xref: /openbmc/linux/drivers/net/phy/sfp.c (revision ebd09753)
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20 
21 enum {
22 	GPIO_MODDEF0,
23 	GPIO_LOS,
24 	GPIO_TX_FAULT,
25 	GPIO_TX_DISABLE,
26 	GPIO_RATE_SELECT,
27 	GPIO_MAX,
28 
29 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30 	SFP_F_LOS = BIT(GPIO_LOS),
31 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34 
35 	SFP_E_INSERT = 0,
36 	SFP_E_REMOVE,
37 	SFP_E_DEV_DOWN,
38 	SFP_E_DEV_UP,
39 	SFP_E_TX_FAULT,
40 	SFP_E_TX_CLEAR,
41 	SFP_E_LOS_HIGH,
42 	SFP_E_LOS_LOW,
43 	SFP_E_TIMEOUT,
44 
45 	SFP_MOD_EMPTY = 0,
46 	SFP_MOD_PROBE,
47 	SFP_MOD_HPOWER,
48 	SFP_MOD_PRESENT,
49 	SFP_MOD_ERROR,
50 
51 	SFP_DEV_DOWN = 0,
52 	SFP_DEV_UP,
53 
54 	SFP_S_DOWN = 0,
55 	SFP_S_INIT,
56 	SFP_S_WAIT_LOS,
57 	SFP_S_LINK_UP,
58 	SFP_S_TX_FAULT,
59 	SFP_S_REINIT,
60 	SFP_S_TX_DISABLE,
61 };
62 
63 static const char  * const mod_state_strings[] = {
64 	[SFP_MOD_EMPTY] = "empty",
65 	[SFP_MOD_PROBE] = "probe",
66 	[SFP_MOD_HPOWER] = "hpower",
67 	[SFP_MOD_PRESENT] = "present",
68 	[SFP_MOD_ERROR] = "error",
69 };
70 
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
74 		return "Unknown module state";
75 	return mod_state_strings[mod_state];
76 }
77 
78 static const char * const dev_state_strings[] = {
79 	[SFP_DEV_DOWN] = "down",
80 	[SFP_DEV_UP] = "up",
81 };
82 
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
86 		return "Unknown device state";
87 	return dev_state_strings[dev_state];
88 }
89 
90 static const char * const event_strings[] = {
91 	[SFP_E_INSERT] = "insert",
92 	[SFP_E_REMOVE] = "remove",
93 	[SFP_E_DEV_DOWN] = "dev_down",
94 	[SFP_E_DEV_UP] = "dev_up",
95 	[SFP_E_TX_FAULT] = "tx_fault",
96 	[SFP_E_TX_CLEAR] = "tx_clear",
97 	[SFP_E_LOS_HIGH] = "los_high",
98 	[SFP_E_LOS_LOW] = "los_low",
99 	[SFP_E_TIMEOUT] = "timeout",
100 };
101 
102 static const char *event_to_str(unsigned short event)
103 {
104 	if (event >= ARRAY_SIZE(event_strings))
105 		return "Unknown event";
106 	return event_strings[event];
107 }
108 
109 static const char * const sm_state_strings[] = {
110 	[SFP_S_DOWN] = "down",
111 	[SFP_S_INIT] = "init",
112 	[SFP_S_WAIT_LOS] = "wait_los",
113 	[SFP_S_LINK_UP] = "link_up",
114 	[SFP_S_TX_FAULT] = "tx_fault",
115 	[SFP_S_REINIT] = "reinit",
116 	[SFP_S_TX_DISABLE] = "rx_disable",
117 };
118 
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
122 		return "Unknown state";
123 	return sm_state_strings[sm_state];
124 }
125 
126 static const char *gpio_of_names[] = {
127 	"mod-def0",
128 	"los",
129 	"tx-fault",
130 	"tx-disable",
131 	"rate-select0",
132 };
133 
134 static const enum gpiod_flags gpio_flags[] = {
135 	GPIOD_IN,
136 	GPIOD_IN,
137 	GPIOD_IN,
138 	GPIOD_ASIS,
139 	GPIOD_ASIS,
140 };
141 
142 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
143 #define T_RESET_US	10
144 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
145 
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT	msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL	msecs_to_jiffies(300)
156 #define T_PROBE_RETRY	msecs_to_jiffies(100)
157 
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR	22
162 
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS	50
165 
166 struct sff_data {
167 	unsigned int gpios;
168 	bool (*module_supported)(const struct sfp_eeprom_id *id);
169 };
170 
171 struct sfp {
172 	struct device *dev;
173 	struct i2c_adapter *i2c;
174 	struct mii_bus *i2c_mii;
175 	struct sfp_bus *sfp_bus;
176 	struct phy_device *mod_phy;
177 	const struct sff_data *type;
178 	u32 max_power_mW;
179 
180 	unsigned int (*get_state)(struct sfp *);
181 	void (*set_state)(struct sfp *, unsigned int);
182 	int (*read)(struct sfp *, bool, u8, void *, size_t);
183 	int (*write)(struct sfp *, bool, u8, void *, size_t);
184 
185 	struct gpio_desc *gpio[GPIO_MAX];
186 
187 	unsigned int state;
188 	struct delayed_work poll;
189 	struct delayed_work timeout;
190 	struct mutex sm_mutex;
191 	unsigned char sm_mod_state;
192 	unsigned char sm_dev_state;
193 	unsigned short sm_state;
194 	unsigned int sm_retries;
195 
196 	struct sfp_eeprom_id id;
197 #if IS_ENABLED(CONFIG_HWMON)
198 	struct sfp_diag diag;
199 	struct device *hwmon_dev;
200 	char *hwmon_name;
201 #endif
202 
203 };
204 
205 static bool sff_module_supported(const struct sfp_eeprom_id *id)
206 {
207 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
208 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
209 }
210 
211 static const struct sff_data sff_data = {
212 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
213 	.module_supported = sff_module_supported,
214 };
215 
216 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
217 {
218 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
219 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
220 }
221 
222 static const struct sff_data sfp_data = {
223 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
224 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
225 	.module_supported = sfp_module_supported,
226 };
227 
228 static const struct of_device_id sfp_of_match[] = {
229 	{ .compatible = "sff,sff", .data = &sff_data, },
230 	{ .compatible = "sff,sfp", .data = &sfp_data, },
231 	{ },
232 };
233 MODULE_DEVICE_TABLE(of, sfp_of_match);
234 
235 static unsigned long poll_jiffies;
236 
237 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
238 {
239 	unsigned int i, state, v;
240 
241 	for (i = state = 0; i < GPIO_MAX; i++) {
242 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
