1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/delay.h> 5 #include <linux/gpio/consumer.h> 6 #include <linux/hwmon.h> 7 #include <linux/i2c.h> 8 #include <linux/interrupt.h> 9 #include <linux/jiffies.h> 10 #include <linux/mdio/mdio-i2c.h> 11 #include <linux/module.h> 12 #include <linux/mutex.h> 13 #include <linux/of.h> 14 #include <linux/phy.h> 15 #include <linux/platform_device.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 20 #include "sfp.h" 21 #include "swphy.h" 22 23 enum { 24 GPIO_MODDEF0, 25 GPIO_LOS, 26 GPIO_TX_FAULT, 27 GPIO_TX_DISABLE, 28 GPIO_RATE_SELECT, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 36 37 SFP_E_INSERT = 0, 38 SFP_E_REMOVE, 39 SFP_E_DEV_ATTACH, 40 SFP_E_DEV_DETACH, 41 SFP_E_DEV_DOWN, 42 SFP_E_DEV_UP, 43 SFP_E_TX_FAULT, 44 SFP_E_TX_CLEAR, 45 SFP_E_LOS_HIGH, 46 SFP_E_LOS_LOW, 47 SFP_E_TIMEOUT, 48 49 SFP_MOD_EMPTY = 0, 50 SFP_MOD_ERROR, 51 SFP_MOD_PROBE, 52 SFP_MOD_WAITDEV, 53 SFP_MOD_HPOWER, 54 SFP_MOD_WAITPWR, 55 SFP_MOD_PRESENT, 56 57 SFP_DEV_DETACHED = 0, 58 SFP_DEV_DOWN, 59 SFP_DEV_UP, 60 61 SFP_S_DOWN = 0, 62 SFP_S_FAIL, 63 SFP_S_WAIT, 64 SFP_S_INIT, 65 SFP_S_INIT_PHY, 66 SFP_S_INIT_TX_FAULT, 67 SFP_S_WAIT_LOS, 68 SFP_S_LINK_UP, 69 SFP_S_TX_FAULT, 70 SFP_S_REINIT, 71 SFP_S_TX_DISABLE, 72 }; 73 74 static const char * const mod_state_strings[] = { 75 [SFP_MOD_EMPTY] = "empty", 76 [SFP_MOD_ERROR] = "error", 77 [SFP_MOD_PROBE] = "probe", 78 [SFP_MOD_WAITDEV] = "waitdev", 79 [SFP_MOD_HPOWER] = "hpower", 80 [SFP_MOD_WAITPWR] = "waitpwr", 81 [SFP_MOD_PRESENT] = "present", 82 }; 83 84 static const char *mod_state_to_str(unsigned short mod_state) 85 { 86 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 87 return "Unknown module state"; 88 return mod_state_strings[mod_state]; 89 } 90 91 static const char * const dev_state_strings[] = { 92 [SFP_DEV_DETACHED] = "detached", 93 [SFP_DEV_DOWN] = "down", 94 [SFP_DEV_UP] = "up", 95 }; 96 97 static const char *dev_state_to_str(unsigned short dev_state) 98 { 99 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 100 return "Unknown device state"; 101 return dev_state_strings[dev_state]; 102 } 103 104 static const char * const event_strings[] = { 105 [SFP_E_INSERT] = "insert", 106 [SFP_E_REMOVE] = "remove", 107 [SFP_E_DEV_ATTACH] = "dev_attach", 108 [SFP_E_DEV_DETACH] = "dev_detach", 109 [SFP_E_DEV_DOWN] = "dev_down", 110 [SFP_E_DEV_UP] = "dev_up", 111 [SFP_E_TX_FAULT] = "tx_fault", 112 [SFP_E_TX_CLEAR] = "tx_clear", 113 [SFP_E_LOS_HIGH] = "los_high", 114 [SFP_E_LOS_LOW] = "los_low", 115 [SFP_E_TIMEOUT] = "timeout", 116 }; 117 118 static const char *event_to_str(unsigned short event) 119 { 120 if (event >= ARRAY_SIZE(event_strings)) 121 return "Unknown event"; 122 return event_strings[event]; 123 } 124 125 static const char * const sm_state_strings[] = { 126 [SFP_S_DOWN] = "down", 127 [SFP_S_FAIL] = "fail", 128 [SFP_S_WAIT] = "wait", 129 [SFP_S_INIT] = "init", 130 [SFP_S_INIT_PHY] = "init_phy", 131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 132 [SFP_S_WAIT_LOS] = "wait_los", 133 [SFP_S_LINK_UP] = "link_up", 134 [SFP_S_TX_FAULT] = "tx_fault", 135 [SFP_S_REINIT] = "reinit", 136 [SFP_S_TX_DISABLE] = "rx_disable", 137 }; 138 139 static const char *sm_state_to_str(unsigned short sm_state) 140 { 141 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 142 return "Unknown state"; 143 return sm_state_strings[sm_state]; 144 } 145 146 static const char *gpio_of_names[] = { 147 "mod-def0", 148 "los", 149 "tx-fault", 150 "tx-disable", 151 "rate-select0", 152 }; 153 154 static const enum gpiod_flags gpio_flags[] = { 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_ASIS, 159 GPIOD_ASIS, 160 }; 161 162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 163 * non-cooled module to initialise its laser safety circuitry. We wait 164 * an initial T_WAIT period before we check the tx fault to give any PHY 165 * on board (for a copper SFP) time to initialise. 166 */ 167 #define T_WAIT msecs_to_jiffies(50) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 */ 208 #define SFP_PHY_ADDR 22 209 210 struct sff_data { 211 unsigned int gpios; 212 bool (*module_supported)(const struct sfp_eeprom_id *id); 213 }; 214 215 struct sfp { 216 struct device *dev; 217 struct i2c_adapter *i2c; 218 struct mii_bus *i2c_mii; 219 struct sfp_bus *sfp_bus; 220 struct phy_device *mod_phy; 221 const struct sff_data *type; 222 u32 max_power_mW; 223 224 unsigned int (*get_state)(struct sfp *); 225 void (*set_state)(struct sfp *, unsigned int); 226 int (*read)(struct sfp *, bool, u8, void *, size_t); 227 int (*write)(struct sfp *, bool, u8, void *, size_t); 228 229 struct gpio_desc *gpio[GPIO_MAX]; 230 int gpio_irq[GPIO_MAX]; 231 232 bool need_poll; 233 234 struct mutex st_mutex; /* Protects state */ 235 unsigned int state_soft_mask; 236 unsigned int state; 237 struct delayed_work poll; 238 struct delayed_work timeout; 239 struct mutex sm_mutex; /* Protects state machine */ 240 unsigned char sm_mod_state; 241 unsigned char sm_mod_tries_init; 242 unsigned char sm_mod_tries; 243 unsigned char sm_dev_state; 244 unsigned short sm_state; 245 unsigned char sm_fault_retries; 246 unsigned char sm_phy_retries; 247 248 struct sfp_eeprom_id id; 249 unsigned int module_power_mW; 250 unsigned int module_t_start_up; 251 252 #if IS_ENABLED(CONFIG_HWMON) 253 struct sfp_diag diag; 254 struct delayed_work hwmon_probe; 255 unsigned int hwmon_tries; 256 struct device *hwmon_dev; 257 char *hwmon_name; 258 #endif 259 260 }; 261 262 static bool sff_module_supported(const struct sfp_eeprom_id *id) 263 { 264 return id->base.phys_id == SFF8024_ID_SFF_8472 && 265 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 266 } 267 268 static const struct sff_data sff_data = { 269 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 270 .module_supported = sff_module_supported, 271 }; 272 273 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 274 { 275 return id->base.phys_id == SFF8024_ID_SFP && 276 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 277 } 278 279 static const struct sff_data sfp_data = { 280 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 281 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 282 .module_supported = sfp_module_supported, 283 }; 284 285 static const struct of_device_id sfp_of_match[] = { 286 { .compatible = "sff,sff", .data = &sff_data, }, 287 { .compatible = "sff,sfp", .data = &sfp_data, }, 288 { }, 289 }; 290 MODULE_DEVICE_TABLE(of, sfp_of_match); 291 292 static unsigned long poll_jiffies; 293 294 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 295 { 296 unsigned int i, state, v; 297 298 for (i = state = 0; i < GPIO_MAX; i++) { 299 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 300 continue; 301 302 v = gpiod_get_value_cansleep(sfp->gpio[i]); 303 if (v) 304 state |= BIT(i); 305 } 306 307 return state; 308 } 309 310 static unsigned int sff_gpio_get_state(struct sfp *sfp) 311 { 312 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 313 } 314 315 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 316 { 317 if (state & SFP_F_PRESENT) { 318 /* If the module is present, drive the signals */ 319 if (sfp->gpio[GPIO_TX_DISABLE]) 320 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 321 state & SFP_F_TX_DISABLE); 322 if (state & SFP_F_RATE_SELECT) 323 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 324 state & SFP_F_RATE_SELECT); 325 } else { 326 /* Otherwise, let them float to the pull-ups */ 327 if (sfp->gpio[GPIO_TX_DISABLE]) 328 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 329 if (state & SFP_F_RATE_SELECT) 330 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 331 } 332 } 333 334 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 335 size_t len) 336 { 337 struct i2c_msg msgs[2]; 338 u8 bus_addr = a2 ? 