1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "tx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_START_UP msecs_to_jiffies(300) 170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 171 172 /* t_reset is the time required to assert the TX_DISABLE signal to reset 173 * an indicated TX_FAULT. 174 */ 175 #define T_RESET_US 10 176 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 177 178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 179 * time. If the TX_FAULT signal is not deasserted after this number of 180 * attempts at clearing it, we decide that the module is faulty. 181 * N_FAULT is the same but after the module has initialised. 182 */ 183 #define N_FAULT_INIT 5 184 #define N_FAULT 5 185 186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 187 * R_PHY_RETRY is the number of attempts. 188 */ 189 #define T_PHY_RETRY msecs_to_jiffies(50) 190 #define R_PHY_RETRY 12 191 192 /* SFP module presence detection is poor: the three MOD DEF signals are 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to 194 * connect before the I2C bus on MOD DEF 1/2. 195 * 196 * The SFF-8472 specifies t_serial ("Time from power on until module is 197 * ready for data transmission over the two wire serial bus.") as 300ms. 198 */ 199 #define T_SERIAL msecs_to_jiffies(300) 200 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 202 #define R_PROBE_RETRY_INIT 10 203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 204 #define R_PROBE_RETRY_SLOW 12 205 206 /* SFP modules appear to always have their PHY configured for bus address 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 208 */ 209 #define SFP_PHY_ADDR 22 210 211 struct sff_data { 212 unsigned int gpios; 213 bool (*module_supported)(const struct sfp_eeprom_id *id); 214 }; 215 216 struct sfp { 217 struct device *dev; 218 struct i2c_adapter *i2c; 219 struct mii_bus *i2c_mii; 220 struct sfp_bus *sfp_bus; 221 struct phy_device *mod_phy; 222 const struct sff_data *type; 223 size_t i2c_block_size; 224 u32 max_power_mW; 225 226 unsigned int (*get_state)(struct sfp *); 227 void (*set_state)(struct sfp *, unsigned int); 228 int (*read)(struct sfp *, bool, u8, void *, size_t); 229 int (*write)(struct sfp *, bool, u8, void *, size_t); 230 231 struct gpio_desc *gpio[GPIO_MAX]; 232 int gpio_irq[GPIO_MAX]; 233 234 bool need_poll; 235 236 struct mutex st_mutex; /* Protects state */ 237 unsigned int state_soft_mask; 238 unsigned int state; 239 struct delayed_work poll; 240 struct delayed_work timeout; 241 struct mutex sm_mutex; /* Protects state machine */ 242 unsigned char sm_mod_state; 243 unsigned char sm_mod_tries_init; 244 unsigned char sm_mod_tries; 245 unsigned char sm_dev_state; 246 unsigned short sm_state; 247 unsigned char sm_fault_retries; 248 unsigned char sm_phy_retries; 249 250 struct sfp_eeprom_id id; 251 unsigned int module_power_mW; 252 unsigned int module_t_start_up; 253 bool tx_fault_ignore; 254 255 #if IS_ENABLED(CONFIG_HWMON) 256 struct sfp_diag diag; 257 struct delayed_work hwmon_probe; 258 unsigned int hwmon_tries; 259 struct device *hwmon_dev; 260 char *hwmon_name; 261 #endif 262 263 #if IS_ENABLED(CONFIG_DEBUG_FS) 264 struct dentry *debugfs_dir; 265 #endif 266 }; 267 268 static bool sff_module_supported(const struct sfp_eeprom_id *id) 269 { 270 return id->base.phys_id == SFF8024_ID_SFF_8472 && 271 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 272 } 273 274 static const struct sff_data sff_data = { 275 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 276 .module_supported = sff_module_supported, 277 }; 278 279 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 280 { 281 if (id->base.phys_id == SFF8024_ID_SFP && 282 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 283 return true; 284 285 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 286 * phys id SFF instead of SFP. Therefore mark this module explicitly 287 * as supported based on vendor name and pn match. 288 */ 289 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 290 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 291 !memcmp(id->base.vendor_name, "UBNT ", 16) && 292 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 293 return true; 294 295 return false; 296 } 297 298 static const struct sff_data sfp_data = { 299 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 300 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 301 .module_supported = sfp_module_supported, 302 }; 303 304 static const struct of_device_id sfp_of_match[] = { 305 { .compatible = "sff,sff", .data = &sff_data, }, 306 { .compatible = "sff,sfp", .data = &sfp_data, }, 307 { }, 308 }; 309 MODULE_DEVICE_TABLE(of, sfp_of_match); 310 311 static unsigned long poll_jiffies; 312 313 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 314 { 315 unsigned int i, state, v; 316 317 for (i = state = 0; i < GPIO_MAX; i++) { 318 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 319 continue; 320 321 v = gpiod_get_value_cansleep(sfp->gpio[i]); 322 if (v) 323 state |= BIT(i); 324 } 325 326 return state; 327 } 328 329 static unsigned int sff_gpio_get_state(struct sfp *sfp) 330 { 331 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 332 } 333 334 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 335 { 336 if (state & SFP_F_PRESENT) { 337 /* If the module is present, drive the signals */ 338 if (sfp->gpio[GPIO_TX_DISABLE]) 339 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 340 state & SFP_F_TX_DISABLE); 341 if (state & SFP_F_RATE_SELECT) 342 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 343 state & SFP_F_RATE_SELECT); 344 } else { 345 /* Otherwise, let them float to the pull-ups */ 346 if (sfp->gpio[GPIO_TX_DISABLE]) 347 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 348 if (state & SFP_F_RATE_SELECT) 349 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 350 } 351 } 352 353 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 354 size_t len) 355 { 356 struct i2c_msg msgs[2]; 357 u8 bus_addr = a2 ? 0x51 : 0x50; 358 size_t block_size = sfp->i2c_block_size; 359 size_t this_len; 360 int ret; 361 362 msgs[0].addr = bus_addr; 363 msgs[0].flags = 0; 364 msgs[0].len = 1; 365 msgs[0].buf = &dev_addr; 366 msgs[1].addr = bus_addr; 367 msgs[1].flags = I2C_M_RD; 368 msgs[1].len = len; 369 msgs[1].buf = buf; 370 371 while (len) { 372 this_len = len; 373 if (this_len > block_size) 374 this_len = block_size; 375 376 msgs[1].len = this_len; 377 378 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 379 if (ret < 0) 380 return ret; 381 382 if (ret != ARRAY_SIZE(msgs)) 383 break; 384 385 msgs[1].buf += this_len; 386 dev_addr += this_len; 387 len -= this_len; 388 } 389 390 return msgs[1].buf - (u8 *)buf; 391 } 392 393 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 394 size_t len) 395 { 396 struct i2c_msg msgs[1]; 397 u8 bus_addr = a2 ? 