xref: /openbmc/linux/drivers/net/phy/sfp.c (revision d6344cc8)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state;
261 
262 	struct delayed_work poll;
263 	struct delayed_work timeout;
264 	struct mutex sm_mutex;			/* Protects state machine */
265 	unsigned char sm_mod_state;
266 	unsigned char sm_mod_tries_init;
267 	unsigned char sm_mod_tries;
268 	unsigned char sm_dev_state;
269 	unsigned short sm_state;
270 	unsigned char sm_fault_retries;
271 	unsigned char sm_phy_retries;
272 
273 	struct sfp_eeprom_id id;
274 	unsigned int module_power_mW;
275 	unsigned int module_t_start_up;
276 	unsigned int module_t_wait;
277 
278 	unsigned int rate_kbd;
279 	unsigned int rs_threshold_kbd;
280 	unsigned int rs_state_mask;
281 
282 	bool have_a2;
283 	bool tx_fault_ignore;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 	sfp->tx_fault_ignore = true;
351 }
352 
353 // For 10GBASE-T short-reach modules
354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359 
360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365 
366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 	sfp_fixup_10gbaset_30m(sfp);
369 
370 	// These SFPs need 4 seconds before the PHY can be accessed
371 	sfp_fixup_rollball_proto(sfp, 4);
372 }
373 
374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 	/* Ignore the TX_FAULT and LOS signals on this module.
377 	 * these are possibly used for other purposes on this
378 	 * module, e.g. a serial port.
379 	 */
380 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382 
383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 	// Rollball SFPs need 25 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 25);
387 }
388 
389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 	sfp_fixup_rollball(sfp);
392 
393 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394 	 * burned in EEPROM. For PHY probing we need the correct one.
395 	 */
396 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398 
399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 				unsigned long *modes,
401 				unsigned long *interfaces)
402 {
403 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406 
407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 				      unsigned long *modes,
409 				      unsigned long *interfaces)
410 {
411 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413 
414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 			       unsigned long *modes,
416 			       unsigned long *interfaces)
417 {
418 	/* Copper 2.5G SFP */
419 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 	sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423 
424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 				      unsigned long *modes,
426 				      unsigned long *interfaces)
427 {
428 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 	 * types including 10G Ethernet which is not truth. So clear all claimed
430 	 * modes and set only one mode which module supports: 1000baseX_Full.
431 	 */
432 	linkmode_zero(modes);
433 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435 
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440 
441 static const struct sfp_quirk sfp_quirks[] = {
442 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 	// report 2500MBd NRZ in their EEPROM
444 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445 
446 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 	// NRZ in their EEPROM
448 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 		  sfp_fixup_long_startup),
450 
451 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 	// Rollball protocol to talk to the PHY.
453 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454 
455 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456 	// NRZ in their EEPROM
457 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458 		  sfp_fixup_ignore_tx_fault),
459 
460 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461 
462 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463 	// 2600MBd in their EERPOM
464 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465 
466 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467 	// their EEPROM
468 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469 		  sfp_fixup_ignore_tx_fault),
470 
471 	// FS 2.5G Base-T
472 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
473 
474 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
475 	// 2500MBd NRZ in their EEPROM
476 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
477 
478 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
479 
480 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
481 	// Rollball protocol to talk to the PHY.
482 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
483 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
484 
485 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
486 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
487 
488 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
489 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
490 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
491 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
492 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
493 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
494 };
495 
496 static size_t sfp_strlen(const char *str, size_t maxlen)
497 {
498 	size_t size, i;
499 
500 	/* Trailing characters should be filled with space chars, but
501 	 * some manufacturers can't read SFF-8472 and use NUL.
502 	 */
503 	for (i = 0, size = 0; i < maxlen; i++)
504 		if (str[i] != ' ' && str[i] != '\0')
505 			size = i + 1;
506 
507 	return size;
508 }
509 
510 static bool sfp_match(const char *qs, const char *str, size_t len)
511 {
512 	if (!qs)
513 		return true;
514 	if (strlen(qs) != len)
515 		return false;
516 	return !strncmp(qs, str, len);
517 }
518 
519 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
520 {
521 	const struct sfp_quirk *q;
522 	unsigned int i;
523 	size_t vs, ps;
524 
525 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
526 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
527 
528 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
529 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
530 		    sfp_match(q->part, id->base.vendor_pn, ps))
531 			return q;
532 
533 	return NULL;
534 }
535 
536 static unsigned long poll_jiffies;
537 
538 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
539 {
540 	unsigned int i, state, v;
541 
542 	for (i = state = 0; i < GPIO_MAX; i++) {
543 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
544 			continue;
545 
546 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
547 		if (v)
548 			state |= BIT(i);
549 	}
550 
551 	return state;
552 }
553 
554 static unsigned int sff_gpio_get_state(struct sfp *sfp)
555 {
556 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
557 }
558 
559 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
560 {
561 	unsigned int drive;
562 
563 	if (state & SFP_F_PRESENT)
564 		/* If the module is present, drive the requested signals */
565 		drive = sfp->state_hw_drive;
566 	else
567 		/* Otherwise, let them float to the pull-ups */
568 		drive = 0;
569 
570 	if (sfp->gpio[GPIO_TX_DISABLE]) {
571 		if (drive & SFP_F_TX_DISABLE)
572 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
573 					       state & SFP_F_TX_DISABLE);
574 		else
575 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
576 	}
577 
578 	if (sfp->gpio[GPIO_RS0]) {
579 		if (drive & SFP_F_RS0)
580 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
581 					       state & SFP_F_RS0);
582 		else
583 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
584 	}
585 
586 	if (sfp->gpio[GPIO_RS1]) {
587 		if (drive & SFP_F_RS1)
588 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
589 					       state & SFP_F_RS1);
590 		else
591 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
592 	}
593 }
594 
595 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
596 			size_t len)
597 {
598 	struct i2c_msg msgs[2];
599 	u8 bus_addr = a2 ? 0x51 : 0x50;
600 	size_t block_size = sfp->i2c_block_size;
601 	size_t this_len;
602 	int ret;
603 
604 	msgs[0].addr = bus_addr;
605 	msgs[0].flags = 0;
606 	msgs[0].len = 1;
607 	msgs[0].buf = &dev_addr;
608 	msgs[1].addr = bus_addr;
609 	msgs[1].flags = I2C_M_RD;
610 	msgs[1].len = len;
611 	msgs[1].buf = buf;
612 
613 	while (len) {
614 		this_len = len;
615 		if (this_len > block_size)
616 			this_len = block_size;
617 
618 		msgs[1].len = this_len;
619 
620 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
621 		if (ret < 0)
622 			return ret;
623 
624 		if (ret != ARRAY_SIZE(msgs))
625 			break;
626 
627 		msgs[1].buf += this_len;
628 		dev_addr += this_len;
629 		len -= this_len;
630 	}
631 
632 	return msgs[1].buf - (u8 *)buf;
633 }
634 
635 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
636 	size_t len)
637 {
638 	struct i2c_msg msgs[1];
639 	u8 bus_addr = a2 ? 0x51 : 0x50;
640 	int ret;
641 
642 	msgs[0].addr = bus_addr;
643 	msgs[0].flags = 0;
644 	msgs[0].len = 1 + len;
645 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
646 	if (!msgs[0].buf)
647 		return -ENOMEM;
648 
649 	msgs[0].buf[0] = dev_addr;
650 	memcpy(&msgs[0].buf[1], buf, len);
651 
652 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
653 
654 	kfree(msgs[0].buf);
655 
656 	if (ret < 0)
657 		return ret;
658 
659 	return ret == ARRAY_SIZE(msgs) ? len : 0;
660 }
661 
662 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
663 {
664 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
665 		return -EINVAL;
666 
667 	sfp->i2c = i2c;
668 	sfp->read = sfp_i2c_read;
669 	sfp->write = sfp_i2c_write;
670 
671 	return 0;
672 }
673 
674 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
675 {
676 	struct mii_bus *i2c_mii;
677 	int ret;
678 
679 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
680 	if (IS_ERR(i2c_mii))
681 		return PTR_ERR(i2c_mii);
682 
683 	i2c_mii->name = "SFP I2C Bus";
684 	i2c_mii->phy_mask = ~0;
685 
686 	ret = mdiobus_register(i2c_mii);
687 	if (ret < 0) {
688 		mdiobus_free(i2c_mii);
689 		return ret;
690 	}
691 
692 	sfp->i2c_mii = i2c_mii;
693 
694 	return 0;
695 }
696 
697 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
698 {
699 	mdiobus_unregister(sfp->i2c_mii);
700 	sfp->i2c_mii = NULL;
701 }
702 
703 /* Interface */
704 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
705 {
706 	return sfp->read(sfp, a2, addr, buf, len);
707 }
708 
709 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
710 {
711 	return sfp->write(sfp, a2, addr, buf, len);
712 }
713 
714 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
715 {
716 	int ret;
717 	u8 old, v;
718 
719 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
720 	if (ret != sizeof(old))
721 		return ret;
722 
723 	v = (old & ~mask) | (val & mask);
724 	if (v == old)
725 		return sizeof(v);
726 
727 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
728 }
729 
730 static unsigned int sfp_soft_get_state(struct sfp *sfp)
731 {
732 	unsigned int state = 0;
733 	u8 status;
734 	int ret;
735 
736 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
737 	if (ret == sizeof(status)) {
738 		if (status & SFP_STATUS_RX_LOS)
739 			state |= SFP_F_LOS;
740 		if (status & SFP_STATUS_TX_FAULT)
741 			state |= SFP_F_TX_FAULT;
742 	} else {
743 		dev_err_ratelimited(sfp->dev,
744 				    "failed to read SFP soft status: %pe\n",
745 				    ERR_PTR(ret));
746 		/* Preserve the current state */
747 		state = sfp->state;
748 	}
749 
750 	return state & sfp->state_soft_mask;
751 }
752 
753 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
754 			       unsigned int soft)
755 {
756 	u8 mask = 0;
757 	u8 val = 0;
758 
759 	if (soft & SFP_F_TX_DISABLE)
760 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
761 	if (state & SFP_F_TX_DISABLE)
762 		val |= SFP_STATUS_TX_DISABLE_FORCE;
763 
764 	if (soft & SFP_F_RS0)
765 		mask |= SFP_STATUS_RS0_SELECT;
766 	if (state & SFP_F_RS0)
767 		val |= SFP_STATUS_RS0_SELECT;
768 
769 	if (mask)
770 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
771 
772 	val = mask = 0;
773 	if (soft & SFP_F_RS1)
774 		mask |= SFP_EXT_STATUS_RS1_SELECT;
775 	if (state & SFP_F_RS1)
776 		val |= SFP_EXT_STATUS_RS1_SELECT;
777 
778 	if (mask)
779 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
780 }
781 
782 static void sfp_soft_start_poll(struct sfp *sfp)
783 {
784 	const struct sfp_eeprom_id *id = &sfp->id;
785 	unsigned int mask = 0;
786 
787 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
788 		mask |= SFP_F_TX_DISABLE;
789 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
790 		mask |= SFP_F_TX_FAULT;
791 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
792 		mask |= SFP_F_LOS;
793 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
794 		mask |= sfp->rs_state_mask;
795 
796 	mutex_lock(&sfp->st_mutex);
797 	// Poll the soft state for hardware pins we want to ignore
798 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
799 
800 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
801 	    !sfp->need_poll)
802 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
803 	mutex_unlock(&sfp->st_mutex);
804 }
805 
806 static void sfp_soft_stop_poll(struct sfp *sfp)
807 {
808 	mutex_lock(&sfp->st_mutex);
809 	sfp->state_soft_mask = 0;
810 	mutex_unlock(&sfp->st_mutex);
811 }
812 
813 /* sfp_get_state() - must be called with st_mutex held, or in the
814  * initialisation path.