0x51 : 0x50; 339 size_t this_len; 340 int ret; 341 342 msgs[0].addr = bus_addr; 343 msgs[0].flags = 0; 344 msgs[0].len = 1; 345 msgs[0].buf = &dev_addr; 346 msgs[1].addr = bus_addr; 347 msgs[1].flags = I2C_M_RD; 348 msgs[1].len = len; 349 msgs[1].buf = buf; 350 351 while (len) { 352 this_len = len; 353 if (this_len > 16) 354 this_len = 16; 355 356 msgs[1].len = this_len; 357 358 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 359 if (ret < 0) 360 return ret; 361 362 if (ret != ARRAY_SIZE(msgs)) 363 break; 364 365 msgs[1].buf += this_len; 366 dev_addr += this_len; 367 len -= this_len; 368 } 369 370 return msgs[1].buf - (u8 *)buf; 371 } 372 373 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 374 size_t len) 375 { 376 struct i2c_msg msgs[1]; 377 u8 bus_addr = a2 ? 0x51 : 0x50; 378 int ret; 379 380 msgs[0].addr = bus_addr; 381 msgs[0].flags = 0; 382 msgs[0].len = 1 + len; 383 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 384 if (!msgs[0].buf) 385 return -ENOMEM; 386 387 msgs[0].buf[0] = dev_addr; 388 memcpy(&msgs[0].buf[1], buf, len); 389 390 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 391 392 kfree(msgs[0].buf); 393 394 if (ret < 0) 395 return ret; 396 397 return ret == ARRAY_SIZE(msgs) ? len : 0; 398 } 399 400 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 401 { 402 struct mii_bus *i2c_mii; 403 int ret; 404 405 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 406 return -EINVAL; 407 408 sfp->i2c = i2c; 409 sfp->read = sfp_i2c_read; 410 sfp->write = sfp_i2c_write; 411 412 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 413 if (IS_ERR(i2c_mii)) 414 return PTR_ERR(i2c_mii); 415 416 i2c_mii->name = "SFP I2C Bus"; 417 i2c_mii->phy_mask = ~0; 418 419 ret = mdiobus_register(i2c_mii); 420 if (ret < 0) { 421 mdiobus_free(i2c_mii); 422 return ret; 423 } 424 425 sfp->i2c_mii = i2c_mii; 426 427 return 0; 428 } 429 430 /* Interface */ 431 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 432 { 433 return sfp->read(sfp, a2, addr, buf, len); 434 } 435 436 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 437 { 438 return sfp->write(sfp, a2, addr, buf, len); 439 } 440 441 static unsigned int sfp_soft_get_state(struct sfp *sfp) 442 { 443 unsigned int state = 0; 444 u8 status; 445 int ret; 446 447 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 448 if (ret == sizeof(status)) { 449 if (status & SFP_STATUS_RX_LOS) 450 state |= SFP_F_LOS; 451 if (status & SFP_STATUS_TX_FAULT) 452 state |= SFP_F_TX_FAULT; 453 } else { 454 dev_err_ratelimited(sfp->dev, 455 "failed to read SFP soft status: %d\n", 456 ret); 457 /* Preserve the current state */ 458 state = sfp->state; 459 } 460 461 return state & sfp->state_soft_mask; 462 } 463 464 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 465 { 466 u8 status; 467 468 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 469 sizeof(status)) { 470 if (state & SFP_F_TX_DISABLE) 471 status |= SFP_STATUS_TX_DISABLE_FORCE; 472 else 473 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 474 475 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 476 } 477 } 478 479 static void sfp_soft_start_poll(struct sfp *sfp) 480 { 481 const struct sfp_eeprom_id *id = &sfp->id; 482 483 sfp->state_soft_mask = 0; 484 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 485 !sfp->gpio[GPIO_TX_DISABLE]) 486 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 487 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 488 !sfp->gpio[GPIO_TX_FAULT]) 489 sfp->state_soft_mask |= SFP_F_TX_FAULT; 490 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 491 !sfp->gpio[GPIO_LOS]) 492 sfp->state_soft_mask |= SFP_F_LOS; 493 494 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 495 !sfp->need_poll) 496 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 497 } 498 499 static void sfp_soft_stop_poll(struct sfp *sfp) 500 { 501 sfp->state_soft_mask = 0; 502 } 503 504 static unsigned int sfp_get_state(struct sfp *sfp) 505 { 506 unsigned int state = sfp->get_state(sfp); 507 508 if (state & SFP_F_PRESENT && 509 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 510 state |= sfp_soft_get_state(sfp); 511 512 return state; 513 } 514 515 static void sfp_set_state(struct sfp *sfp, unsigned int state) 516 { 517 sfp->set_state(sfp, state); 518 519 if (state & SFP_F_PRESENT && 520 sfp->state_soft_mask & SFP_F_TX_DISABLE) 521 sfp_soft_set_state(sfp, state); 522 } 523 524 static unsigned int sfp_check(void *buf, size_t len) 525 { 526 u8 *p, check; 527 528 for (p = buf, check = 0; len; p++, len--) 529 check += *p; 530 531 return check; 532 } 533 534 /* hwmon */ 535 #if IS_ENABLED(CONFIG_HWMON) 536 static umode_t sfp_hwmon_is_visible(const void *data, 537 enum hwmon_sensor_types type, 538 u32 attr, int channel) 539 { 540 const struct sfp *sfp = data; 541 542 switch (type) { 543 case hwmon_temp: 544 switch (attr) { 545 case hwmon_temp_min_alarm: 546 case hwmon_temp_max_alarm: 547 case hwmon_temp_lcrit_alarm: 548 case hwmon_temp_crit_alarm: 549 case hwmon_temp_min: 550 case hwmon_temp_max: 551 case hwmon_temp_lcrit: 552 case hwmon_temp_crit: 553 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 554 return 0; 555 fallthrough; 556 case hwmon_temp_input: 557 case hwmon_temp_label: 558 return 0444; 559 default: 560 return 0; 561 } 562 case hwmon_in: 563 switch (attr) { 564 case hwmon_in_min_alarm: 565 case hwmon_in_max_alarm: 566 case hwmon_in_lcrit_alarm: 567 case hwmon_in_crit_alarm: 568 case hwmon_in_min: 569 case hwmon_in_max: 570 case hwmon_in_lcrit: 571 case hwmon_in_crit: 572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 573 return 0; 574 fallthrough; 575 case hwmon_in_input: 576 case hwmon_in_label: 577 return 0444; 578 default: 579 return 0; 580 } 581 case hwmon_curr: 582 switch (attr) { 583 case hwmon_curr_min_alarm: 584 case hwmon_curr_max_alarm: 585 case hwmon_curr_lcrit_alarm: 586 case hwmon_curr_crit_alarm: 587 case hwmon_curr_min: 588 case hwmon_curr_max: 589 case hwmon_curr_lcrit: 590 case hwmon_curr_crit: 591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 592 return 0; 593 fallthrough; 594 case hwmon_curr_input: 595 case hwmon_curr_label: 596 return 0444; 597 default: 598 return 0; 599 } 600 case hwmon_power: 601 /* External calibration of receive power requires 602 * floating point arithmetic. Doing that in the kernel 603 * is not easy, so just skip it. If the module does 604 * not require external calibration, we can however 605 * show receiver power, since FP is then not needed. 606 */ 607 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 608 channel == 1) 609 return 0; 610 switch (attr) { 611 case hwmon_power_min_alarm: 612 case hwmon_power_max_alarm: 613 case hwmon_power_lcrit_alarm: 614 case hwmon_power_crit_alarm: 615 case hwmon_power_min: 616 case hwmon_power_max: 617 case hwmon_power_lcrit: 618 case hwmon_power_crit: 619 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 620 return 0; 621 fallthrough; 622 case hwmon_power_input: 623 case hwmon_power_label: 624 return 0444; 625 default: 626 return 0; 627 } 628 default: 629 return 0; 630 } 631 } 632 633 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 634 { 635 __be16 val; 636 int err; 637 638 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 639 if (err < 0) 640 return err; 641 642 *value = be16_to_cpu(val); 643 644 return 0; 645 } 646 647 static void sfp_hwmon_to_rx_power(long *value) 648 { 649 *value = DIV_ROUND_CLOSEST(*value, 10); 650 } 651 652 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 653 long *value) 654 { 655 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 656 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 657 } 658 659 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 660 { 661 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 662 be16_to_cpu(sfp->diag.cal_t_offset), value); 663 664 if (*value >= 0x8000) 665 *value -= 0x10000; 666 667 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 668 } 669 670 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 671 { 672 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 673 be16_to_cpu(sfp->diag.cal_v_offset), value); 674 675 *value = DIV_ROUND_CLOSEST(*value, 10); 676 } 677 678 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 679 { 680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 681 be16_to_cpu(sfp->diag.cal_txi_offset), value); 