0x51 : 0x50; 398 int ret; 399 400 msgs[0].addr = bus_addr; 401 msgs[0].flags = 0; 402 msgs[0].len = 1 + len; 403 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 404 if (!msgs[0].buf) 405 return -ENOMEM; 406 407 msgs[0].buf[0] = dev_addr; 408 memcpy(&msgs[0].buf[1], buf, len); 409 410 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 411 412 kfree(msgs[0].buf); 413 414 if (ret < 0) 415 return ret; 416 417 return ret == ARRAY_SIZE(msgs) ? len : 0; 418 } 419 420 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 421 { 422 struct mii_bus *i2c_mii; 423 int ret; 424 425 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 426 return -EINVAL; 427 428 sfp->i2c = i2c; 429 sfp->read = sfp_i2c_read; 430 sfp->write = sfp_i2c_write; 431 432 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 433 if (IS_ERR(i2c_mii)) 434 return PTR_ERR(i2c_mii); 435 436 i2c_mii->name = "SFP I2C Bus"; 437 i2c_mii->phy_mask = ~0; 438 439 ret = mdiobus_register(i2c_mii); 440 if (ret < 0) { 441 mdiobus_free(i2c_mii); 442 return ret; 443 } 444 445 sfp->i2c_mii = i2c_mii; 446 447 return 0; 448 } 449 450 /* Interface */ 451 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 452 { 453 return sfp->read(sfp, a2, addr, buf, len); 454 } 455 456 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 457 { 458 return sfp->write(sfp, a2, addr, buf, len); 459 } 460 461 static unsigned int sfp_soft_get_state(struct sfp *sfp) 462 { 463 unsigned int state = 0; 464 u8 status; 465 int ret; 466 467 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 468 if (ret == sizeof(status)) { 469 if (status & SFP_STATUS_RX_LOS) 470 state |= SFP_F_LOS; 471 if (status & SFP_STATUS_TX_FAULT) 472 state |= SFP_F_TX_FAULT; 473 } else { 474 dev_err_ratelimited(sfp->dev, 475 "failed to read SFP soft status: %pe\n", 476 ERR_PTR(ret)); 477 /* Preserve the current state */ 478 state = sfp->state; 479 } 480 481 return state & sfp->state_soft_mask; 482 } 483 484 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 485 { 486 u8 status; 487 488 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 489 sizeof(status)) { 490 if (state & SFP_F_TX_DISABLE) 491 status |= SFP_STATUS_TX_DISABLE_FORCE; 492 else 493 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 494 495 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 496 } 497 } 498 499 static void sfp_soft_start_poll(struct sfp *sfp) 500 { 501 const struct sfp_eeprom_id *id = &sfp->id; 502 503 sfp->state_soft_mask = 0; 504 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 505 !sfp->gpio[GPIO_TX_DISABLE]) 506 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 507 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 508 !sfp->gpio[GPIO_TX_FAULT]) 509 sfp->state_soft_mask |= SFP_F_TX_FAULT; 510 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 511 !sfp->gpio[GPIO_LOS]) 512 sfp->state_soft_mask |= SFP_F_LOS; 513 514 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 515 !sfp->need_poll) 516 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 517 } 518 519 static void sfp_soft_stop_poll(struct sfp *sfp) 520 { 521 sfp->state_soft_mask = 0; 522 } 523 524 static unsigned int sfp_get_state(struct sfp *sfp) 525 { 526 unsigned int state = sfp->get_state(sfp); 527 528 if (state & SFP_F_PRESENT && 529 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 530 state |= sfp_soft_get_state(sfp); 531 532 return state; 533 } 534 535 static void sfp_set_state(struct sfp *sfp, unsigned int state) 536 { 537 sfp->set_state(sfp, state); 538 539 if (state & SFP_F_PRESENT && 540 sfp->state_soft_mask & SFP_F_TX_DISABLE) 541 sfp_soft_set_state(sfp, state); 542 } 543 544 static unsigned int sfp_check(void *buf, size_t len) 545 { 546 u8 *p, check; 547 548 for (p = buf, check = 0; len; p++, len--) 549 check += *p; 550 551 return check; 552 } 553 554 /* hwmon */ 555 #if IS_ENABLED(CONFIG_HWMON) 556 static umode_t sfp_hwmon_is_visible(const void *data, 557 enum hwmon_sensor_types type, 558 u32 attr, int channel) 559 { 560 const struct sfp *sfp = data; 561 562 switch (type) { 563 case hwmon_temp: 564 switch (attr) { 565 case hwmon_temp_min_alarm: 566 case hwmon_temp_max_alarm: 567 case hwmon_temp_lcrit_alarm: 568 case hwmon_temp_crit_alarm: 569 case hwmon_temp_min: 570 case hwmon_temp_max: 571 case hwmon_temp_lcrit: 572 case hwmon_temp_crit: 573 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 574 return 0; 575 fallthrough; 576 case hwmon_temp_input: 577 case hwmon_temp_label: 578 return 0444; 579 default: 580 return 0; 581 } 582 case hwmon_in: 583 switch (attr) { 584 case hwmon_in_min_alarm: 585 case hwmon_in_max_alarm: 586 case hwmon_in_lcrit_alarm: 587 case hwmon_in_crit_alarm: 588 case hwmon_in_min: 589 case hwmon_in_max: 590 case hwmon_in_lcrit: 591 case hwmon_in_crit: 592 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 593 return 0; 594 fallthrough; 595 case hwmon_in_input: 596 case hwmon_in_label: 597 return 0444; 598 default: 599 return 0; 600 } 601 case hwmon_curr: 602 switch (attr) { 603 case hwmon_curr_min_alarm: 604 case hwmon_curr_max_alarm: 605 case hwmon_curr_lcrit_alarm: 606 case hwmon_curr_crit_alarm: 607 case hwmon_curr_min: 608 case hwmon_curr_max: 609 case hwmon_curr_lcrit: 610 case hwmon_curr_crit: 611 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 612 return 0; 613 fallthrough; 614 case hwmon_curr_input: 615 case hwmon_curr_label: 616 return 0444; 617 default: 618 return 0; 619 } 620 case hwmon_power: 621 /* External calibration of receive power requires 622 * floating point arithmetic. Doing that in the kernel 623 * is not easy, so just skip it. If the module does 624 * not require external calibration, we can however 625 * show receiver power, since FP is then not needed. 626 */ 627 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 628 channel == 1) 629 return 0; 630 switch (attr) { 631 case hwmon_power_min_alarm: 632 case hwmon_power_max_alarm: 633 case hwmon_power_lcrit_alarm: 634 case hwmon_power_crit_alarm: 635 case hwmon_power_min: 636 case hwmon_power_max: 637 case hwmon_power_lcrit: 638 case hwmon_power_crit: 639 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 640 return 0; 641 fallthrough; 642 case hwmon_power_input: 643 case hwmon_power_label: 644 return 0444; 645 default: 646 return 0; 647 } 648 default: 649 return 0; 650 } 651 } 652 653 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 654 { 655 __be16 val; 656 int err; 657 658 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 659 if (err < 0) 660 return err; 661 662 *value = be16_to_cpu(val); 663 664 return 0; 665 } 666 667 static void sfp_hwmon_to_rx_power(long *value) 668 { 669 *value = DIV_ROUND_CLOSEST(*value, 10); 670 } 671 672 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 673 long *value) 674 { 675 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 676 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 677 } 678 679 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 680 { 681 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 682 be16_to_cpu(sfp->diag.cal_t_offset), value); 683 684 if (*value >= 0x8000) 685 *value -= 0x10000; 686 687 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 688 } 689 690 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 691 { 692 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 693 be16_to_cpu(sfp->diag.cal_v_offset), value); 694 695 *value = DIV_ROUND_CLOSEST(*value, 10); 696 } 697 698 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 699 { 700 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 701 be16_to_cpu(sfp->diag.cal_txi_offset), value); 702 703 *value = DIV_ROUND_CLOSEST(*value, 500); 704 } 705 706 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 707 { 708 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 709 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 710 711 *value = DIV_ROUND_CLOSEST(*value, 10); 712 } 713 714 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 715 { 716 int err; 717 718 err = sfp_hwmon_read_sensor(sfp, reg, value); 719 if (err < 0) 720 return err; 721 722 sfp_hwmon_calibrate_temp(sfp, value); 723 724 return 0; 725 } 726 727 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 728 { 729 int err; 730 731 err = sfp_hwmon_read_sensor(sfp, reg, value); 732 if (err < 0) 733 return err; 734 735 sfp_hwmon_calibrate_vcc(sfp, value); 