so assume there is a fault.
2587 			 */
2588 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2589 				     sfp->sm_fault_retries == N_FAULT_INIT);
2590 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2591 	init_done:
2592 			/* Create mdiobus and start trying for PHY */
2593 			ret = sfp_sm_add_mdio_bus(sfp);
2594 			if (ret < 0) {
2595 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2596 				break;
2597 			}
2598 			sfp->sm_phy_retries = R_PHY_RETRY;
2599 			goto phy_probe;
2600 		}
2601 		break;
2602 
2603 	case SFP_S_INIT_PHY:
2604 		if (event != SFP_E_TIMEOUT)
2605 			break;
2606 	phy_probe:
2607 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2608 		 * clear.  Probe for the PHY and check the LOS state.
2609 		 */
2610 		ret = sfp_sm_probe_for_phy(sfp);
2611 		if (ret == -ENODEV) {
2612 			if (--sfp->sm_phy_retries) {
2613 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2614 				break;
2615 			} else {
2616 				dev_info(sfp->dev, "no PHY detected\n");
2617 			}
2618 		} else if (ret) {
2619 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2620 			break;
2621 		}
2622 		if (sfp_module_start(sfp->sfp_bus)) {
2623 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2624 			break;
2625 		}
2626 		sfp_sm_link_check_los(sfp);
2627 
2628 		/* Reset the fault retry count */
2629 		sfp->sm_fault_retries = N_FAULT;
2630 		break;
2631 
2632 	case SFP_S_INIT_TX_FAULT:
2633 		if (event == SFP_E_TIMEOUT) {
2634 			sfp_module_tx_fault_reset(sfp);
2635 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2636 		}
2637 		break;
2638 
2639 	case SFP_S_WAIT_LOS:
2640 		if (event == SFP_E_TX_FAULT)
2641 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2642 		else if (sfp_los_event_inactive(sfp, event))
2643 			sfp_sm_link_up(sfp);
2644 		break;
2645 
2646 	case SFP_S_LINK_UP:
2647 		if (event == SFP_E_TX_FAULT) {
2648 			sfp_sm_link_down(sfp);
2649 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2650 		} else if (sfp_los_event_active(sfp, event)) {
2651 			sfp_sm_link_down(sfp);
2652 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2653 		}
2654 		break;
2655 
2656 	case SFP_S_TX_FAULT:
2657 		if (event == SFP_E_TIMEOUT) {
2658 			sfp_module_tx_fault_reset(sfp);
2659 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2660 		}
2661 		break;
2662 
2663 	case SFP_S_REINIT:
2664 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2665 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2666 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2667 			dev_info(sfp->dev, "module transmit fault recovered\n");
2668 			sfp_sm_link_check_los(sfp);
2669 		}
2670 		break;
2671 
2672 	case SFP_S_TX_DISABLE:
2673 		break;
2674 	}
2675 }
2676 
2677 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2678 {
2679 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2680 		mod_state_to_str(sfp->sm_mod_state),
2681 		dev_state_to_str(sfp->sm_dev_state),
2682 		sm_state_to_str(sfp->sm_state),
2683 		event_to_str(event));
2684 
2685 	sfp_sm_device(sfp, event);
2686 	sfp_sm_module(sfp, event);
2687 	sfp_sm_main(sfp, event);
2688 
2689 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2690 		mod_state_to_str(sfp->sm_mod_state),
2691 		dev_state_to_str(sfp->sm_dev_state),
2692 		sm_state_to_str(sfp->sm_state));
2693 }
2694 
2695 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2696 {
2697 	mutex_lock(&sfp->sm_mutex);
2698 	__sfp_sm_event(sfp, event);
2699 	mutex_unlock(&sfp->sm_mutex);
2700 }
2701 
2702 static void sfp_attach(struct sfp *sfp)
2703 {
2704 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2705 }
2706 
2707 static void sfp_detach(struct sfp *sfp)
2708 {
2709 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2710 }
2711 
2712 static void sfp_start(struct sfp *sfp)
2713 {
2714 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2715 }
2716 
2717 static void sfp_stop(struct sfp *sfp)
2718 {
2719 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2720 }
2721 
2722 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2723 {
2724 	unsigned int set;
2725 
2726 	sfp->rate_kbd = rate_kbd;
2727 
2728 	if (rate_kbd > sfp->rs_threshold_kbd)
2729 		set = sfp->rs_state_mask;
2730 	else
2731 		set = 0;
2732 
2733 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2734 }
2735 
2736 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2737 {