682 683 *value = DIV_ROUND_CLOSEST(*value, 500); 684 } 685 686 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 687 { 688 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 689 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 690 691 *value = DIV_ROUND_CLOSEST(*value, 10); 692 } 693 694 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 695 { 696 int err; 697 698 err = sfp_hwmon_read_sensor(sfp, reg, value); 699 if (err < 0) 700 return err; 701 702 sfp_hwmon_calibrate_temp(sfp, value); 703 704 return 0; 705 } 706 707 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 708 { 709 int err; 710 711 err = sfp_hwmon_read_sensor(sfp, reg, value); 712 if (err < 0) 713 return err; 714 715 sfp_hwmon_calibrate_vcc(sfp, value); 716 717 return 0; 718 } 719 720 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 721 { 722 int err; 723 724 err = sfp_hwmon_read_sensor(sfp, reg, value); 725 if (err < 0) 726 return err; 727 728 sfp_hwmon_calibrate_bias(sfp, value); 729 730 return 0; 731 } 732 733 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 734 { 735 int err; 736 737 err = sfp_hwmon_read_sensor(sfp, reg, value); 738 if (err < 0) 739 return err; 740 741 sfp_hwmon_calibrate_tx_power(sfp, value); 742 743 return 0; 744 } 745 746 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 747 { 748 int err; 749 750 err = sfp_hwmon_read_sensor(sfp, reg, value); 751 if (err < 0) 752 return err; 753 754 sfp_hwmon_to_rx_power(value); 755 756 return 0; 757 } 758 759 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 760 { 761 u8 status; 762 int err; 763 764 switch (attr) { 765 case hwmon_temp_input: 766 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 767 768 case hwmon_temp_lcrit: 769 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 770 sfp_hwmon_calibrate_temp(sfp, value); 771 return 0; 772 773 case hwmon_temp_min: 774 *value = be16_to_cpu(sfp->diag.temp_low_warn); 775 sfp_hwmon_calibrate_temp(sfp, value); 776 return 0; 777 case hwmon_temp_max: 778 *value = be16_to_cpu(sfp->diag.temp_high_warn); 779 sfp_hwmon_calibrate_temp(sfp, value); 780 return 0; 781 782 case hwmon_temp_crit: 783 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 784 sfp_hwmon_calibrate_temp(sfp, value); 785 return 0; 786 787 case hwmon_temp_lcrit_alarm: 788 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 789 if (err < 0) 790 return err; 791 792 *value = !!(status & SFP_ALARM0_TEMP_LOW); 793 return 0; 794 795 case hwmon_temp_min_alarm: 796 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 797 if (err < 0) 798 return err; 799 800 *value = !!(status & SFP_WARN0_TEMP_LOW); 801 return 0; 802 803 case hwmon_temp_max_alarm: 804 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 805 if (err < 0) 806 return err; 807 808 *value = !!(status & SFP_WARN0_TEMP_HIGH); 809 return 0; 810 811 case hwmon_temp_crit_alarm: 812 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 813 if (err < 0) 814 return err; 815 816 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 817 return 0; 818 default: 819 return -EOPNOTSUPP; 820 } 821 822 return -EOPNOTSUPP; 823 } 824 825 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 826 { 827 u8 status; 828 int err; 829 830 switch (attr) { 831 case hwmon_in_input: 832 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 833 834 case hwmon_in_lcrit: 835 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 836 sfp_hwmon_calibrate_vcc(sfp, value); 837 return 0; 838 839 case hwmon_in_min: 840 *value = be16_to_cpu(sfp->diag.volt_low_warn); 841 sfp_hwmon_calibrate_vcc(sfp, value); 842 return 0; 843 844 case hwmon_in_max: 845 *value = be16_to_cpu(sfp->diag.volt_high_warn); 846 sfp_hwmon_calibrate_vcc(sfp, value); 847 return 0; 848 849 case hwmon_in_crit: 850 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 851 sfp_hwmon_calibrate_vcc(sfp, value); 852 return 0; 853 854 case hwmon_in_lcrit_alarm: 855 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 856 if (err < 0) 857 return err; 858 859 *value = !!(status & SFP_ALARM0_VCC_LOW); 860 return 0; 861 862 case hwmon_in_min_alarm: 863 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 864 if (err < 0) 865 return err; 866 867 *value = !!(status & SFP_WARN0_VCC_LOW); 868 return 0; 869 870 case hwmon_in_max_alarm: 871 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 872 if (err < 0) 873 return err; 874 875 *value = !!(status & SFP_WARN0_VCC_HIGH); 876 return 0; 877 878 case hwmon_in_crit_alarm: 879 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 880 if (err < 0) 881 return err; 882 883 *value = !!(status & SFP_ALARM0_VCC_HIGH); 884 return 0; 885 default: 886 return -EOPNOTSUPP; 887 } 888 889 return -EOPNOTSUPP; 890 } 891 892 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 893 { 894 u8 status; 895 int err; 896 897 switch (attr) { 898 case hwmon_curr_input: 899 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 900 901 case hwmon_curr_lcrit: 902 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 903 sfp_hwmon_calibrate_bias(sfp, value); 904 return 0; 905 906 case hwmon_curr_min: 907 *value = be16_to_cpu(sfp->diag.bias_low_warn); 908 sfp_hwmon_calibrate_bias(sfp, value); 909 return 0; 910 911 case hwmon_curr_max: 912 *value = be16_to_cpu(sfp->diag.bias_high_warn); 913 sfp_hwmon_calibrate_bias(sfp, value); 914 return 0; 915 916 case hwmon_curr_crit: 917 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 918 sfp_hwmon_calibrate_bias(sfp, value); 919 return 0; 920 921 case hwmon_curr_lcrit_alarm: 922 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 923 if (err < 0) 924 return err; 925 926 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 927 return 0; 928 929 case hwmon_curr_min_alarm: 930 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 931 if (err < 0) 932 return err; 933 934 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 935 return 0; 936 937 case hwmon_curr_max_alarm: 938 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 939 if (err < 0) 940 return err; 941 942 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 943 return 0; 944 945 case hwmon_curr_crit_alarm: 946 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 947 if (err < 0) 948 return err; 949 950 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 951 return 0; 952 default: 953 return -EOPNOTSUPP; 954 } 955 956 return -EOPNOTSUPP; 957 } 958 959 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 960 { 961 u8 status; 962 int err; 963 964 switch (attr) { 965 case hwmon_power_input: 966 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 967 968 case hwmon_power_lcrit: 969 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 970 sfp_hwmon_calibrate_tx_power(sfp, value); 971 return 0; 972 973 case hwmon_power_min: 974 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 975 sfp_hwmon_calibrate_tx_power(sfp, value); 976 return 0; 977 978 case hwmon_power_max: 979 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 980 sfp_hwmon_calibrate_tx_power(sfp, value); 981 return 0; 982 983 case hwmon_power_crit: 984 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 985 sfp_hwmon_calibrate_tx_power(sfp, value); 986 return 0; 987 988 case hwmon_power_lcrit_alarm: 989 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 990 if (err < 0) 991 return err; 992 993 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 994 return 0; 995 996 case hwmon_power_min_alarm: 997 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 998 if (err < 0) 999 return err; 1000 1001 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1002 return 0; 1003 1004 case hwmon_power_max_alarm: 1005 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1006 if (err < 0) 1007 return err; 1008 1009 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1010 return 0; 1011 1012 case hwmon_power_crit_alarm: 1013 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1014 if (err < 0) 1015 return err; 1016 1017 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1018 return 0; 1019 default: 1020 return -EOPNOTSUPP; 1021 } 1022 1023 return -EOPNOTSUPP; 1024 } 