815  */
816 static unsigned int sfp_get_state(struct sfp *sfp)
817 {
818 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
819 	unsigned int state;
820 
821 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
822 	if (state & SFP_F_PRESENT && soft)
823 		state |= sfp_soft_get_state(sfp);
824 
825 	return state;
826 }
827 
828 /* sfp_set_state() - must be called with st_mutex held, or in the
829  * initialisation path.
830  */
831 static void sfp_set_state(struct sfp *sfp, unsigned int state)
832 {
833 	unsigned int soft;
834 
835 	sfp->set_state(sfp, state);
836 
837 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
838 	if (state & SFP_F_PRESENT && soft)
839 		sfp_soft_set_state(sfp, state, soft);
840 }
841 
842 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
843 {
844 	mutex_lock(&sfp->st_mutex);
845 	sfp->state = (sfp->state & ~mask) | set;
846 	sfp_set_state(sfp, sfp->state);
847 	mutex_unlock(&sfp->st_mutex);
848 }
849 
850 static unsigned int sfp_check(void *buf, size_t len)
851 {
852 	u8 *p, check;
853 
854 	for (p = buf, check = 0; len; p++, len--)
855 		check += *p;
856 
857 	return check;
858 }
859 
860 /* hwmon */
861 #if IS_ENABLED(CONFIG_HWMON)
862 static umode_t sfp_hwmon_is_visible(const void *data,
863 				    enum hwmon_sensor_types type,
864 				    u32 attr, int channel)
865 {
866 	const struct sfp *sfp = data;
867 
868 	switch (type) {
869 	case hwmon_temp:
870 		switch (attr) {
871 		case hwmon_temp_min_alarm:
872 		case hwmon_temp_max_alarm:
873 		case hwmon_temp_lcrit_alarm:
874 		case hwmon_temp_crit_alarm:
875 		case hwmon_temp_min:
876 		case hwmon_temp_max:
877 		case hwmon_temp_lcrit:
878 		case hwmon_temp_crit:
879 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
880 				return 0;
881 			fallthrough;
882 		case hwmon_temp_input:
883 		case hwmon_temp_label:
884 			return 0444;
885 		default:
886 			return 0;
887 		}
888 	case hwmon_in:
889 		switch (attr) {
890 		case hwmon_in_min_alarm:
891 		case hwmon_in_max_alarm:
892 		case hwmon_in_lcrit_alarm:
893 		case hwmon_in_crit_alarm:
894 		case hwmon_in_min:
895 		case hwmon_in_max:
896 		case hwmon_in_lcrit:
897 		case hwmon_in_crit:
898 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
899 				return 0;
900 			fallthrough;
901 		case hwmon_in_input:
902 		case hwmon_in_label:
903 			return 0444;
904 		default:
905 			return 0;
906 		}
907 	case hwmon_curr:
908 		switch (attr) {
909 		case hwmon_curr_min_alarm:
910 		case hwmon_curr_max_alarm:
911 		case hwmon_curr_lcrit_alarm:
912 		case hwmon_curr_crit_alarm:
913 		case hwmon_curr_min:
914 		case hwmon_curr_max:
915 		case hwmon_curr_lcrit:
916 		case hwmon_curr_crit:
917 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
918 				return 0;
919 			fallthrough;
920 		case hwmon_curr_input:
921 		case hwmon_curr_label:
922 			return 0444;
923 		default:
924 			return 0;
925 		}
926 	case hwmon_power:
927 		/* External calibration of receive power requires
928 		 * floating point arithmetic. Doing that in the kernel
929 		 * is not easy, so just skip it. If the module does
930 		 * not require external calibration, we can however
931 		 * show receiver power, since FP is then not needed.
932 		 */
933 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
934 		    channel == 1)
935 			return 0;
936 		switch (attr) {
937 		case hwmon_power_min_alarm:
938 		case hwmon_power_max_alarm:
939 		case hwmon_power_lcrit_alarm:
940 		case hwmon_power_crit_alarm:
941 		case hwmon_power_min:
942 		case hwmon_power_max:
943 		case hwmon_power_lcrit:
944 		case hwmon_power_crit:
945 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
946 				return 0;
947 			fallthrough;
948 		case hwmon_power_input:
949 		case hwmon_power_label:
950 			return 0444;
951 		default:
952 			return 0;
953 		}
954 	default:
955 		return 0;
956 	}
957 }
958 
959 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
960 {
961 	__be16 val;
962 	int err;
963 
964 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
965 	if (err < 0)
966 		return err;
967 
968 	*value = be16_to_cpu(val);
969 
970 	return 0;
971 }
972 
973 static void sfp_hwmon_to_rx_power(long *value)
974 {
975 	*value = DIV_ROUND_CLOSEST(*value, 10);
976 }
977 
978 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
979 				long *value)
980 {
981 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
982 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
983 }
984 
985 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
986 {
987 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
988 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
989 
990 	if (*value >= 0x8000)
991 		*value -= 0x10000;
992 
993 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
994 }
995 
996 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
997 {
998 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
999 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1000 
1001 	*value = DIV_ROUND_CLOSEST(*value, 10);
1002 }
1003 
1004 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1005 {
1006 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1007 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1008 
1009 	*value = DIV_ROUND_CLOSEST(*value, 500);
1010 }
1011 
1012 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1013 {
1014 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1015 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1016 
1017 	*value = DIV_ROUND_CLOSEST(*value, 10);
1018 }
1019 
1020 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1021 {
1022 	int err;
1023 
1024 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1025 	if (err < 0)
1026 		return err;
1027 
1028 	sfp_hwmon_calibrate_temp(sfp, value);
1029 
1030 	return 0;
1031 }
1032 
1033 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1034 {
1035 	int err;
1036 
1037 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1038 	if (err < 0)
1039 		return err;
1040 
1041 	sfp_hwmon_calibrate_vcc(sfp, value);
1042 
1043 	return 0;
1044 }
1045 
1046 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1047 {
1048 	int err;
1049 
1050 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1051 	if (err < 0)
1052 		return err;
1053 
1054 	sfp_hwmon_calibrate_bias(sfp, value);
1055 
1056 	return 0;
1057 }
1058 
1059 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1060 {
1061 	int err;
1062 
1063 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1064 	if (err < 0)
1065 		return err;
1066 
1067 	sfp_hwmon_calibrate_tx_power(sfp, value);
1068 
1069 	return 0;
1070 }
1071 
1072 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1073 {
1074 	int err;
1075 
1076 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1077 	if (err < 0)
1078 		return err;
1079 
1080 	sfp_hwmon_to_rx_power(value);
1081 
1082 	return 0;
1083 }
1084 
1085 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1086 {
1087 	u8 status;
1088 	int err;
1089 
1090 	switch (attr) {
1091 	case hwmon_temp_input:
1092 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1093 
1094 	case hwmon_temp_lcrit:
1095 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1096 		sfp_hwmon_calibrate_temp(sfp, value);
1097 		return 0;
1098 
1099 	case hwmon_temp_min:
1100 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1101 		sfp_hwmon_calibrate_temp(sfp, value);
1102 		return 0;
1103 	case hwmon_temp_max:
1104 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1105 		sfp_hwmon_calibrate_temp(sfp, value);
1106 		return 0;
1107 
1108 	case hwmon_temp_crit:
1109 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1110 		sfp_hwmon_calibrate_temp(sfp, value);
1111 		return 0;
1112 
1113 	case hwmon_temp_lcrit_alarm:
1114 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1115 		if (err < 0)
1116 			return err;
1117 
1118 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1119 		return 0;
1120 
1121 	case hwmon_temp_min_alarm:
1122 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1123 		if (err < 0)
1124 			return err;
1125 
1126 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1127 		return 0;
1128 
1129 	case hwmon_temp_max_alarm:
1130 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1131 		if (err < 0)
1132 			return err;
1133 
1134 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1135 		return 0;
1136 
1137 	case hwmon_temp_crit_alarm:
1138 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1139 		if (err < 0)
1140 			return err;
1141 
1142 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1143 		return 0;
1144 	default:
1145 		return -EOPNOTSUPP;
1146 	}
1147 
1148 	return -EOPNOTSUPP;
1149 }
1150 
1151 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1152 {
1153 	u8 status;
1154 	int err;
1155 
1156 	switch (attr) {
1157 	case hwmon_in_input:
1158 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1159 
1160 	case hwmon_in_lcrit:
1161 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1162 		sfp_hwmon_calibrate_vcc(sfp, value);
1163 		return 0;
1164 
1165 	case hwmon_in_min:
1166 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1167 		sfp_hwmon_calibrate_vcc(sfp, value);
1168 		return 0;
1169 
1170 	case hwmon_in_max:
1171 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1172 		sfp_hwmon_calibrate_vcc(sfp, value);
1173 		return 0;
1174 
1175 	case hwmon_in_crit:
1176 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1177 		sfp_hwmon_calibrate_vcc(sfp, value);
1178 		return 0;
1179 
1180 	case hwmon_in_lcrit_alarm:
1181 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1182 		if (err < 0)
1183 			return err;
1184 
1185 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1186 		return 0;
1187 
1188 	case hwmon_in_min_alarm:
1189 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1190 		if (err < 0)
1191 			return err;
1192 
1193 		*value = !!(status & SFP_WARN0_VCC_LOW);
1194 		return 0;
1195 
1196 	case hwmon_in_max_alarm:
1197 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1198 		if (err < 0)
1199 			return err;
1200 
1201 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1202 		return 0;
