1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 12 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state; 261 262 struct delayed_work poll; 263 struct delayed_work timeout; 264 struct mutex sm_mutex; /* Protects state machine */ 265 unsigned char sm_mod_state; 266 unsigned char sm_mod_tries_init; 267 unsigned char sm_mod_tries; 268 unsigned char sm_dev_state; 269 unsigned short sm_state; 270 unsigned char sm_fault_retries; 271 unsigned char sm_phy_retries; 272 273 struct sfp_eeprom_id id; 274 unsigned int module_power_mW; 275 unsigned int module_t_start_up; 276 unsigned int module_t_wait; 277 278 unsigned int rate_kbd; 279 unsigned int rs_threshold_kbd; 280 unsigned int rs_state_mask; 281 282 bool have_a2; 283 bool tx_fault_ignore; 284 285 const struct sfp_quirk *quirk; 286 287 #if IS_ENABLED(CONFIG_HWMON) 288 struct sfp_diag diag; 289 struct delayed_work hwmon_probe; 290 unsigned int hwmon_tries; 291 struct device *hwmon_dev; 292 char *hwmon_name; 293 #endif 294 295 #if IS_ENABLED(CONFIG_DEBUG_FS) 296 struct dentry *debugfs_dir; 297 #endif 298 }; 299 300 static bool sff_module_supported(const struct sfp_eeprom_id *id) 301 { 302 return id->base.phys_id == SFF8024_ID_SFF_8472 && 303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 304 } 305 306 static const struct sff_data sff_data = { 307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 308 .module_supported = sff_module_supported, 309 }; 310 311 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 312 { 313 if (id->base.phys_id == SFF8024_ID_SFP && 314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 315 return true; 316 317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 318 * phys id SFF instead of SFP. Therefore mark this module explicitly 319 * as supported based on vendor name and pn match. 320 */ 321 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 323 !memcmp(id->base.vendor_name, "UBNT ", 16) && 324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 325 return true; 326 327 return false; 328 } 329 330 static const struct sff_data sfp_data = { 331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 333 .module_supported = sfp_module_supported, 334 }; 335 336 static const struct of_device_id sfp_of_match[] = { 337 { .compatible = "sff,sff", .data = &sff_data, }, 338 { .compatible = "sff,sfp", .data = &sfp_data, }, 339 { }, 340 }; 341 MODULE_DEVICE_TABLE(of, sfp_of_match); 342 343 static void sfp_fixup_long_startup(struct sfp *sfp) 344 { 345 sfp->module_t_start_up = T_START_UP_BAD_GPON; 346 } 347 348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 349 { 350 sfp->tx_fault_ignore = true; 351 } 352 353 // For 10GBASE-T short-reach modules 354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 355 { 356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 358 } 359 360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs) 361 { 362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000); 364 } 365 366 static void sfp_fixup_fs_10gt(struct sfp *sfp) 367 { 368 sfp_fixup_10gbaset_30m(sfp); 369 370 // These SFPs need 4 seconds before the PHY can be accessed 371 sfp_fixup_rollball_proto(sfp, 4); 372 } 373 374 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 375 { 376 /* Ignore the TX_FAULT and LOS signals on this module. 377 * these are possibly used for other purposes on this 378 * module, e.g. a serial port. 379 */ 380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 381 } 382 383 static void sfp_fixup_rollball(struct sfp *sfp) 384 { 385 // Rollball SFPs need 25 seconds before the PHY can be accessed 386 sfp_fixup_rollball_proto(sfp, 25); 387 } 388 389 static void sfp_fixup_rollball_cc(struct sfp *sfp) 390 { 391 sfp_fixup_rollball(sfp); 392 393 /* Some RollBall SFPs may have wrong (zero) extended compliance code 394 * burned in EEPROM. For PHY probing we need the correct one. 395 */ 396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 397 } 398 399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 400 unsigned long *modes, 401 unsigned long *interfaces) 402 { 403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 405 } 406 407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 408 unsigned long *modes, 409 unsigned long *interfaces) 410 { 411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 412 } 413 414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 415 unsigned long *modes, 416 unsigned long *interfaces) 417 { 418 /* Copper 2.5G SFP */ 419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 421 sfp_quirk_disable_autoneg(id, modes, interfaces); 422 } 423 424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 429 * types including 10G Ethernet which is not truth. So clear all claimed 430 * modes and set only one mode which module supports: 1000baseX_Full. 431 */ 432 linkmode_zero(modes); 433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 434 } 435 436 #define SFP_QUIRK(_v, _p, _m, _f) \ 437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 440 441 static const struct sfp_quirk sfp_quirks[] = { 442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 443 // report 2500MBd NRZ in their EEPROM 444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 445 446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 447 // NRZ in their EEPROM 448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 449 sfp_fixup_long_startup), 450 451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 452 // Rollball protocol to talk to the PHY. 453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 454 455 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 456 // NRZ in their EEPROM 457 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 458 sfp_fixup_ignore_tx_fault), 459 460 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 461 462 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 463 // 2600MBd in their EERPOM 464 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 465 466 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 467 // their EEPROM 468 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 469 sfp_fixup_ignore_tx_fault), 470 471 // FS 2.5G Base-T 472 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 473 474 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 475 // 2500MBd NRZ in their EEPROM 476 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 477 478 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 479 480 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 481 // Rollball protocol to talk to the PHY. 482 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 483 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 484 485 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator 486 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), 487 488 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 489 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 490 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 491 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 492 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 493 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 494 }; 495 496 static size_t sfp_strlen(const char *str, size_t maxlen) 497 { 498 size_t size, i; 499 500 /* Trailing characters should be filled with space chars, but 501 * some manufacturers can't read SFF-8472 and use NUL. 502 */ 503 for (i = 0, size = 0; i < maxlen; i++) 504 if (str[i] != ' ' && str[i] != '\0') 505 size = i + 1; 506 507 return size; 508 } 509 510 static bool sfp_match(const char *qs, const char *str, size_t len) 511 { 512 if (!qs) 513 return true; 514 if (strlen(qs) != len) 515 return false; 516 return !strncmp(qs, str, len); 517 } 518 519 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 520 { 521 const struct sfp_quirk *q; 522 unsigned int i; 523 size_t vs, ps; 524 525 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 526 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 527 528 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 529 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 530 sfp_match(q->part, id->base.vendor_pn, ps)) 531 return q; 532 533 return NULL; 534 } 535 536 static unsigned long poll_jiffies; 537 538 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 539 { 540 unsigned int i, state, v; 541 542 for (i = state = 0; i < GPIO_MAX; i++) { 543 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 544 continue; 545 546 v = gpiod_get_value_cansleep(sfp->gpio[i]); 547 if (v) 548 state |= BIT(i); 549 } 550 551 return state; 552 } 553 554 static unsigned int sff_gpio_get_state(struct sfp *sfp) 555 { 556 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 557 } 558 559 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 560 { 561 unsigned int drive; 562 563 if (state & SFP_F_PRESENT) 564 /* If the module is present, drive the requested signals */ 565 drive = sfp->state_hw_drive; 566 else 567 /* Otherwise, let them float to the pull-ups */ 568 drive = 0; 569 570 if (sfp->gpio[GPIO_TX_DISABLE]) { 571 if (drive & SFP_F_TX_DISABLE) 572 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 573 state & SFP_F_TX_DISABLE); 574 else 575 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 576 } 577 578 if (sfp->gpio[GPIO_RS0]) { 579 if (drive & SFP_F_RS0) 580 gpiod_direction_output(sfp->gpio[GPIO_RS0], 581 state & SFP_F_RS0); 582 else 583 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 584 } 585 586 if (sfp->gpio[GPIO_RS1]) { 587 if (drive & SFP_F_RS1) 588 gpiod_direction_output(sfp->gpio[GPIO_RS1], 589 state & SFP_F_RS1); 590 else 591 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 592 } 593 } 594 595 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 596 size_t len) 597 { 598 struct i2c_msg msgs[2]; 599 u8 bus_addr = a2 ? 