1025 1026 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1027 { 1028 u8 status; 1029 int err; 1030 1031 switch (attr) { 1032 case hwmon_power_input: 1033 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1034 1035 case hwmon_power_lcrit: 1036 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1037 sfp_hwmon_to_rx_power(value); 1038 return 0; 1039 1040 case hwmon_power_min: 1041 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1042 sfp_hwmon_to_rx_power(value); 1043 return 0; 1044 1045 case hwmon_power_max: 1046 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1047 sfp_hwmon_to_rx_power(value); 1048 return 0; 1049 1050 case hwmon_power_crit: 1051 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1052 sfp_hwmon_to_rx_power(value); 1053 return 0; 1054 1055 case hwmon_power_lcrit_alarm: 1056 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1057 if (err < 0) 1058 return err; 1059 1060 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1061 return 0; 1062 1063 case hwmon_power_min_alarm: 1064 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1065 if (err < 0) 1066 return err; 1067 1068 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1069 return 0; 1070 1071 case hwmon_power_max_alarm: 1072 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1073 if (err < 0) 1074 return err; 1075 1076 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1077 return 0; 1078 1079 case hwmon_power_crit_alarm: 1080 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1081 if (err < 0) 1082 return err; 1083 1084 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1085 return 0; 1086 default: 1087 return -EOPNOTSUPP; 1088 } 1089 1090 return -EOPNOTSUPP; 1091 } 1092 1093 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1094 u32 attr, int channel, long *value) 1095 { 1096 struct sfp *sfp = dev_get_drvdata(dev); 1097 1098 switch (type) { 1099 case hwmon_temp: 1100 return sfp_hwmon_temp(sfp, attr, value); 1101 case hwmon_in: 1102 return sfp_hwmon_vcc(sfp, attr, value); 1103 case hwmon_curr: 1104 return sfp_hwmon_bias(sfp, attr, value); 1105 case hwmon_power: 1106 switch (channel) { 1107 case 0: 1108 return sfp_hwmon_tx_power(sfp, attr, value); 1109 case 1: 1110 return sfp_hwmon_rx_power(sfp, attr, value); 1111 default: 1112 return -EOPNOTSUPP; 1113 } 1114 default: 1115 return -EOPNOTSUPP; 1116 } 1117 } 1118 1119 static const char *const sfp_hwmon_power_labels[] = { 1120 "TX_power", 1121 "RX_power", 1122 }; 1123 1124 static int sfp_hwmon_read_string(struct device *dev, 1125 enum hwmon_sensor_types type, 1126 u32 attr, int channel, const char **str) 1127 { 1128 switch (type) { 1129 case hwmon_curr: 1130 switch (attr) { 1131 case hwmon_curr_label: 1132 *str = "bias"; 1133 return 0; 1134 default: 1135 return -EOPNOTSUPP; 1136 } 1137 break; 1138 case hwmon_temp: 1139 switch (attr) { 1140 case hwmon_temp_label: 1141 *str = "temperature"; 1142 return 0; 1143 default: 1144 return -EOPNOTSUPP; 1145 } 1146 break; 1147 case hwmon_in: 1148 switch (attr) { 1149 case hwmon_in_label: 1150 *str = "VCC"; 1151 return 0; 1152 default: 1153 return -EOPNOTSUPP; 1154 } 1155 break; 1156 case hwmon_power: 1157 switch (attr) { 1158 case hwmon_power_label: 1159 *str = sfp_hwmon_power_labels[channel]; 1160 return 0; 1161 default: 1162 return -EOPNOTSUPP; 1163 } 1164 break; 1165 default: 1166 return -EOPNOTSUPP; 1167 } 1168 1169 return -EOPNOTSUPP; 1170 } 1171 1172 static const struct hwmon_ops sfp_hwmon_ops = { 1173 .is_visible = sfp_hwmon_is_visible, 1174 .read = sfp_hwmon_read, 1175 .read_string = sfp_hwmon_read_string, 1176 }; 1177 1178 static u32 sfp_hwmon_chip_config[] = { 1179 HWMON_C_REGISTER_TZ, 1180 0, 1181 }; 1182 1183 static const struct hwmon_channel_info sfp_hwmon_chip = { 1184 .type = hwmon_chip, 1185 .config = sfp_hwmon_chip_config, 1186 }; 1187 1188 static u32 sfp_hwmon_temp_config[] = { 1189 HWMON_T_INPUT | 1190 HWMON_T_MAX | HWMON_T_MIN | 1191 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1192 HWMON_T_CRIT | HWMON_T_LCRIT | 1193 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1194 HWMON_T_LABEL, 1195 0, 1196 }; 1197 1198 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1199 .type = hwmon_temp, 1200 .config = sfp_hwmon_temp_config, 1201 }; 1202 1203 static u32 sfp_hwmon_vcc_config[] = { 1204 HWMON_I_INPUT | 1205 HWMON_I_MAX | HWMON_I_MIN | 1206 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1207 HWMON_I_CRIT | HWMON_I_LCRIT | 1208 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1209 HWMON_I_LABEL, 1210 0, 1211 }; 1212 1213 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1214 .type = hwmon_in, 1215 .config = sfp_hwmon_vcc_config, 1216 }; 1217 1218 static u32 sfp_hwmon_bias_config[] = { 1219 HWMON_C_INPUT | 1220 HWMON_C_MAX | HWMON_C_MIN | 1221 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1222 HWMON_C_CRIT | HWMON_C_LCRIT | 1223 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1224 HWMON_C_LABEL, 1225 0, 1226 }; 1227 1228 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1229 .type = hwmon_curr, 1230 .config = sfp_hwmon_bias_config, 1231 }; 1232 1233 static u32 sfp_hwmon_power_config[] = { 1234 /* Transmit power */ 1235 HWMON_P_INPUT | 1236 HWMON_P_MAX | HWMON_P_MIN | 1237 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1238 HWMON_P_CRIT | HWMON_P_LCRIT | 1239 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1240 HWMON_P_LABEL, 1241 /* Receive power */ 1242 HWMON_P_INPUT | 1243 HWMON_P_MAX | HWMON_P_MIN | 1244 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1245 HWMON_P_CRIT | HWMON_P_LCRIT | 1246 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1247 HWMON_P_LABEL, 1248 0, 1249 }; 1250 1251 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1252 .type = hwmon_power, 1253 .config = sfp_hwmon_power_config, 1254 }; 1255 1256 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1257 &sfp_hwmon_chip, 1258 &sfp_hwmon_vcc_channel_info, 1259 &sfp_hwmon_temp_channel_info, 1260 &sfp_hwmon_bias_channel_info, 1261 &sfp_hwmon_power_channel_info, 1262 NULL, 1263 }; 1264 1265 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1266 .ops = &sfp_hwmon_ops, 1267 .info = sfp_hwmon_info, 1268 }; 1269 1270 static void sfp_hwmon_probe(struct work_struct *work) 1271 { 1272 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1273 int err, i; 1274 1275 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1276 if (err < 0) { 1277 if (sfp->hwmon_tries--) { 1278 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1279 T_PROBE_RETRY_SLOW); 1280 } else { 1281 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1282 } 1283 return; 1284 } 1285 1286 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1287 if (!sfp->hwmon_name) { 1288 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1289 return; 1290 } 1291 1292 for (i = 0; sfp->hwmon_name[i]; i++) 1293 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1294 sfp->hwmon_name[i] = '_'; 1295 1296 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1297 sfp->hwmon_name, sfp, 1298 &sfp_hwmon_chip_info, 1299 NULL); 1300 if (IS_ERR(sfp->hwmon_dev)) 1301 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1302 PTR_ERR(sfp->hwmon_dev)); 1303 } 1304 1305 static int sfp_hwmon_insert(struct sfp *sfp) 1306 { 1307 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1308 return 0; 1309 1310 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1311 return 0; 1312 1313 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1314 /* This driver in general does not support address 1315 * change. 