736 737 return 0; 738 } 739 740 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 741 { 742 int err; 743 744 err = sfp_hwmon_read_sensor(sfp, reg, value); 745 if (err < 0) 746 return err; 747 748 sfp_hwmon_calibrate_bias(sfp, value); 749 750 return 0; 751 } 752 753 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 754 { 755 int err; 756 757 err = sfp_hwmon_read_sensor(sfp, reg, value); 758 if (err < 0) 759 return err; 760 761 sfp_hwmon_calibrate_tx_power(sfp, value); 762 763 return 0; 764 } 765 766 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 767 { 768 int err; 769 770 err = sfp_hwmon_read_sensor(sfp, reg, value); 771 if (err < 0) 772 return err; 773 774 sfp_hwmon_to_rx_power(value); 775 776 return 0; 777 } 778 779 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 780 { 781 u8 status; 782 int err; 783 784 switch (attr) { 785 case hwmon_temp_input: 786 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 787 788 case hwmon_temp_lcrit: 789 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 790 sfp_hwmon_calibrate_temp(sfp, value); 791 return 0; 792 793 case hwmon_temp_min: 794 *value = be16_to_cpu(sfp->diag.temp_low_warn); 795 sfp_hwmon_calibrate_temp(sfp, value); 796 return 0; 797 case hwmon_temp_max: 798 *value = be16_to_cpu(sfp->diag.temp_high_warn); 799 sfp_hwmon_calibrate_temp(sfp, value); 800 return 0; 801 802 case hwmon_temp_crit: 803 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 804 sfp_hwmon_calibrate_temp(sfp, value); 805 return 0; 806 807 case hwmon_temp_lcrit_alarm: 808 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 809 if (err < 0) 810 return err; 811 812 *value = !!(status & SFP_ALARM0_TEMP_LOW); 813 return 0; 814 815 case hwmon_temp_min_alarm: 816 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 817 if (err < 0) 818 return err; 819 820 *value = !!(status & SFP_WARN0_TEMP_LOW); 821 return 0; 822 823 case hwmon_temp_max_alarm: 824 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 825 if (err < 0) 826 return err; 827 828 *value = !!(status & SFP_WARN0_TEMP_HIGH); 829 return 0; 830 831 case hwmon_temp_crit_alarm: 832 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 833 if (err < 0) 834 return err; 835 836 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 837 return 0; 838 default: 839 return -EOPNOTSUPP; 840 } 841 842 return -EOPNOTSUPP; 843 } 844 845 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 846 { 847 u8 status; 848 int err; 849 850 switch (attr) { 851 case hwmon_in_input: 852 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 853 854 case hwmon_in_lcrit: 855 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 856 sfp_hwmon_calibrate_vcc(sfp, value); 857 return 0; 858 859 case hwmon_in_min: 860 *value = be16_to_cpu(sfp->diag.volt_low_warn); 861 sfp_hwmon_calibrate_vcc(sfp, value); 862 return 0; 863 864 case hwmon_in_max: 865 *value = be16_to_cpu(sfp->diag.volt_high_warn); 866 sfp_hwmon_calibrate_vcc(sfp, value); 867 return 0; 868 869 case hwmon_in_crit: 870 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 871 sfp_hwmon_calibrate_vcc(sfp, value); 872 return 0; 873 874 case hwmon_in_lcrit_alarm: 875 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 876 if (err < 0) 877 return err; 878 879 *value = !!(status & SFP_ALARM0_VCC_LOW); 880 return 0; 881 882 case hwmon_in_min_alarm: 883 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 884 if (err < 0) 885 return err; 886 887 *value = !!(status & SFP_WARN0_VCC_LOW); 888 return 0; 889 890 case hwmon_in_max_alarm: 891 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 892 if (err < 0) 893 return err; 894 895 *value = !!(status & SFP_WARN0_VCC_HIGH); 896 return 0; 897 898 case hwmon_in_crit_alarm: 899 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 900 if (err < 0) 901 return err; 902 903 *value = !!(status & SFP_ALARM0_VCC_HIGH); 904 return 0; 905 default: 906 return -EOPNOTSUPP; 907 } 908 909 return -EOPNOTSUPP; 910 } 911 912 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 913 { 914 u8 status; 915 int err; 916 917 switch (attr) { 918 case hwmon_curr_input: 919 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 920 921 case hwmon_curr_lcrit: 922 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 923 sfp_hwmon_calibrate_bias(sfp, value); 924 return 0; 925 926 case hwmon_curr_min: 927 *value = be16_to_cpu(sfp->diag.bias_low_warn); 928 sfp_hwmon_calibrate_bias(sfp, value); 929 return 0; 930 931 case hwmon_curr_max: 932 *value = be16_to_cpu(sfp->diag.bias_high_warn); 933 sfp_hwmon_calibrate_bias(sfp, value); 934 return 0; 935 936 case hwmon_curr_crit: 937 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 938 sfp_hwmon_calibrate_bias(sfp, value); 939 return 0; 940 941 case hwmon_curr_lcrit_alarm: 942 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 943 if (err < 0) 944 return err; 945 946 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 947 return 0; 948 949 case hwmon_curr_min_alarm: 950 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 951 if (err < 0) 952 return err; 953 954 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 955 return 0; 956 957 case hwmon_curr_max_alarm: 958 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 959 if (err < 0) 960 return err; 961 962 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 963 return 0; 964 965 case hwmon_curr_crit_alarm: 966 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 967 if (err < 0) 968 return err; 969 970 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 971 return 0; 972 default: 973 return -EOPNOTSUPP; 974 } 975 976 return -EOPNOTSUPP; 977 } 978 979 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 980 { 981 u8 status; 982 int err; 983 984 switch (attr) { 985 case hwmon_power_input: 986 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 987 988 case hwmon_power_lcrit: 989 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 990 sfp_hwmon_calibrate_tx_power(sfp, value); 991 return 0; 992 993 case hwmon_power_min: 994 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 995 sfp_hwmon_calibrate_tx_power(sfp, value); 996 return 0; 997 998 case hwmon_power_max: 999 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1000 sfp_hwmon_calibrate_tx_power(sfp, value); 1001 return 0; 1002 1003 case hwmon_power_crit: 1004 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1005 sfp_hwmon_calibrate_tx_power(sfp, value); 1006 return 0; 1007 1008 case hwmon_power_lcrit_alarm: 1009 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1010 if (err < 0) 1011 return err; 1012 1013 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1014 return 0; 1015 1016 case hwmon_power_min_alarm: 1017 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1018 if (err < 0) 1019 return err; 1020 1021 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1022 return 0; 1023 1024 case hwmon_power_max_alarm: 1025 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1026 if (err < 0) 1027 return err; 1028 1029 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1030 return 0; 1031 1032 case hwmon_power_crit_alarm: 1033 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1034 if (err < 0) 1035 return err; 1036 1037 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1038 return 0; 1039 default: 1040 return -EOPNOTSUPP; 1041 } 1042 1043 return -EOPNOTSUPP; 1044 } 1045 1046 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1047 { 1048 u8 status; 1049 int err; 1050 1051 switch (attr) { 1052 case hwmon_power_input: 1053 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1054 1055 case hwmon_power_lcrit: 