243 			continue;
244 
245 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
246 		if (v)
247 			state |= BIT(i);
248 	}
249 
250 	return state;
251 }
252 
253 static unsigned int sff_gpio_get_state(struct sfp *sfp)
254 {
255 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
256 }
257 
258 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
259 {
260 	if (state & SFP_F_PRESENT) {
261 		/* If the module is present, drive the signals */
262 		if (sfp->gpio[GPIO_TX_DISABLE])
263 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
264 					       state & SFP_F_TX_DISABLE);
265 		if (state & SFP_F_RATE_SELECT)
266 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
267 					       state & SFP_F_RATE_SELECT);
268 	} else {
269 		/* Otherwise, let them float to the pull-ups */
270 		if (sfp->gpio[GPIO_TX_DISABLE])
271 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
272 		if (state & SFP_F_RATE_SELECT)
273 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
274 	}
275 }
276 
277 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
278 			size_t len)
279 {
280 	struct i2c_msg msgs[2];
281 	u8 bus_addr = a2 ? 0x51 : 0x50;
282 	int ret;
283 
284 	msgs[0].addr = bus_addr;
285 	msgs[0].flags = 0;
286 	msgs[0].len = 1;
287 	msgs[0].buf = &dev_addr;
288 	msgs[1].addr = bus_addr;
289 	msgs[1].flags = I2C_M_RD;
290 	msgs[1].len = len;
291 	msgs[1].buf = buf;
292 
293 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
294 	if (ret < 0)
295 		return ret;
296 
297 	return ret == ARRAY_SIZE(msgs) ? len : 0;
298 }
299 
300 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
301 	size_t len)
302 {
303 	struct i2c_msg msgs[1];
304 	u8 bus_addr = a2 ? 0x51 : 0x50;
305 	int ret;
306 
307 	msgs[0].addr = bus_addr;
308 	msgs[0].flags = 0;
309 	msgs[0].len = 1 + len;
310 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
311 	if (!msgs[0].buf)
312 		return -ENOMEM;
313 
314 	msgs[0].buf[0] = dev_addr;
315 	memcpy(&msgs[0].buf[1], buf, len);
316 
317 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
318 
319 	kfree(msgs[0].buf);
320 
321 	if (ret < 0)
322 		return ret;
323 
324 	return ret == ARRAY_SIZE(msgs) ? len : 0;
325 }
326 
327 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
328 {
329 	struct mii_bus *i2c_mii;
330 	int ret;
331 
332 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
333 		return -EINVAL;
334 
335 	sfp->i2c = i2c;
336 	sfp->read = sfp_i2c_read;
337 	sfp->write = sfp_i2c_write;
338 
339 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
340 	if (IS_ERR(i2c_mii))
341 		return PTR_ERR(i2c_mii);
342 
343 	i2c_mii->name = "SFP I2C Bus";
344 	i2c_mii->phy_mask = ~0;
345 
346 	ret = mdiobus_register(i2c_mii);
347 	if (ret < 0) {
348 		mdiobus_free(i2c_mii);
349 		return ret;
350 	}
351 
352 	sfp->i2c_mii = i2c_mii;
353 
354 	return 0;
355 }
356 
357 /* Interface */
358 static unsigned int sfp_get_state(struct sfp *sfp)
359 {
360 	return sfp->get_state(sfp);
361 }
362 
363 static void sfp_set_state(struct sfp *sfp, unsigned int state)
364 {
365 	sfp->set_state(sfp, state);
366 }
367 
368 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
369 {
370 	return sfp->read(sfp, a2, addr, buf, len);
371 }
372 
373 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
374 {
375 	return sfp->write(sfp, a2, addr, buf, len);
376 }
377 
378 static unsigned int sfp_check(void *buf, size_t len)
379 {
380 	u8 *p, check;
381 
382 	for (p = buf, check = 0; len; p++, len--)
383 		check += *p;
384 
385 	return check;
386 }
387 
388 /* hwmon */
389 #if IS_ENABLED(CONFIG_HWMON)
390 static umode_t sfp_hwmon_is_visible(const void *data,
391 				    enum hwmon_sensor_types type,
392 				    u32 attr, int channel)
393 {
394 	const struct sfp *sfp = data;
395 
396 	switch (type) {
397 	case hwmon_temp:
398 		switch (attr) {
399 		case hwmon_temp_min_alarm:
400 		case hwmon_temp_max_alarm:
401 		case hwmon_temp_lcrit_alarm:
402 		case hwmon_temp_crit_alarm:
403 		case hwmon_temp_min:
404 		case hwmon_temp_max:
405 		case hwmon_temp_lcrit:
406 		case hwmon_temp_crit:
407 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
408 				return 0;
409 			/* fall through */
410 		case hwmon_temp_input:
411 			return 0444;
412 		default:
413 			return 0;
414 		}
415 	case hwmon_in:
416 		switch (attr) {
417 		case hwmon_in_min_alarm:
418 		case hwmon_in_max_alarm:
419 		case hwmon_in_lcrit_alarm:
420 		case hwmon_in_crit_alarm:
421 		case hwmon_in_min:
422 		case hwmon_in_max:
423 		case hwmon_in_lcrit:
424 		case hwmon_in_crit:
425 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
426 				return 0;
427 			/* fall through */
428 		case hwmon_in_input:
429 			return 0444;
430 		default:
431 			return 0;
432 		}
433 	case hwmon_curr:
434 		switch (attr) {
435 		case hwmon_curr_min_alarm:
436 		case hwmon_curr_max_alarm:
437 		case hwmon_curr_lcrit_alarm:
438 		case hwmon_curr_crit_alarm:
439 		case hwmon_curr_min:
440 		case hwmon_curr_max:
441 		case hwmon_curr_lcrit:
442 		case hwmon_curr_crit:
443 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
444 				return 0;
445 			/* fall through */
446 		case hwmon_curr_input:
447 			return 0444;
448 		default:
449 			return 0;
450 		}
451 	case hwmon_power:
452 		/* External calibration of receive power requires
453 		 * floating point arithmetic. Doing that in the kernel
454 		 * is not easy, so just skip it. If the module does
455 		 * not require external calibration, we can however
456 		 * show receiver power, since FP is then not needed.