1203 
1204 	case hwmon_in_crit_alarm:
1205 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1206 		if (err < 0)
1207 			return err;
1208 
1209 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1210 		return 0;
1211 	default:
1212 		return -EOPNOTSUPP;
1213 	}
1214 
1215 	return -EOPNOTSUPP;
1216 }
1217 
1218 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1219 {
1220 	u8 status;
1221 	int err;
1222 
1223 	switch (attr) {
1224 	case hwmon_curr_input:
1225 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1226 
1227 	case hwmon_curr_lcrit:
1228 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1229 		sfp_hwmon_calibrate_bias(sfp, value);
1230 		return 0;
1231 
1232 	case hwmon_curr_min:
1233 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1234 		sfp_hwmon_calibrate_bias(sfp, value);
1235 		return 0;
1236 
1237 	case hwmon_curr_max:
1238 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1239 		sfp_hwmon_calibrate_bias(sfp, value);
1240 		return 0;
1241 
1242 	case hwmon_curr_crit:
1243 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1244 		sfp_hwmon_calibrate_bias(sfp, value);
1245 		return 0;
1246 
1247 	case hwmon_curr_lcrit_alarm:
1248 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1249 		if (err < 0)
1250 			return err;
1251 
1252 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1253 		return 0;
1254 
1255 	case hwmon_curr_min_alarm:
1256 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1257 		if (err < 0)
1258 			return err;
1259 
1260 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1261 		return 0;
1262 
1263 	case hwmon_curr_max_alarm:
1264 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1265 		if (err < 0)
1266 			return err;
1267 
1268 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1269 		return 0;
1270 
1271 	case hwmon_curr_crit_alarm:
1272 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1273 		if (err < 0)
1274 			return err;
1275 
1276 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1277 		return 0;
1278 	default:
1279 		return -EOPNOTSUPP;
1280 	}
1281 
1282 	return -EOPNOTSUPP;
1283 }
1284 
1285 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1286 {
1287 	u8 status;
1288 	int err;
1289 
1290 	switch (attr) {
1291 	case hwmon_power_input:
1292 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1293 
1294 	case hwmon_power_lcrit:
1295 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1296 		sfp_hwmon_calibrate_tx_power(sfp, value);
1297 		return 0;
1298 
1299 	case hwmon_power_min:
1300 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1301 		sfp_hwmon_calibrate_tx_power(sfp, value);
1302 		return 0;
1303 
1304 	case hwmon_power_max:
1305 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1306 		sfp_hwmon_calibrate_tx_power(sfp, value);
1307 		return 0;
1308 
1309 	case hwmon_power_crit:
1310 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1311 		sfp_hwmon_calibrate_tx_power(sfp, value);
1312 		return 0;
1313 
1314 	case hwmon_power_lcrit_alarm:
1315 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1316 		if (err < 0)
1317 			return err;
1318 
1319 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1320 		return 0;
1321 
1322 	case hwmon_power_min_alarm:
1323 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1324 		if (err < 0)
1325 			return err;
1326 
1327 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1328 		return 0;
1329 
1330 	case hwmon_power_max_alarm:
1331 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1332 		if (err < 0)
1333 			return err;
1334 
1335 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1336 		return 0;
1337 
1338 	case hwmon_power_crit_alarm:
1339 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1340 		if (err < 0)
1341 			return err;
1342 
1343 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1344 		return 0;
1345 	default:
1346 		return -EOPNOTSUPP;
1347 	}
1348 
1349 	return -EOPNOTSUPP;
1350 }
1351 
1352 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1353 {
1354 	u8 status;
1355 	int err;
1356 
1357 	switch (attr) {
1358 	case hwmon_power_input:
1359 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1360 
1361 	case hwmon_power_lcrit:
1362 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1363 		sfp_hwmon_to_rx_power(value);
1364 		return 0;
1365 
1366 	case hwmon_power_min:
1367 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1368 		sfp_hwmon_to_rx_power(value);
1369 		return 0;
1370 
1371 	case hwmon_power_max:
1372 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1373 		sfp_hwmon_to_rx_power(value);
1374 		return 0;
1375 
1376 	case hwmon_power_crit:
1377 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1378 		sfp_hwmon_to_rx_power(value);
1379 		return 0;
1380 
1381 	case hwmon_power_lcrit_alarm:
1382 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1383 		if (err < 0)
1384 			return err;
1385 
1386 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1387 		return 0;
1388 
1389 	case hwmon_power_min_alarm:
1390 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1391 		if (err < 0)
1392 			return err;
1393 
1394 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1395 		return 0;
1396 
1397 	case hwmon_power_max_alarm:
1398 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1399 		if (err < 0)
1400 			return err;
1401 
1402 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1403 		return 0;
1404 
1405 	case hwmon_power_crit_alarm:
1406 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1407 		if (err < 0)
1408 			return err;
1409 
1410 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1411 		return 0;
1412 	default:
1413 		return -EOPNOTSUPP;
1414 	}
1415 
1416 	return -EOPNOTSUPP;
1417 }
1418 
1419 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1420 			  u32 attr, int channel, long *value)
1421 {
1422 	struct sfp *sfp = dev_get_drvdata(dev);
1423 
1424 	switch (type) {
1425 	case hwmon_temp:
1426 		return sfp_hwmon_temp(sfp, attr, value);
1427 	case hwmon_in:
1428 		return sfp_hwmon_vcc(sfp, attr, value);
1429 	case hwmon_curr:
1430 		return sfp_hwmon_bias(sfp, attr, value);
1431 	case hwmon_power:
1432 		switch (channel) {
1433 		case 0:
1434 			return sfp_hwmon_tx_power(sfp, attr, value);
1435 		case 1:
1436 			return sfp_hwmon_rx_power(sfp, attr, value);
1437 		default:
1438 			return -EOPNOTSUPP;
1439 		}
1440 	default:
1441 		return -EOPNOTSUPP;
1442 	}
1443 }
1444 
1445 static const char *const sfp_hwmon_power_labels[] = {
1446 	"TX_power",
1447 	"RX_power",
1448 };
1449 
1450 static int sfp_hwmon_read_string(struct device *dev,
1451 				 enum hwmon_sensor_types type,
1452 				 u32 attr, int channel, const char **str)
1453 {
1454 	switch (type) {
1455 	case hwmon_curr:
1456 		switch (attr) {
1457 		case hwmon_curr_label:
1458 			*str = "bias";
1459 			return 0;
1460 		default:
1461 			return -EOPNOTSUPP;
1462 		}
1463 		break;
1464 	case hwmon_temp:
1465 		switch (attr) {
1466 		case hwmon_temp_label:
1467 			*str = "temperature";
1468 			return 0;
1469 		default:
1470 			return -EOPNOTSUPP;
1471 		}
1472 		break;
1473 	case hwmon_in:
1474 		switch (attr) {
1475 		case hwmon_in_label:
1476 			*str = "VCC";
1477 			return 0;
1478 		default:
1479 			return -EOPNOTSUPP;
1480 		}
1481 		break;
1482 	case hwmon_power:
1483 		switch (attr) {
1484 		case hwmon_power_label:
1485 			*str = sfp_hwmon_power_labels[channel];
1486 			return 0;
1487 		default:
1488 			return -EOPNOTSUPP;
1489 		}
1490 		break;
1491 	default:
1492 		return -EOPNOTSUPP;
1493 	}
1494 
1495 	return -EOPNOTSUPP;
1496 }
1497 
1498 static const struct hwmon_ops sfp_hwmon_ops = {
1499 	.is_visible = sfp_hwmon_is_visible,
1500 	.read = sfp_hwmon_read,
1501 	.read_string = sfp_hwmon_read_string,
1502 };
1503 
1504 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1505 	HWMON_CHANNEL_INFO(chip,
1506 			   HWMON_C_REGISTER_TZ),
1507 	HWMON_CHANNEL_INFO(in,
1508 			   HWMON_I_INPUT |
1509 			   HWMON_I_MAX | HWMON_I_MIN |
1510 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1511 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1512 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1513 			   HWMON_I_LABEL),
1514 	HWMON_CHANNEL_INFO(temp,
1515 			   HWMON_T_INPUT |
1516 			   HWMON_T_MAX | HWMON_T_MIN |
1517 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1518 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1519 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1520 			   HWMON_T_LABEL),
1521 	HWMON_CHANNEL_INFO(curr,
1522 			   HWMON_C_INPUT |
1523 			   HWMON_C_MAX | HWMON_C_MIN |
1524 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1525 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1526 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1527 			   HWMON_C_LABEL),
1528 	HWMON_CHANNEL_INFO(power,
1529 			   /* Transmit power */
1530 			   HWMON_P_INPUT |
1531 			   HWMON_P_MAX | HWMON_P_MIN |
1532 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1533 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1534 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1535 			   HWMON_P_LABEL,
1536 			   /* Receive power */
1537 			   HWMON_P_INPUT |
1538 			   HWMON_P_MAX | HWMON_P_MIN |
1539 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1540 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1541 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1542 			   HWMON_P_LABEL),
1543 	NULL,
1544 };
1545 
1546 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1547 	.ops = &sfp_hwmon_ops,
1548 	.info = sfp_hwmon_info,
1549 };
1550 
1551 static void sfp_hwmon_probe(struct work_struct *work)
1552 {
1553 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1554 	int err;
1555 
1556 	/* hwmon interface needs to access 16bit registers in atomic way to
1557 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1558 	 * possible to guarantee coherency because EEPROM is broken in such way
1559 	 * that does not support atomic 16bit read operation then we have to
1560 	 * skip registration of hwmon device.