0x51 : 0x50; 600 size_t block_size = sfp->i2c_block_size; 601 size_t this_len; 602 int ret; 603 604 msgs[0].addr = bus_addr; 605 msgs[0].flags = 0; 606 msgs[0].len = 1; 607 msgs[0].buf = &dev_addr; 608 msgs[1].addr = bus_addr; 609 msgs[1].flags = I2C_M_RD; 610 msgs[1].len = len; 611 msgs[1].buf = buf; 612 613 while (len) { 614 this_len = len; 615 if (this_len > block_size) 616 this_len = block_size; 617 618 msgs[1].len = this_len; 619 620 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 621 if (ret < 0) 622 return ret; 623 624 if (ret != ARRAY_SIZE(msgs)) 625 break; 626 627 msgs[1].buf += this_len; 628 dev_addr += this_len; 629 len -= this_len; 630 } 631 632 return msgs[1].buf - (u8 *)buf; 633 } 634 635 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 636 size_t len) 637 { 638 struct i2c_msg msgs[1]; 639 u8 bus_addr = a2 ? 0x51 : 0x50; 640 int ret; 641 642 msgs[0].addr = bus_addr; 643 msgs[0].flags = 0; 644 msgs[0].len = 1 + len; 645 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 646 if (!msgs[0].buf) 647 return -ENOMEM; 648 649 msgs[0].buf[0] = dev_addr; 650 memcpy(&msgs[0].buf[1], buf, len); 651 652 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 653 654 kfree(msgs[0].buf); 655 656 if (ret < 0) 657 return ret; 658 659 return ret == ARRAY_SIZE(msgs) ? len : 0; 660 } 661 662 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 663 { 664 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 665 return -EINVAL; 666 667 sfp->i2c = i2c; 668 sfp->read = sfp_i2c_read; 669 sfp->write = sfp_i2c_write; 670 671 return 0; 672 } 673 674 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 675 { 676 struct mii_bus *i2c_mii; 677 int ret; 678 679 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 680 if (IS_ERR(i2c_mii)) 681 return PTR_ERR(i2c_mii); 682 683 i2c_mii->name = "SFP I2C Bus"; 684 i2c_mii->phy_mask = ~0; 685 686 ret = mdiobus_register(i2c_mii); 687 if (ret < 0) { 688 mdiobus_free(i2c_mii); 689 return ret; 690 } 691 692 sfp->i2c_mii = i2c_mii; 693 694 return 0; 695 } 696 697 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 698 { 699 mdiobus_unregister(sfp->i2c_mii); 700 sfp->i2c_mii = NULL; 701 } 702 703 /* Interface */ 704 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 705 { 706 return sfp->read(sfp, a2, addr, buf, len); 707 } 708 709 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 710 { 711 return sfp->write(sfp, a2, addr, buf, len); 712 } 713 714 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 715 { 716 int ret; 717 u8 old, v; 718 719 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 720 if (ret != sizeof(old)) 721 return ret; 722 723 v = (old & ~mask) | (val & mask); 724 if (v == old) 725 return sizeof(v); 726 727 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 728 } 729 730 static unsigned int sfp_soft_get_state(struct sfp *sfp) 731 { 732 unsigned int state = 0; 733 u8 status; 734 int ret; 735 736 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 737 if (ret == sizeof(status)) { 738 if (status & SFP_STATUS_RX_LOS) 739 state |= SFP_F_LOS; 740 if (status & SFP_STATUS_TX_FAULT) 741 state |= SFP_F_TX_FAULT; 742 } else { 743 dev_err_ratelimited(sfp->dev, 744 "failed to read SFP soft status: %pe\n", 745 ERR_PTR(ret)); 746 /* Preserve the current state */ 747 state = sfp->state; 748 } 749 750 return state & sfp->state_soft_mask; 751 } 752 753 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 754 unsigned int soft) 755 { 756 u8 mask = 0; 757 u8 val = 0; 758 759 if (soft & SFP_F_TX_DISABLE) 760 mask |= SFP_STATUS_TX_DISABLE_FORCE; 761 if (state & SFP_F_TX_DISABLE) 762 val |= SFP_STATUS_TX_DISABLE_FORCE; 763 764 if (soft & SFP_F_RS0) 765 mask |= SFP_STATUS_RS0_SELECT; 766 if (state & SFP_F_RS0) 767 val |= SFP_STATUS_RS0_SELECT; 768 769 if (mask) 770 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 771 772 val = mask = 0; 773 if (soft & SFP_F_RS1) 774 mask |= SFP_EXT_STATUS_RS1_SELECT; 775 if (state & SFP_F_RS1) 776 val |= SFP_EXT_STATUS_RS1_SELECT; 777 778 if (mask) 779 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 780 } 781 782 static void sfp_soft_start_poll(struct sfp *sfp) 783 { 784 const struct sfp_eeprom_id *id = &sfp->id; 785 unsigned int mask = 0; 786 787 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 788 mask |= SFP_F_TX_DISABLE; 789 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 790 mask |= SFP_F_TX_FAULT; 791 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 792 mask |= SFP_F_LOS; 793 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 794 mask |= sfp->rs_state_mask; 795 796 mutex_lock(&sfp->st_mutex); 797 // Poll the soft state for hardware pins we want to ignore 798 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 799 800 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 801 !sfp->need_poll) 802 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 803 mutex_unlock(&sfp->st_mutex); 804 } 805 806 static void sfp_soft_stop_poll(struct sfp *sfp) 807 { 808 mutex_lock(&sfp->st_mutex); 809 sfp->state_soft_mask = 0; 810 mutex_unlock(&sfp->st_mutex); 811 } 812 813 /* sfp_get_state() - must be called with st_mutex held, or in the 814 * initialisation path. 815 */ 816 static unsigned int sfp_get_state(struct sfp *sfp) 817 { 818 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 819 unsigned int state; 820 821 state = sfp->get_state(sfp) & sfp->state_hw_mask; 822 if (state & SFP_F_PRESENT && soft) 823 state |= sfp_soft_get_state(sfp); 824 825 return state; 826 } 827 828 /* sfp_set_state() - must be called with st_mutex held, or in the 829 * initialisation path. 830 */ 831 static void sfp_set_state(struct sfp *sfp, unsigned int state) 832 { 833 unsigned int soft; 834 835 sfp->set_state(sfp, state); 836 837 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 838 if (state & SFP_F_PRESENT && soft) 839 sfp_soft_set_state(sfp, state, soft); 840 } 841 842 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 843 { 844 mutex_lock(&sfp->st_mutex); 845 sfp->state = (sfp->state & ~mask) | set; 846 sfp_set_state(sfp, sfp->state); 847 mutex_unlock(&sfp->st_mutex); 848 } 849 850 static unsigned int sfp_check(void *buf, size_t len) 851 { 852 u8 *p, check; 853 854 for (p = buf, check = 0; len; p++, len--) 855 check += *p; 856 857 return check; 858 } 859 860 /* hwmon */ 861 #if IS_ENABLED(CONFIG_HWMON) 862 static umode_t sfp_hwmon_is_visible(const void *data, 863 enum hwmon_sensor_types type, 864 u32 attr, int channel) 865 { 866 const struct sfp *sfp = data; 867 868 switch (type) { 869 case hwmon_temp: 870 switch (attr) { 871 case hwmon_temp_min_alarm: 872 case hwmon_temp_max_alarm: 873 case hwmon_temp_lcrit_alarm: 874 case hwmon_temp_crit_alarm: 875 case hwmon_temp_min: 876 case hwmon_temp_max: 877 case hwmon_temp_lcrit: 878 case hwmon_temp_crit: 879 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 880 return 0; 881 fallthrough; 882 case hwmon_temp_input: 883 case hwmon_temp_label: 884 return 0444; 885 default: 886 return 0; 887 } 888 case hwmon_in: 889 switch (attr) { 890 case hwmon_in_min_alarm: 891 case hwmon_in_max_alarm: 892 case hwmon_in_lcrit_alarm: 893 case hwmon_in_crit_alarm: 894 case hwmon_in_min: 895 case hwmon_in_max: 896 case hwmon_in_lcrit: 897 case hwmon_in_crit: 898 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 899 return 0; 900 fallthrough; 901 case hwmon_in_input: 902 case hwmon_in_label: 903 return 0444; 904 default: 905 return 0; 906 } 907 case hwmon_curr: 908 switch (attr) { 909 case hwmon_curr_min_alarm: 910 case hwmon_curr_max_alarm: 911 case hwmon_curr_lcrit_alarm: 912 case hwmon_curr_crit_alarm: 913 case hwmon_curr_min: 914 case hwmon_curr_max: 915 case hwmon_curr_lcrit: 916 case hwmon_curr_crit: 917 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 918 return 0; 919 fallthrough; 920 case hwmon_curr_input: 921 case hwmon_curr_label: 922 return 0444; 923 default: 924 return 0; 925 } 926 case hwmon_power: 927 /* External calibration of receive power requires 928 * floating point arithmetic. Doing that in the kernel 929 * is not easy, so just skip it. If the module does 930 * not require external calibration, we can however 931 * show receiver power, since FP is then not needed. 932 */ 933 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 934 channel == 1) 935 return 0; 936 switch (attr) { 937 case hwmon_power_min_alarm: 938 case hwmon_power_max_alarm: 939 case hwmon_power_lcrit_alarm: 940 case hwmon_power_crit_alarm: 941 case hwmon_power_min: 942 case hwmon_power_max: 943 case hwmon_power_lcrit: 944 case hwmon_power_crit: 945 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 946 return 0; 947 fallthrough; 948 case hwmon_power_input: 949 case hwmon_power_label: 950 return 0444; 951 default: 952 return 0; 953 } 954 default: 955 return 0; 956 } 957 } 958 959 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 960 { 961 __be16 val; 962 int err; 963 964 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 965 if (err < 0) 966 return err; 967 968 *value = be16_to_cpu(val); 969 970 return 0; 971 } 972 973 static void sfp_hwmon_to_rx_power(long *value) 974 { 975 *value = DIV_ROUND_CLOSEST(*value, 10); 976 } 977 978 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 979 long *value) 980 { 981 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 982 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 983 } 984 985 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 986 { 987 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 988 be16_to_cpu(sfp->diag.cal_t_offset), value); 989 990 if (*value >= 0x8000) 991 *value -= 0x10000; 992 993 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 994 } 995 996 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 997 { 998 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 999 be16_to_cpu(sfp->diag.cal_v_offset), value); 1000 1001 *value = DIV_ROUND_CLOSEST(*value, 10); 1002 } 1003 1004 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1005 { 1006 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1007 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1008 1009 *value = DIV_ROUND_CLOSEST(*value, 500); 1010 } 1011 1012 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1013 { 1014 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1015 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1016 1017 *value = DIV_ROUND_CLOSEST(*value, 10); 1018 } 1019 1020 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1021 { 1022 int err; 1023 1024 err = sfp_hwmon_read_sensor(sfp, reg, value); 1025 if (err < 0) 1026 return err; 1027 1028 sfp_hwmon_calibrate_temp(sfp, value); 1029 1030 return 0; 1031 } 1032 1033 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1034 { 1035 int err; 1036 1037 err = sfp_hwmon_read_sensor(sfp, reg, value); 1038 if (err < 0) 1039 return err; 1040 1041 sfp_hwmon_calibrate_vcc(sfp, value); 1042 1043 return 0; 1044 } 1045 1046 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1047 { 1048 int err; 1049 1050 err = sfp_hwmon_read_sensor(sfp, reg, value); 1051 if (err < 0) 1052 return err; 1053 1054 sfp_hwmon_calibrate_bias(sfp, value); 1055 1056 return 0; 1057 } 1058 1059 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1060 { 1061 int err; 1062 1063 err = sfp_hwmon_read_sensor(sfp, reg, value); 1064 if (err < 0) 1065 return err; 1066 1067 sfp_hwmon_calibrate_tx_power(sfp, value); 1068 1069 return 0; 1070 } 1071 1072 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1073 { 1074 int err; 1075 1076 err = sfp_hwmon_read_sensor(sfp, reg, value); 1077 if (err < 0) 1078 return err; 1079 1080 sfp_hwmon_to_rx_power(value); 1081 1082 return 0; 1083 } 1084 1085 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1086 { 1087 u8 status; 1088 int err; 1089 1090 switch (attr) { 1091 case hwmon_temp_input: 1092 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1093 1094 case hwmon_temp_lcrit: 1095 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1096 sfp_hwmon_calibrate_temp(sfp, value); 1097 return 0; 1098 1099 case hwmon_temp_min: 1100 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1101 sfp_hwmon_calibrate_temp(sfp, value); 1102 return 0; 1103 case hwmon_temp_max: 1104 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1105 sfp_hwmon_calibrate_temp(sfp, value); 1106 return 0; 1107 1108 case hwmon_temp_crit: 1109 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1110 sfp_hwmon_calibrate_temp(sfp, value); 1111 return 0; 1112 1113 case hwmon_temp_lcrit_alarm: 1114 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1115 if (err < 0) 1116 return err; 1117 1118 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1119 return 0; 1120 1121 case hwmon_temp_min_alarm: 1122 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1123 if (err < 0) 1124 return err; 1125 1126 *value = !!(status & SFP_WARN0_TEMP_LOW); 1127 return 0; 1128 1129 case hwmon_temp_max_alarm: 1130 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1131 if (err < 0) 1132 return err; 1133 1134 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1135 return 0; 1136 1137 case hwmon_temp_crit_alarm: 1138 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1139 if (err < 0) 1140 return err; 1141 1142 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1143 return 0; 1144 default: 1145 return -EOPNOTSUPP; 1146 } 1147 1148 return -EOPNOTSUPP; 1149 } 1150 1151 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1152 { 1153 u8 status; 1154 int err; 1155 1156 switch (attr) { 1157 case hwmon_in_input: 1158 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1159 1160 case hwmon_in_lcrit: 1161 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1162 sfp_hwmon_calibrate_vcc(sfp, value); 1163 return 0; 1164 1165 case hwmon_in_min: 1166 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1167 sfp_hwmon_calibrate_vcc(sfp, value); 1168 return 0; 1169 1170 case hwmon_in_max: 1171 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1172 sfp_hwmon_calibrate_vcc(sfp, value); 1173 return 0; 1174 1175 case hwmon_in_crit: 1176 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1177 sfp_hwmon_calibrate_vcc(sfp, value); 1178 return 0; 1179 1180 case hwmon_in_lcrit_alarm: 1181 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1182 if (err < 0) 1183 return err; 1184 1185 *value = !!(status & SFP_ALARM0_VCC_LOW); 1186 return 0; 1187 1188 case hwmon_in_min_alarm: 1189 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1190 if (err < 0) 1191 return err; 1192 1193 *value = !!(status & SFP_WARN0_VCC_LOW); 1194 return 0; 1195 1196 case hwmon_in_max_alarm: 1197 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1198 if (err < 0) 1199 return err; 1200 1201 *value = !!(status & SFP_WARN0_VCC_HIGH); 1202 return 0; 1203 1204 case hwmon_in_crit_alarm: 1205 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1206 if (err < 0) 1207 return err; 1208 1209 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1210 return 0; 1211 default: 1212 return -EOPNOTSUPP; 1213 } 1214 1215 return -EOPNOTSUPP; 1216 } 1217 1218 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1219 { 1220 u8 status; 1221 int err; 1222 1223 switch (attr) { 1224 case hwmon_curr_input: 1225 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1226 1227 case hwmon_curr_lcrit: 1228 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1229 sfp_hwmon_calibrate_bias(sfp, value); 1230 return 0; 1231 1232 case hwmon_curr_min: 1233 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1234 sfp_hwmon_calibrate_bias(sfp, value); 1235 return 0; 1236 1237 case hwmon_curr_max: 1238 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1239 sfp_hwmon_calibrate_bias(sfp, value); 1240 return 0; 1241 1242 case hwmon_curr_crit: 1243 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1244 sfp_hwmon_calibrate_bias(sfp, value); 1245 return 0; 1246 1247 case hwmon_curr_lcrit_alarm: 1248 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1249 if (err < 0) 1250 return err; 1251 1252 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1253 return 0; 1254 1255 case hwmon_curr_min_alarm: 1256 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1257 if (err < 0) 1258 return err; 1259 1260 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1261 return 0; 1262 1263 case hwmon_curr_max_alarm: 1264 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1265 if (err < 0) 1266 return err; 1267 1268 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1269 return 0; 1270 1271 case hwmon_curr_crit_alarm: 1272 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1273 if (err < 0) 1274 return err; 1275 1276 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1277 return 0; 1278 default: 1279 return -EOPNOTSUPP; 1280 } 1281 1282 return -EOPNOTSUPP; 1283 } 1284 1285 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1286 { 1287 u8 status; 1288 int err; 1289 1290 switch (attr) { 1291 case hwmon_power_input: 1292 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1293 1294 case hwmon_power_lcrit: 1295 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1296 sfp_hwmon_calibrate_tx_power(sfp, value); 1297 return 0; 1298 1299 case hwmon_power_min: 1300 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1301 sfp_hwmon_calibrate_tx_power(sfp, value); 1302 return 0; 1303 1304 case hwmon_power_max: 1305 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1306 sfp_hwmon_calibrate_tx_power(sfp, value); 1307 return 0; 1308 1309 case hwmon_power_crit: 1310 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1311 sfp_hwmon_calibrate_tx_power(sfp, value); 1312 return 0; 1313 1314 case hwmon_power_lcrit_alarm: 1315 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1316 if (err < 0) 1317 return err; 1318 1319 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1320 return 0; 1321 1322 case hwmon_power_min_alarm: 1323 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1324 if (err < 0) 1325 return err; 1326 1327 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1328 return 0; 1329 1330 case hwmon_power_max_alarm: 1331 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1332 if (err < 0) 1333 return err; 1334 1335 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1336 return 0; 1337 1338 case hwmon_power_crit_alarm: 1339 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1340 if (err < 0) 1341 return err; 1342 1343 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1344 return 0; 1345 default: 1346 return -EOPNOTSUPP; 1347 } 1348 1349 return -EOPNOTSUPP; 1350 } 1351 1352 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1353 { 1354 u8 status; 1355 int err; 1356 1357 switch (attr) { 1358 case hwmon_power_input: 1359 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1360 1361 case hwmon_power_lcrit: 1362 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1363 sfp_hwmon_to_rx_power(value); 1364 return 0; 1365 1366 case hwmon_power_min: 1367 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1368 sfp_hwmon_to_rx_power(value); 1369 return 0; 1370 1371 case hwmon_power_max: 1372 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1373 sfp_hwmon_to_rx_power(value); 1374 return 0; 1375 1376 case hwmon_power_crit: 1377 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1378 sfp_hwmon_to_rx_power(value); 1379 return 0; 1380 1381 case hwmon_power_lcrit_alarm: 1382 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1383 if (err < 0) 1384 return err; 1385 1386 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1387 return 0; 1388 1389 case hwmon_power_min_alarm: 1390 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1391 if (err < 0) 1392 return err; 1393 1394 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1395 return 0; 1396 1397 case hwmon_power_max_alarm: 1398 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1399 if (err < 0) 1400 return err; 1401 1402 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1403 return 0; 1404 1405 case hwmon_power_crit_alarm: 1406 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1407 if (err < 0) 1408 return err; 1409 1410 