457 		 */
458 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
459 		    channel == 1)
460 			return 0;
461 		switch (attr) {
462 		case hwmon_power_min_alarm:
463 		case hwmon_power_max_alarm:
464 		case hwmon_power_lcrit_alarm:
465 		case hwmon_power_crit_alarm:
466 		case hwmon_power_min:
467 		case hwmon_power_max:
468 		case hwmon_power_lcrit:
469 		case hwmon_power_crit:
470 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
471 				return 0;
472 			/* fall through */
473 		case hwmon_power_input:
474 			return 0444;
475 		default:
476 			return 0;
477 		}
478 	default:
479 		return 0;
480 	}
481 }
482 
483 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
484 {
485 	__be16 val;
486 	int err;
487 
488 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
489 	if (err < 0)
490 		return err;
491 
492 	*value = be16_to_cpu(val);
493 
494 	return 0;
495 }
496 
497 static void sfp_hwmon_to_rx_power(long *value)
498 {
499 	*value = DIV_ROUND_CLOSEST(*value, 100);
500 }
501 
502 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
503 				long *value)
504 {
505 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
506 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
507 }
508 
509 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
510 {
511 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
512 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
513 
514 	if (*value >= 0x8000)
515 		*value -= 0x10000;
516 
517 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
518 }
519 
520 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
521 {
522 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
523 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
524 
525 	*value = DIV_ROUND_CLOSEST(*value, 10);
526 }
527 
528 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
529 {
530 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
531 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
532 
533 	*value = DIV_ROUND_CLOSEST(*value, 500);
534 }
535 
536 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
537 {
538 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
539 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
540 
541 	*value = DIV_ROUND_CLOSEST(*value, 10);
542 }
543 
544 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
545 {
546 	int err;
547 
548 	err = sfp_hwmon_read_sensor(sfp, reg, value);
549 	if (err < 0)
550 		return err;
551 
552 	sfp_hwmon_calibrate_temp(sfp, value);
553 
554 	return 0;
555 }
556 
557 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
558 {
559 	int err;
560 
561 	err = sfp_hwmon_read_sensor(sfp, reg, value);
562 	if (err < 0)
563 		return err;
564 
565 	sfp_hwmon_calibrate_vcc(sfp, value);
566 
567 	return 0;
568 }
569 
570 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
571 {
572 	int err;
573 
574 	err = sfp_hwmon_read_sensor(sfp, reg, value);
575 	if (err < 0)
576 		return err;
577 
578 	sfp_hwmon_calibrate_bias(sfp, value);
579 
580 	return 0;
581 }
582 
583 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
584 {
585 	int err;
586 
587 	err = sfp_hwmon_read_sensor(sfp, reg, value);
588 	if (err < 0)
589 		return err;
590 
591 	sfp_hwmon_calibrate_tx_power(sfp, value);
592 
593 	return 0;
594 }
595 
596 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
597 {
598 	int err;
599 
600 	err = sfp_hwmon_read_sensor(sfp, reg, value);
601 	if (err < 0)
602 		return err;
603 
604 	sfp_hwmon_to_rx_power(value);
605 
606 	return 0;
607 }
608 
609 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
610 {
611 	u8 status;
612 	int err;
613 
614 	switch (attr) {
615 	case hwmon_temp_input:
616 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
617 
618 	case hwmon_temp_lcrit:
619 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
620 		sfp_hwmon_calibrate_temp(sfp, value);
621 		return 0;
622 
623 	case hwmon_temp_min:
624 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
625 		sfp_hwmon_calibrate_temp(sfp, value);
626 		return 0;
627 	case hwmon_temp_max:
628 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
629 		sfp_hwmon_calibrate_temp(sfp, value);
630 		return 0;
631 
632 	case hwmon_temp_crit:
633 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
634 		sfp_hwmon_calibrate_temp(sfp, value);
635 		return 0;
636 
637 	case hwmon_temp_lcrit_alarm:
638 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
639 		if (err < 0)
640 			return err;
641 
642 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
643 		return 0;
644 
645 	case hwmon_temp_min_alarm:
646 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
647 		if (err < 0)
648 			return err;
649 
650 		*value = !!(status & SFP_WARN0_TEMP_LOW);
651 		return 0;
652 
653 	case hwmon_temp_max_alarm:
654 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
655 		if (err < 0)
656 			return err;
657 
658 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
659 		return 0;
660 
661 	case hwmon_temp_crit_alarm:
662 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
663 		if (err < 0)
664 			return err;
665 
666 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
667 		return 0;
668 	default:
669 		return -EOPNOTSUPP;
670 	}
671 
672 	return -EOPNOTSUPP;
673 }
674 
675 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
676 {
677 	u8 status;
678 	int err;
679 
680 	switch (attr) {
681 	case hwmon_in_input:
682 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
683 
684 	case hwmon_in_lcrit:
685 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
686 		sfp_hwmon_calibrate_vcc(sfp, value);
687 		return 0;
688 
689 	case hwmon_in_min:
690 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
691 		sfp_hwmon_calibrate_vcc(sfp, value);
692 		return 0;
693 
694 	case hwmon_in_max:
695 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
696 		sfp_hwmon_calibrate_vcc(sfp, value);
697 		return 0;
698 
699 	case hwmon_in_crit:
700 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
701 		sfp_hwmon_calibrate_vcc(sfp, value);
702 		return 0;
703 
704 	case hwmon_in_lcrit_alarm:
705 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
706 		if (err < 0)
707 			return err;
708 
709 		*value = !!(status & SFP_ALARM0_VCC_LOW);
710 		return 0;
711 
712 	case hwmon_in_min_alarm:
713 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
714 		if (err < 0)
715 			return err;
716 
717 		*value = !!(status & SFP_WARN0_VCC_LOW);
718 		return 0;
719 
720 	case hwmon_in_max_alarm:
721 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
722 		if (err < 0)
723 			return err;
724 
725 		*value = !!(status & SFP_WARN0_VCC_HIGH);
726 		return 0;
727 
728 	case hwmon_in_crit_alarm:
729 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
730 		if (err < 0)
731 			return err;
732 
733 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
734 		return 0;
735 	default:
736 		return -EOPNOTSUPP;
737 	}
738 
739 	return -EOPNOTSUPP;
740 }
741 
742 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
743 {
744 	u8 status;
745 	int err;
746 
747 	switch (attr) {
748 	case hwmon_curr_input:
749 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
750 
751 	case hwmon_curr_lcrit:
752 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
753 		sfp_hwmon_calibrate_bias(sfp, value);
754 		return 0;
755 
756 	case hwmon_curr_min:
757 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
758 		sfp_hwmon_calibrate_bias(sfp, value);
759 		return 0;
760 
761 	case hwmon_curr_max:
762 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
763 		sfp_hwmon_calibrate_bias(sfp, value);
764 		return 0;
765 
766 	case hwmon_curr_crit:
767 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
768 		sfp_hwmon_calibrate_bias(sfp, value);
769 		return 0;
770 
771 	case hwmon_curr_lcrit_alarm:
772 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
773 		if (err < 0)
774 			return err;
775 
776 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