2738 	/* locking... and check module is present */
2739 
2740 	if (sfp->id.ext.sff8472_compliance &&
2741 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2742 		modinfo->type = ETH_MODULE_SFF_8472;
2743 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2744 	} else {
2745 		modinfo->type = ETH_MODULE_SFF_8079;
2746 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2747 	}
2748 	return 0;
2749 }
2750 
2751 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2752 			     u8 *data)
2753 {
2754 	unsigned int first, last, len;
2755 	int ret;
2756 
2757 	if (!(sfp->state & SFP_F_PRESENT))
2758 		return -ENODEV;
2759 
2760 	if (ee->len == 0)
2761 		return -EINVAL;
2762 
2763 	first = ee->offset;
2764 	last = ee->offset + ee->len;
2765 	if (first < ETH_MODULE_SFF_8079_LEN) {
2766 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2767 		len -= first;
2768 
2769 		ret = sfp_read(sfp, false, first, data, len);
2770 		if (ret < 0)
2771 			return ret;
2772 
2773 		first += len;
2774 		data += len;
2775 	}
2776 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2777 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2778 		len -= first;
2779 		first -= ETH_MODULE_SFF_8079_LEN;
2780 
2781 		ret = sfp_read(sfp, true, first, data, len);
2782 		if (ret < 0)
2783 			return ret;
2784 	}
2785 	return 0;
2786 }
2787 
2788 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2789 				     const struct ethtool_module_eeprom *page,
2790 				     struct netlink_ext_ack *extack)
2791 {
2792 	if (!(sfp->state & SFP_F_PRESENT))
2793 		return -ENODEV;
2794 
2795 	if (page->bank) {
2796 		NL_SET_ERR_MSG(extack, "Banks not supported");
2797 		return -EOPNOTSUPP;
2798 	}
2799 
2800 	if (page->page) {
2801 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2802 		return -EOPNOTSUPP;
2803 	}
2804 
2805 	if (page->i2c_address != 0x50 &&
2806 	    page->i2c_address != 0x51) {
2807 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2808 		return -EOPNOTSUPP;
2809 	}
2810 
2811 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2812 			page->data, page->length);
2813 };
2814 
2815 static const struct sfp_socket_ops sfp_module_ops = {
2816 	.attach = sfp_attach,
2817 	.detach = sfp_detach,
2818 	.start = sfp_start,
2819 	.stop = sfp_stop,
2820 	.set_signal_rate = sfp_set_signal_rate,
2821 	.module_info = sfp_module_info,
2822 	.module_eeprom = sfp_module_eeprom,
2823 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2824 };
2825 
2826 static void sfp_timeout(struct work_struct *work)
2827 {
2828 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2829 
2830 	rtnl_lock();
2831 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2832 	rtnl_unlock();
2833 }
2834 
2835 static void sfp_check_state(struct sfp *sfp)
2836 {
2837 	unsigned int state, i, changed;
2838 
2839 	rtnl_lock();
2840 	mutex_lock(&sfp->st_mutex);
2841 	state = sfp_get_state(sfp);
2842 	changed = state ^ sfp->state;
2843 	if (sfp->tx_fault_ignore)
2844 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2845 	else
2846 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2847 
2848 	for (i = 0; i < GPIO_MAX; i++)
2849 		if (changed & BIT(i))
2850 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2851 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2852 
2853 	state |= sfp->state & SFP_F_OUTPUTS;
2854 	sfp->state = state;
2855 	mutex_unlock(&sfp->st_mutex);
2856 
2857 	mutex_lock(&sfp->sm_mutex);
2858 	if (changed & SFP_F_PRESENT)
2859 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2860 				    SFP_E_INSERT : SFP_E_REMOVE);
2861 
2862 	if (changed & SFP_F_TX_FAULT)
2863 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2864 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2865 
2866 	if (changed & SFP_F_LOS)
2867 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2868 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2869 	mutex_unlock(&sfp->sm_mutex);
2870 	rtnl_unlock();
2871 }
2872 
2873 static irqreturn_t sfp_irq(int irq, void *data)
2874 {
2875 	struct sfp *sfp = data;
2876 
2877 	sfp_check_state(sfp);
2878 
2879 	return IRQ_HANDLED;
2880 }
2881 
2882 static void sfp_poll(struct work_struct *work)
2883 {
2884 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2885 
2886 	sfp_check_state(sfp);
2887 
2888 	// st_mutex doesn't need to be held here for state_soft_mask,
2889 	// it's unimportant if we race while reading this.