1316 */ 1317 return 0; 1318 1319 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1320 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1321 1322 return 0; 1323 } 1324 1325 static void sfp_hwmon_remove(struct sfp *sfp) 1326 { 1327 cancel_delayed_work_sync(&sfp->hwmon_probe); 1328 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1329 hwmon_device_unregister(sfp->hwmon_dev); 1330 sfp->hwmon_dev = NULL; 1331 kfree(sfp->hwmon_name); 1332 } 1333 } 1334 1335 static int sfp_hwmon_init(struct sfp *sfp) 1336 { 1337 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1338 1339 return 0; 1340 } 1341 1342 static void sfp_hwmon_exit(struct sfp *sfp) 1343 { 1344 cancel_delayed_work_sync(&sfp->hwmon_probe); 1345 } 1346 #else 1347 static int sfp_hwmon_insert(struct sfp *sfp) 1348 { 1349 return 0; 1350 } 1351 1352 static void sfp_hwmon_remove(struct sfp *sfp) 1353 { 1354 } 1355 1356 static int sfp_hwmon_init(struct sfp *sfp) 1357 { 1358 return 0; 1359 } 1360 1361 static void sfp_hwmon_exit(struct sfp *sfp) 1362 { 1363 } 1364 #endif 1365 1366 /* Helpers */ 1367 static void sfp_module_tx_disable(struct sfp *sfp) 1368 { 1369 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1370 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1371 sfp->state |= SFP_F_TX_DISABLE; 1372 sfp_set_state(sfp, sfp->state); 1373 } 1374 1375 static void sfp_module_tx_enable(struct sfp *sfp) 1376 { 1377 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1378 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1379 sfp->state &= ~SFP_F_TX_DISABLE; 1380 sfp_set_state(sfp, sfp->state); 1381 } 1382 1383 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1384 { 1385 unsigned int state = sfp->state; 1386 1387 if (state & SFP_F_TX_DISABLE) 1388 return; 1389 1390 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1391 1392 udelay(T_RESET_US); 1393 1394 sfp_set_state(sfp, state); 1395 } 1396 1397 /* SFP state machine */ 1398 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1399 { 1400 if (timeout) 1401 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1402 timeout); 1403 else 1404 cancel_delayed_work(&sfp->timeout); 1405 } 1406 1407 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1408 unsigned int timeout) 1409 { 1410 sfp->sm_state = state; 1411 sfp_sm_set_timer(sfp, timeout); 1412 } 1413 1414 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1415 unsigned int timeout) 1416 { 1417 sfp->sm_mod_state = state; 1418 sfp_sm_set_timer(sfp, timeout); 1419 } 1420 1421 static void sfp_sm_phy_detach(struct sfp *sfp) 1422 { 1423 sfp_remove_phy(sfp->sfp_bus); 1424 phy_device_remove(sfp->mod_phy); 1425 phy_device_free(sfp->mod_phy); 1426 sfp->mod_phy = NULL; 1427 } 1428 1429 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1430 { 1431 struct phy_device *phy; 1432 int err; 1433 1434 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1435 if (phy == ERR_PTR(-ENODEV)) 1436 return PTR_ERR(phy); 1437 if (IS_ERR(phy)) { 1438 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1439 return PTR_ERR(phy); 1440 } 1441 1442 err = phy_device_register(phy); 1443 if (err) { 1444 phy_device_free(phy); 1445 dev_err(sfp->dev, "phy_device_register failed: %d\n", err); 1446 return err; 1447 } 1448 1449 err = sfp_add_phy(sfp->sfp_bus, phy); 1450 if (err) { 1451 phy_device_remove(phy); 1452 phy_device_free(phy); 1453 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1454 return err; 1455 } 1456 1457 sfp->mod_phy = phy; 1458 1459 return 0; 1460 } 1461 1462 static void sfp_sm_link_up(struct sfp *sfp) 1463 { 1464 sfp_link_up(sfp->sfp_bus); 1465 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1466 } 1467 1468 static void sfp_sm_link_down(struct sfp *sfp) 1469 { 1470 sfp_link_down(sfp->sfp_bus); 1471 } 1472 1473 static void sfp_sm_link_check_los(struct sfp *sfp) 1474 { 1475 unsigned int los = sfp->state & SFP_F_LOS; 1476 1477 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1478 * are set, we assume that no LOS signal is available. 1479 */ 1480 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) 1481 los ^= SFP_F_LOS; 1482 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) 1483 los = 0; 1484 1485 if (los) 1486 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1487 else 1488 sfp_sm_link_up(sfp); 1489 } 1490 1491 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1492 { 1493 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1494 event == SFP_E_LOS_LOW) || 1495 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1496 event == SFP_E_LOS_HIGH); 1497 } 1498 1499 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1500 { 1501 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1502 event == SFP_E_LOS_HIGH) || 1503 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1504 event == SFP_E_LOS_LOW); 1505 } 1506 1507 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1508 { 1509 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1510 dev_err(sfp->dev, 1511 "module persistently indicates fault, disabling\n"); 1512 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1513 } else { 1514 if (warn) 1515 dev_err(sfp->dev, "module transmit fault indicated\n"); 1516 1517 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1518 } 1519 } 1520 1521 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1522 * normally sits at I2C bus address 0x56, and may either be a clause 22 1523 * or clause 45 PHY. 1524 * 1525 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1526 * negotiation enabled, but some may be in 1000base-X - which is for the 1527 * PHY driver to determine. 1528 * 1529 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1530 * mode according to the negotiated line speed. 1531 */ 1532 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1533 { 1534 int err = 0; 1535 1536 switch (sfp->id.base.extended_cc) { 1537 case SFF8024_ECC_10GBASE_T_SFI: 1538 case SFF8024_ECC_10GBASE_T_SR: 1539 case SFF8024_ECC_5GBASE_T: 1540 case SFF8024_ECC_2_5GBASE_T: 1541 err = sfp_sm_probe_phy(sfp, true); 1542 break; 1543 1544 default: 1545 if (sfp->id.base.e1000_base_t) 1546 err = sfp_sm_probe_phy(sfp, false); 1547 break; 1548 } 1549 return err; 1550 } 1551 1552 static int sfp_module_parse_power(struct sfp *sfp) 1553 { 1554 u32 power_mW = 1000; 1555 1556 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1557 power_mW = 1500; 1558 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1559 power_mW = 2000; 1560 1561 if (power_mW > sfp->max_power_mW) { 1562 /* Module power specification exceeds the allowed maximum. */ 1563 if (sfp->id.ext.sff8472_compliance == 1564 SFP_SFF8472_COMPLIANCE_NONE && 1565 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) { 1566 /* The module appears not to implement bus address 1567 * 0xa2, so assume that the module powers up in the 1568 * indicated mode. 1569 */ 1570 dev_err(sfp->dev, 1571 "Host does not support %u.%uW modules\n", 1572 power_mW / 1000, (power_mW / 100) % 10); 1573 return -EINVAL; 1574 } else { 1575 dev_warn(sfp->dev, 1576 "Host does not support %u.%uW modules, module left in power mode 1\n", 1577 power_mW / 1000, (power_mW / 100) % 10); 1578 return 0; 1579 } 1580 } 1581 1582 /* If the module requires a higher power mode, but also requires 1583 * an address change sequence, warn the user that the module may 1584 * not be functional. 1585 */ 1586 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) { 1587 dev_warn(sfp->dev, 1588 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1589 power_mW / 1000, (power_mW / 100) % 10); 1590 return 0; 1591 } 1592 1593 sfp->module_power_mW = power_mW; 1594 1595 return 0; 1596 } 1597 1598 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1599 { 1600 u8 val; 1601 int err; 1602 1603 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1604 if (err != sizeof(val)) { 1605 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1606 return -EAGAIN; 1607 } 1608 1609 /* DM7052 reports as a high power module, responds to reads (with 1610 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1611 * if the bit is already set, we're already in high power mode. 1612 */ 1613 if (!!