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1411 return 0; 1412 default: 1413 return -EOPNOTSUPP; 1414 } 1415 1416 return -EOPNOTSUPP; 1417 } 1418 1419 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1420 u32 attr, int channel, long *value) 1421 { 1422 struct sfp *sfp = dev_get_drvdata(dev); 1423 1424 switch (type) { 1425 case hwmon_temp: 1426 return sfp_hwmon_temp(sfp, attr, value); 1427 case hwmon_in: 1428 return sfp_hwmon_vcc(sfp, attr, value); 1429 case hwmon_curr: 1430 return sfp_hwmon_bias(sfp, attr, value); 1431 case hwmon_power: 1432 switch (channel) { 1433 case 0: 1434 return sfp_hwmon_tx_power(sfp, attr, value); 1435 case 1: 1436 return sfp_hwmon_rx_power(sfp, attr, value); 1437 default: 1438 return -EOPNOTSUPP; 1439 } 1440 default: 1441 return -EOPNOTSUPP; 1442 } 1443 } 1444 1445 static const char *const sfp_hwmon_power_labels[] = { 1446 "TX_power", 1447 "RX_power", 1448 }; 1449 1450 static int sfp_hwmon_read_string(struct device *dev, 1451 enum hwmon_sensor_types type, 1452 u32 attr, int channel, const char **str) 1453 { 1454 switch (type) { 1455 case hwmon_curr: 1456 switch (attr) { 1457 case hwmon_curr_label: 1458 *str = "bias"; 1459 return 0; 1460 default: 1461 return -EOPNOTSUPP; 1462 } 1463 break; 1464 case hwmon_temp: 1465 switch (attr) { 1466 case hwmon_temp_label: 1467 *str = "temperature"; 1468 return 0; 1469 default: 1470 return -EOPNOTSUPP; 1471 } 1472 break; 1473 case hwmon_in: 1474 switch (attr) { 1475 case hwmon_in_label: 1476 *str = "VCC"; 1477 return 0; 1478 default: 1479 return -EOPNOTSUPP; 1480 } 1481 break; 1482 case hwmon_power: 1483 switch (attr) { 1484 case hwmon_power_label: 1485 *str = sfp_hwmon_power_labels[channel]; 1486 return 0; 1487 default: 1488 return -EOPNOTSUPP; 1489 } 1490 break; 1491 default: 1492 return -EOPNOTSUPP; 1493 } 1494 1495 return -EOPNOTSUPP; 1496 } 1497 1498 static const struct hwmon_ops sfp_hwmon_ops = { 1499 .is_visible = sfp_hwmon_is_visible, 1500 .read = sfp_hwmon_read, 1501 .read_string = sfp_hwmon_read_string, 1502 }; 1503 1504 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1505 HWMON_CHANNEL_INFO(chip, 1506 HWMON_C_REGISTER_TZ), 1507 HWMON_CHANNEL_INFO(in, 1508 HWMON_I_INPUT | 1509 HWMON_I_MAX | HWMON_I_MIN | 1510 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1511 HWMON_I_CRIT | HWMON_I_LCRIT | 1512 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1513 HWMON_I_LABEL), 1514 HWMON_CHANNEL_INFO(temp, 1515 HWMON_T_INPUT | 1516 HWMON_T_MAX | HWMON_T_MIN | 1517 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1518 HWMON_T_CRIT | HWMON_T_LCRIT | 1519 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1520 HWMON_T_LABEL), 1521 HWMON_CHANNEL_INFO(curr, 1522 HWMON_C_INPUT | 1523 HWMON_C_MAX | HWMON_C_MIN | 1524 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1525 HWMON_C_CRIT | HWMON_C_LCRIT | 1526 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1527 HWMON_C_LABEL), 1528 HWMON_CHANNEL_INFO(power, 1529 /* Transmit power */ 1530 HWMON_P_INPUT | 1531 HWMON_P_MAX | HWMON_P_MIN | 1532 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1533 HWMON_P_CRIT | HWMON_P_LCRIT | 1534 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1535 HWMON_P_LABEL, 1536 /* Receive power */ 1537 HWMON_P_INPUT | 1538 HWMON_P_MAX | HWMON_P_MIN | 1539 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1540 HWMON_P_CRIT | HWMON_P_LCRIT | 1541 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1542 HWMON_P_LABEL), 1543 NULL, 1544 }; 1545 1546 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1547 .ops = &sfp_hwmon_ops, 1548 .info = sfp_hwmon_info, 1549 }; 1550 1551 static void sfp_hwmon_probe(struct work_struct *work) 1552 { 1553 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1554 int err; 1555 1556 /* hwmon interface needs to access 16bit registers in atomic way to 1557 * guarantee coherency of the diagnostic monitoring data. If it is not 1558 * possible to guarantee coherency because EEPROM is broken in such way 1559 * that does not support atomic 16bit read operation then we have to 1560 * skip registration of hwmon device. 1561 */ 1562 if (sfp->i2c_block_size < 2) { 1563 dev_info(sfp->dev, 1564 "skipping hwmon device registration due to broken EEPROM\n"); 1565 dev_info(sfp->dev, 1566 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1567 return; 1568 } 1569 1570 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1571 if (err < 0) { 1572 if (sfp->hwmon_tries--) { 1573 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1574 T_PROBE_RETRY_SLOW); 1575 } else { 1576 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1577 ERR_PTR(err)); 1578 } 1579 return; 1580 } 1581 1582 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1583 if (IS_ERR(sfp->hwmon_name)) { 1584 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1585 return; 1586 } 1587 1588 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1589 sfp->hwmon_name, sfp, 1590 &sfp_hwmon_chip_info, 1591 NULL); 1592 if (IS_ERR(sfp->hwmon_dev)) 1593 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1594 PTR_ERR(sfp->hwmon_dev)); 1595 } 1596 1597 static int sfp_hwmon_insert(struct sfp *sfp) 1598 { 1599 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1600 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1601 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1602 } 1603 1604 return 0; 1605 } 1606 1607 static void sfp_hwmon_remove(struct sfp *sfp) 1608 { 1609 cancel_delayed_work_sync(&sfp->hwmon_probe); 1610 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1611 hwmon_device_unregister(sfp->hwmon_dev); 1612 sfp->hwmon_dev = NULL; 1613 kfree(sfp->hwmon_name); 1614 } 1615 } 1616 1617 static int sfp_hwmon_init(struct sfp *sfp) 1618 { 1619 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1620 1621 return 0; 1622 } 1623 1624 static void sfp_hwmon_exit(struct sfp *sfp) 1625 { 1626 cancel_delayed_work_sync(&sfp->hwmon_probe); 1627 } 1628 #else 1629 static int sfp_hwmon_insert(struct sfp *sfp) 1630 { 1631 return 0; 1632 } 1633 1634 static void sfp_hwmon_remove(struct sfp *sfp) 1635 { 1636 } 1637 1638 static int sfp_hwmon_init(struct sfp *sfp) 1639 { 1640 return 0; 1641 } 1642 1643 static void sfp_hwmon_exit(struct sfp *sfp) 1644 { 1645 } 1646 #endif 1647 1648 /* Helpers */ 1649 static void sfp_module_tx_disable(struct sfp *sfp) 1650 { 1651 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1652 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1653 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1654 } 1655 1656 static void sfp_module_tx_enable(struct sfp *sfp) 1657 { 1658 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1659 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1660 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1661 } 1662 1663 #if IS_ENABLED(CONFIG_DEBUG_FS) 1664 static int sfp_debug_state_show(struct seq_file *s, void *data) 1665 { 1666 struct sfp *sfp = s->private; 1667 1668 seq_printf(s, "Module state: %s\n", 1669 mod_state_to_str(sfp->sm_mod_state)); 1670 seq_printf(s, "Module probe attempts: %d %d\n", 1671 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1672 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1673 seq_printf(s, "Device state: %s\n", 1674 dev_state_to_str(sfp->sm_dev_state)); 1675 seq_printf(s, "Main state: %s\n", 1676 sm_state_to_str(sfp->sm_state)); 1677 seq_printf(s, "Fault recovery remaining retries: %d\n", 1678 sfp->sm_fault_retries); 1679 seq_printf(s, "PHY probe remaining retries: %d\n", 1680 sfp->sm_phy_retries); 1681 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1682 seq_printf(s, "Rate select threshold: %u kBd\n", 1683 sfp->rs_threshold_kbd); 1684 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1685 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1686 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1687 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1688 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1689 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1690 return 0; 1691 } 1692 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1693 1694 static void sfp_debugfs_init(struct sfp *sfp) 1695 { 1696 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1697 1698 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1699 &sfp_debug_state_fops); 1700 } 1701 1702 static void sfp_debugfs_exit(struct sfp *sfp) 1703 { 1704 debugfs_remove_recursive(sfp->debugfs_dir); 1705 } 1706 #else 1707 static void sfp_debugfs_init(struct sfp *sfp) 1708 { 1709 } 1710 1711 static void sfp_debugfs_exit(struct sfp *sfp) 1712 { 1713 } 1714 #endif 1715 1716 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1717 { 1718 unsigned int state; 1719 1720 mutex_lock(&sfp->st_mutex); 1721 state = sfp->state; 1722 if (!