1056 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1057 sfp_hwmon_to_rx_power(value); 1058 return 0; 1059 1060 case hwmon_power_min: 1061 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1062 sfp_hwmon_to_rx_power(value); 1063 return 0; 1064 1065 case hwmon_power_max: 1066 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1067 sfp_hwmon_to_rx_power(value); 1068 return 0; 1069 1070 case hwmon_power_crit: 1071 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1072 sfp_hwmon_to_rx_power(value); 1073 return 0; 1074 1075 case hwmon_power_lcrit_alarm: 1076 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1077 if (err < 0) 1078 return err; 1079 1080 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1081 return 0; 1082 1083 case hwmon_power_min_alarm: 1084 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1085 if (err < 0) 1086 return err; 1087 1088 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1089 return 0; 1090 1091 case hwmon_power_max_alarm: 1092 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1093 if (err < 0) 1094 return err; 1095 1096 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1097 return 0; 1098 1099 case hwmon_power_crit_alarm: 1100 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1101 if (err < 0) 1102 return err; 1103 1104 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1105 return 0; 1106 default: 1107 return -EOPNOTSUPP; 1108 } 1109 1110 return -EOPNOTSUPP; 1111 } 1112 1113 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1114 u32 attr, int channel, long *value) 1115 { 1116 struct sfp *sfp = dev_get_drvdata(dev); 1117 1118 switch (type) { 1119 case hwmon_temp: 1120 return sfp_hwmon_temp(sfp, attr, value); 1121 case hwmon_in: 1122 return sfp_hwmon_vcc(sfp, attr, value); 1123 case hwmon_curr: 1124 return sfp_hwmon_bias(sfp, attr, value); 1125 case hwmon_power: 1126 switch (channel) { 1127 case 0: 1128 return sfp_hwmon_tx_power(sfp, attr, value); 1129 case 1: 1130 return sfp_hwmon_rx_power(sfp, attr, value); 1131 default: 1132 return -EOPNOTSUPP; 1133 } 1134 default: 1135 return -EOPNOTSUPP; 1136 } 1137 } 1138 1139 static const char *const sfp_hwmon_power_labels[] = { 1140 "TX_power", 1141 "RX_power", 1142 }; 1143 1144 static int sfp_hwmon_read_string(struct device *dev, 1145 enum hwmon_sensor_types type, 1146 u32 attr, int channel, const char **str) 1147 { 1148 switch (type) { 1149 case hwmon_curr: 1150 switch (attr) { 1151 case hwmon_curr_label: 1152 *str = "bias"; 1153 return 0; 1154 default: 1155 return -EOPNOTSUPP; 1156 } 1157 break; 1158 case hwmon_temp: 1159 switch (attr) { 1160 case hwmon_temp_label: 1161 *str = "temperature"; 1162 return 0; 1163 default: 1164 return -EOPNOTSUPP; 1165 } 1166 break; 1167 case hwmon_in: 1168 switch (attr) { 1169 case hwmon_in_label: 1170 *str = "VCC"; 1171 return 0; 1172 default: 1173 return -EOPNOTSUPP; 1174 } 1175 break; 1176 case hwmon_power: 1177 switch (attr) { 1178 case hwmon_power_label: 1179 *str = sfp_hwmon_power_labels[channel]; 1180 return 0; 1181 default: 1182 return -EOPNOTSUPP; 1183 } 1184 break; 1185 default: 1186 return -EOPNOTSUPP; 1187 } 1188 1189 return -EOPNOTSUPP; 1190 } 1191 1192 static const struct hwmon_ops sfp_hwmon_ops = { 1193 .is_visible = sfp_hwmon_is_visible, 1194 .read = sfp_hwmon_read, 1195 .read_string = sfp_hwmon_read_string, 1196 }; 1197 1198 static u32 sfp_hwmon_chip_config[] = { 1199 HWMON_C_REGISTER_TZ, 1200 0, 1201 }; 1202 1203 static const struct hwmon_channel_info sfp_hwmon_chip = { 1204 .type = hwmon_chip, 1205 .config = sfp_hwmon_chip_config, 1206 }; 1207 1208 static u32 sfp_hwmon_temp_config[] = { 1209 HWMON_T_INPUT | 1210 HWMON_T_MAX | HWMON_T_MIN | 1211 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1212 HWMON_T_CRIT | HWMON_T_LCRIT | 1213 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1214 HWMON_T_LABEL, 1215 0, 1216 }; 1217 1218 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1219 .type = hwmon_temp, 1220 .config = sfp_hwmon_temp_config, 1221 }; 1222 1223 static u32 sfp_hwmon_vcc_config[] = { 1224 HWMON_I_INPUT | 1225 HWMON_I_MAX | HWMON_I_MIN | 1226 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1227 HWMON_I_CRIT | HWMON_I_LCRIT | 1228 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1229 HWMON_I_LABEL, 1230 0, 1231 }; 1232 1233 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1234 .type = hwmon_in, 1235 .config = sfp_hwmon_vcc_config, 1236 }; 1237 1238 static u32 sfp_hwmon_bias_config[] = { 1239 HWMON_C_INPUT | 1240 HWMON_C_MAX | HWMON_C_MIN | 1241 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1242 HWMON_C_CRIT | HWMON_C_LCRIT | 1243 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1244 HWMON_C_LABEL, 1245 0, 1246 }; 1247 1248 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1249 .type = hwmon_curr, 1250 .config = sfp_hwmon_bias_config, 1251 }; 1252 1253 static u32 sfp_hwmon_power_config[] = { 1254 /* Transmit power */ 1255 HWMON_P_INPUT | 1256 HWMON_P_MAX | HWMON_P_MIN | 1257 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1258 HWMON_P_CRIT | HWMON_P_LCRIT | 1259 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1260 HWMON_P_LABEL, 1261 /* Receive power */ 1262 HWMON_P_INPUT | 1263 HWMON_P_MAX | HWMON_P_MIN | 1264 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1265 HWMON_P_CRIT | HWMON_P_LCRIT | 1266 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1267 HWMON_P_LABEL, 1268 0, 1269 }; 1270 1271 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1272 .type = hwmon_power, 1273 .config = sfp_hwmon_power_config, 1274 }; 1275 1276 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1277 &sfp_hwmon_chip, 1278 &sfp_hwmon_vcc_channel_info, 1279 &sfp_hwmon_temp_channel_info, 1280 &sfp_hwmon_bias_channel_info, 1281 &sfp_hwmon_power_channel_info, 1282 NULL, 1283 }; 1284 1285 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1286 .ops = &sfp_hwmon_ops, 1287 .info = sfp_hwmon_info, 1288 }; 1289 1290 static void sfp_hwmon_probe(struct work_struct *work) 1291 { 1292 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1293 int err; 1294 1295 /* hwmon interface needs to access 16bit registers in atomic way to 1296 * guarantee coherency of the diagnostic monitoring data. If it is not 1297 * possible to guarantee coherency because EEPROM is broken in such way 1298 * that does not support atomic 16bit read operation then we have to 1299 * skip registration of hwmon device. 1300 */ 1301 if (sfp->i2c_block_size < 2) { 1302 dev_info(sfp->dev, 1303 "skipping hwmon device registration due to broken EEPROM\n"); 1304 dev_info(sfp->dev, 1305 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1306 return; 1307 } 1308 1309 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1310 if (err < 0) { 1311 if (sfp->hwmon_tries--) { 1312 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1313 T_PROBE_RETRY_SLOW); 1314 } else { 1315 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1316 ERR_PTR(err)); 1317 } 1318 return; 1319 } 1320 1321 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1322 if (IS_ERR(sfp->hwmon_name)) { 1323 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1324 return; 1325 } 1326 1327 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1328 sfp->hwmon_name, sfp, 1329 &sfp_hwmon_chip_info, 1330 NULL); 1331 if (IS_ERR(sfp->hwmon_dev)) 1332 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1333 PTR_ERR(sfp->hwmon_dev)); 1334 } 1335 1336 static int sfp_hwmon_insert(struct sfp *sfp) 1337 { 1338 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1339 return 0; 1340 1341 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1342 return 0; 1343 1344 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1345 /* This driver in general does not support address 1346 * change. 