2890 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2891 	    sfp->need_poll)
2892 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2893 }
2894 
2895 static struct sfp *sfp_alloc(struct device *dev)
2896 {
2897 	struct sfp *sfp;
2898 
2899 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2900 	if (!sfp)
2901 		return ERR_PTR(-ENOMEM);
2902 
2903 	sfp->dev = dev;
2904 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2905 
2906 	mutex_init(&sfp->sm_mutex);
2907 	mutex_init(&sfp->st_mutex);
2908 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2909 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2910 
2911 	sfp_hwmon_init(sfp);
2912 
2913 	return sfp;
2914 }
2915 
2916 static void sfp_cleanup(void *data)
2917 {
2918 	struct sfp *sfp = data;
2919 
2920 	sfp_hwmon_exit(sfp);
2921 
2922 	cancel_delayed_work_sync(&sfp->poll);
2923 	cancel_delayed_work_sync(&sfp->timeout);
2924 	if (sfp->i2c_mii) {
2925 		mdiobus_unregister(sfp->i2c_mii);
2926 		mdiobus_free(sfp->i2c_mii);
2927 	}
2928 	if (sfp->i2c)
2929 		i2c_put_adapter(sfp->i2c);
2930 	kfree(sfp);
2931 }
2932 
2933 static int sfp_i2c_get(struct sfp *sfp)
2934 {
2935 	struct fwnode_handle *h;
2936 	struct i2c_adapter *i2c;
2937 	int err;
2938 
2939 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2940 	if (IS_ERR(h)) {
2941 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2942 		return -ENODEV;
2943 	}
2944 
2945 	i2c = i2c_get_adapter_by_fwnode(h);
2946 	if (!i2c) {
2947 		err = -EPROBE_DEFER;
2948 		goto put;
2949 	}
2950 
2951 	err = sfp_i2c_configure(sfp, i2c);
2952 	if (err)
2953 		i2c_put_adapter(i2c);
2954 put:
2955 	fwnode_handle_put(h);
2956 	return err;
2957 }
2958 
2959 static int sfp_probe(struct platform_device *pdev)
2960 {
2961 	const struct sff_data *sff;
2962 	char *sfp_irq_name;
2963 	struct sfp *sfp;
2964 	int err, i;
2965 
2966 	sfp = sfp_alloc(&pdev->dev);
2967 	if (IS_ERR(sfp))
2968 		return PTR_ERR(sfp);
2969 
2970 	platform_set_drvdata(pdev, sfp);
2971 
2972 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2973 	if (err < 0)
2974 		return err;
2975 
2976 	sff = device_get_match_data(sfp->dev);
2977 	if (!sff)
2978 		sff = &sfp_data;
2979 
2980 	sfp->type = sff;
2981 
2982 	err = sfp_i2c_get(sfp);
2983 	if (err)
2984 		return err;
2985 
2986 	for (i = 0; i < GPIO_MAX; i++)
2987 		if (sff->gpios & BIT(i)) {
2988 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2989 					   gpio_names[i], gpio_flags[i]);
2990 			if (IS_ERR(sfp->gpio[i]))
2991 				return PTR_ERR(sfp->gpio[i]);
2992 		}
2993 
2994 	sfp->state_hw_mask = SFP_F_PRESENT;
2995 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2996 
2997 	sfp->get_state = sfp_gpio_get_state;
2998 	sfp->set_state = sfp_gpio_set_state;
2999 
3000 	/* Modules that have no detect signal are always present */
3001 	if (!(sfp->gpio[GPIO_MODDEF0]))
3002 		sfp->get_state = sff_gpio_get_state;
3003 
3004 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3005 				 &sfp->max_power_mW);
3006 	if (sfp->max_power_mW < 1000) {
3007 		if (sfp->max_power_mW)
3008 			dev_warn(sfp->dev,
3009 				 "Firmware bug: host maximum power should be at least 1W\n");
3010 		sfp->max_power_mW = 1000;
3011 	}
3012 
3013 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3014 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3015 
3016 	/* Get the initial state, and always signal TX disable,
3017 	 * since the network interface will not be up.