(state & SFP_F_TX_DISABLE)) { 1723 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1724 1725 udelay(T_RESET_US); 1726 1727 sfp_set_state(sfp, state); 1728 } 1729 mutex_unlock(&sfp->st_mutex); 1730 } 1731 1732 /* SFP state machine */ 1733 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1734 { 1735 if (timeout) 1736 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1737 timeout); 1738 else 1739 cancel_delayed_work(&sfp->timeout); 1740 } 1741 1742 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1743 unsigned int timeout) 1744 { 1745 sfp->sm_state = state; 1746 sfp_sm_set_timer(sfp, timeout); 1747 } 1748 1749 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1750 unsigned int timeout) 1751 { 1752 sfp->sm_mod_state = state; 1753 sfp_sm_set_timer(sfp, timeout); 1754 } 1755 1756 static void sfp_sm_phy_detach(struct sfp *sfp) 1757 { 1758 sfp_remove_phy(sfp->sfp_bus); 1759 phy_device_remove(sfp->mod_phy); 1760 phy_device_free(sfp->mod_phy); 1761 sfp->mod_phy = NULL; 1762 } 1763 1764 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1765 { 1766 struct phy_device *phy; 1767 int err; 1768 1769 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1770 if (phy == ERR_PTR(-ENODEV)) 1771 return PTR_ERR(phy); 1772 if (IS_ERR(phy)) { 1773 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1774 return PTR_ERR(phy); 1775 } 1776 1777 /* Mark this PHY as being on a SFP module */ 1778 phy->is_on_sfp_module = true; 1779 1780 err = phy_device_register(phy); 1781 if (err) { 1782 phy_device_free(phy); 1783 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1784 ERR_PTR(err)); 1785 return err; 1786 } 1787 1788 err = sfp_add_phy(sfp->sfp_bus, phy); 1789 if (err) { 1790 phy_device_remove(phy); 1791 phy_device_free(phy); 1792 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1793 return err; 1794 } 1795 1796 sfp->mod_phy = phy; 1797 1798 return 0; 1799 } 1800 1801 static void sfp_sm_link_up(struct sfp *sfp) 1802 { 1803 sfp_link_up(sfp->sfp_bus); 1804 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1805 } 1806 1807 static void sfp_sm_link_down(struct sfp *sfp) 1808 { 1809 sfp_link_down(sfp->sfp_bus); 1810 } 1811 1812 static void sfp_sm_link_check_los(struct sfp *sfp) 1813 { 1814 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1815 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1816 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1817 bool los = false; 1818 1819 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1820 * are set, we assume that no LOS signal is available. If both are 1821 * set, we assume LOS is not implemented (and is meaningless.) 1822 */ 1823 if (los_options == los_inverted) 1824 los = !(sfp->state & SFP_F_LOS); 1825 else if (los_options == los_normal) 1826 los = !!(sfp->state & SFP_F_LOS); 1827 1828 if (los) 1829 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1830 else 1831 sfp_sm_link_up(sfp); 1832 } 1833 1834 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1835 { 1836 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1837 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1838 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1839 1840 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1841 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1842 } 1843 1844 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1845 { 1846 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1847 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1848 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1849 1850 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1851 (los_options == los_normal && event == SFP_E_LOS_LOW); 1852 } 1853 1854 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1855 { 1856 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1857 dev_err(sfp->dev, 1858 "module persistently indicates fault, disabling\n"); 1859 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1860 } else { 1861 if (warn) 1862 dev_err(sfp->dev, "module transmit fault indicated\n"); 1863 1864 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1865 } 1866 } 1867 1868 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1869 { 1870 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1871 return sfp_i2c_mdiobus_create(sfp); 1872 1873 return 0; 1874 } 1875 1876 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1877 * normally sits at I2C bus address 0x56, and may either be a clause 22 1878 * or clause 45 PHY. 1879 * 1880 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1881 * negotiation enabled, but some may be in 1000base-X - which is for the 1882 * PHY driver to determine. 1883 * 1884 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1885 * mode according to the negotiated line speed. 1886 */ 1887 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1888 { 1889 int err = 0; 1890 1891 switch (sfp->mdio_protocol) { 1892 case MDIO_I2C_NONE: 1893 break; 1894 1895 case MDIO_I2C_MARVELL_C22: 1896 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1897 break; 1898 1899 case MDIO_I2C_C45: 1900 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1901 break; 1902 1903 case MDIO_I2C_ROLLBALL: 1904 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1905 break; 1906 } 1907 1908 return err; 1909 } 1910 1911 static int sfp_module_parse_power(struct sfp *sfp) 1912 { 1913 u32 power_mW = 1000; 1914 bool supports_a2; 1915 1916 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1917 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1918 power_mW = 1500; 1919 /* Added in Rev 11.9, but there is no compliance code for this */ 1920 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1921 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1922 power_mW = 2000; 1923 1924 /* Power level 1 modules (max. 1W) are always supported. */ 1925 if (power_mW <= 1000) { 1926 sfp->module_power_mW = power_mW; 1927 return 0; 1928 } 1929 1930 supports_a2 = sfp->id.ext.sff8472_compliance != 1931 SFP_SFF8472_COMPLIANCE_NONE || 1932 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1933 1934 if (power_mW > sfp->max_power_mW) { 1935 /* Module power specification exceeds the allowed maximum. */ 1936 if (!supports_a2) { 1937 /* The module appears not to implement bus address 1938 * 0xa2, so assume that the module powers up in the 1939 * indicated mode. 1940 */ 1941 dev_err(sfp->dev, 1942 "Host does not support %u.%uW modules\n", 1943 power_mW / 1000, (power_mW / 100) % 10); 1944 return -EINVAL; 1945 } else { 1946 dev_warn(sfp->dev, 1947 "Host does not support %u.%uW modules, module left in power mode 1\n", 1948 power_mW / 1000, (power_mW / 100) % 10); 1949 return 0; 1950 } 1951 } 1952 1953 if (!supports_a2) { 1954 /* The module power level is below the host maximum and the 1955 * module appears not to implement bus address 0xa2, so assume 1956 * that the module powers up in the indicated mode. 1957 */ 1958 return 0; 1959 } 1960 1961 /* If the module requires a higher power mode, but also requires 1962 * an address change sequence, warn the user that the module may 1963 * not be functional. 1964 */ 1965 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1966 dev_warn(sfp->dev, 1967 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1968 power_mW / 1000, (power_mW / 100) % 10); 1969 return 0; 1970 } 1971 1972 sfp->module_power_mW = power_mW; 1973 1974 return 0; 1975 } 1976 1977 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1978 { 1979 int err; 1980 1981 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1982 SFP_EXT_STATUS_PWRLVL_SELECT, 1983 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1984 if (err != sizeof(u8)) { 1985 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1986 enable ? "en" : "dis", ERR_PTR(err)); 1987 return -EAGAIN; 1988 } 1989 1990 if (enable) 1991 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1992 sfp->module_power_mW / 1000, 1993 (sfp->module_power_mW / 100) % 10); 1994 1995 return 0; 1996 } 1997 1998 static void sfp_module_parse_rate_select(struct sfp *sfp) 1999 { 2000 u8 rate_id; 2001 2002 sfp->rs_threshold_kbd = 0; 2003 sfp->rs_state_mask = 0; 2004 2005 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2006 /* No support for RateSelect */ 2007 return; 2008 2009 /* Default to INF-8074 RateSelect operation. The signalling threshold 2010 * rate is not well specified, so always select "Full Bandwidth", but 2011 * SFF-8079 reveals that it is understood that RS0 will be low for 2012 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2013 * This method exists prior to SFF-8472. 2014 */ 2015 sfp->rs_state_mask = SFP_F_RS0; 2016 sfp->rs_threshold_kbd = 1594; 2017 2018 /* Parse the rate identifier, which is complicated due to history: 2019 * SFF-8472 rev 9.5 marks this field as reserved. 2020 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2021 * compliance is not required. 2022 * SFF-8472 rev 10.2 defines this field using values 0..4 2023 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2024 * and even values. 2025 */ 2026 rate_id = sfp->id.base.rate_id; 2027 if (rate_id == 0) 2028 /* Unspecified */ 2029 return; 2030 2031 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2032 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2033 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2034 */ 2035 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2036 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2037 rate_id == 3) 2038 rate_id = SFF_RID_8431; 2039 2040 if (rate_id & SFF_RID_8079) { 2041 /* SFF-8079 RateSelect / Application Select in conjunction with 2042 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2043 * with only bit 0 used, which takes precedence over SFF-8472. 