1347 */ 1348 return 0; 1349 1350 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1351 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1352 1353 return 0; 1354 } 1355 1356 static void sfp_hwmon_remove(struct sfp *sfp) 1357 { 1358 cancel_delayed_work_sync(&sfp->hwmon_probe); 1359 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1360 hwmon_device_unregister(sfp->hwmon_dev); 1361 sfp->hwmon_dev = NULL; 1362 kfree(sfp->hwmon_name); 1363 } 1364 } 1365 1366 static int sfp_hwmon_init(struct sfp *sfp) 1367 { 1368 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1369 1370 return 0; 1371 } 1372 1373 static void sfp_hwmon_exit(struct sfp *sfp) 1374 { 1375 cancel_delayed_work_sync(&sfp->hwmon_probe); 1376 } 1377 #else 1378 static int sfp_hwmon_insert(struct sfp *sfp) 1379 { 1380 return 0; 1381 } 1382 1383 static void sfp_hwmon_remove(struct sfp *sfp) 1384 { 1385 } 1386 1387 static int sfp_hwmon_init(struct sfp *sfp) 1388 { 1389 return 0; 1390 } 1391 1392 static void sfp_hwmon_exit(struct sfp *sfp) 1393 { 1394 } 1395 #endif 1396 1397 /* Helpers */ 1398 static void sfp_module_tx_disable(struct sfp *sfp) 1399 { 1400 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1401 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1402 sfp->state |= SFP_F_TX_DISABLE; 1403 sfp_set_state(sfp, sfp->state); 1404 } 1405 1406 static void sfp_module_tx_enable(struct sfp *sfp) 1407 { 1408 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1409 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1410 sfp->state &= ~SFP_F_TX_DISABLE; 1411 sfp_set_state(sfp, sfp->state); 1412 } 1413 1414 #if IS_ENABLED(CONFIG_DEBUG_FS) 1415 static int sfp_debug_state_show(struct seq_file *s, void *data) 1416 { 1417 struct sfp *sfp = s->private; 1418 1419 seq_printf(s, "Module state: %s\n", 1420 mod_state_to_str(sfp->sm_mod_state)); 1421 seq_printf(s, "Module probe attempts: %d %d\n", 1422 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1423 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1424 seq_printf(s, "Device state: %s\n", 1425 dev_state_to_str(sfp->sm_dev_state)); 1426 seq_printf(s, "Main state: %s\n", 1427 sm_state_to_str(sfp->sm_state)); 1428 seq_printf(s, "Fault recovery remaining retries: %d\n", 1429 sfp->sm_fault_retries); 1430 seq_printf(s, "PHY probe remaining retries: %d\n", 1431 sfp->sm_phy_retries); 1432 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1433 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1434 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1435 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1436 return 0; 1437 } 1438 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1439 1440 static void sfp_debugfs_init(struct sfp *sfp) 1441 { 1442 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1443 1444 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1445 &sfp_debug_state_fops); 1446 } 1447 1448 static void sfp_debugfs_exit(struct sfp *sfp) 1449 { 1450 debugfs_remove_recursive(sfp->debugfs_dir); 1451 } 1452 #else 1453 static void sfp_debugfs_init(struct sfp *sfp) 1454 { 1455 } 1456 1457 static void sfp_debugfs_exit(struct sfp *sfp) 1458 { 1459 } 1460 #endif 1461 1462 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1463 { 1464 unsigned int state = sfp->state; 1465 1466 if (state & SFP_F_TX_DISABLE) 1467 return; 1468 1469 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1470 1471 udelay(T_RESET_US); 1472 1473 sfp_set_state(sfp, state); 1474 } 1475 1476 /* SFP state machine */ 1477 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1478 { 1479 if (timeout) 1480 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1481 timeout); 1482 else 1483 cancel_delayed_work(&sfp->timeout); 1484 } 1485 1486 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1487 unsigned int timeout) 1488 { 1489 sfp->sm_state = state; 1490 sfp_sm_set_timer(sfp, timeout); 1491 } 1492 1493 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1494 unsigned int timeout) 1495 { 1496 sfp->sm_mod_state = state; 1497 sfp_sm_set_timer(sfp, timeout); 1498 } 1499 1500 static void sfp_sm_phy_detach(struct sfp *sfp) 1501 { 1502 sfp_remove_phy(sfp->sfp_bus); 1503 phy_device_remove(sfp->mod_phy); 1504 phy_device_free(sfp->mod_phy); 1505 sfp->mod_phy = NULL; 1506 } 1507 1508 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1509 { 1510 struct phy_device *phy; 1511 int err; 1512 1513 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1514 if (phy == ERR_PTR(-ENODEV)) 1515 return PTR_ERR(phy); 1516 if (IS_ERR(phy)) { 1517 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1518 return PTR_ERR(phy); 1519 } 1520 1521 err = phy_device_register(phy); 1522 if (err) { 1523 phy_device_free(phy); 1524 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1525 ERR_PTR(err)); 1526 return err; 1527 } 1528 1529 err = sfp_add_phy(sfp->sfp_bus, phy); 1530 if (err) { 1531 phy_device_remove(phy); 1532 phy_device_free(phy); 1533 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1534 return err; 1535 } 1536 1537 sfp->mod_phy = phy; 1538 1539 return 0; 1540 } 1541 1542 static void sfp_sm_link_up(struct sfp *sfp) 1543 { 1544 sfp_link_up(sfp->sfp_bus); 1545 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1546 } 1547 1548 static void sfp_sm_link_down(struct sfp *sfp) 1549 { 1550 sfp_link_down(sfp->sfp_bus); 1551 } 1552 1553 static void sfp_sm_link_check_los(struct sfp *sfp) 1554 { 1555 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1556 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1557 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1558 bool los = false; 1559 1560 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1561 * are set, we assume that no LOS signal is available. If both are 1562 * set, we assume LOS is not implemented (and is meaningless.) 1563 */ 1564 if (los_options == los_inverted) 1565 los = !(sfp->state & SFP_F_LOS); 1566 else if (los_options == los_normal) 1567 los = !!(sfp->state & SFP_F_LOS); 1568 1569 if (los) 1570 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1571 else 1572 sfp_sm_link_up(sfp); 1573 } 1574 1575 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1576 { 1577 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1578 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1579 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1580 1581 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1582 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1583 } 1584 1585 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1586 { 1587 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1588 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1589 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1590 1591 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1592 (los_options == los_normal && event == SFP_E_LOS_LOW); 1593 } 1594 1595 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1596 { 1597 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1598 dev_err(sfp->dev, 1599 "module persistently indicates fault, disabling\n"); 1600 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1601 } else { 1602 if (warn) 1603 dev_err(sfp->dev, "module transmit fault indicated\n"); 1604 1605 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1606 } 1607 } 1608 1609 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1610 * normally sits at I2C bus address 0x56, and may either be a clause 22 1611 * or clause 45 PHY. 1612 * 1613 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1614 * negotiation enabled, but some may be in 1000base-X - which is for the 1615 * PHY driver to determine. 