3018 	 */
3019 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3020 
3021 	if (sfp->gpio[GPIO_RS0] &&
3022 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3023 		sfp->state |= SFP_F_RS0;
3024 	sfp_set_state(sfp, sfp->state);
3025 	sfp_module_tx_disable(sfp);
3026 	if (sfp->state & SFP_F_PRESENT) {
3027 		rtnl_lock();
3028 		sfp_sm_event(sfp, SFP_E_INSERT);
3029 		rtnl_unlock();
3030 	}
3031 
3032 	for (i = 0; i < GPIO_MAX; i++) {
3033 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3034 			continue;
3035 
3036 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3037 		if (sfp->gpio_irq[i] < 0) {
3038 			sfp->gpio_irq[i] = 0;
3039 			sfp->need_poll = true;
3040 			continue;
3041 		}
3042 
3043 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3044 					      "%s-%s", dev_name(sfp->dev),
3045 					      gpio_names[i]);
3046 
3047 		if (!sfp_irq_name)
3048 			return -ENOMEM;
3049 
3050 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3051 						NULL, sfp_irq,
3052 						IRQF_ONESHOT |
3053 						IRQF_TRIGGER_RISING |
3054 						IRQF_TRIGGER_FALLING,
3055 						sfp_irq_name, sfp);
3056 		if (err) {
3057 			sfp->gpio_irq[i] = 0;
3058 			sfp->need_poll = true;
3059 		}
3060 	}
3061 
3062 	if (sfp->need_poll)
3063 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3064 
3065 	/* We could have an issue in cases no Tx disable pin is available or
3066 	 * wired as modules using a laser as their light source will continue to
3067 	 * be active when the fiber is removed. This could be a safety issue and
3068 	 * we should at least warn the user about that.
3069 	 */
3070 	if (!sfp->gpio[GPIO_TX_DISABLE])
3071 		dev_warn(sfp->dev,
3072 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3073 
3074 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3075 	if (!sfp->sfp_bus)
3076 		return -ENOMEM;
3077 
3078 	sfp_debugfs_init(sfp);
3079 
3080 	return 0;
3081 }
3082 
3083 static int sfp_remove(struct platform_device *pdev)
3084 {
3085 	struct sfp *sfp = platform_get_drvdata(pdev);
3086 
3087 	sfp_debugfs_exit(sfp);
3088 	sfp_unregister_socket(sfp->sfp_bus);
3089 
3090 	rtnl_lock();
3091 	sfp_sm_event(sfp, SFP_E_REMOVE);
3092 	rtnl_unlock();
3093 
3094 	return 0;
3095 }
3096 
3097 static void sfp_shutdown(struct platform_device *pdev)
3098 {
3099 	struct sfp *sfp = platform_get_drvdata(pdev);
3100 	int i;
3101 
3102 	for (i = 0; i < GPIO_MAX; i++) {
3103 		if (!sfp->gpio_irq[i])
3104 			continue;
3105 
3106 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3107 	}
3108 
3109 	cancel_delayed_work_sync(&sfp->poll);
3110 	cancel_delayed_work_sync(&sfp->timeout);
3111 }
3112 
3113 static struct platform_driver sfp_driver = {
3114 	.probe = sfp_probe,
3115 	.remove = sfp_remove,
3116 	.shutdown = sfp_shutdown,
3117 	.driver = {
3118 		.name = "sfp",
3119 		.of_match_table = sfp_of_match,
3120 	},
3121 };
3122 
3123 static int sfp_init(void)
3124 {
3125 	poll_jiffies = msecs_to_jiffies(100);
3126 
3127 	return platform_driver_register(&sfp_driver);
3128 }
3129 module_init(sfp_init);
3130 
3131 static void sfp_exit(void)
3132 {
3133 	platform_driver_unregister(&sfp_driver);
3134 }
3135 module_exit(sfp_exit);
3136 
3137 MODULE_ALIAS("platform:sfp");
3138 MODULE_AUTHOR("Russell King");
3139 MODULE_LICENSE("GPL v2");
3140