1561 	 */
1562 	if (sfp->i2c_block_size < 2) {
1563 		dev_info(sfp->dev,
1564 			 "skipping hwmon device registration due to broken EEPROM\n");
1565 		dev_info(sfp->dev,
1566 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1567 		return;
1568 	}
1569 
1570 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1571 	if (err < 0) {
1572 		if (sfp->hwmon_tries--) {
1573 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1574 					 T_PROBE_RETRY_SLOW);
1575 		} else {
1576 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1577 				 ERR_PTR(err));
1578 		}
1579 		return;
1580 	}
1581 
1582 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1583 	if (IS_ERR(sfp->hwmon_name)) {
1584 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1585 		return;
1586 	}
1587 
1588 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1589 							 sfp->hwmon_name, sfp,
1590 							 &sfp_hwmon_chip_info,
1591 							 NULL);
1592 	if (IS_ERR(sfp->hwmon_dev))
1593 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1594 			PTR_ERR(sfp->hwmon_dev));
1595 }
1596 
1597 static int sfp_hwmon_insert(struct sfp *sfp)
1598 {
1599 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1600 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1601 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static void sfp_hwmon_remove(struct sfp *sfp)
1608 {
1609 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1610 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1611 		hwmon_device_unregister(sfp->hwmon_dev);
1612 		sfp->hwmon_dev = NULL;
1613 		kfree(sfp->hwmon_name);
1614 	}
1615 }
1616 
1617 static int sfp_hwmon_init(struct sfp *sfp)
1618 {
1619 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1620 
1621 	return 0;
1622 }
1623 
1624 static void sfp_hwmon_exit(struct sfp *sfp)
1625 {
1626 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1627 }
1628 #else
1629 static int sfp_hwmon_insert(struct sfp *sfp)
1630 {
1631 	return 0;
1632 }
1633 
1634 static void sfp_hwmon_remove(struct sfp *sfp)
1635 {
1636 }
1637 
1638 static int sfp_hwmon_init(struct sfp *sfp)
1639 {
1640 	return 0;
1641 }
1642 
1643 static void sfp_hwmon_exit(struct sfp *sfp)
1644 {
1645 }
1646 #endif
1647 
1648 /* Helpers */
1649 static void sfp_module_tx_disable(struct sfp *sfp)
1650 {
1651 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1652 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1653 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1654 }
1655 
1656 static void sfp_module_tx_enable(struct sfp *sfp)
1657 {
1658 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1659 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1660 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1661 }
1662 
1663 #if IS_ENABLED(CONFIG_DEBUG_FS)
1664 static int sfp_debug_state_show(struct seq_file *s, void *data)
1665 {
1666 	struct sfp *sfp = s->private;
1667 
1668 	seq_printf(s, "Module state: %s\n",
1669 		   mod_state_to_str(sfp->sm_mod_state));
1670 	seq_printf(s, "Module probe attempts: %d %d\n",
1671 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1672 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1673 	seq_printf(s, "Device state: %s\n",
1674 		   dev_state_to_str(sfp->sm_dev_state));
1675 	seq_printf(s, "Main state: %s\n",
1676 		   sm_state_to_str(sfp->sm_state));
1677 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1678 		   sfp->sm_fault_retries);
1679 	seq_printf(s, "PHY probe remaining retries: %d\n",
1680 		   sfp->sm_phy_retries);
1681 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1682 	seq_printf(s, "Rate select threshold: %u kBd\n",
1683 		   sfp->rs_threshold_kbd);
1684 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1685 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1686 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1687 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1688 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1689 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1690 	return 0;
1691 }
1692 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1693 
1694 static void sfp_debugfs_init(struct sfp *sfp)
1695 {
1696 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1697 
1698 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1699 			    &sfp_debug_state_fops);
1700 }
1701 
1702 static void sfp_debugfs_exit(struct sfp *sfp)
1703 {
1704 	debugfs_remove_recursive(sfp->debugfs_dir);
1705 }
1706 #else
1707 static void sfp_debugfs_init(struct sfp *sfp)
1708 {
1709 }
1710 
1711 static void sfp_debugfs_exit(struct sfp *sfp)
1712 {
1713 }
1714 #endif
1715 
1716 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1717 {
1718 	unsigned int state;
1719 
1720 	mutex_lock(&sfp->st_mutex);
1721 	state = sfp->state;
1722 	if (!(state & SFP_F_TX_DISABLE)) {
1723 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1724 
1725 		udelay(T_RESET_US);
1726 
1727 		sfp_set_state(sfp, state);
1728 	}
1729 	mutex_unlock(&sfp->st_mutex);
1730 }
1731 
1732 /* SFP state machine */
1733 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1734 {
1735 	if (timeout)
1736 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1737 				 timeout);
1738 	else
1739 		cancel_delayed_work(&sfp->timeout);
1740 }
1741 
1742 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1743 			unsigned int timeout)
1744 {
1745 	sfp->sm_state = state;
1746 	sfp_sm_set_timer(sfp, timeout);
1747 }
1748 
1749 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1750 			    unsigned int timeout)
1751 {
1752 	sfp->sm_mod_state = state;
1753 	sfp_sm_set_timer(sfp, timeout);
1754 }
1755 
1756 static void sfp_sm_phy_detach(struct sfp *sfp)
1757 {
1758 	sfp_remove_phy(sfp->sfp_bus);
1759 	phy_device_remove(sfp->mod_phy);
1760 	phy_device_free(sfp->mod_phy);
1761 	sfp->mod_phy = NULL;
1762 }
1763 
1764 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1765 {
1766 	struct phy_device *phy;
1767 	int err;
1768 
1769 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1770 	if (phy == ERR_PTR(-ENODEV))
1771 		return PTR_ERR(phy);
1772 	if (IS_ERR(phy)) {
1773 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1774 		return PTR_ERR(phy);
1775 	}
1776 
1777 	/* Mark this PHY as being on a SFP module */
1778 	phy->is_on_sfp_module = true;
1779 
1780 	err = phy_device_register(phy);
1781 	if (err) {
1782 		phy_device_free(phy);
1783 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1784 			ERR_PTR(err));
1785 		return err;
1786 	}
1787 
1788 	err = sfp_add_phy(sfp->sfp_bus, phy);
1789 	if (err) {
1790 		phy_device_remove(phy);
1791 		phy_device_free(phy);
1792 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1793 		return err;
1794 	}
1795 
1796 	sfp->mod_phy = phy;
1797 
1798 	return 0;
1799 }
1800 
1801 static void sfp_sm_link_up(struct sfp *sfp)
1802 {
1803 	sfp_link_up(sfp->sfp_bus);
1804 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1805 }
1806 
1807 static void sfp_sm_link_down(struct sfp *sfp)
1808 {
1809 	sfp_link_down(sfp->sfp_bus);
1810 }
1811 
1812 static void sfp_sm_link_check_los(struct sfp *sfp)
1813 {
1814 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1815 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1816 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1817 	bool los = false;
1818 
1819 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1820 	 * are set, we assume that no LOS signal is available. If both are
1821 	 * set, we assume LOS is not implemented (and is meaningless.)