(val & BIT(0)) == enable) 1614 return 0; 1615 1616 if (enable) 1617 val |= BIT(0); 1618 else 1619 val &= ~BIT(0); 1620 1621 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1622 if (err != sizeof(val)) { 1623 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1624 return -EAGAIN; 1625 } 1626 1627 if (enable) 1628 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1629 sfp->module_power_mW / 1000, 1630 (sfp->module_power_mW / 100) % 10); 1631 1632 return 0; 1633 } 1634 1635 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1636 { 1637 u8 check; 1638 int err; 1639 1640 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1641 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1642 id->base.connector != SFF8024_CONNECTOR_LC) { 1643 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1644 id->base.phys_id = SFF8024_ID_SFF_8472; 1645 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1646 id->base.connector = SFF8024_CONNECTOR_LC; 1647 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1648 if (err != 3) { 1649 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err); 1650 return err; 1651 } 1652 1653 /* Cotsworks modules have been found to require a delay between write operations. */ 1654 mdelay(50); 1655 1656 /* Update base structure checksum */ 1657 check = sfp_check(&id->base, sizeof(id->base) - 1); 1658 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1659 if (err != 1) { 1660 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err); 1661 return err; 1662 } 1663 } 1664 return 0; 1665 } 1666 1667 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1668 { 1669 /* SFP module inserted - read I2C data */ 1670 struct sfp_eeprom_id id; 1671 bool cotsworks_sfbg; 1672 bool cotsworks; 1673 u8 check; 1674 int ret; 1675 1676 ret = sfp_read(sfp, false, 0, &id, sizeof(id)); 1677 if (ret < 0) { 1678 if (report) 1679 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1680 return -EAGAIN; 1681 } 1682 1683 if (ret != sizeof(id)) { 1684 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1685 return -EAGAIN; 1686 } 1687 1688 /* Cotsworks do not seem to update the checksums when they 1689 * do the final programming with the final module part number, 1690 * serial number and date code. 1691 */ 1692 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1693 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1694 1695 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1696 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1697 * Cotsworks PN matches and bytes are not correct. 1698 */ 1699 if (cotsworks && cotsworks_sfbg) { 1700 ret = sfp_cotsworks_fixup_check(sfp, &id); 1701 if (ret < 0) 1702 return ret; 1703 } 1704 1705 /* Validate the checksum over the base structure */ 1706 check = sfp_check(&id.base, sizeof(id.base) - 1); 1707 if (check != id.base.cc_base) { 1708 if (cotsworks) { 1709 dev_warn(sfp->dev, 1710 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1711 check, id.base.cc_base); 1712 } else { 1713 dev_err(sfp->dev, 1714 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1715 check, id.base.cc_base); 1716 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1717 16, 1, &id, sizeof(id), true); 1718 return -EINVAL; 1719 } 1720 } 1721 1722 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1723 if (check != id.ext.cc_ext) { 1724 if (cotsworks) { 1725 dev_warn(sfp->dev, 1726 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1727 check, id.ext.cc_ext); 1728 } else { 1729 dev_err(sfp->dev, 1730 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1731 check, id.ext.cc_ext); 1732 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1733 16, 1, &id, sizeof(id), true); 1734 memset(&id.ext, 0, sizeof(id.ext)); 1735 } 1736 } 1737 1738 sfp->id = id; 1739 1740 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1741 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1742 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1743 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1744 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1745 (int)sizeof(id.ext.datecode), id.ext.datecode); 1746 1747 /* Check whether we support this module */ 1748 if (!sfp->type->module_supported(&id)) { 1749 dev_err(sfp->dev, 1750 "module is not supported - phys id 0x%02x 0x%02x\n", 1751 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1752 return -EINVAL; 1753 } 1754 1755 /* If the module requires address swap mode, warn about it */ 1756 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1757 dev_warn(sfp->dev, 1758 "module address swap to access page 0xA2 is not supported.\n"); 1759 1760 /* Parse the module power requirement */ 1761 ret = sfp_module_parse_power(sfp); 1762 if (ret < 0) 1763 return ret; 1764 1765 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1766 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1767 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1768 else 1769 sfp->module_t_start_up = T_START_UP; 1770 1771 return 0; 1772 } 1773 1774 static void sfp_sm_mod_remove(struct sfp *sfp) 1775 { 1776 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1777 sfp_module_remove(sfp->sfp_bus); 1778 1779 sfp_hwmon_remove(sfp); 1780 1781 memset(&sfp->id, 0, sizeof(sfp->id)); 1782 sfp->module_power_mW = 0; 1783 1784 dev_info(sfp->dev, "module removed\n"); 1785 } 1786 1787 /* This state machine tracks the upstream's state */ 1788 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1789 { 1790 switch (sfp->sm_dev_state) { 1791 default: 1792 if (event == SFP_E_DEV_ATTACH) 1793 sfp->sm_dev_state = SFP_DEV_DOWN; 1794 break; 1795 1796 case SFP_DEV_DOWN: 1797 if (event == SFP_E_DEV_DETACH) 1798 sfp->sm_dev_state = SFP_DEV_DETACHED; 1799 else if (event == SFP_E_DEV_UP) 1800 sfp->sm_dev_state = SFP_DEV_UP; 1801 break; 1802 1803 case SFP_DEV_UP: 1804 if (event == SFP_E_DEV_DETACH) 1805 sfp->sm_dev_state = SFP_DEV_DETACHED; 1806 else if (event == SFP_E_DEV_DOWN) 1807 sfp->sm_dev_state = SFP_DEV_DOWN; 1808 break; 1809 } 1810 } 1811 1812 /* This state machine tracks the insert/remove state of the module, probes 1813 * the on-board EEPROM, and sets up the power level. 1814 */ 1815 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 1816 { 1817 int err; 1818 1819 /* Handle remove event globally, it resets this state machine */ 1820 if (event == SFP_E_REMOVE) { 1821 if (sfp->sm_mod_state > SFP_MOD_PROBE) 1822 sfp_sm_mod_remove(sfp); 1823 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 1824 return; 1825 } 1826 1827 /* Handle device detach globally */ 1828 if (sfp->sm_dev_state < SFP_DEV_DOWN && 1829 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 1830 if (sfp->module_power_mW > 1000 && 1831 sfp->sm_mod_state > SFP_MOD_HPOWER) 1832 sfp_sm_mod_hpower(sfp, false); 1833 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1834 return; 1835 } 1836 1837 switch (sfp->sm_mod_state) { 1838 default: 1839 if (event == SFP_E_INSERT) { 1840 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 1841 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 1842 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 1843 } 1844 break; 1845 1846 case SFP_MOD_PROBE: 1847 /* Wait for T_PROBE_INIT to time out */ 1848 if (event != SFP_E_TIMEOUT) 1849 break; 1850 1851 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 1852 if (err == -EAGAIN) { 1853 if (sfp->sm_mod_tries_init && 1854 --sfp->sm_mod_tries_init) { 1855 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1856 break; 1857 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 1858 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 1859 dev_warn(sfp->dev, 1860 "please wait, module slow to respond\n"); 1861 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 1862 break; 1863 } 1864 } 1865 if (err < 0) { 1866 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1867 break; 1868 } 1869 1870 err = sfp_hwmon_insert(sfp); 1871 if (err) 1872 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1873 1874 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1875 fallthrough; 1876 case SFP_MOD_WAITDEV: 1877 /* Ensure that the device is attached before proceeding */ 1878 if (sfp->sm_dev_state < SFP_DEV_DOWN) 1879 break; 1880 1881 /* Report the module insertion to the upstream device */ 1882 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1883 if (err < 0) { 1884 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1885 break; 1886 } 1887 1888 /* If this is a power level 1 module, we are done */ 1889 if (sfp->module_power_mW <= 1000) 1890 goto insert; 1891 1892 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 1893 fallthrough; 1894 case