777 		return 0;
778 
779 	case hwmon_curr_min_alarm:
780 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
781 		if (err < 0)
782 			return err;
783 
784 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
785 		return 0;
786 
787 	case hwmon_curr_max_alarm:
788 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
789 		if (err < 0)
790 			return err;
791 
792 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
793 		return 0;
794 
795 	case hwmon_curr_crit_alarm:
796 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
797 		if (err < 0)
798 			return err;
799 
800 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
801 		return 0;
802 	default:
803 		return -EOPNOTSUPP;
804 	}
805 
806 	return -EOPNOTSUPP;
807 }
808 
809 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
810 {
811 	u8 status;
812 	int err;
813 
814 	switch (attr) {
815 	case hwmon_power_input:
816 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
817 
818 	case hwmon_power_lcrit:
819 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
820 		sfp_hwmon_calibrate_tx_power(sfp, value);
821 		return 0;
822 
823 	case hwmon_power_min:
824 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
825 		sfp_hwmon_calibrate_tx_power(sfp, value);
826 		return 0;
827 
828 	case hwmon_power_max:
829 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
830 		sfp_hwmon_calibrate_tx_power(sfp, value);
831 		return 0;
832 
833 	case hwmon_power_crit:
834 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
835 		sfp_hwmon_calibrate_tx_power(sfp, value);
836 		return 0;
837 
838 	case hwmon_power_lcrit_alarm:
839 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
840 		if (err < 0)
841 			return err;
842 
843 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
844 		return 0;
845 
846 	case hwmon_power_min_alarm:
847 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
848 		if (err < 0)
849 			return err;
850 
851 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
852 		return 0;
853 
854 	case hwmon_power_max_alarm:
855 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
856 		if (err < 0)
857 			return err;
858 
859 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
860 		return 0;
861 
862 	case hwmon_power_crit_alarm:
863 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
864 		if (err < 0)
865 			return err;
866 
867 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
868 		return 0;
869 	default:
870 		return -EOPNOTSUPP;
871 	}
872 
873 	return -EOPNOTSUPP;
874 }
875 
876 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
877 {
878 	u8 status;
879 	int err;
880 
881 	switch (attr) {
882 	case hwmon_power_input:
883 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
884 
885 	case hwmon_power_lcrit:
886 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
887 		sfp_hwmon_to_rx_power(value);
888 		return 0;
889 
890 	case hwmon_power_min:
891 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
892 		sfp_hwmon_to_rx_power(value);
893 		return 0;
894 
895 	case hwmon_power_max:
896 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
897 		sfp_hwmon_to_rx_power(value);
898 		return 0;
899 
900 	case hwmon_power_crit:
901 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
902 		sfp_hwmon_to_rx_power(value);
903 		return 0;
904 
905 	case hwmon_power_lcrit_alarm:
906 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
907 		if (err < 0)
908 			return err;
909 
910 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
911 		return 0;
912 
913 	case hwmon_power_min_alarm:
914 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
915 		if (err < 0)
916 			return err;
917 
918 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
919 		return 0;
920 
921 	case hwmon_power_max_alarm:
922 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
923 		if (err < 0)
924 			return err;
925 
926 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
927 		return 0;
928 
929 	case hwmon_power_crit_alarm:
930 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
931 		if (err < 0)
932 			return err;
933 
934 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
935 		return 0;
936 	default:
937 		return -EOPNOTSUPP;
938 	}
939 
940 	return -EOPNOTSUPP;
941 }
942 
943 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
944 			  u32 attr, int channel, long *value)
945 {
946 	struct sfp *sfp = dev_get_drvdata(dev);
947 
948 	switch (type) {
949 	case hwmon_temp:
950 		return sfp_hwmon_temp(sfp, attr, value);
951 	case hwmon_in:
952 		return sfp_hwmon_vcc(sfp, attr, value);
953 	case hwmon_curr:
954 		return sfp_hwmon_bias(sfp, attr, value);
955 	case hwmon_power:
956 		switch (channel) {
957 		case 0:
958 			return sfp_hwmon_tx_power(sfp, attr, value);
959 		case 1:
960 			return sfp_hwmon_rx_power(sfp, attr, value);
961 		default:
962 			return -EOPNOTSUPP;
963 		}
964 	default:
965 		return -EOPNOTSUPP;
966 	}
967 }
968 
969 static const struct hwmon_ops sfp_hwmon_ops = {
970 	.is_visible = sfp_hwmon_is_visible,
971 	.read = sfp_hwmon_read,
972 };
973 
974 static u32 sfp_hwmon_chip_config[] = {
975 	HWMON_C_REGISTER_TZ,
976 	0,
977 };
978 
979 static const struct hwmon_channel_info sfp_hwmon_chip = {
980 	.type = hwmon_chip,
981 	.config = sfp_hwmon_chip_config,
982 };
983 
984 static u32 sfp_hwmon_temp_config[] = {
985 	HWMON_T_INPUT |
986 	HWMON_T_MAX | HWMON_T_MIN |
987 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
988 	HWMON_T_CRIT | HWMON_T_LCRIT |
989 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
990 	0,
991 };
992 
993 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
994 	.type = hwmon_temp,
995 	.config = sfp_hwmon_temp_config,
996 };
997 
998 static u32 sfp_hwmon_vcc_config[] = {
999 	HWMON_I_INPUT |
1000 	HWMON_I_MAX | HWMON_I_MIN |
1001 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1002 	HWMON_I_CRIT | HWMON_I_LCRIT |
1003 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1004 	0,
1005 };
1006 
1007 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1008 	.type = hwmon_in,
1009 	.config = sfp_hwmon_vcc_config,
1010 };
1011 
1012 static u32 sfp_hwmon_bias_config[] = {
1013 	HWMON_C_INPUT |
1014 	HWMON_C_MAX | HWMON_C_MIN |
1015 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1016 	HWMON_C_CRIT | HWMON_C_LCRIT |
1017 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1018 	0,
1019 };
1020 
1021 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1022 	.type = hwmon_curr,
1023 	.config = sfp_hwmon_bias_config,
1024 };
1025 
1026 static u32 sfp_hwmon_power_config[] = {
1027 	/* Transmit power */
1028 	HWMON_P_INPUT |
1029 	HWMON_P_MAX | HWMON_P_MIN |
1030 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1031 	HWMON_P_CRIT | HWMON_P_LCRIT |
1032 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1033 	/* Receive power */
1034 	HWMON_P_INPUT |
1035 	HWMON_P_MAX | HWMON_P_MIN |
1036 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1037 	HWMON_P_CRIT | HWMON_P_LCRIT |
1038 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1039 	0,
1040 };
1041 
1042 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1043 	.type = hwmon_power,
1044 	.config = sfp_hwmon_power_config,
1045 };
1046 
1047 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1048 	&sfp_hwmon_chip,
1049 	&sfp_hwmon_vcc_channel_info,
1050 	&sfp_hwmon_temp_channel_info,
1051 	&sfp_hwmon_bias_channel_info,
1052 	&sfp_hwmon_power_channel_info,
1053 	NULL,
1054 };
1055 
1056 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1057 	.ops = &sfp_hwmon_ops,
1058 	.info = sfp_hwmon_info,
1059 };
1060 
1061 static int sfp_hwmon_insert(struct sfp *sfp)
1062 {
1063 	int err, i;
1064 
1065 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1066 		return 0;
1067 
1068 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1069 		return 0;
1070 
1071 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1072 		/* This driver in general does not support address
1073 		 * change.