2044 */ 2045 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2046 /* SFF-8079 Part 1 - rate selection between Fibre 2047 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2048 * is high for 2125, so we have to subtract 1 to 2049 * include it. 2050 */ 2051 sfp->rs_threshold_kbd = 2125 - 1; 2052 sfp->rs_state_mask = SFP_F_RS0; 2053 } 2054 return; 2055 } 2056 2057 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2058 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2059 return; 2060 2061 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2062 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2063 */ 2064 switch (rate_id) { 2065 case SFF_RID_8431_RX_ONLY: 2066 sfp->rs_threshold_kbd = 4250; 2067 sfp->rs_state_mask = SFP_F_RS0; 2068 break; 2069 2070 case SFF_RID_8431_TX_ONLY: 2071 sfp->rs_threshold_kbd = 4250; 2072 sfp->rs_state_mask = SFP_F_RS1; 2073 break; 2074 2075 case SFF_RID_8431: 2076 sfp->rs_threshold_kbd = 4250; 2077 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2078 break; 2079 2080 case SFF_RID_10G8G: 2081 sfp->rs_threshold_kbd = 9000; 2082 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2083 break; 2084 } 2085 } 2086 2087 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2088 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2089 * not support multibyte reads from the EEPROM. Each multi-byte read 2090 * operation returns just one byte of EEPROM followed by zeros. There is 2091 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2092 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2093 * name and vendor id into EEPROM, so there is even no way to detect if 2094 * module is V-SOL V2801F. Therefore check for those zeros in the read 2095 * data and then based on check switch to reading EEPROM to one byte 2096 * at a time. 2097 */ 2098 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2099 { 2100 size_t i, block_size = sfp->i2c_block_size; 2101 2102 /* Already using byte IO */ 2103 if (block_size == 1) 2104 return false; 2105 2106 for (i = 1; i < len; i += block_size) { 2107 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2108 return false; 2109 } 2110 return true; 2111 } 2112 2113 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2114 { 2115 u8 check; 2116 int err; 2117 2118 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2119 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2120 id->base.connector != SFF8024_CONNECTOR_LC) { 2121 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2122 id->base.phys_id = SFF8024_ID_SFF_8472; 2123 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2124 id->base.connector = SFF8024_CONNECTOR_LC; 2125 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2126 if (err != 3) { 2127 dev_err(sfp->dev, 2128 "Failed to rewrite module EEPROM: %pe\n", 2129 ERR_PTR(err)); 2130 return err; 2131 } 2132 2133 /* Cotsworks modules have been found to require a delay between write operations. */ 2134 mdelay(50); 2135 2136 /* Update base structure checksum */ 2137 check = sfp_check(&id->base, sizeof(id->base) - 1); 2138 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2139 if (err != 1) { 2140 dev_err(sfp->dev, 2141 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2142 ERR_PTR(err)); 2143 return err; 2144 } 2145 } 2146 return 0; 2147 } 2148 2149 static int sfp_module_parse_sff8472(struct sfp *sfp) 2150 { 2151 /* If the module requires address swap mode, warn about it */ 2152 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2153 dev_warn(sfp->dev, 2154 "module address swap to access page 0xA2 is not supported.\n"); 2155 else 2156 sfp->have_a2 = true; 2157 2158 return 0; 2159 } 2160 2161 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2162 { 2163 /* SFP module inserted - read I2C data */ 2164 struct sfp_eeprom_id id; 2165 bool cotsworks_sfbg; 2166 unsigned int mask; 2167 bool cotsworks; 2168 u8 check; 2169 int ret; 2170 2171 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2172 2173 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2174 if (ret < 0) { 2175 if (report) 2176 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2177 ERR_PTR(ret)); 2178 return -EAGAIN; 2179 } 2180 2181 if (ret != sizeof(id.base)) { 2182 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2183 return -EAGAIN; 2184 } 2185 2186 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2187 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2188 * that EEPROM supports atomic 16bit read operation for diagnostic 2189 * fields, so do not switch to one byte reading at a time unless it 2190 * is really required and we have no other option. 2191 */ 2192 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2193 dev_info(sfp->dev, 2194 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2195 dev_info(sfp->dev, 2196 "Switching to reading EEPROM to one byte at a time\n"); 2197 sfp->i2c_block_size = 1; 2198 2199 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2200 if (ret < 0) { 2201 if (report) 2202 dev_err(sfp->dev, 2203 "failed to read EEPROM: %pe\n", 2204 ERR_PTR(ret)); 2205 return -EAGAIN; 2206 } 2207 2208 if (ret != sizeof(id.base)) { 2209 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2210 ERR_PTR(ret)); 2211 return -EAGAIN; 2212 } 2213 } 2214 2215 /* Cotsworks do not seem to update the checksums when they 2216 * do the final programming with the final module part number, 2217 * serial number and date code. 2218 */ 2219 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2220 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2221 2222 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2223 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2224 * Cotsworks PN matches and bytes are not correct. 2225 */ 2226 if (cotsworks && cotsworks_sfbg) { 2227 ret = sfp_cotsworks_fixup_check(sfp, &id); 2228 if (ret < 0) 2229 return ret; 2230 } 2231 2232 /* Validate the checksum over the base structure */ 2233 check = sfp_check(&id.base, sizeof(id.base) - 1); 2234 if (check != id.base.cc_base) { 2235 if (cotsworks) { 2236 dev_warn(sfp->dev, 2237 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2238 check, id.base.cc_base); 2239 } else { 2240 dev_err(sfp->dev, 2241 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2242 check, id.base.cc_base); 2243 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2244 16, 1, &id, sizeof(id), true); 2245 return -EINVAL; 2246 } 2247 } 2248 2249 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2250 if (ret < 0) { 2251 if (report) 2252 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2253 ERR_PTR(ret)); 2254 return -EAGAIN; 2255 } 2256 2257 if (ret != sizeof(id.ext)) { 2258 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2259 return -EAGAIN; 2260 } 2261 2262 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2263 if (check != id.ext.cc_ext) { 2264 if (cotsworks) { 2265 dev_warn(sfp->dev, 2266 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2267 check, id.ext.cc_ext); 2268 } else { 2269 dev_err(sfp->dev, 2270 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2271 check, id.ext.cc_ext); 2272 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2273 16, 1, &id, sizeof(id), true); 2274 memset(&id.ext, 0, sizeof(id.ext)); 2275 } 2276 } 2277 2278 sfp->id = id; 2279 2280 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2281 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2282 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2283 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2284 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2285 (int)sizeof(id.ext.datecode), id.ext.datecode); 2286 2287 /* Check whether we support this module */ 2288 if (!sfp->type->module_supported(&id)) { 2289 dev_err(sfp->dev, 2290 "module is not supported - phys id 0x%02x 0x%02x\n", 2291 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2292 return -EINVAL; 2293 } 2294 2295 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2296 ret = sfp_module_parse_sff8472(sfp); 2297 if (ret < 0) 2298 return ret; 2299 } 2300 2301 /* Parse the module power requirement */ 2302 ret = sfp_module_parse_power(sfp); 2303 if (ret < 0) 2304 return ret; 2305 2306 sfp_module_parse_rate_select(sfp); 2307 2308 mask = SFP_F_PRESENT; 2309 if (sfp->gpio[GPIO_TX_DISABLE]) 2310 mask |= SFP_F_TX_DISABLE; 2311 if (sfp->gpio[GPIO_TX_FAULT]) 2312 mask |= SFP_F_TX_FAULT; 2313 if (sfp->gpio[GPIO_LOS]) 2314 mask |= SFP_F_LOS; 2315 if (sfp->gpio[GPIO_RS0]) 2316 mask |= SFP_F_RS0; 2317 if (sfp->gpio[GPIO_RS1]) 2318 mask |= SFP_F_RS1; 2319 2320 sfp->module_t_start_up = T_START_UP; 2321 sfp->module_t_wait = T_WAIT; 2322 2323 sfp->tx_fault_ignore = false; 2324 2325 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2326 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2327 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2328 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2329 sfp->mdio_protocol = MDIO_I2C_C45; 2330 else if (sfp->id.base.e1000_base_t) 2331 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2332 else 2333 sfp->mdio_protocol = MDIO_I2C_NONE; 2334 2335 sfp->quirk = sfp_lookup_quirk(&id); 2336 2337 mutex_lock(&sfp->st_mutex); 2338 /* Initialise state bits to use from hardware */ 2339 sfp->state_hw_mask = mask; 2340 2341 /* We want to drive the rate select pins that the module is using */ 2342 sfp->state_hw_drive |= sfp->rs_state_mask; 2343 2344 if (sfp->quirk && sfp->quirk->fixup) 2345 sfp->quirk->fixup(sfp); 2346 mutex_unlock(&sfp->st_mutex); 2347 2348 return 0; 2349 } 2350 2351 static void sfp_sm_mod_remove(struct sfp *sfp) 2352 { 2353 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2354 sfp_module_remove(sfp->sfp_bus); 2355 2356 sfp_hwmon_remove(sfp); 2357 2358 memset(&sfp->id, 0, sizeof(sfp->id)); 2359 sfp->module_power_mW = 0; 2360 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2361 sfp->have_a2 = false; 2362 2363 dev_info(sfp->dev, "module removed\n"); 2364 } 2365 2366 /* This state machine tracks the upstream's state */ 2367 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2368 { 2369 switch (sfp->sm_dev_state) { 2370 default: 2371 if (event == SFP_E_DEV_ATTACH) 2372 sfp->sm_dev_state = SFP_DEV_DOWN; 2373 break; 2374 2375 case SFP_DEV_DOWN: 2376 if (event == SFP_E_DEV_DETACH) 2377 sfp->sm_dev_state = SFP_DEV_DETACHED; 2378 else if (event == SFP_E_DEV_UP) 2379 sfp->sm_dev_state = SFP_DEV_UP; 2380 break; 2381 2382 case SFP_DEV_UP: 2383 if (event == SFP_E_DEV_DETACH) 2384 sfp->sm_dev_state = SFP_DEV_DETACHED; 2385 else if (event == SFP_E_DEV_DOWN) 2386 sfp->sm_dev_state = SFP_DEV_DOWN; 2387 break; 2388 } 2389 } 2390 2391 /* This state machine tracks the insert/remove state of the module, probes 2392 * the on-board EEPROM, and sets up the power level. 