SFP_MOD_HPOWER: 1895 /* Enable high power mode */ 1896 err = sfp_sm_mod_hpower(sfp, true); 1897 if (err < 0) { 1898 if (err != -EAGAIN) { 1899 sfp_module_remove(sfp->sfp_bus); 1900 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1901 } else { 1902 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1903 } 1904 break; 1905 } 1906 1907 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 1908 break; 1909 1910 case SFP_MOD_WAITPWR: 1911 /* Wait for T_HPOWER_LEVEL to time out */ 1912 if (event != SFP_E_TIMEOUT) 1913 break; 1914 1915 insert: 1916 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 1917 break; 1918 1919 case SFP_MOD_PRESENT: 1920 case SFP_MOD_ERROR: 1921 break; 1922 } 1923 } 1924 1925 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 1926 { 1927 unsigned long timeout; 1928 int ret; 1929 1930 /* Some events are global */ 1931 if (sfp->sm_state != SFP_S_DOWN && 1932 (sfp->sm_mod_state != SFP_MOD_PRESENT || 1933 sfp->sm_dev_state != SFP_DEV_UP)) { 1934 if (sfp->sm_state == SFP_S_LINK_UP && 1935 sfp->sm_dev_state == SFP_DEV_UP) 1936 sfp_sm_link_down(sfp); 1937 if (sfp->sm_state > SFP_S_INIT) 1938 sfp_module_stop(sfp->sfp_bus); 1939 if (sfp->mod_phy) 1940 sfp_sm_phy_detach(sfp); 1941 sfp_module_tx_disable(sfp); 1942 sfp_soft_stop_poll(sfp); 1943 sfp_sm_next(sfp, SFP_S_DOWN, 0); 1944 return; 1945 } 1946 1947 /* The main state machine */ 1948 switch (sfp->sm_state) { 1949 case SFP_S_DOWN: 1950 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 1951 sfp->sm_dev_state != SFP_DEV_UP) 1952 break; 1953 1954 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 1955 sfp_soft_start_poll(sfp); 1956 1957 sfp_module_tx_enable(sfp); 1958 1959 /* Initialise the fault clearance retries */ 1960 sfp->sm_fault_retries = N_FAULT_INIT; 1961 1962 /* We need to check the TX_FAULT state, which is not defined 1963 * while TX_DISABLE is asserted. The earliest we want to do 1964 * anything (such as probe for a PHY) is 50ms. 1965 */ 1966 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 1967 break; 1968 1969 case SFP_S_WAIT: 1970 if (event != SFP_E_TIMEOUT) 1971 break; 1972 1973 if (sfp->state & SFP_F_TX_FAULT) { 1974 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 1975 * from the TX_DISABLE deassertion for the module to 1976 * initialise, which is indicated by TX_FAULT 1977 * deasserting. 1978 */ 1979 timeout = sfp->module_t_start_up; 1980 if (timeout > T_WAIT) 1981 timeout -= T_WAIT; 1982 else 1983 timeout = 1; 1984 1985 sfp_sm_next(sfp, SFP_S_INIT, timeout); 1986 } else { 1987 /* TX_FAULT is not asserted, assume the module has 1988 * finished initialising. 1989 */ 1990 goto init_done; 1991 } 1992 break; 1993 1994 case SFP_S_INIT: 1995 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 1996 /* TX_FAULT is still asserted after t_init or 1997 * or t_start_up, so assume there is a fault. 1998 */ 1999 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2000 sfp->sm_fault_retries == N_FAULT_INIT); 2001 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2002 init_done: 2003 sfp->sm_phy_retries = R_PHY_RETRY; 2004 goto phy_probe; 2005 } 2006 break; 2007 2008 case SFP_S_INIT_PHY: 2009 if (event != SFP_E_TIMEOUT) 2010 break; 2011 phy_probe: 2012 /* TX_FAULT deasserted or we timed out with TX_FAULT 2013 * clear. Probe for the PHY and check the LOS state. 2014 */ 2015 ret = sfp_sm_probe_for_phy(sfp); 2016 if (ret == -ENODEV) { 2017 if (--sfp->sm_phy_retries) { 2018 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2019 break; 2020 } else { 2021 dev_info(sfp->dev, "no PHY detected\n"); 2022 } 2023 } else if (ret) { 2024 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2025 break; 2026 } 2027 if (sfp_module_start(sfp->sfp_bus)) { 2028 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2029 break; 2030 } 2031 sfp_sm_link_check_los(sfp); 2032 2033 /* Reset the fault retry count */ 2034 sfp->sm_fault_retries = N_FAULT; 2035 break; 2036 2037 case SFP_S_INIT_TX_FAULT: 2038 if (event == SFP_E_TIMEOUT) { 2039 sfp_module_tx_fault_reset(sfp); 2040 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2041 } 2042 break; 2043 2044 case SFP_S_WAIT_LOS: 2045 if (event == SFP_E_TX_FAULT) 2046 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2047 else if (sfp_los_event_inactive(sfp, event)) 2048 sfp_sm_link_up(sfp); 2049 break; 2050 2051 case SFP_S_LINK_UP: 2052 if (event == SFP_E_TX_FAULT) { 2053 sfp_sm_link_down(sfp); 2054 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2055 } else if (sfp_los_event_active(sfp, event)) { 2056 sfp_sm_link_down(sfp); 2057 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2058 } 2059 break; 2060 2061 case SFP_S_TX_FAULT: 2062 if (event == SFP_E_TIMEOUT) { 2063 sfp_module_tx_fault_reset(sfp); 2064 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2065 } 2066 break; 2067 2068 case SFP_S_REINIT: 2069 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2070 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2071 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2072 dev_info(sfp->dev, "module transmit fault recovered\n"); 2073 sfp_sm_link_check_los(sfp); 2074 } 2075 break; 2076 2077 case SFP_S_TX_DISABLE: 2078 break; 2079 } 2080 } 2081 2082 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2083 { 2084 mutex_lock(&sfp->sm_mutex); 2085 2086 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2087 mod_state_to_str(sfp->sm_mod_state), 2088 dev_state_to_str(sfp->sm_dev_state), 2089 sm_state_to_str(sfp->sm_state), 2090 event_to_str(event)); 2091 2092 sfp_sm_device(sfp, event); 2093 sfp_sm_module(sfp, event); 2094 sfp_sm_main(sfp, event); 2095 2096 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2097 mod_state_to_str(sfp->sm_mod_state), 2098 dev_state_to_str(sfp->sm_dev_state), 2099 sm_state_to_str(sfp->sm_state)); 2100 2101 mutex_unlock(&sfp->sm_mutex); 2102 } 2103 2104 static void sfp_attach(struct sfp *sfp) 2105 { 2106 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2107 } 2108 2109 static void sfp_detach(struct sfp *sfp) 2110 { 2111 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2112 } 2113 2114 static void sfp_start(struct sfp *sfp) 2115 { 2116 sfp_sm_event(sfp, SFP_E_DEV_UP); 2117 } 2118 2119 static void sfp_stop(struct sfp *sfp) 2120 { 2121 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2122 } 2123 2124 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2125 { 2126 /* locking... and check module is present */ 2127 2128 if (sfp->id.ext.sff8472_compliance && 2129 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2130 modinfo->type = ETH_MODULE_SFF_8472; 2131 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2132 } else { 2133 modinfo->type = ETH_MODULE_SFF_8079; 2134 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2135 } 2136 return 0; 2137 } 2138 2139 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2140 u8 *data) 2141 { 2142 unsigned int first, last, len; 2143 int ret; 2144 2145 if (ee->len == 0) 2146 return -EINVAL; 2147 2148 first = ee->offset; 2149 last = ee->offset + ee->len; 2150 if (first < ETH_MODULE_SFF_8079_LEN) { 2151 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2152 len -= first; 2153 2154 ret = sfp_read(sfp, false, first, data, len); 2155 if (ret < 0) 2156 return ret; 2157 2158 first += len; 2159 data += len; 2160 } 2161 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2162 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2163 len -= first; 2164 first -= ETH_MODULE_SFF_8079_LEN; 2165 2166 ret = sfp_read(sfp, true, first, data, len); 2167 if (ret < 0) 2168 return ret; 2169 } 2170 return 0; 2171 } 2172 2173 static const struct sfp_socket_ops sfp_module_ops = { 2174 .attach = sfp_attach, 2175 .detach = sfp_detach, 2176 .start = sfp_start, 2177 .stop = sfp_stop, 2178 .module_info = sfp_module_info, 2179 .module_eeprom = sfp_module_eeprom, 2180 }; 2181 2182 static void sfp_timeout(struct work_struct *work) 2183 { 2184 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2185 2186 rtnl_lock(); 2187 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2188 rtnl_unlock(); 2189 } 2190 2191 static void sfp_check_state(struct sfp *sfp) 2192 { 2193 unsigned int state, i, changed; 2194 2195 mutex_lock(&sfp->st_mutex); 2196 state = sfp_get_state(sfp); 2197 changed = state ^ sfp->state; 2198 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2199 2200 for (i = 0; i < GPIO_MAX; i++) 2201 if (changed & BIT(i)) 2202 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2203 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2204 2205 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2206 sfp->state = state; 2207 2208 rtnl_lock(); 2209 if (changed & SFP_F_PRESENT) 2210 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2211 SFP_E_INSERT : SFP_E_REMOVE); 2212 2213 if (changed & SFP_F_TX_FAULT) 2214 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2215 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2216 2217 if (changed & SFP_F_LOS) 2218 sfp_sm_event(sfp, state & SFP_F_LOS ? 