1822 	 */
1823 	if (los_options == los_inverted)
1824 		los = !(sfp->state & SFP_F_LOS);
1825 	else if (los_options == los_normal)
1826 		los = !!(sfp->state & SFP_F_LOS);
1827 
1828 	if (los)
1829 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1830 	else
1831 		sfp_sm_link_up(sfp);
1832 }
1833 
1834 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1835 {
1836 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1837 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1838 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1839 
1840 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1841 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1842 }
1843 
1844 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1845 {
1846 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1847 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1848 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1849 
1850 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1851 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1852 }
1853 
1854 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1855 {
1856 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1857 		dev_err(sfp->dev,
1858 			"module persistently indicates fault, disabling\n");
1859 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1860 	} else {
1861 		if (warn)
1862 			dev_err(sfp->dev, "module transmit fault indicated\n");
1863 
1864 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1865 	}
1866 }
1867 
1868 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1869 {
1870 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1871 		return sfp_i2c_mdiobus_create(sfp);
1872 
1873 	return 0;
1874 }
1875 
1876 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1877  * normally sits at I2C bus address 0x56, and may either be a clause 22
1878  * or clause 45 PHY.
1879  *
1880  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1881  * negotiation enabled, but some may be in 1000base-X - which is for the
1882  * PHY driver to determine.
1883  *
1884  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1885  * mode according to the negotiated line speed.
1886  */
1887 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1888 {
1889 	int err = 0;
1890 
1891 	switch (sfp->mdio_protocol) {
1892 	case MDIO_I2C_NONE:
1893 		break;
1894 
1895 	case MDIO_I2C_MARVELL_C22:
1896 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1897 		break;
1898 
1899 	case MDIO_I2C_C45:
1900 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1901 		break;
1902 
1903 	case MDIO_I2C_ROLLBALL:
1904 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1905 		break;
1906 	}
1907 
1908 	return err;
1909 }
1910 
1911 static int sfp_module_parse_power(struct sfp *sfp)
1912 {
1913 	u32 power_mW = 1000;
1914 	bool supports_a2;
1915 
1916 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1917 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1918 		power_mW = 1500;
1919 	/* Added in Rev 11.9, but there is no compliance code for this */
1920 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1921 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1922 		power_mW = 2000;
1923 
1924 	/* Power level 1 modules (max. 1W) are always supported. */
1925 	if (power_mW <= 1000) {
1926 		sfp->module_power_mW = power_mW;
1927 		return 0;
1928 	}
1929 
1930 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1931 				SFP_SFF8472_COMPLIANCE_NONE ||
1932 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1933 
1934 	if (power_mW > sfp->max_power_mW) {
1935 		/* Module power specification exceeds the allowed maximum. */
1936 		if (!supports_a2) {
1937 			/* The module appears not to implement bus address
1938 			 * 0xa2, so assume that the module powers up in the
1939 			 * indicated mode.
1940 			 */
1941 			dev_err(sfp->dev,
1942 				"Host does not support %u.%uW modules\n",
1943 				power_mW / 1000, (power_mW / 100) % 10);
1944 			return -EINVAL;
1945 		} else {
1946 			dev_warn(sfp->dev,
1947 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1948 				 power_mW / 1000, (power_mW / 100) % 10);
1949 			return 0;
1950 		}
1951 	}
1952 
1953 	if (!supports_a2) {
1954 		/* The module power level is below the host maximum and the
1955 		 * module appears not to implement bus address 0xa2, so assume
1956 		 * that the module powers up in the indicated mode.
1957 		 */
1958 		return 0;
1959 	}
1960 
1961 	/* If the module requires a higher power mode, but also requires
1962 	 * an address change sequence, warn the user that the module may
1963 	 * not be functional.
1964 	 */
1965 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1966 		dev_warn(sfp->dev,
1967 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1968 			 power_mW / 1000, (power_mW / 100) % 10);
1969 		return 0;
1970 	}
1971 
1972 	sfp->module_power_mW = power_mW;
1973 
1974 	return 0;
1975 }
1976 
1977 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1978 {
1979 	int err;
1980 
1981 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1982 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1983 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1984 	if (err != sizeof(u8)) {
1985 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1986 			enable ? "en" : "dis", ERR_PTR(err));
1987 		return -EAGAIN;
1988 	}
1989 
1990 	if (enable)
1991 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1992 			 sfp->module_power_mW / 1000,
1993 			 (sfp->module_power_mW / 100) % 10);
1994 
1995 	return 0;
1996 }
1997 
1998 static void sfp_module_parse_rate_select(struct sfp *sfp)
1999 {
2000 	u8 rate_id;
2001 
2002 	sfp->rs_threshold_kbd = 0;
2003 	sfp->rs_state_mask = 0;
2004 
2005 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2006 		/* No support for RateSelect */
2007 		return;
2008 
2009 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2010 	 * rate is not well specified, so always select "Full Bandwidth", but
2011 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2012 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2013 	 * This method exists prior to SFF-8472.
2014 	 */
2015 	sfp->rs_state_mask = SFP_F_RS0;
2016 	sfp->rs_threshold_kbd = 1594;
2017 
2018 	/* Parse the rate identifier, which is complicated due to history:
2019 	 * SFF-8472 rev 9.5 marks this field as reserved.
2020 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2021 	 *  compliance is not required.
2022 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2023 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2024 	 * and even values.
2025 	 */
2026 	rate_id = sfp->id.base.rate_id;
2027 	if (rate_id == 0)
2028 		/* Unspecified */
2029 		return;
2030 
2031 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2032 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2033 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2034 	 */
2035 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2036 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2037 	    rate_id == 3)
2038 		rate_id = SFF_RID_8431;
2039 
2040 	if (rate_id & SFF_RID_8079) {
2041 		/* SFF-8079 RateSelect / Application Select in conjunction with
2042 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2043 		 * with only bit 0 used, which takes precedence over SFF-8472.
2044 		 */
2045 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2046 			/* SFF-8079 Part 1 - rate selection between Fibre
2047 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2048 			 * is high for 2125, so we have to subtract 1 to
2049 			 * include it.
2050 			 */
2051 			sfp->rs_threshold_kbd = 2125 - 1;
2052 			sfp->rs_state_mask = SFP_F_RS0;
2053 		}
2054 		return;
2055 	}
2056 
2057 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2058 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2059 		return;
2060 
2061 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2062 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2063 	 */
2064 	switch (rate_id) {
2065 	case SFF_RID_8431_RX_ONLY:
2066 		sfp->rs_threshold_kbd = 4250;
2067 		sfp->rs_state_mask = SFP_F_RS0;
2068 		break;
2069 
2070 	case SFF_RID_8431_TX_ONLY:
2071 		sfp->rs_threshold_kbd = 4250;
2072 		sfp->rs_state_mask = SFP_F_RS1;
2073 		break;
2074 
2075 	case SFF_RID_8431:
2076 		sfp->rs_threshold_kbd = 4250;
2077 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2078 		break;
2079 
2080 	case SFF_RID_10G8G:
2081 		sfp->rs_threshold_kbd = 9000;
2082 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2083 		break;
2084 	}
2085 }
2086 
2087 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2088  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2089  * not support multibyte reads from the EEPROM. Each multi-byte read
2090  * operation returns just one byte of EEPROM followed by zeros. There is
2091  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2092  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2093  * name and vendor id into EEPROM, so there is even no way to detect if
2094  * module is V-SOL V2801F. Therefore check for those zeros in the read
2095  * data and then based on check switch to reading EEPROM to one byte
2096  * at a time.
2097  */
2098 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2099 {
2100 	size_t i, block_size = sfp->i2c_block_size;
2101 
2102 	/* Already using byte IO */
2103 	if (block_size == 1)
2104 		return false;
2105 
2106 	for (i = 1; i < len; i += block_size) {
2107 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2108 			return false;
2109 	}
2110 	return true;
2111 }
2112 
2113 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2114 {
2115 	u8 check;
2116 	int err;
2117 
2118 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2119 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2120 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2121 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2122 		id->base.phys_id = SFF8024_ID_SFF_8472;
2123 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2124 		id->base.connector = SFF8024_CONNECTOR_LC;
2125 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2126 		if (err != 3) {
2127 			dev_err(sfp->dev,
2128 				"Failed to rewrite module EEPROM: %pe\n",
2129 				ERR_PTR(err));
2130 			return err;
2131 		}
2132 
2133 		/* Cotsworks modules have been found to require a delay between write operations. */
2134 		mdelay(50);
2135 
2136 		/* Update base structure checksum */
2137 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2138 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2139 		if (err != 1) {
2140 			dev_err(sfp->dev,
2141 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2142 				ERR_PTR(err));
2143 			return err;
2144 		}
2145 	}
2146 	return 0;
2147 }
2148 
2149 static int sfp_module_parse_sff8472(struct sfp *sfp)
2150 {
2151 	/* If the module requires address swap mode, warn about it */
2152 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2153 		dev_warn(sfp->dev,
2154 			 "module address swap to access page 0xA2 is not supported.\n");
2155 	else
2156 		sfp->have_a2 = true;
2157 
2158 	return 0;
2159 }
2160 
2161 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2162 {
2163 	/* SFP module inserted - read I2C data */
2164 	struct sfp_eeprom_id id;
2165 	bool cotsworks_sfbg;
2166 	unsigned int mask;
2167 	bool cotsworks;
2168 	u8 check;
2169 	int ret;
2170 
2171 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2172 
2173 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2174 	if (ret < 0) {
2175 		if (report)
2176 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2177 				ERR_PTR(ret));
2178 		return -EAGAIN;
2179 	}
2180 
2181 	if (ret != sizeof(id.base)) {
2182 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2183 		return -EAGAIN;
2184 	}
2185 
2186 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2187 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2188 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2189 	 * fields, so do not switch to one byte reading at a time unless it
2190 	 * is really required and we have no other option.