1616 * 1617 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1618 * mode according to the negotiated line speed. 1619 */ 1620 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1621 { 1622 int err = 0; 1623 1624 switch (sfp->id.base.extended_cc) { 1625 case SFF8024_ECC_10GBASE_T_SFI: 1626 case SFF8024_ECC_10GBASE_T_SR: 1627 case SFF8024_ECC_5GBASE_T: 1628 case SFF8024_ECC_2_5GBASE_T: 1629 err = sfp_sm_probe_phy(sfp, true); 1630 break; 1631 1632 default: 1633 if (sfp->id.base.e1000_base_t) 1634 err = sfp_sm_probe_phy(sfp, false); 1635 break; 1636 } 1637 return err; 1638 } 1639 1640 static int sfp_module_parse_power(struct sfp *sfp) 1641 { 1642 u32 power_mW = 1000; 1643 bool supports_a2; 1644 1645 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1646 power_mW = 1500; 1647 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1648 power_mW = 2000; 1649 1650 supports_a2 = sfp->id.ext.sff8472_compliance != 1651 SFP_SFF8472_COMPLIANCE_NONE || 1652 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1653 1654 if (power_mW > sfp->max_power_mW) { 1655 /* Module power specification exceeds the allowed maximum. */ 1656 if (!supports_a2) { 1657 /* The module appears not to implement bus address 1658 * 0xa2, so assume that the module powers up in the 1659 * indicated mode. 1660 */ 1661 dev_err(sfp->dev, 1662 "Host does not support %u.%uW modules\n", 1663 power_mW / 1000, (power_mW / 100) % 10); 1664 return -EINVAL; 1665 } else { 1666 dev_warn(sfp->dev, 1667 "Host does not support %u.%uW modules, module left in power mode 1\n", 1668 power_mW / 1000, (power_mW / 100) % 10); 1669 return 0; 1670 } 1671 } 1672 1673 if (power_mW <= 1000) { 1674 /* Modules below 1W do not require a power change sequence */ 1675 sfp->module_power_mW = power_mW; 1676 return 0; 1677 } 1678 1679 if (!supports_a2) { 1680 /* The module power level is below the host maximum and the 1681 * module appears not to implement bus address 0xa2, so assume 1682 * that the module powers up in the indicated mode. 1683 */ 1684 return 0; 1685 } 1686 1687 /* If the module requires a higher power mode, but also requires 1688 * an address change sequence, warn the user that the module may 1689 * not be functional. 1690 */ 1691 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1692 dev_warn(sfp->dev, 1693 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1694 power_mW / 1000, (power_mW / 100) % 10); 1695 return 0; 1696 } 1697 1698 sfp->module_power_mW = power_mW; 1699 1700 return 0; 1701 } 1702 1703 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1704 { 1705 u8 val; 1706 int err; 1707 1708 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1709 if (err != sizeof(val)) { 1710 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err)); 1711 return -EAGAIN; 1712 } 1713 1714 /* DM7052 reports as a high power module, responds to reads (with 1715 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1716 * if the bit is already set, we're already in high power mode. 1717 */ 1718 if (!!(val & BIT(0)) == enable) 1719 return 0; 1720 1721 if (enable) 1722 val |= BIT(0); 1723 else 1724 val &= ~BIT(0); 1725 1726 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1727 if (err != sizeof(val)) { 1728 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n", 1729 ERR_PTR(err)); 1730 return -EAGAIN; 1731 } 1732 1733 if (enable) 1734 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1735 sfp->module_power_mW / 1000, 1736 (sfp->module_power_mW / 100) % 10); 1737 1738 return 0; 1739 } 1740 1741 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1742 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1743 * not support multibyte reads from the EEPROM. Each multi-byte read 1744 * operation returns just one byte of EEPROM followed by zeros. There is 1745 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1746 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1747 * name and vendor id into EEPROM, so there is even no way to detect if 1748 * module is V-SOL V2801F. Therefore check for those zeros in the read 1749 * data and then based on check switch to reading EEPROM to one byte 1750 * at a time. 1751 */ 1752 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1753 { 1754 size_t i, block_size = sfp->i2c_block_size; 1755 1756 /* Already using byte IO */ 1757 if (block_size == 1) 1758 return false; 1759 1760 for (i = 1; i < len; i += block_size) { 1761 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1762 return false; 1763 } 1764 return true; 1765 } 1766 1767 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1768 { 1769 u8 check; 1770 int err; 1771 1772 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1773 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1774 id->base.connector != SFF8024_CONNECTOR_LC) { 1775 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1776 id->base.phys_id = SFF8024_ID_SFF_8472; 1777 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1778 id->base.connector = SFF8024_CONNECTOR_LC; 1779 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1780 if (err != 3) { 1781 dev_err(sfp->dev, 1782 "Failed to rewrite module EEPROM: %pe\n", 1783 ERR_PTR(err)); 1784 return err; 1785 } 1786 1787 /* Cotsworks modules have been found to require a delay between write operations. */ 1788 mdelay(50); 1789 1790 /* Update base structure checksum */ 1791 check = sfp_check(&id->base, sizeof(id->base) - 1); 1792 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1793 if (err != 1) { 1794 dev_err(sfp->dev, 1795 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1796 ERR_PTR(err)); 1797 return err; 1798 } 1799 } 1800 return 0; 1801 } 1802 1803 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1804 { 1805 /* SFP module inserted - read I2C data */ 1806 struct sfp_eeprom_id id; 1807 bool cotsworks_sfbg; 1808 bool cotsworks; 1809 u8 check; 1810 int ret; 1811 1812 /* Some SFP modules and also some Linux I2C drivers do not like reads 1813 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1814 * a time. 1815 */ 1816 sfp->i2c_block_size = 16; 1817 1818 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1819 if (ret < 0) { 1820 if (report) 1821 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1822 ERR_PTR(ret)); 1823 return -EAGAIN; 1824 } 1825 1826 if (ret != sizeof(id.base)) { 1827 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1828 return -EAGAIN; 1829 } 1830 1831 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1832 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1833 * that EEPROM supports atomic 16bit read operation for diagnostic 1834 * fields, so do not switch to one byte reading at a time unless it 1835 * is really required and we have no other option. 1836 */ 1837 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1838 dev_info(sfp->dev, 1839 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1840 dev_info(sfp->dev, 1841 "Switching to reading EEPROM to one byte at a time\n"); 1842 sfp->i2c_block_size = 1; 1843 1844 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1845 if (ret < 0) { 1846 if (report) 1847 dev_err(sfp->dev, 1848 "failed to read EEPROM: %pe\n", 1849 ERR_PTR(ret)); 1850 return -EAGAIN; 1851 } 1852 1853 if (ret != sizeof(id.base)) { 1854 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1855 ERR_PTR(ret)); 1856 return -EAGAIN; 1857 } 1858 } 1859 1860 /* Cotsworks do not seem to update the checksums when they 1861 * do the final programming with the final module part number, 1862 * serial number and date code. 1863 */ 1864 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1865 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1866 1867 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1868 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1869 * Cotsworks PN matches and bytes are not correct. 