2393 */ 2394 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2395 { 2396 int err; 2397 2398 /* Handle remove event globally, it resets this state machine */ 2399 if (event == SFP_E_REMOVE) { 2400 sfp_sm_mod_remove(sfp); 2401 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2402 return; 2403 } 2404 2405 /* Handle device detach globally */ 2406 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2407 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2408 if (sfp->module_power_mW > 1000 && 2409 sfp->sm_mod_state > SFP_MOD_HPOWER) 2410 sfp_sm_mod_hpower(sfp, false); 2411 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2412 return; 2413 } 2414 2415 switch (sfp->sm_mod_state) { 2416 default: 2417 if (event == SFP_E_INSERT) { 2418 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2419 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2420 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2421 } 2422 break; 2423 2424 case SFP_MOD_PROBE: 2425 /* Wait for T_PROBE_INIT to time out */ 2426 if (event != SFP_E_TIMEOUT) 2427 break; 2428 2429 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2430 if (err == -EAGAIN) { 2431 if (sfp->sm_mod_tries_init && 2432 --sfp->sm_mod_tries_init) { 2433 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2434 break; 2435 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2436 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2437 dev_warn(sfp->dev, 2438 "please wait, module slow to respond\n"); 2439 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2440 break; 2441 } 2442 } 2443 if (err < 0) { 2444 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2445 break; 2446 } 2447 2448 /* Force a poll to re-read the hardware signal state after 2449 * sfp_sm_mod_probe() changed state_hw_mask. 2450 */ 2451 mod_delayed_work(system_wq, &sfp->poll, 1); 2452 2453 err = sfp_hwmon_insert(sfp); 2454 if (err) 2455 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2456 ERR_PTR(err)); 2457 2458 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2459 fallthrough; 2460 case SFP_MOD_WAITDEV: 2461 /* Ensure that the device is attached before proceeding */ 2462 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2463 break; 2464 2465 /* Report the module insertion to the upstream device */ 2466 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2467 sfp->quirk); 2468 if (err < 0) { 2469 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2470 break; 2471 } 2472 2473 /* If this is a power level 1 module, we are done */ 2474 if (sfp->module_power_mW <= 1000) 2475 goto insert; 2476 2477 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2478 fallthrough; 2479 case SFP_MOD_HPOWER: 2480 /* Enable high power mode */ 2481 err = sfp_sm_mod_hpower(sfp, true); 2482 if (err < 0) { 2483 if (err != -EAGAIN) { 2484 sfp_module_remove(sfp->sfp_bus); 2485 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2486 } else { 2487 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2488 } 2489 break; 2490 } 2491 2492 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2493 break; 2494 2495 case SFP_MOD_WAITPWR: 2496 /* Wait for T_HPOWER_LEVEL to time out */ 2497 if (event != SFP_E_TIMEOUT) 2498 break; 2499 2500 insert: 2501 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2502 break; 2503 2504 case SFP_MOD_PRESENT: 2505 case SFP_MOD_ERROR: 2506 break; 2507 } 2508 } 2509 2510 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2511 { 2512 unsigned long timeout; 2513 int ret; 2514 2515 /* Some events are global */ 2516 if (sfp->sm_state != SFP_S_DOWN && 2517 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2518 sfp->sm_dev_state != SFP_DEV_UP)) { 2519 if (sfp->sm_state == SFP_S_LINK_UP && 2520 sfp->sm_dev_state == SFP_DEV_UP) 2521 sfp_sm_link_down(sfp); 2522 if (sfp->sm_state > SFP_S_INIT) 2523 sfp_module_stop(sfp->sfp_bus); 2524 if (sfp->mod_phy) 2525 sfp_sm_phy_detach(sfp); 2526 if (sfp->i2c_mii) 2527 sfp_i2c_mdiobus_destroy(sfp); 2528 sfp_module_tx_disable(sfp); 2529 sfp_soft_stop_poll(sfp); 2530 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2531 return; 2532 } 2533 2534 /* The main state machine */ 2535 switch (sfp->sm_state) { 2536 case SFP_S_DOWN: 2537 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2538 sfp->sm_dev_state != SFP_DEV_UP) 2539 break; 2540 2541 /* Only use the soft state bits if we have access to the A2h 2542 * memory, which implies that we have some level of SFF-8472 2543 * compliance. 2544 */ 2545 if (sfp->have_a2) 2546 sfp_soft_start_poll(sfp); 2547 2548 sfp_module_tx_enable(sfp); 2549 2550 /* Initialise the fault clearance retries */ 2551 sfp->sm_fault_retries = N_FAULT_INIT; 2552 2553 /* We need to check the TX_FAULT state, which is not defined 2554 * while TX_DISABLE is asserted. The earliest we want to do 2555 * anything (such as probe for a PHY) is 50ms (or more on 2556 * specific modules). 2557 */ 2558 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2559 break; 2560 2561 case SFP_S_WAIT: 2562 if (event != SFP_E_TIMEOUT) 2563 break; 2564 2565 if (sfp->state & SFP_F_TX_FAULT) { 2566 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2567 * from the TX_DISABLE deassertion for the module to 2568 * initialise, which is indicated by TX_FAULT 2569 * deasserting. 2570 */ 2571 timeout = sfp->module_t_start_up; 2572 if (timeout > sfp->module_t_wait) 2573 timeout -= sfp->module_t_wait; 2574 else 2575 timeout = 1; 2576 2577 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2578 } else { 2579 /* TX_FAULT is not asserted, assume the module has 2580 * finished initialising. 2581 */ 2582 goto init_done; 2583 } 2584 break; 2585 2586 case SFP_S_INIT: 2587 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2588 /* TX_FAULT is still asserted after t_init 2589 * or t_start_up, so assume there is a fault. 2590 */ 2591 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2592 sfp->sm_fault_retries == N_FAULT_INIT); 2593 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2594 init_done: 2595 /* Create mdiobus and start trying for PHY */ 2596 ret = sfp_sm_add_mdio_bus(sfp); 2597 if (ret < 0) { 2598 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2599 break; 2600 } 2601 sfp->sm_phy_retries = R_PHY_RETRY; 2602 goto phy_probe; 2603 } 2604 break; 2605 2606 case SFP_S_INIT_PHY: 2607 if (event != SFP_E_TIMEOUT) 2608 break; 2609 phy_probe: 2610 /* TX_FAULT deasserted or we timed out with TX_FAULT 2611 * clear. Probe for the PHY and check the LOS state. 2612 */ 2613 ret = sfp_sm_probe_for_phy(sfp); 2614 if (ret == -ENODEV) { 2615 if (--sfp->sm_phy_retries) { 2616 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2617 break; 2618 } else { 2619 dev_info(sfp->dev, "no PHY detected\n"); 2620 } 2621 } else if (ret) { 2622 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2623 break; 2624 } 2625 if (sfp_module_start(sfp->sfp_bus)) { 2626 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2627 break; 2628 } 2629 sfp_sm_link_check_los(sfp); 2630 2631 /* Reset the fault retry count */ 2632 sfp->sm_fault_retries = N_FAULT; 2633 break; 2634 2635 case SFP_S_INIT_TX_FAULT: 2636 if (event == SFP_E_TIMEOUT) { 2637 sfp_module_tx_fault_reset(sfp); 2638 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2639 } 2640 break; 2641 2642 case SFP_S_WAIT_LOS: 2643 if (event == SFP_E_TX_FAULT) 2644 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2645 else if (sfp_los_event_inactive(sfp, event)) 2646 sfp_sm_link_up(sfp); 2647 break; 2648 2649 case SFP_S_LINK_UP: 2650 if (event == SFP_E_TX_FAULT) { 2651 sfp_sm_link_down(sfp); 2652 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2653 } else if (sfp_los_event_active(sfp, event)) { 2654 sfp_sm_link_down(sfp); 2655 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2656 } 2657 break; 2658 2659 case SFP_S_TX_FAULT: 2660 if (event == SFP_E_TIMEOUT) { 2661 sfp_module_tx_fault_reset(sfp); 2662 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2663 } 2664 break; 2665 2666 case SFP_S_REINIT: 2667 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2668 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2669 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2670 dev_info(sfp->dev, "module transmit fault recovered\n"); 2671 sfp_sm_link_check_los(sfp); 2672 } 2673 break; 2674 2675 case SFP_S_TX_DISABLE: 2676 break; 2677 } 2678 } 2679 2680 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2681 { 2682 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2683 mod_state_to_str(sfp->sm_mod_state), 2684 dev_state_to_str(sfp->sm_dev_state), 2685 sm_state_to_str(sfp->sm_state), 2686 event_to_str(event)); 2687 2688 sfp_sm_device(sfp, event); 2689 sfp_sm_module(sfp, event); 2690 sfp_sm_main(sfp, event); 2691 2692 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2693 mod_state_to_str(sfp->sm_mod_state), 2694 dev_state_to_str(sfp->sm_dev_state), 2695 sm_state_to_str(sfp->sm_state)); 2696 } 2697 2698 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2699 { 2700 mutex_lock(&sfp->sm_mutex); 2701 __sfp_sm_event(sfp, event); 2702 mutex_unlock(&sfp->sm_mutex); 2703 } 2704 2705 static void sfp_attach(struct sfp *sfp) 2706 { 2707 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2708 } 2709 2710 static void sfp_detach(struct sfp *sfp) 2711 { 2712 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2713 } 2714 2715 static void sfp_start(struct sfp *sfp) 2716 { 2717 sfp_sm_event(sfp, SFP_E_DEV_UP); 2718 } 2719 2720 static void sfp_stop(struct sfp *sfp) 2721 { 2722 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2723 } 2724 2725 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2726 { 2727 unsigned int set; 2728 2729 sfp->rate_kbd = rate_kbd; 2730 2731 if (rate_kbd > sfp->rs_threshold_kbd) 2732 set = sfp->rs_state_mask; 2733 else 2734 set = 0; 2735 2736 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2737 } 2738 2739 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2740 { 2741 /* locking... and check module is present */ 2742 2743 if (sfp->id.ext.sff8472_compliance && 2744 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2745 modinfo->type = ETH_MODULE_SFF_8472; 2746 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2747 } else { 2748 modinfo->type = ETH_MODULE_SFF_8079; 2749 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2750 } 2751 return 0; 2752 } 2753 2754 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2755 u8 *data) 2756 { 2757 unsigned int first, last, len; 2758 int ret; 2759 2760 if (!