1074 		 */
1075 		return 0;
1076 
1077 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1078 	if (err < 0)
1079 		return err;
1080 
1081 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1082 	if (!sfp->hwmon_name)
1083 		return -ENODEV;
1084 
1085 	for (i = 0; sfp->hwmon_name[i]; i++)
1086 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1087 			sfp->hwmon_name[i] = '_';
1088 
1089 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1090 							 sfp->hwmon_name, sfp,
1091 							 &sfp_hwmon_chip_info,
1092 							 NULL);
1093 
1094 	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1095 }
1096 
1097 static void sfp_hwmon_remove(struct sfp *sfp)
1098 {
1099 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1100 		hwmon_device_unregister(sfp->hwmon_dev);
1101 		sfp->hwmon_dev = NULL;
1102 		kfree(sfp->hwmon_name);
1103 	}
1104 }
1105 #else
1106 static int sfp_hwmon_insert(struct sfp *sfp)
1107 {
1108 	return 0;
1109 }
1110 
1111 static void sfp_hwmon_remove(struct sfp *sfp)
1112 {
1113 }
1114 #endif
1115 
1116 /* Helpers */
1117 static void sfp_module_tx_disable(struct sfp *sfp)
1118 {
1119 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1120 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1121 	sfp->state |= SFP_F_TX_DISABLE;
1122 	sfp_set_state(sfp, sfp->state);
1123 }
1124 
1125 static void sfp_module_tx_enable(struct sfp *sfp)
1126 {
1127 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1128 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1129 	sfp->state &= ~SFP_F_TX_DISABLE;
1130 	sfp_set_state(sfp, sfp->state);
1131 }
1132 
1133 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1134 {
1135 	unsigned int state = sfp->state;
1136 
1137 	if (state & SFP_F_TX_DISABLE)
1138 		return;
1139 
1140 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1141 
1142 	udelay(T_RESET_US);
1143 
1144 	sfp_set_state(sfp, state);
1145 }
1146 
1147 /* SFP state machine */
1148 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1149 {
1150 	if (timeout)
1151 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1152 				 timeout);
1153 	else
1154 		cancel_delayed_work(&sfp->timeout);
1155 }
1156 
1157 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1158 			unsigned int timeout)
1159 {
1160 	sfp->sm_state = state;
1161 	sfp_sm_set_timer(sfp, timeout);
1162 }
1163 
1164 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1165 			    unsigned int timeout)
1166 {
1167 	sfp->sm_mod_state = state;
1168 	sfp_sm_set_timer(sfp, timeout);
1169 }
1170 
1171 static void sfp_sm_phy_detach(struct sfp *sfp)
1172 {
1173 	phy_stop(sfp->mod_phy);
1174 	sfp_remove_phy(sfp->sfp_bus);
1175 	phy_device_remove(sfp->mod_phy);
1176 	phy_device_free(sfp->mod_phy);
1177 	sfp->mod_phy = NULL;
1178 }
1179 
1180 static void sfp_sm_probe_phy(struct sfp *sfp)
1181 {
1182 	struct phy_device *phy;
1183 	int err;
1184 
1185 	msleep(T_PHY_RESET_MS);
1186 
1187 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1188 	if (phy == ERR_PTR(-ENODEV)) {
1189 		dev_info(sfp->dev, "no PHY detected\n");
1190 		return;
1191 	}
1192 	if (IS_ERR(phy)) {
1193 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1194 		return;
1195 	}
1196 
1197 	err = sfp_add_phy(sfp->sfp_bus, phy);
1198 	if (err) {
1199 		phy_device_remove(phy);
1200 		phy_device_free(phy);
1201 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1202 		return;
1203 	}
1204 
1205 	sfp->mod_phy = phy;
1206 	phy_start(phy);
1207 }
1208 
1209 static void sfp_sm_link_up(struct sfp *sfp)
1210 {
1211 	sfp_link_up(sfp->sfp_bus);
1212 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1213 }
1214 
1215 static void sfp_sm_link_down(struct sfp *sfp)
1216 {
1217 	sfp_link_down(sfp->sfp_bus);
1218 }
1219 
1220 static void sfp_sm_link_check_los(struct sfp *sfp)
1221 {
1222 	unsigned int los = sfp->state & SFP_F_LOS;
1223 
1224 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1225 	 * are set, we assume that no LOS signal is available.
1226 	 */
1227 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1228 		los ^= SFP_F_LOS;
1229 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1230 		los = 0;
1231 
1232 	if (los)
1233 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1234 	else
1235 		sfp_sm_link_up(sfp);
1236 }
1237 
1238 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1239 {
1240 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1241 		event == SFP_E_LOS_LOW) ||
1242 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1243 		event == SFP_E_LOS_HIGH);
1244 }
1245 
1246 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1247 {
1248 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1249 		event == SFP_E_LOS_HIGH) ||
1250 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1251 		event == SFP_E_LOS_LOW);
1252 }
1253 
1254 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1255 {
1256 	if (sfp->sm_retries && !--sfp->sm_retries) {
1257 		dev_err(sfp->dev,
1258 			"module persistently indicates fault, disabling\n");
1259 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1260 	} else {
1261 		if (warn)
1262 			dev_err(sfp->dev, "module transmit fault indicated\n");
1263 
1264 		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1265 	}
1266 }
1267 
1268 static void sfp_sm_mod_init(struct sfp *sfp)
1269 {
1270 	sfp_module_tx_enable(sfp);
1271 
1272 	/* Wait t_init before indicating that the link is up, provided the
1273 	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1274 	 * this time, that's fine too.
1275 	 */
1276 	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1277 	sfp->sm_retries = 5;
1278 
1279 	/* Setting the serdes link mode is guesswork: there's no
1280 	 * field in the EEPROM which indicates what mode should
1281 	 * be used.