1870 */ 1871 if (cotsworks && cotsworks_sfbg) { 1872 ret = sfp_cotsworks_fixup_check(sfp, &id); 1873 if (ret < 0) 1874 return ret; 1875 } 1876 1877 /* Validate the checksum over the base structure */ 1878 check = sfp_check(&id.base, sizeof(id.base) - 1); 1879 if (check != id.base.cc_base) { 1880 if (cotsworks) { 1881 dev_warn(sfp->dev, 1882 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1883 check, id.base.cc_base); 1884 } else { 1885 dev_err(sfp->dev, 1886 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1887 check, id.base.cc_base); 1888 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1889 16, 1, &id, sizeof(id), true); 1890 return -EINVAL; 1891 } 1892 } 1893 1894 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1895 if (ret < 0) { 1896 if (report) 1897 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1898 ERR_PTR(ret)); 1899 return -EAGAIN; 1900 } 1901 1902 if (ret != sizeof(id.ext)) { 1903 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1904 return -EAGAIN; 1905 } 1906 1907 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1908 if (check != id.ext.cc_ext) { 1909 if (cotsworks) { 1910 dev_warn(sfp->dev, 1911 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1912 check, id.ext.cc_ext); 1913 } else { 1914 dev_err(sfp->dev, 1915 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1916 check, id.ext.cc_ext); 1917 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1918 16, 1, &id, sizeof(id), true); 1919 memset(&id.ext, 0, sizeof(id.ext)); 1920 } 1921 } 1922 1923 sfp->id = id; 1924 1925 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1926 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1927 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1928 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1929 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1930 (int)sizeof(id.ext.datecode), id.ext.datecode); 1931 1932 /* Check whether we support this module */ 1933 if (!sfp->type->module_supported(&id)) { 1934 dev_err(sfp->dev, 1935 "module is not supported - phys id 0x%02x 0x%02x\n", 1936 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1937 return -EINVAL; 1938 } 1939 1940 /* If the module requires address swap mode, warn about it */ 1941 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1942 dev_warn(sfp->dev, 1943 "module address swap to access page 0xA2 is not supported.\n"); 1944 1945 /* Parse the module power requirement */ 1946 ret = sfp_module_parse_power(sfp); 1947 if (ret < 0) 1948 return ret; 1949 1950 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1951 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1952 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1953 else 1954 sfp->module_t_start_up = T_START_UP; 1955 1956 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) && 1957 !memcmp(id.base.vendor_pn, "MA5671A ", 16)) 1958 sfp->tx_fault_ignore = true; 1959 else 1960 sfp->tx_fault_ignore = false; 1961 1962 return 0; 1963 } 1964 1965 static void sfp_sm_mod_remove(struct sfp *sfp) 1966 { 1967 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1968 sfp_module_remove(sfp->sfp_bus); 1969 1970 sfp_hwmon_remove(sfp); 1971 1972 memset(&sfp->id, 0, sizeof(sfp->id)); 1973 sfp->module_power_mW = 0; 1974 1975 dev_info(sfp->dev, "module removed\n"); 1976 } 1977 1978 /* This state machine tracks the upstream's state */ 1979 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1980 { 1981 switch (sfp->sm_dev_state) { 1982 default: 1983 if (event == SFP_E_DEV_ATTACH) 1984 sfp->sm_dev_state = SFP_DEV_DOWN; 1985 break; 1986 1987 case SFP_DEV_DOWN: 1988 if (event == SFP_E_DEV_DETACH) 1989 sfp->sm_dev_state = SFP_DEV_DETACHED; 1990 else if (event == SFP_E_DEV_UP) 1991 sfp->sm_dev_state = SFP_DEV_UP; 1992 break; 1993 1994 case SFP_DEV_UP: 1995 if (event == SFP_E_DEV_DETACH) 1996 sfp->sm_dev_state = SFP_DEV_DETACHED; 1997 else if (event == SFP_E_DEV_DOWN) 1998 sfp->sm_dev_state = SFP_DEV_DOWN; 1999 break; 2000 } 2001 } 2002 2003 /* This state machine tracks the insert/remove state of the module, probes 2004 * the on-board EEPROM, and sets up the power level. 2005 */ 2006 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2007 { 2008 int err; 2009 2010 /* Handle remove event globally, it resets this state machine */ 2011 if (event == SFP_E_REMOVE) { 2012 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2013 sfp_sm_mod_remove(sfp); 2014 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2015 return; 2016 } 2017 2018 /* Handle device detach globally */ 2019 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2020 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2021 if (sfp->module_power_mW > 1000 && 2022 sfp->sm_mod_state > SFP_MOD_HPOWER) 2023 sfp_sm_mod_hpower(sfp, false); 2024 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2025 return; 2026 } 2027 2028 switch (sfp->sm_mod_state) { 2029 default: 2030 if (event == SFP_E_INSERT) { 2031 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2032 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2033 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2034 } 2035 break; 2036 2037 case SFP_MOD_PROBE: 2038 /* Wait for T_PROBE_INIT to time out */ 2039 if (event != SFP_E_TIMEOUT) 2040 break; 2041 2042 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2043 if (err == -EAGAIN) { 2044 if (sfp->sm_mod_tries_init && 2045 --sfp->sm_mod_tries_init) { 2046 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2047 break; 2048 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2049 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2050 dev_warn(sfp->dev, 2051 "please wait, module slow to respond\n"); 2052 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2053 break; 2054 } 2055 } 2056 if (err < 0) { 2057 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2058 break; 2059 } 2060 2061 err = sfp_hwmon_insert(sfp); 2062 if (err) 2063 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2064 ERR_PTR(err)); 2065 2066 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2067 fallthrough; 2068 case SFP_MOD_WAITDEV: 2069 /* Ensure that the device is attached before proceeding */ 2070 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2071 break; 2072 2073 /* Report the module insertion to the upstream device */ 2074 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 2075 if (err < 0) { 2076 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2077 break; 2078 } 2079 2080 /* If this is a power level 1 module, we are done */ 2081 if (sfp->module_power_mW <= 1000) 2082 goto insert; 2083 2084 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2085 fallthrough; 2086 case SFP_MOD_HPOWER: 2087 /* Enable high power mode */ 2088 err = sfp_sm_mod_hpower(sfp, true); 2089 if (err < 0) { 2090 if (err != -EAGAIN) { 2091 sfp_module_remove(sfp->sfp_bus); 2092 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2093 } else { 2094 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2095 } 2096 break; 2097 } 2098 2099 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2100 break; 2101 2102 case SFP_MOD_WAITPWR: 2103 /* Wait for T_HPOWER_LEVEL to time out */ 2104 if (event != SFP_E_TIMEOUT) 2105 break; 2106 2107 insert: 2108 