2219 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2220 rtnl_unlock(); 2221 mutex_unlock(&sfp->st_mutex); 2222 } 2223 2224 static irqreturn_t sfp_irq(int irq, void *data) 2225 { 2226 struct sfp *sfp = data; 2227 2228 sfp_check_state(sfp); 2229 2230 return IRQ_HANDLED; 2231 } 2232 2233 static void sfp_poll(struct work_struct *work) 2234 { 2235 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2236 2237 sfp_check_state(sfp); 2238 2239 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2240 sfp->need_poll) 2241 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2242 } 2243 2244 static struct sfp *sfp_alloc(struct device *dev) 2245 { 2246 struct sfp *sfp; 2247 2248 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2249 if (!sfp) 2250 return ERR_PTR(-ENOMEM); 2251 2252 sfp->dev = dev; 2253 2254 mutex_init(&sfp->sm_mutex); 2255 mutex_init(&sfp->st_mutex); 2256 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2257 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2258 2259 sfp_hwmon_init(sfp); 2260 2261 return sfp; 2262 } 2263 2264 static void sfp_cleanup(void *data) 2265 { 2266 struct sfp *sfp = data; 2267 2268 sfp_hwmon_exit(sfp); 2269 2270 cancel_delayed_work_sync(&sfp->poll); 2271 cancel_delayed_work_sync(&sfp->timeout); 2272 if (sfp->i2c_mii) { 2273 mdiobus_unregister(sfp->i2c_mii); 2274 mdiobus_free(sfp->i2c_mii); 2275 } 2276 if (sfp->i2c) 2277 i2c_put_adapter(sfp->i2c); 2278 kfree(sfp); 2279 } 2280 2281 static int sfp_probe(struct platform_device *pdev) 2282 { 2283 const struct sff_data *sff; 2284 struct i2c_adapter *i2c; 2285 char *sfp_irq_name; 2286 struct sfp *sfp; 2287 int err, i; 2288 2289 sfp = sfp_alloc(&pdev->dev); 2290 if (IS_ERR(sfp)) 2291 return PTR_ERR(sfp); 2292 2293 platform_set_drvdata(pdev, sfp); 2294 2295 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 2296 if (err < 0) 2297 return err; 2298 2299 sff = sfp->type = &sfp_data; 2300 2301 if (pdev->dev.of_node) { 2302 struct device_node *node = pdev->dev.of_node; 2303 const struct of_device_id *id; 2304 struct device_node *np; 2305 2306 id = of_match_node(sfp_of_match, node); 2307 if (WARN_ON(!id)) 2308 return -EINVAL; 2309 2310 sff = sfp->type = id->data; 2311 2312 np = of_parse_phandle(node, "i2c-bus", 0); 2313 if (!np) { 2314 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2315 return -ENODEV; 2316 } 2317 2318 i2c = of_find_i2c_adapter_by_node(np); 2319 of_node_put(np); 2320 } else if (has_acpi_companion(&pdev->dev)) { 2321 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2322 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2323 struct fwnode_reference_args args; 2324 struct acpi_handle *acpi_handle; 2325 int ret; 2326 2327 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2328 if (ret || !is_acpi_device_node(args.fwnode)) { 2329 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2330 return -ENODEV; 2331 } 2332 2333 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2334 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2335 } else { 2336 return -EINVAL; 2337 } 2338 2339 if (!i2c) 2340 return -EPROBE_DEFER; 2341 2342 err = sfp_i2c_configure(sfp, i2c); 2343 if (err < 0) { 2344 i2c_put_adapter(i2c); 2345 return err; 2346 } 2347 2348 for (i = 0; i < GPIO_MAX; i++) 2349 if (sff->gpios & BIT(i)) { 2350 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2351 gpio_of_names[i], gpio_flags[i]); 2352 if (IS_ERR(sfp->gpio[i])) 2353 return PTR_ERR(sfp->gpio[i]); 2354 } 2355 2356 sfp->get_state = sfp_gpio_get_state; 2357 sfp->set_state = sfp_gpio_set_state; 2358 2359 /* Modules that have no detect signal are always present */ 2360 if (!(sfp->gpio[GPIO_MODDEF0])) 2361 sfp->get_state = sff_gpio_get_state; 2362 2363 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2364 &sfp->max_power_mW); 2365 if (!sfp->max_power_mW) 2366 sfp->max_power_mW = 1000; 2367 2368 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2369 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2370 2371 /* Get the initial state, and always signal TX disable, 2372 * since the network interface will not be up. 2373 */ 2374 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2375 2376 if (sfp->gpio[GPIO_RATE_SELECT] && 2377 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2378 sfp->state |= SFP_F_RATE_SELECT; 2379 sfp_set_state(sfp, sfp->state); 2380 sfp_module_tx_disable(sfp); 2381 if (sfp->state & SFP_F_PRESENT) { 2382 rtnl_lock(); 2383 sfp_sm_event(sfp, SFP_E_INSERT); 2384 rtnl_unlock(); 2385 } 2386 2387 for (i = 0; i < GPIO_MAX; i++) { 2388 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2389 continue; 2390 2391 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2392 if (sfp->gpio_irq[i] < 0) { 2393 sfp->gpio_irq[i] = 0; 2394 sfp->need_poll = true; 2395 continue; 2396 } 2397 2398 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2399 "%s-%s", dev_name(sfp->dev), 2400 gpio_of_names[i]); 2401 2402 if (!sfp_irq_name) 2403 return -ENOMEM; 2404 2405 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2406 NULL, sfp_irq, 2407 IRQF_ONESHOT | 2408 IRQF_TRIGGER_RISING | 2409 IRQF_TRIGGER_FALLING, 2410 sfp_irq_name, sfp); 2411 if (err) { 2412 sfp->gpio_irq[i] = 0; 2413 sfp->need_poll = true; 2414 } 2415 } 2416 2417 if (sfp->need_poll) 2418 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2419 2420 /* We could have an issue in cases no Tx disable pin is available or 2421 * wired as modules using a laser as their light source will continue to 2422 * be active when the fiber is removed. This could be a safety issue and 2423 * we should at least warn the user about that. 2424 */ 2425 if (!sfp->gpio[GPIO_TX_DISABLE]) 2426 dev_warn(sfp->dev, 2427 "No tx_disable pin: SFP modules will always be emitting.\n"); 2428 2429 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2430 if (!sfp->sfp_bus) 2431 return -ENOMEM; 2432 2433 return 0; 2434 } 2435 2436 static int sfp_remove(struct platform_device *pdev) 2437 { 2438 struct sfp *sfp = platform_get_drvdata(pdev); 2439 2440 sfp_unregister_socket(sfp->sfp_bus); 2441 2442 rtnl_lock(); 2443 sfp_sm_event(sfp, SFP_E_REMOVE); 2444 rtnl_unlock(); 2445 2446 return 0; 2447 } 2448 2449 static void sfp_shutdown(struct platform_device *pdev) 2450 { 2451 struct sfp *sfp = platform_get_drvdata(pdev); 2452 int i; 2453 2454 for (i = 0; i < GPIO_MAX; i++) { 2455 if (!sfp->gpio_irq[i]) 2456 continue; 2457 2458 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2459 } 2460 2461 cancel_delayed_work_sync(&sfp->poll); 2462 cancel_delayed_work_sync(&sfp->timeout); 2463 } 2464 2465 static struct platform_driver sfp_driver = { 2466 .probe = sfp_probe, 2467 .remove = sfp_remove, 2468 .shutdown = sfp_shutdown, 2469 .driver = { 2470 .name = "sfp", 2471 .of_match_table = sfp_of_match, 2472 }, 2473 }; 2474 2475 static int sfp_init(void) 2476 { 2477 poll_jiffies = msecs_to_jiffies(100); 2478 2479 return platform_driver_register(&sfp_driver); 2480 } 2481 module_init(sfp_init); 2482 2483 static void sfp_exit(void) 2484 { 2485 platform_driver_unregister(&sfp_driver); 2486 } 2487 module_exit(sfp_exit); 2488 2489 MODULE_ALIAS("platform:sfp"); 2490 MODULE_AUTHOR("Russell King"); 2491 MODULE_LICENSE("GPL v2"); 2492