2191 	 */
2192 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2193 		dev_info(sfp->dev,
2194 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2195 		dev_info(sfp->dev,
2196 			 "Switching to reading EEPROM to one byte at a time\n");
2197 		sfp->i2c_block_size = 1;
2198 
2199 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2200 		if (ret < 0) {
2201 			if (report)
2202 				dev_err(sfp->dev,
2203 					"failed to read EEPROM: %pe\n",
2204 					ERR_PTR(ret));
2205 			return -EAGAIN;
2206 		}
2207 
2208 		if (ret != sizeof(id.base)) {
2209 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2210 				ERR_PTR(ret));
2211 			return -EAGAIN;
2212 		}
2213 	}
2214 
2215 	/* Cotsworks do not seem to update the checksums when they
2216 	 * do the final programming with the final module part number,
2217 	 * serial number and date code.
2218 	 */
2219 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2220 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2221 
2222 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2223 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2224 	 * Cotsworks PN matches and bytes are not correct.
2225 	 */
2226 	if (cotsworks && cotsworks_sfbg) {
2227 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2228 		if (ret < 0)
2229 			return ret;
2230 	}
2231 
2232 	/* Validate the checksum over the base structure */
2233 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2234 	if (check != id.base.cc_base) {
2235 		if (cotsworks) {
2236 			dev_warn(sfp->dev,
2237 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2238 				 check, id.base.cc_base);
2239 		} else {
2240 			dev_err(sfp->dev,
2241 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2242 				check, id.base.cc_base);
2243 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2244 				       16, 1, &id, sizeof(id), true);
2245 			return -EINVAL;
2246 		}
2247 	}
2248 
2249 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2250 	if (ret < 0) {
2251 		if (report)
2252 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2253 				ERR_PTR(ret));
2254 		return -EAGAIN;
2255 	}
2256 
2257 	if (ret != sizeof(id.ext)) {
2258 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2259 		return -EAGAIN;
2260 	}
2261 
2262 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2263 	if (check != id.ext.cc_ext) {
2264 		if (cotsworks) {
2265 			dev_warn(sfp->dev,
2266 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2267 				 check, id.ext.cc_ext);
2268 		} else {
2269 			dev_err(sfp->dev,
2270 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2271 				check, id.ext.cc_ext);
2272 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2273 				       16, 1, &id, sizeof(id), true);
2274 			memset(&id.ext, 0, sizeof(id.ext));
2275 		}
2276 	}
2277 
2278 	sfp->id = id;
2279 
2280 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2281 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2282 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2283 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2284 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2285 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2286 
2287 	/* Check whether we support this module */
2288 	if (!sfp->type->module_supported(&id)) {
2289 		dev_err(sfp->dev,
2290 			"module is not supported - phys id 0x%02x 0x%02x\n",
2291 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2292 		return -EINVAL;
2293 	}
2294 
2295 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2296 		ret = sfp_module_parse_sff8472(sfp);
2297 		if (ret < 0)
2298 			return ret;
2299 	}
2300 
2301 	/* Parse the module power requirement */
2302 	ret = sfp_module_parse_power(sfp);
2303 	if (ret < 0)
2304 		return ret;
2305 
2306 	sfp_module_parse_rate_select(sfp);
2307 
2308 	mask = SFP_F_PRESENT;
2309 	if (sfp->gpio[GPIO_TX_DISABLE])
2310 		mask |= SFP_F_TX_DISABLE;
2311 	if (sfp->gpio[GPIO_TX_FAULT])
2312 		mask |= SFP_F_TX_FAULT;
2313 	if (sfp->gpio[GPIO_LOS])
2314 		mask |= SFP_F_LOS;
2315 	if (sfp->gpio[GPIO_RS0])
2316 		mask |= SFP_F_RS0;
2317 	if (sfp->gpio[GPIO_RS1])
2318 		mask |= SFP_F_RS1;
2319 
2320 	sfp->module_t_start_up = T_START_UP;
2321 	sfp->module_t_wait = T_WAIT;
2322 
2323 	sfp->tx_fault_ignore = false;
2324 
2325 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2326 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2327 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2328 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2329 		sfp->mdio_protocol = MDIO_I2C_C45;
2330 	else if (sfp->id.base.e1000_base_t)
2331 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2332 	else
2333 		sfp->mdio_protocol = MDIO_I2C_NONE;
2334 
2335 	sfp->quirk = sfp_lookup_quirk(&id);
2336 
2337 	mutex_lock(&sfp->st_mutex);
2338 	/* Initialise state bits to use from hardware */
2339 	sfp->state_hw_mask = mask;
2340 
2341 	/* We want to drive the rate select pins that the module is using */
2342 	sfp->state_hw_drive |= sfp->rs_state_mask;
2343 
2344 	if (sfp->quirk && sfp->quirk->fixup)
2345 		sfp->quirk->fixup(sfp);
2346 	mutex_unlock(&sfp->st_mutex);
2347 
2348 	return 0;
2349 }
2350 
2351 static void sfp_sm_mod_remove(struct sfp *sfp)
2352 {
2353 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2354 		sfp_module_remove(sfp->sfp_bus);
2355 
2356 	sfp_hwmon_remove(sfp);
2357 
2358 	memset(&sfp->id, 0, sizeof(sfp->id));
2359 	sfp->module_power_mW = 0;
2360 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2361 	sfp->have_a2 = false;
2362 
2363 	dev_info(sfp->dev, "module removed\n");
2364 }
2365 
2366 /* This state machine tracks the upstream's state */
2367 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2368 {
2369 	switch (sfp->sm_dev_state) {
2370 	default:
2371 		if (event == SFP_E_DEV_ATTACH)
2372 			sfp->sm_dev_state = SFP_DEV_DOWN;
2373 		break;
2374 
2375 	case SFP_DEV_DOWN:
2376 		if (event == SFP_E_DEV_DETACH)
2377 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2378 		else if (event == SFP_E_DEV_UP)
2379 			sfp->sm_dev_state = SFP_DEV_UP;
2380 		break;
2381 
2382 	case SFP_DEV_UP:
2383 		if (event == SFP_E_DEV_DETACH)
2384 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2385 		else if (event == SFP_E_DEV_DOWN)
2386 			sfp->sm_dev_state = SFP_DEV_DOWN;
2387 		break;
2388 	}
2389 }
2390 
2391 /* This state machine tracks the insert/remove state of the module, probes
2392  * the on-board EEPROM, and sets up the power level.
2393  */
2394 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2395 {
2396 	int err;
2397 
2398 	/* Handle remove event globally, it resets this state machine */
2399 	if (event == SFP_E_REMOVE) {
2400 		sfp_sm_mod_remove(sfp);
2401 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2402 		return;
2403 	}
2404 
2405 	/* Handle device detach globally */
2406 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2407 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2408 		if (sfp->module_power_mW > 1000 &&
2409 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2410 			sfp_sm_mod_hpower(sfp, false);
2411 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2412 		return;
2413 	}
2414 
2415 	switch (sfp->sm_mod_state) {
2416 	default:
2417 		if (event == SFP_E_INSERT) {
2418 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2419 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2420 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2421 		}
2422 		break;
2423 
2424 	case SFP_MOD_PROBE:
2425 		/* Wait for T_PROBE_INIT to time out */
2426 		if (event != SFP_E_TIMEOUT)
2427 			break;
2428 
2429 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2430 		if (err == -EAGAIN) {
2431 			if (sfp->sm_mod_tries_init &&
2432 			   --sfp->sm_mod_tries_init) {
2433 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2434 				break;
2435 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2436 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2437 					dev_warn(sfp->dev,
2438 						 "please wait, module slow to respond\n");
2439 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2440 				break;
2441 			}
2442 		}
2443 		if (err < 0) {
2444 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2445 			break;
2446 		}
2447 
2448 		/* Force a poll to re-read the hardware signal state after
2449 		 * sfp_sm_mod_probe() changed state_hw_mask.
2450 		 */
2451 		mod_delayed_work(system_wq, &sfp->poll, 1);
2452 
2453 		err = sfp_hwmon_insert(sfp);
2454 		if (err)
2455 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2456 				 ERR_PTR(err));
2457 
2458 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2459 		fallthrough;
2460 	case SFP_MOD_WAITDEV:
2461 		/* Ensure that the device is attached before proceeding */
2462 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2463 			break;
2464 
2465 		/* Report the module insertion to the upstream device */
2466 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2467 					sfp->quirk);
2468 		if (err < 0) {
2469 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2470 			break;
2471 		}
2472 
2473 		/* If this is a power level 1 module, we are done */
2474 		if (sfp->module_power_mW <= 1000)
2475 			goto insert;
2476 
2477 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2478 		fallthrough;
2479 	case SFP_MOD_HPOWER:
2480 		/* Enable high power mode */
2481 		err = sfp_sm_mod_hpower(sfp, true);
2482 		if (err < 0) {
2483 			if (err != -EAGAIN) {
2484 				sfp_module_remove(sfp->sfp_bus);
2485 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2486 			} else {
2487 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2488 			}
2489 			break;
2490 		}
2491 
2492 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2493 		break;
2494 
2495 	case SFP_MOD_WAITPWR:
2496 		/* Wait for T_HPOWER_LEVEL to time out */
2497 		if (event != SFP_E_TIMEOUT)
2498 			break;
2499 
2500 	insert:
2501 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2502 		break;
2503 
2504 	case SFP_MOD_PRESENT:
2505 	case SFP_MOD_ERROR:
2506 		break;
2507 	}
2508 }
2509 
2510 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2511 {
2512 	unsigned long timeout;
2513 	int ret;
2514 
2515 	/* Some events are global */
2516 	if (sfp->sm_state != SFP_S_DOWN &&
2517 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2518 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2519 		if (sfp->sm_state == SFP_S_LINK_UP &&
2520 		    sfp->sm_dev_state == SFP_DEV_UP)
2521 			sfp_sm_link_down(sfp);
2522 		if (sfp->sm_state > SFP_S_INIT)
2523 			sfp_module_stop(sfp->sfp_bus);
2524 		if (sfp->mod_phy)
2525 			sfp_sm_phy_detach(sfp);
2526 		if (sfp->i2c_mii)
2527 			sfp_i2c_mdiobus_destroy(sfp);
2528 		sfp_module_tx_disable(sfp);
2529 		sfp_soft_stop_poll(sfp);
2530 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2531 		return;
2532 	}
2533 
2534 	/* The main state machine */
2535 	switch (sfp->sm_state) {
2536 	case SFP_S_DOWN:
2537 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2538 		    sfp->sm_dev_state != SFP_DEV_UP)
2539 			break;
2540 
2541 		/* Only use the soft state bits if we have access to the A2h
2542 		 * memory, which implies that we have some level of SFF-8472
2543 		 * compliance.