1282 	 *
1283 	 * If it's a gigabit-only fiber module, it probably does
1284 	 * not have a PHY, so switch to 802.3z negotiation mode.
1285 	 * Otherwise, switch to SGMII mode (which is required to
1286 	 * support non-gigabit speeds) and probe for a PHY.
1287 	 */
1288 	if (sfp->id.base.e1000_base_t ||
1289 	    sfp->id.base.e100_base_lx ||
1290 	    sfp->id.base.e100_base_fx)
1291 		sfp_sm_probe_phy(sfp);
1292 }
1293 
1294 static int sfp_sm_mod_hpower(struct sfp *sfp)
1295 {
1296 	u32 power;
1297 	u8 val;
1298 	int err;
1299 
1300 	power = 1000;
1301 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1302 		power = 1500;
1303 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1304 		power = 2000;
1305 
1306 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1307 	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1308 	    SFP_DIAGMON_DDM) {
1309 		/* The module appears not to implement bus address 0xa2,
1310 		 * or requires an address change sequence, so assume that
1311 		 * the module powers up in the indicated power mode.
1312 		 */
1313 		if (power > sfp->max_power_mW) {
1314 			dev_err(sfp->dev,
1315 				"Host does not support %u.%uW modules\n",
1316 				power / 1000, (power / 100) % 10);
1317 			return -EINVAL;
1318 		}
1319 		return 0;
1320 	}
1321 
1322 	if (power > sfp->max_power_mW) {
1323 		dev_warn(sfp->dev,
1324 			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1325 			 power / 1000, (power / 100) % 10);
1326 		return 0;
1327 	}
1328 
1329 	if (power <= 1000)
1330 		return 0;
1331 
1332 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1333 	if (err != sizeof(val)) {
1334 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1335 		err = -EAGAIN;
1336 		goto err;
1337 	}
1338 
1339 	val |= BIT(0);
1340 
1341 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1342 	if (err != sizeof(val)) {
1343 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1344 		err = -EAGAIN;
1345 		goto err;
1346 	}
1347 
1348 	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1349 		 power / 1000, (power / 100) % 10);
1350 	return T_HPOWER_LEVEL;
1351 
1352 err:
1353 	return err;
1354 }
1355 
1356 static int sfp_sm_mod_probe(struct sfp *sfp)
1357 {
1358 	/* SFP module inserted - read I2C data */
1359 	struct sfp_eeprom_id id;
1360 	bool cotsworks;
1361 	u8 check;
1362 	int ret;
1363 
1364 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1365 	if (ret < 0) {
1366 		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1367 		return -EAGAIN;
1368 	}
1369 
1370 	if (ret != sizeof(id)) {
1371 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1372 		return -EAGAIN;
1373 	}
1374 
1375 	/* Cotsworks do not seem to update the checksums when they
1376 	 * do the final programming with the final module part number,
1377 	 * serial number and date code.
1378 	 */
1379 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1380 
1381 	/* Validate the checksum over the base structure */
1382 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1383 	if (check != id.base.cc_base) {
1384 		if (cotsworks) {
1385 			dev_warn(sfp->dev,
1386 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1387 				 check, id.base.cc_base);
1388 		} else {
1389 			dev_err(sfp->dev,
1390 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1391 				check, id.base.cc_base);
1392 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1393 				       16, 1, &id, sizeof(id), true);
1394 			return -EINVAL;
1395 		}
1396 	}
1397 
1398 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1399 	if (check != id.ext.cc_ext) {
1400 		if (cotsworks) {
1401 			dev_warn(sfp->dev,
1402 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1403 				 check, id.ext.cc_ext);
1404 		} else {
1405 			dev_err(sfp->dev,
1406 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1407 				check, id.ext.cc_ext);
1408 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1409 				       16, 1, &id, sizeof(id), true);
1410 			memset(&id.ext, 0, sizeof(id.ext));
1411 		}
1412 	}
1413 
1414 	sfp->id = id;
1415 
1416 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1417 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1418 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1419 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1420 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1421 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1422 
1423 	/* Check whether we support this module */
1424 	if (!sfp->type->module_supported(&sfp->id)) {
1425 		dev_err(sfp->dev,
1426 			"module is not supported - phys id 0x%02x 0x%02x\n",
1427 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1428 		return -EINVAL;
1429 	}
1430 
1431 	/* If the module requires address swap mode, warn about it */
1432 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1433 		dev_warn(sfp->dev,
1434 			 "module address swap to access page 0xA2 is not supported.\n");
1435 
1436 	ret = sfp_hwmon_insert(sfp);
1437 	if (ret < 0)
1438 		return ret;
1439 
1440 	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1441 	if (ret < 0)
1442 		return ret;
1443 
1444 	return sfp_sm_mod_hpower(sfp);
1445 }
1446 
1447 static void sfp_sm_mod_remove(struct sfp *sfp)
1448 {
1449 	sfp_module_remove(sfp->sfp_bus);
1450 
1451 	sfp_hwmon_remove(sfp);
1452 
1453 	if (sfp->mod_phy)
1454 		sfp_sm_phy_detach(sfp);
1455 
1456 	sfp_module_tx_disable(sfp);
1457 
1458 	memset(&sfp->id, 0, sizeof(sfp->id));
1459 
1460 	dev_info(sfp->dev, "module removed\n");
1461 }
1462 
1463 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1464 {
1465 	mutex_lock(&sfp->sm_mutex);
1466 
1467 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1468 		mod_state_to_str(sfp->sm_mod_state),
1469 		dev_state_to_str(sfp->sm_dev_state),
1470 		sm_state_to_str(sfp->sm_state),
1471 		event_to_str(event));
1472 
1473 	/* This state machine tracks the insert/remove state of
1474 	 * the module, and handles probing the on-board EEPROM.