(sfp->state & SFP_F_PRESENT)) 2761 return -ENODEV; 2762 2763 if (ee->len == 0) 2764 return -EINVAL; 2765 2766 first = ee->offset; 2767 last = ee->offset + ee->len; 2768 if (first < ETH_MODULE_SFF_8079_LEN) { 2769 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2770 len -= first; 2771 2772 ret = sfp_read(sfp, false, first, data, len); 2773 if (ret < 0) 2774 return ret; 2775 2776 first += len; 2777 data += len; 2778 } 2779 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2780 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2781 len -= first; 2782 first -= ETH_MODULE_SFF_8079_LEN; 2783 2784 ret = sfp_read(sfp, true, first, data, len); 2785 if (ret < 0) 2786 return ret; 2787 } 2788 return 0; 2789 } 2790 2791 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2792 const struct ethtool_module_eeprom *page, 2793 struct netlink_ext_ack *extack) 2794 { 2795 if (!(sfp->state & SFP_F_PRESENT)) 2796 return -ENODEV; 2797 2798 if (page->bank) { 2799 NL_SET_ERR_MSG(extack, "Banks not supported"); 2800 return -EOPNOTSUPP; 2801 } 2802 2803 if (page->page) { 2804 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2805 return -EOPNOTSUPP; 2806 } 2807 2808 if (page->i2c_address != 0x50 && 2809 page->i2c_address != 0x51) { 2810 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2811 return -EOPNOTSUPP; 2812 } 2813 2814 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2815 page->data, page->length); 2816 }; 2817 2818 static const struct sfp_socket_ops sfp_module_ops = { 2819 .attach = sfp_attach, 2820 .detach = sfp_detach, 2821 .start = sfp_start, 2822 .stop = sfp_stop, 2823 .set_signal_rate = sfp_set_signal_rate, 2824 .module_info = sfp_module_info, 2825 .module_eeprom = sfp_module_eeprom, 2826 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2827 }; 2828 2829 static void sfp_timeout(struct work_struct *work) 2830 { 2831 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2832 2833 rtnl_lock(); 2834 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2835 rtnl_unlock(); 2836 } 2837 2838 static void sfp_check_state(struct sfp *sfp) 2839 { 2840 unsigned int state, i, changed; 2841 2842 rtnl_lock(); 2843 mutex_lock(&sfp->st_mutex); 2844 state = sfp_get_state(sfp); 2845 changed = state ^ sfp->state; 2846 if (sfp->tx_fault_ignore) 2847 changed &= SFP_F_PRESENT | SFP_F_LOS; 2848 else 2849 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2850 2851 for (i = 0; i < GPIO_MAX; i++) 2852 if (changed & BIT(i)) 2853 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2854 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2855 2856 state |= sfp->state & SFP_F_OUTPUTS; 2857 sfp->state = state; 2858 mutex_unlock(&sfp->st_mutex); 2859 2860 mutex_lock(&sfp->sm_mutex); 2861 if (changed & SFP_F_PRESENT) 2862 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2863 SFP_E_INSERT : SFP_E_REMOVE); 2864 2865 if (changed & SFP_F_TX_FAULT) 2866 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2867 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2868 2869 if (changed & SFP_F_LOS) 2870 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2871 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2872 mutex_unlock(&sfp->sm_mutex); 2873 rtnl_unlock(); 2874 } 2875 2876 static irqreturn_t sfp_irq(int irq, void *data) 2877 { 2878 struct sfp *sfp = data; 2879 2880 sfp_check_state(sfp); 2881 2882 return IRQ_HANDLED; 2883 } 2884 2885 static void sfp_poll(struct work_struct *work) 2886 { 2887 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2888 2889 sfp_check_state(sfp); 2890 2891 // st_mutex doesn't need to be held here for state_soft_mask, 2892 // it's unimportant if we race while reading this. 2893 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2894 sfp->need_poll) 2895 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2896 } 2897 2898 static struct sfp *sfp_alloc(struct device *dev) 2899 { 2900 struct sfp *sfp; 2901 2902 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2903 if (!sfp) 2904 return ERR_PTR(-ENOMEM); 2905 2906 sfp->dev = dev; 2907 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2908 2909 mutex_init(&sfp->sm_mutex); 2910 mutex_init(&sfp->st_mutex); 2911 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2912 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2913 2914 sfp_hwmon_init(sfp); 2915 2916 return sfp; 2917 } 2918 2919 static void sfp_cleanup(void *data) 2920 { 2921 struct sfp *sfp = data; 2922 2923 sfp_hwmon_exit(sfp); 2924 2925 cancel_delayed_work_sync(&sfp->poll); 2926 cancel_delayed_work_sync(&sfp->timeout); 2927 if (sfp->i2c_mii) { 2928 mdiobus_unregister(sfp->i2c_mii); 2929 mdiobus_free(sfp->i2c_mii); 2930 } 2931 if (sfp->i2c) 2932 i2c_put_adapter(sfp->i2c); 2933 kfree(sfp); 2934 } 2935 2936 static int sfp_i2c_get(struct sfp *sfp) 2937 { 2938 struct fwnode_handle *h; 2939 struct i2c_adapter *i2c; 2940 int err; 2941 2942 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2943 if (IS_ERR(h)) { 2944 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2945 return -ENODEV; 2946 } 2947 2948 i2c = i2c_get_adapter_by_fwnode(h); 2949 if (!i2c) { 2950 err = -EPROBE_DEFER; 2951 goto put; 2952 } 2953 2954 err = sfp_i2c_configure(sfp, i2c); 2955 if (err) 2956 i2c_put_adapter(i2c); 2957 put: 2958 fwnode_handle_put(h); 2959 return err; 2960 } 2961 2962 static int sfp_probe(struct platform_device *pdev) 2963 { 2964 const struct sff_data *sff; 2965 char *sfp_irq_name; 2966 struct sfp *sfp; 2967 int err, i; 2968 2969 sfp = sfp_alloc(&pdev->dev); 2970 if (IS_ERR(sfp)) 2971 return PTR_ERR(sfp); 2972 2973 platform_set_drvdata(pdev, sfp); 2974 2975 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2976 if (err < 0) 2977 return err; 2978 2979 sff = device_get_match_data(sfp->dev); 2980 if (!sff) 2981 sff = &sfp_data; 2982 2983 sfp->type = sff; 2984 2985 err = sfp_i2c_get(sfp); 2986 if (err) 2987 return err; 2988 2989 for (i = 0; i < GPIO_MAX; i++) 2990 if (sff->gpios & BIT(i)) { 2991 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2992 gpio_names[i], gpio_flags[i]); 2993 if (IS_ERR(sfp->gpio[i])) 2994 return PTR_ERR(sfp->gpio[i]); 2995 } 2996 2997 sfp->state_hw_mask = SFP_F_PRESENT; 2998 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2999 3000 sfp->get_state = sfp_gpio_get_state; 3001 sfp->set_state = sfp_gpio_set_state; 3002 3003 /* Modules that have no detect signal are always present */ 3004 if (!(sfp->gpio[GPIO_MODDEF0])) 3005 sfp->get_state = sff_gpio_get_state; 3006 3007 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3008 &sfp->max_power_mW); 3009 if (sfp->max_power_mW < 1000) { 3010 if (sfp->max_power_mW) 3011 dev_warn(sfp->dev, 3012 "Firmware bug: host maximum power should be at least 1W\n"); 3013 sfp->max_power_mW = 1000; 3014 } 3015 3016 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3017 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3018 3019 /* Get the initial state, and always signal TX disable, 3020 * since the network interface will not be up. 3021 */ 3022 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3023 3024 if (sfp->gpio[GPIO_RS0] && 3025 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3026 sfp->state |= SFP_F_RS0; 3027 sfp_set_state(sfp, sfp->state); 3028 sfp_module_tx_disable(sfp); 3029 if (sfp->state & SFP_F_PRESENT) { 3030 rtnl_lock(); 3031 sfp_sm_event(sfp, SFP_E_INSERT); 3032 rtnl_unlock(); 3033 } 3034 3035 for (i = 0; i < GPIO_MAX; i++) { 3036 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3037 continue; 3038 3039 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3040 if (sfp->gpio_irq[i] < 0) { 3041 sfp->gpio_irq[i] = 0; 3042 sfp->need_poll = true; 3043 continue; 3044 } 3045 3046 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3047 "%s-%s", dev_name(sfp->dev), 3048 gpio_names[i]); 3049 3050 if (!sfp_irq_name) 3051 return -ENOMEM; 3052 3053 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3054 NULL, sfp_irq, 3055 IRQF_ONESHOT | 3056 IRQF_TRIGGER_RISING | 3057 IRQF_TRIGGER_FALLING, 3058 sfp_irq_name, sfp); 3059 if (err) { 3060 sfp->gpio_irq[i] = 0; 3061 sfp->need_poll = true; 3062 } 3063 } 3064 3065 if (sfp->need_poll) 3066 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3067 3068 /* We could have an issue in cases no Tx disable pin is available or 3069 * wired as modules using a laser as their light source will continue to 3070 * be active when the fiber is removed. This could be a safety issue and 3071 * we should at least warn the user about that. 3072 */ 3073 if (!sfp->gpio[GPIO_TX_DISABLE]) 3074 dev_warn(sfp->dev, 3075 "No tx_disable pin: SFP modules will always be emitting.\n"); 3076 3077 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3078 if (!sfp->sfp_bus) 3079 return -ENOMEM; 3080 3081 sfp_debugfs_init(sfp); 3082 3083 return 0; 3084 } 3085 3086 static int sfp_remove(struct platform_device *pdev) 3087 { 3088 struct sfp *sfp = platform_get_drvdata(pdev); 3089 3090 sfp_debugfs_exit(sfp); 3091 sfp_unregister_socket(sfp->sfp_bus); 3092 3093 rtnl_lock(); 3094 sfp_sm_event(sfp, SFP_E_REMOVE); 3095 rtnl_unlock(); 3096 3097 return 0; 3098 } 3099 3100 static void sfp_shutdown(struct platform_device *pdev) 3101 { 3102 struct sfp *sfp = platform_get_drvdata(pdev); 3103 int i; 3104 3105 for (i = 0; i < GPIO_MAX; i++) { 3106 if (!sfp->gpio_irq[i]) 3107 continue; 3108 3109 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3110 } 3111 3112 cancel_delayed_work_sync(&sfp->poll); 3113 cancel_delayed_work_sync(&sfp->timeout); 3114 } 3115 3116 static struct platform_driver sfp_driver = { 3117 .probe = sfp_probe, 3118 .remove = sfp_remove, 3119 .shutdown = sfp_shutdown, 3120 .driver = { 3121 .name = "sfp", 3122 .of_match_table = sfp_of_match, 3123 }, 3124 }; 3125 3126 static int sfp_init(void) 3127 { 3128 poll_jiffies = msecs_to_jiffies(100); 3129 3130 return platform_driver_register(&sfp_driver); 3131 } 3132 module_init(sfp_init); 3133 3134 static void sfp_exit(void) 3135 { 3136 platform_driver_unregister(&sfp_driver); 3137 } 3138 module_exit(sfp_exit); 3139 3140 MODULE_ALIAS("platform:sfp"); 3141 MODULE_AUTHOR("Russell King"); 3142 MODULE_LICENSE("GPL v2"); 3143