2544 		 */
2545 		if (sfp->have_a2)
2546 			sfp_soft_start_poll(sfp);
2547 
2548 		sfp_module_tx_enable(sfp);
2549 
2550 		/* Initialise the fault clearance retries */
2551 		sfp->sm_fault_retries = N_FAULT_INIT;
2552 
2553 		/* We need to check the TX_FAULT state, which is not defined
2554 		 * while TX_DISABLE is asserted. The earliest we want to do
2555 		 * anything (such as probe for a PHY) is 50ms (or more on
2556 		 * specific modules).
2557 		 */
2558 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2559 		break;
2560 
2561 	case SFP_S_WAIT:
2562 		if (event != SFP_E_TIMEOUT)
2563 			break;
2564 
2565 		if (sfp->state & SFP_F_TX_FAULT) {
2566 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2567 			 * from the TX_DISABLE deassertion for the module to
2568 			 * initialise, which is indicated by TX_FAULT
2569 			 * deasserting.
2570 			 */
2571 			timeout = sfp->module_t_start_up;
2572 			if (timeout > sfp->module_t_wait)
2573 				timeout -= sfp->module_t_wait;
2574 			else
2575 				timeout = 1;
2576 
2577 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2578 		} else {
2579 			/* TX_FAULT is not asserted, assume the module has
2580 			 * finished initialising.
2581 			 */
2582 			goto init_done;
2583 		}
2584 		break;
2585 
2586 	case SFP_S_INIT:
2587 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2588 			/* TX_FAULT is still asserted after t_init
2589 			 * or t_start_up, so assume there is a fault.
2590 			 */
2591 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2592 				     sfp->sm_fault_retries == N_FAULT_INIT);
2593 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2594 	init_done:
2595 			/* Create mdiobus and start trying for PHY */
2596 			ret = sfp_sm_add_mdio_bus(sfp);
2597 			if (ret < 0) {
2598 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2599 				break;
2600 			}
2601 			sfp->sm_phy_retries = R_PHY_RETRY;
2602 			goto phy_probe;
2603 		}
2604 		break;
2605 
2606 	case SFP_S_INIT_PHY:
2607 		if (event != SFP_E_TIMEOUT)
2608 			break;
2609 	phy_probe:
2610 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2611 		 * clear.  Probe for the PHY and check the LOS state.
2612 		 */
2613 		ret = sfp_sm_probe_for_phy(sfp);
2614 		if (ret == -ENODEV) {
2615 			if (--sfp->sm_phy_retries) {
2616 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2617 				break;
2618 			} else {
2619 				dev_info(sfp->dev, "no PHY detected\n");
2620 			}
2621 		} else if (ret) {
2622 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2623 			break;
2624 		}
2625 		if (sfp_module_start(sfp->sfp_bus)) {
2626 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2627 			break;
2628 		}
2629 		sfp_sm_link_check_los(sfp);
2630 
2631 		/* Reset the fault retry count */
2632 		sfp->sm_fault_retries = N_FAULT;
2633 		break;
2634 
2635 	case SFP_S_INIT_TX_FAULT:
2636 		if (event == SFP_E_TIMEOUT) {
2637 			sfp_module_tx_fault_reset(sfp);
2638 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2639 		}
2640 		break;
2641 
2642 	case SFP_S_WAIT_LOS:
2643 		if (event == SFP_E_TX_FAULT)
2644 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2645 		else if (sfp_los_event_inactive(sfp, event))
2646 			sfp_sm_link_up(sfp);
2647 		break;
2648 
2649 	case SFP_S_LINK_UP:
2650 		if (event == SFP_E_TX_FAULT) {
2651 			sfp_sm_link_down(sfp);
2652 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2653 		} else if (sfp_los_event_active(sfp, event)) {
2654 			sfp_sm_link_down(sfp);
2655 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2656 		}
2657 		break;
2658 
2659 	case SFP_S_TX_FAULT:
2660 		if (event == SFP_E_TIMEOUT) {
2661 			sfp_module_tx_fault_reset(sfp);
2662 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2663 		}
2664 		break;
2665 
2666 	case SFP_S_REINIT:
2667 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2668 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2669 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2670 			dev_info(sfp->dev, "module transmit fault recovered\n");
2671 			sfp_sm_link_check_los(sfp);
2672 		}
2673 		break;
2674 
2675 	case SFP_S_TX_DISABLE:
2676 		break;
2677 	}
2678 }
2679 
2680 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2681 {
2682 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2683 		mod_state_to_str(sfp->sm_mod_state),
2684 		dev_state_to_str(sfp->sm_dev_state),
2685 		sm_state_to_str(sfp->sm_state),
2686 		event_to_str(event));
2687 
2688 	sfp_sm_device(sfp, event);
2689 	sfp_sm_module(sfp, event);
2690 	sfp_sm_main(sfp, event);
2691 
2692 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2693 		mod_state_to_str(sfp->sm_mod_state),
2694 		dev_state_to_str(sfp->sm_dev_state),
2695 		sm_state_to_str(sfp->sm_state));
2696 }
2697 
2698 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2699 {
2700 	mutex_lock(&sfp->sm_mutex);
2701 	__sfp_sm_event(sfp, event);
2702 	mutex_unlock(&sfp->sm_mutex);
2703 }
2704 
2705 static void sfp_attach(struct sfp *sfp)
2706 {
2707 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2708 }
2709 
2710 static void sfp_detach(struct sfp *sfp)
2711 {
2712 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2713 }
2714 
2715 static void sfp_start(struct sfp *sfp)
2716 {
2717 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2718 }
2719 
2720 static void sfp_stop(struct sfp *sfp)
2721 {
2722 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2723 }
2724 
2725 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2726 {
2727 	unsigned int set;
2728 
2729 	sfp->rate_kbd = rate_kbd;
2730 
2731 	if (rate_kbd > sfp->rs_threshold_kbd)
2732 		set = sfp->rs_state_mask;
2733 	else
2734 		set = 0;
2735 
2736 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2737 }
2738 
2739 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2740 {
2741 	/* locking... and check module is present */
2742 
2743 	if (sfp->id.ext.sff8472_compliance &&
2744 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2745 		modinfo->type = ETH_MODULE_SFF_8472;
2746 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2747 	} else {
2748 		modinfo->type = ETH_MODULE_SFF_8079;
2749 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2750 	}
2751 	return 0;
2752 }
2753 
2754 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2755 			     u8 *data)
2756 {
2757 	unsigned int first, last, len;
2758 	int ret;
2759 
2760 	if (!(sfp->state & SFP_F_PRESENT))
2761 		return -ENODEV;
2762 
2763 	if (ee->len == 0)
2764 		return -EINVAL;
2765 
2766 	first = ee->offset;
2767 	last = ee->offset + ee->len;
2768 	if (first < ETH_MODULE_SFF_8079_LEN) {
2769 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2770 		len -= first;
2771 
2772 		ret = sfp_read(sfp, false, first, data, len);
2773 		if (ret < 0)
2774 			return ret;
2775 
2776 		first += len;
2777 		data += len;
2778 	}
2779 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2780 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2781 		len -= first;
2782 		first -= ETH_MODULE_SFF_8079_LEN;
2783 
2784 		ret = sfp_read(sfp, true, first, data, len);
2785 		if (ret < 0)
2786 			return ret;
2787 	}
2788 	return 0;
2789 }
2790 
2791 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2792 				     const struct ethtool_module_eeprom *page,
2793 				     struct netlink_ext_ack *extack)
2794 {
2795 	if (!(sfp->state & SFP_F_PRESENT))
2796 		return -ENODEV;
2797 
2798 	if (page->bank) {
2799 		NL_SET_ERR_MSG(extack, "Banks not supported");
2800 		return -EOPNOTSUPP;
2801 	}
2802 
2803 	if (page->page) {
2804 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2805 		return -EOPNOTSUPP;
2806 	}
2807 
2808 	if (page->i2c_address != 0x50 &&
2809 	    page->i2c_address != 0x51) {
2810 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2811 		return -EOPNOTSUPP;
2812 	}
2813 
2814 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2815 			page->data, page->length);
2816 };
2817 
2818 static const struct sfp_socket_ops sfp_module_ops = {
2819 	.attach = sfp_attach,
2820 	.detach = sfp_detach,
2821 	.start = sfp_start,
2822 	.stop = sfp_stop,
2823 	.set_signal_rate = sfp_set_signal_rate,
2824 	.module_info = sfp_module_info,
2825 	.module_eeprom = sfp_module_eeprom,
2826 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2827 };
2828 
2829 static void sfp_timeout(struct work_struct *work)
2830 {
2831 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2832 
2833 	rtnl_lock();
2834 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2835 	rtnl_unlock();
2836 }
2837 
2838 static void sfp_check_state(struct sfp *sfp)
2839 {
2840 	unsigned int state, i, changed;
2841 
2842 	rtnl_lock();
2843 	mutex_lock(&sfp->st_mutex);
2844 	state = sfp_get_state(sfp);
2845 	changed = state ^ sfp->state;
2846 	if (sfp->tx_fault_ignore)
2847 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2848 	else
2849 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2850 
2851 	for (i = 0; i < GPIO_MAX; i++)
2852 		if (changed & BIT(i))
2853 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2854 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2855 
2856 	state |= sfp->state & SFP_F_OUTPUTS;
2857 	sfp->state = state;
2858 	mutex_unlock(&sfp->st_mutex);
2859 
2860 	mutex_lock(&sfp->sm_mutex);
2861 	if (changed & SFP_F_PRESENT)
2862 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2863 				    SFP_E_INSERT : SFP_E_REMOVE);
2864 
2865 	if (changed & SFP_F_TX_FAULT)
2866 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2867 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2868 
2869 	if (changed & SFP_F_LOS)
2870 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2871 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2872 	mutex_unlock(&sfp->sm_mutex);
2873 	rtnl_unlock();
2874 }
2875 
2876 static irqreturn_t sfp_irq(int irq, void *data)
2877 {
2878 	struct sfp *sfp = data;
2879 
2880 	sfp_check_state(sfp);
2881 
2882 	return IRQ_HANDLED;
2883 }
2884 
2885 static void sfp_poll(struct work_struct *work)
2886 {
2887 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2888 
2889 	sfp_check_state(sfp);
2890 
2891 	// st_mutex doesn't need to be held here for state_soft_mask,
2892 	// it's unimportant if we race while reading this.