1475 	 */
1476 	switch (sfp->sm_mod_state) {
1477 	default:
1478 		if (event == SFP_E_INSERT) {
1479 			sfp_module_tx_disable(sfp);
1480 			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1481 		}
1482 		break;
1483 
1484 	case SFP_MOD_PROBE:
1485 		if (event == SFP_E_REMOVE) {
1486 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1487 		} else if (event == SFP_E_TIMEOUT) {
1488 			int val = sfp_sm_mod_probe(sfp);
1489 
1490 			if (val == 0)
1491 				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1492 			else if (val > 0)
1493 				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1494 			else if (val != -EAGAIN)
1495 				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1496 			else
1497 				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1498 		}
1499 		break;
1500 
1501 	case SFP_MOD_HPOWER:
1502 		if (event == SFP_E_TIMEOUT) {
1503 			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1504 			break;
1505 		}
1506 		/* fallthrough */
1507 	case SFP_MOD_PRESENT:
1508 	case SFP_MOD_ERROR:
1509 		if (event == SFP_E_REMOVE) {
1510 			sfp_sm_mod_remove(sfp);
1511 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1512 		}
1513 		break;
1514 	}
1515 
1516 	/* This state machine tracks the netdev up/down state */
1517 	switch (sfp->sm_dev_state) {
1518 	default:
1519 		if (event == SFP_E_DEV_UP)
1520 			sfp->sm_dev_state = SFP_DEV_UP;
1521 		break;
1522 
1523 	case SFP_DEV_UP:
1524 		if (event == SFP_E_DEV_DOWN) {
1525 			/* If the module has a PHY, avoid raising TX disable
1526 			 * as this resets the PHY. Otherwise, raise it to
1527 			 * turn the laser off.
1528 			 */
1529 			if (!sfp->mod_phy)
1530 				sfp_module_tx_disable(sfp);
1531 			sfp->sm_dev_state = SFP_DEV_DOWN;
1532 		}
1533 		break;
1534 	}
1535 
1536 	/* Some events are global */
1537 	if (sfp->sm_state != SFP_S_DOWN &&
1538 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1539 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1540 		if (sfp->sm_state == SFP_S_LINK_UP &&
1541 		    sfp->sm_dev_state == SFP_DEV_UP)
1542 			sfp_sm_link_down(sfp);
1543 		if (sfp->mod_phy)
1544 			sfp_sm_phy_detach(sfp);
1545 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1546 		mutex_unlock(&sfp->sm_mutex);
1547 		return;
1548 	}
1549 
1550 	/* The main state machine */
1551 	switch (sfp->sm_state) {
1552 	case SFP_S_DOWN:
1553 		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1554 		    sfp->sm_dev_state == SFP_DEV_UP)
1555 			sfp_sm_mod_init(sfp);
1556 		break;
1557 
1558 	case SFP_S_INIT:
1559 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1560 			sfp_sm_fault(sfp, true);
1561 		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1562 			sfp_sm_link_check_los(sfp);
1563 		break;
1564 
1565 	case SFP_S_WAIT_LOS:
1566 		if (event == SFP_E_TX_FAULT)
1567 			sfp_sm_fault(sfp, true);
1568 		else if (sfp_los_event_inactive(sfp, event))
1569 			sfp_sm_link_up(sfp);
1570 		break;
1571 
1572 	case SFP_S_LINK_UP:
1573 		if (event == SFP_E_TX_FAULT) {
1574 			sfp_sm_link_down(sfp);
1575 			sfp_sm_fault(sfp, true);
1576 		} else if (sfp_los_event_active(sfp, event)) {
1577 			sfp_sm_link_down(sfp);
1578 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1579 		}
1580 		break;
1581 
1582 	case SFP_S_TX_FAULT:
1583 		if (event == SFP_E_TIMEOUT) {
1584 			sfp_module_tx_fault_reset(sfp);
1585 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1586 		}
1587 		break;
1588 
1589 	case SFP_S_REINIT:
1590 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1591 			sfp_sm_fault(sfp, false);
1592 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1593 			dev_info(sfp->dev, "module transmit fault recovered\n");
1594 			sfp_sm_link_check_los(sfp);
1595 		}
1596 		break;
1597 
1598 	case SFP_S_TX_DISABLE:
1599 		break;
1600 	}
1601 
1602 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1603 		mod_state_to_str(sfp->sm_mod_state),
1604 		dev_state_to_str(sfp->sm_dev_state),
1605 		sm_state_to_str(sfp->sm_state));
1606 
1607 	mutex_unlock(&sfp->sm_mutex);
1608 }
1609 
1610 static void sfp_start(struct sfp *sfp)
1611 {
1612 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1613 }
1614 
1615 static void sfp_stop(struct sfp *sfp)
1616 {
1617 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1618 }
1619 
1620 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1621 {
1622 	/* locking... and check module is present */
1623 
1624 	if (sfp->id.ext.sff8472_compliance &&
1625 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1626 		modinfo->type = ETH_MODULE_SFF_8472;
1627 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1628 	} else {
1629 		modinfo->type = ETH_MODULE_SFF_8079;
1630 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1636 			     u8 *data)
1637 {
1638 	unsigned int first, last, len;
1639 	int ret;
1640 
1641 	if (ee->len == 0)
1642 		return -EINVAL;
1643 
1644 	first = ee->offset;
1645 	last = ee->offset + ee->len;
1646 	if (first < ETH_MODULE_SFF_8079_LEN) {
1647 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1648 		len -= first;
1649 
1650 		ret = sfp_read(sfp, false, first, data, len);
1651 		if (ret < 0)
1652 			return ret;
1653 
1654 		first += len;
1655 		data += len;
1656 	}
1657 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1658 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1659 		len -= first;
1660 		first -= ETH_MODULE_SFF_8079_LEN;
1661 
1662 		ret = sfp_read(sfp, true, first, data, len);
1663 		if (ret < 0)
1664 			return ret;
1665 	}
1666 	return 0;
1667 }
1668 
1669 static const struct sfp_socket_ops sfp_module_ops = {
1670 	.start = sfp_start,
1671 	.stop = sfp_stop,
1672 	.module_info = sfp_module_info,
1673 	.module_eeprom = sfp_module_eeprom,
1674 };
1675 
1676 static void sfp_timeout(struct work_struct *work)
1677 {
1678 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1679 
1680 	rtnl_lock();
1681 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1682 	rtnl_unlock();
1683 }
1684 
1685 static void sfp_check_state(struct sfp *sfp)
1686 {
1687 	unsigned int state, i, changed;
1688 
1689 	state = sfp_get_state(sfp);
1690 	changed = state ^ sfp->state;
1691 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1692 
1693 	for (i = 0; i < GPIO_MAX; i++)
1694 		if (changed & BIT(i))
1695 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1696 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1697 
1698 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1699 	sfp->state = state;
1700 
1701 	rtnl_lock();
1702 	if (changed & SFP_F_PRESENT)
1703 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1704 				SFP_E_INSERT : SFP_E_REMOVE);
1705 
1706 	if (changed & SFP_F_TX_FAULT)
1707 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1708 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1709 
1710 	if (changed & SFP_F_LOS)
1711 		sfp_sm_event(sfp, state & SFP_F_LOS ?
1712 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1713 	rtnl_unlock();
1714 }
1715 
1716 static irqreturn_t sfp_irq(int irq, void *data)
1717 {
1718 	struct sfp *sfp = data;
1719 
1720 	sfp_check_state(sfp);
1721 
1722 	return IRQ_HANDLED;
1723 }
1724 
1725 static void sfp_poll(struct work_struct *work)
1726 {
1727 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1728 
1729 	sfp_check_state(sfp);
1730 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1731 }
1732 
1733 static struct sfp *sfp_alloc(struct device *dev)
1734 {
1735 	struct sfp *sfp;
1736 
1737 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1738 	if (!sfp)
1739 		return ERR_PTR(-ENOMEM);
1740 
1741 	sfp->dev = dev;
1742 
1743 	mutex_init(&sfp->sm_mutex);
1744 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1745 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1746 
1747 	return sfp;
1748 }
1749 
1750 static void sfp_cleanup(void *data)
1751 {
1752 	struct sfp *sfp = data;
1753 
1754 	cancel_delayed_work_sync(&sfp->poll);
1755 	cancel_delayed_work_sync(&sfp->timeout);
1756 	if (sfp->i2c_mii) {
1757 		mdiobus_unregister(sfp->i2c_mii);
1758 		mdiobus_free(sfp->i2c_mii);
1759 	}
1760 	if (sfp->i2c)
1761 		i2c_put_adapter(sfp->i2c);
1762 	kfree(sfp);
1763 }
1764 
1765 static int sfp_probe(struct platform_device *pdev)
1766 {
1767 	const struct sff_data *sff;
1768 	struct sfp *sfp;
1769 	bool poll = false;
1770 	int irq, err, i;
1771 
1772 	sfp = sfp_alloc(&pdev->dev);
1773 	if (IS_ERR(sfp))
1774 		return PTR_ERR(sfp);
1775 
1776 	platform_set_drvdata(pdev, sfp);
1777 
1778 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1779 	if (err < 0)
1780 		return err;
1781 
1782 	sff = sfp->type = &sfp_data;
1783 
1784 	if (pdev->dev.of_node) {
1785 		struct device_node *node = pdev->dev.of_node;
1786 		const struct of_device_id *id;
1787 		struct i2c_adapter *i2c;
1788 		struct device_node *np;
1789 
1790 		id = of_match_node(sfp_of_match, node);
1791 		if (WARN_ON(!id))
1792 			return -EINVAL;
1793 
1794 		sff = sfp->type = id->data;
1795 
1796 		np = of_parse_phandle(node, "i2c-bus", 0);
1797 		if (!np) {
1798 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1799 			return -ENODEV;
1800 		}
1801 
1802 		i2c = of_find_i2c_adapter_by_node(np);
1803 		of_node_put(np);
1804 		if (!i2c)
1805 			return -EPROBE_DEFER;
1806 
1807 		err = sfp_i2c_configure(sfp, i2c);
1808 		if (err < 0) {
1809 			i2c_put_adapter(i2c);
1810 			return err;
1811 		}
1812 	}
1813 
1814 	for (i = 0; i < GPIO_MAX; i++)
1815 		if (sff->gpios & BIT(i)) {
1816 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1817 					   gpio_of_names[i], gpio_flags[i]);
1818 			if (IS_ERR(sfp->gpio[i]))
1819 				return PTR_ERR(sfp->gpio[i]);
1820 		}
1821 
1822 	sfp->get_state = sfp_gpio_get_state;
1823 	sfp->set_state = sfp_gpio_set_state;
1824 
1825 	/* Modules that have no detect signal are always present */
1826 	if (!(sfp->gpio[GPIO_MODDEF0]))
1827 		sfp->get_state = sff_gpio_get_state;
1828 
1829 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1830 				 &sfp->max_power_mW);
1831 	if (!sfp->max_power_mW)
1832 		sfp->max_power_mW = 1000;
1833 
1834 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1835 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1836 
1837 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1838 	if (!sfp->sfp_bus)
1839 		return -ENOMEM;
1840 
1841 	/* Get the initial state, and always signal TX disable,
1842 	 * since the network interface will not be up.
1843 	 */
1844 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1845 
1846 	if (sfp->gpio[GPIO_RATE_SELECT] &&
1847 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1848 		sfp->state |= SFP_F_RATE_SELECT;
1849 	sfp_set_state(sfp, sfp->state);
1850 	sfp_module_tx_disable(sfp);
1851 	rtnl_lock();
1852 	if (sfp->state & SFP_F_PRESENT)
1853 		sfp_sm_event(sfp, SFP_E_INSERT);
1854 	rtnl_unlock();
1855 
1856 	for (i = 0; i < GPIO_MAX; i++) {
1857 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1858 			continue;
1859 
1860 		irq = gpiod_to_irq(sfp->gpio[i]);
1861 		if (!irq) {
1862 			poll = true;
1863 			continue;
1864 		}
1865 
1866 		err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1867 						IRQF_ONESHOT |
1868 						IRQF_TRIGGER_RISING |
1869 						IRQF_TRIGGER_FALLING,
1870 						dev_name(sfp->dev), sfp);
1871 		if (err)
1872 			poll = true;
1873 	}
1874 
1875 	if (poll)
1876 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1877 
1878 	/* We could have an issue in cases no Tx disable pin is available or
1879 	 * wired as modules using a laser as their light source will continue to
1880 	 * be active when the fiber is removed. This could be a safety issue and
1881 	 * we should at least warn the user about that.
1882 	 */
1883 	if (!sfp->gpio[GPIO_TX_DISABLE])
1884 		dev_warn(sfp->dev,
1885 			 "No tx_disable pin: SFP modules will always be emitting.\n");
1886 
1887 	return 0;
1888 }
1889 
1890 static int sfp_remove(struct platform_device *pdev)
1891 {
1892 	struct sfp *sfp = platform_get_drvdata(pdev);
1893 
1894 	sfp_unregister_socket(sfp->sfp_bus);
1895 
1896 	return 0;
1897 }
1898 
1899 static struct platform_driver sfp_driver = {
1900 	.probe = sfp_probe,
1901 	.remove = sfp_remove,
1902 	.driver = {
1903 		.name = "sfp",
1904 		.of_match_table = sfp_of_match,
1905 	},
1906 };
1907 
1908 static int sfp_init(void)
1909 {
1910 	poll_jiffies = msecs_to_jiffies(100);
1911 
1912 	return platform_driver_register(&sfp_driver);
1913 }
1914 module_init(sfp_init);
1915 
1916 static void sfp_exit(void)
1917 {
1918 	platform_driver_unregister(&sfp_driver);
1919 }
1920 module_exit(sfp_exit);
1921 
1922 MODULE_ALIAS("platform:sfp");
1923 MODULE_AUTHOR("Russell King");
1924 MODULE_LICENSE("GPL v2");
1925