2893 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2894 	    sfp->need_poll)
2895 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2896 }
2897 
2898 static struct sfp *sfp_alloc(struct device *dev)
2899 {
2900 	struct sfp *sfp;
2901 
2902 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2903 	if (!sfp)
2904 		return ERR_PTR(-ENOMEM);
2905 
2906 	sfp->dev = dev;
2907 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2908 
2909 	mutex_init(&sfp->sm_mutex);
2910 	mutex_init(&sfp->st_mutex);
2911 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2912 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2913 
2914 	sfp_hwmon_init(sfp);
2915 
2916 	return sfp;
2917 }
2918 
2919 static void sfp_cleanup(void *data)
2920 {
2921 	struct sfp *sfp = data;
2922 
2923 	sfp_hwmon_exit(sfp);
2924 
2925 	cancel_delayed_work_sync(&sfp->poll);
2926 	cancel_delayed_work_sync(&sfp->timeout);
2927 	if (sfp->i2c_mii) {
2928 		mdiobus_unregister(sfp->i2c_mii);
2929 		mdiobus_free(sfp->i2c_mii);
2930 	}
2931 	if (sfp->i2c)
2932 		i2c_put_adapter(sfp->i2c);
2933 	kfree(sfp);
2934 }
2935 
2936 static int sfp_i2c_get(struct sfp *sfp)
2937 {
2938 	struct fwnode_handle *h;
2939 	struct i2c_adapter *i2c;
2940 	int err;
2941 
2942 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2943 	if (IS_ERR(h)) {
2944 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2945 		return -ENODEV;
2946 	}
2947 
2948 	i2c = i2c_get_adapter_by_fwnode(h);
2949 	if (!i2c) {
2950 		err = -EPROBE_DEFER;
2951 		goto put;
2952 	}
2953 
2954 	err = sfp_i2c_configure(sfp, i2c);
2955 	if (err)
2956 		i2c_put_adapter(i2c);
2957 put:
2958 	fwnode_handle_put(h);
2959 	return err;
2960 }
2961 
2962 static int sfp_probe(struct platform_device *pdev)
2963 {
2964 	const struct sff_data *sff;
2965 	char *sfp_irq_name;
2966 	struct sfp *sfp;
2967 	int err, i;
2968 
2969 	sfp = sfp_alloc(&pdev->dev);
2970 	if (IS_ERR(sfp))
2971 		return PTR_ERR(sfp);
2972 
2973 	platform_set_drvdata(pdev, sfp);
2974 
2975 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2976 	if (err < 0)
2977 		return err;
2978 
2979 	sff = device_get_match_data(sfp->dev);
2980 	if (!sff)
2981 		sff = &sfp_data;
2982 
2983 	sfp->type = sff;
2984 
2985 	err = sfp_i2c_get(sfp);
2986 	if (err)
2987 		return err;
2988 
2989 	for (i = 0; i < GPIO_MAX; i++)
2990 		if (sff->gpios & BIT(i)) {
2991 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2992 					   gpio_names[i], gpio_flags[i]);
2993 			if (IS_ERR(sfp->gpio[i]))
2994 				return PTR_ERR(sfp->gpio[i]);
2995 		}
2996 
2997 	sfp->state_hw_mask = SFP_F_PRESENT;
2998 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2999 
3000 	sfp->get_state = sfp_gpio_get_state;
3001 	sfp->set_state = sfp_gpio_set_state;
3002 
3003 	/* Modules that have no detect signal are always present */
3004 	if (!(sfp->gpio[GPIO_MODDEF0]))
3005 		sfp->get_state = sff_gpio_get_state;
3006 
3007 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3008 				 &sfp->max_power_mW);
3009 	if (sfp->max_power_mW < 1000) {
3010 		if (sfp->max_power_mW)
3011 			dev_warn(sfp->dev,
3012 				 "Firmware bug: host maximum power should be at least 1W\n");
3013 		sfp->max_power_mW = 1000;
3014 	}
3015 
3016 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3017 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3018 
3019 	/* Get the initial state, and always signal TX disable,
3020 	 * since the network interface will not be up.
3021 	 */
3022 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3023 
3024 	if (sfp->gpio[GPIO_RS0] &&
3025 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3026 		sfp->state |= SFP_F_RS0;
3027 	sfp_set_state(sfp, sfp->state);
3028 	sfp_module_tx_disable(sfp);
3029 	if (sfp->state & SFP_F_PRESENT) {
3030 		rtnl_lock();
3031 		sfp_sm_event(sfp, SFP_E_INSERT);
3032 		rtnl_unlock();
3033 	}
3034 
3035 	for (i = 0; i < GPIO_MAX; i++) {
3036 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3037 			continue;
3038 
3039 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3040 		if (sfp->gpio_irq[i] < 0) {
3041 			sfp->gpio_irq[i] = 0;
3042 			sfp->need_poll = true;
3043 			continue;
3044 		}
3045 
3046 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3047 					      "%s-%s", dev_name(sfp->dev),
3048 					      gpio_names[i]);
3049 
3050 		if (!sfp_irq_name)
3051 			return -ENOMEM;
3052 
3053 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3054 						NULL, sfp_irq,
3055 						IRQF_ONESHOT |
3056 						IRQF_TRIGGER_RISING |
3057 						IRQF_TRIGGER_FALLING,
3058 						sfp_irq_name, sfp);
3059 		if (err) {
3060 			sfp->gpio_irq[i] = 0;
3061 			sfp->need_poll = true;
3062 		}
3063 	}
3064 
3065 	if (sfp->need_poll)
3066 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3067 
3068 	/* We could have an issue in cases no Tx disable pin is available or
3069 	 * wired as modules using a laser as their light source will continue to
3070 	 * be active when the fiber is removed. This could be a safety issue and
3071 	 * we should at least warn the user about that.
3072 	 */
3073 	if (!sfp->gpio[GPIO_TX_DISABLE])
3074 		dev_warn(sfp->dev,
3075 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3076 
3077 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3078 	if (!sfp->sfp_bus)
3079 		return -ENOMEM;
3080 
3081 	sfp_debugfs_init(sfp);
3082 
3083 	return 0;
3084 }
3085 
3086 static int sfp_remove(struct platform_device *pdev)
3087 {
3088 	struct sfp *sfp = platform_get_drvdata(pdev);
3089 
3090 	sfp_debugfs_exit(sfp);
3091 	sfp_unregister_socket(sfp->sfp_bus);
3092 
3093 	rtnl_lock();
3094 	sfp_sm_event(sfp, SFP_E_REMOVE);
3095 	rtnl_unlock();
3096 
3097 	return 0;
3098 }
3099 
3100 static void sfp_shutdown(struct platform_device *pdev)
3101 {
3102 	struct sfp *sfp = platform_get_drvdata(pdev);
3103 	int i;
3104 
3105 	for (i = 0; i < GPIO_MAX; i++) {
3106 		if (!sfp->gpio_irq[i])
3107 			continue;
3108 
3109 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3110 	}
3111 
3112 	cancel_delayed_work_sync(&sfp->poll);
3113 	cancel_delayed_work_sync(&sfp->timeout);
3114 }
3115 
3116 static struct platform_driver sfp_driver = {
3117 	.probe = sfp_probe,
3118 	.remove = sfp_remove,
3119 	.shutdown = sfp_shutdown,
3120 	.driver = {
3121 		.name = "sfp",
3122 		.of_match_table = sfp_of_match,
3123 	},
3124 };
3125 
3126 static int sfp_init(void)
3127 {
3128 	poll_jiffies = msecs_to_jiffies(100);
3129 
3130 	return platform_driver_register(&sfp_driver);
3131 }
3132 module_init(sfp_init);
3133 
3134 static void sfp_exit(void)
3135 {
3136 	platform_driver_unregister(&sfp_driver);
3137 }
3138 module_exit(sfp_exit);
3139 
3140 MODULE_ALIAS("platform:sfp");
3141 MODULE_AUTHOR("Russell King");
3142 MODULE_LICENSE("GPL v2");
3143