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2109 break; 2110 2111 case SFP_MOD_PRESENT: 2112 case SFP_MOD_ERROR: 2113 break; 2114 } 2115 } 2116 2117 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2118 { 2119 unsigned long timeout; 2120 int ret; 2121 2122 /* Some events are global */ 2123 if (sfp->sm_state != SFP_S_DOWN && 2124 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2125 sfp->sm_dev_state != SFP_DEV_UP)) { 2126 if (sfp->sm_state == SFP_S_LINK_UP && 2127 sfp->sm_dev_state == SFP_DEV_UP) 2128 sfp_sm_link_down(sfp); 2129 if (sfp->sm_state > SFP_S_INIT) 2130 sfp_module_stop(sfp->sfp_bus); 2131 if (sfp->mod_phy) 2132 sfp_sm_phy_detach(sfp); 2133 sfp_module_tx_disable(sfp); 2134 sfp_soft_stop_poll(sfp); 2135 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2136 return; 2137 } 2138 2139 /* The main state machine */ 2140 switch (sfp->sm_state) { 2141 case SFP_S_DOWN: 2142 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2143 sfp->sm_dev_state != SFP_DEV_UP) 2144 break; 2145 2146 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2147 sfp_soft_start_poll(sfp); 2148 2149 sfp_module_tx_enable(sfp); 2150 2151 /* Initialise the fault clearance retries */ 2152 sfp->sm_fault_retries = N_FAULT_INIT; 2153 2154 /* We need to check the TX_FAULT state, which is not defined 2155 * while TX_DISABLE is asserted. The earliest we want to do 2156 * anything (such as probe for a PHY) is 50ms. 2157 */ 2158 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2159 break; 2160 2161 case SFP_S_WAIT: 2162 if (event != SFP_E_TIMEOUT) 2163 break; 2164 2165 if (sfp->state & SFP_F_TX_FAULT) { 2166 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2167 * from the TX_DISABLE deassertion for the module to 2168 * initialise, which is indicated by TX_FAULT 2169 * deasserting. 2170 */ 2171 timeout = sfp->module_t_start_up; 2172 if (timeout > T_WAIT) 2173 timeout -= T_WAIT; 2174 else 2175 timeout = 1; 2176 2177 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2178 } else { 2179 /* TX_FAULT is not asserted, assume the module has 2180 * finished initialising. 2181 */ 2182 goto init_done; 2183 } 2184 break; 2185 2186 case SFP_S_INIT: 2187 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2188 /* TX_FAULT is still asserted after t_init 2189 * or t_start_up, so assume there is a fault. 2190 */ 2191 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2192 sfp->sm_fault_retries == N_FAULT_INIT); 2193 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2194 init_done: 2195 sfp->sm_phy_retries = R_PHY_RETRY; 2196 goto phy_probe; 2197 } 2198 break; 2199 2200 case SFP_S_INIT_PHY: 2201 if (event != SFP_E_TIMEOUT) 2202 break; 2203 phy_probe: 2204 /* TX_FAULT deasserted or we timed out with TX_FAULT 2205 * clear. Probe for the PHY and check the LOS state. 2206 */ 2207 ret = sfp_sm_probe_for_phy(sfp); 2208 if (ret == -ENODEV) { 2209 if (--sfp->sm_phy_retries) { 2210 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2211 break; 2212 } else { 2213 dev_info(sfp->dev, "no PHY detected\n"); 2214 } 2215 } else if (ret) { 2216 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2217 break; 2218 } 2219 if (sfp_module_start(sfp->sfp_bus)) { 2220 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2221 break; 2222 } 2223 sfp_sm_link_check_los(sfp); 2224 2225 /* Reset the fault retry count */ 2226 sfp->sm_fault_retries = N_FAULT; 2227 break; 2228 2229 case SFP_S_INIT_TX_FAULT: 2230 if (event == SFP_E_TIMEOUT) { 2231 sfp_module_tx_fault_reset(sfp); 2232 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2233 } 2234 break; 2235 2236 case SFP_S_WAIT_LOS: 2237 if (event == SFP_E_TX_FAULT) 2238 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2239 else if (sfp_los_event_inactive(sfp, event)) 2240 sfp_sm_link_up(sfp); 2241 break; 2242 2243 case SFP_S_LINK_UP: 2244 if (event == SFP_E_TX_FAULT) { 2245 sfp_sm_link_down(sfp); 2246 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2247 } else if (sfp_los_event_active(sfp, event)) { 2248 sfp_sm_link_down(sfp); 2249 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2250 } 2251 break; 2252 2253 case SFP_S_TX_FAULT: 2254 if (event == SFP_E_TIMEOUT) { 2255 sfp_module_tx_fault_reset(sfp); 2256 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2257 } 2258 break; 2259 2260 case SFP_S_REINIT: 2261 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2262 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2263 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2264 dev_info(sfp->dev, "module transmit fault recovered\n"); 2265 sfp_sm_link_check_los(sfp); 2266 } 2267 break; 2268 2269 case SFP_S_TX_DISABLE: 2270 break; 2271 } 2272 } 2273 2274 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2275 { 2276 mutex_lock(&sfp->sm_mutex); 2277 2278 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2279 mod_state_to_str(sfp->sm_mod_state), 2280 dev_state_to_str(sfp->sm_dev_state), 2281 sm_state_to_str(sfp->sm_state), 2282 event_to_str(event)); 2283 2284 sfp_sm_device(sfp, event); 2285 sfp_sm_module(sfp, event); 2286 sfp_sm_main(sfp, event); 2287 2288 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2289 mod_state_to_str(sfp->sm_mod_state), 2290 dev_state_to_str(sfp->sm_dev_state), 2291 sm_state_to_str(sfp->sm_state)); 2292 2293 mutex_unlock(&sfp->sm_mutex); 2294 } 2295 2296 static void sfp_attach(struct sfp *sfp) 2297 { 2298 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2299 } 2300 2301 static void sfp_detach(struct sfp *sfp) 2302 { 2303 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2304 } 2305 2306 static void sfp_start(struct sfp *sfp) 2307 { 2308 sfp_sm_event(sfp, SFP_E_DEV_UP); 2309 } 2310 2311 static void sfp_stop(struct sfp *sfp) 2312 { 2313 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2314 } 2315 2316 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2317 { 2318 /* locking... and check module is present */ 2319 2320 if (sfp->id.ext.sff8472_compliance && 2321 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2322 modinfo->type = ETH_MODULE_SFF_8472; 2323 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2324 } else { 2325 modinfo->type = ETH_MODULE_SFF_8079; 2326 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2327 } 2328 return 0; 2329 } 2330 2331 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2332 u8 *data) 2333 { 2334 unsigned int first, last, len; 2335 int ret; 2336 2337 if (ee->len == 0) 2338 return -EINVAL; 2339 2340 first = ee->offset; 2341 last = ee->offset + ee->len; 2342 if (first < ETH_MODULE_SFF_8079_LEN) { 2343 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2344 len -= first; 2345 2346 ret = sfp_read(sfp, false, first, data, len); 2347 if (ret < 0) 2348 return ret; 2349 2350 first += len; 2351 data += len; 2352 } 2353 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2354 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2355 len -= first; 2356 first -= ETH_MODULE_SFF_8079_LEN; 2357 2358 ret = sfp_read(sfp, true, first, data, len); 2359 if (ret < 0) 2360 return ret; 2361 } 2362 return 0; 2363 } 2364 2365 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2366 const struct ethtool_module_eeprom *page, 2367 struct netlink_ext_ack *extack) 2368 { 2369 if (page->bank) { 2370 NL_SET_ERR_MSG(extack, "Banks not supported"); 2371 return -EOPNOTSUPP; 2372 } 2373 2374 if (page->page) { 2375 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2376 return -EOPNOTSUPP; 2377 } 2378 2379 if (page->i2c_address != 0x50 && 2380 page->i2c_address != 0x51) { 2381 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2382 return -EOPNOTSUPP; 2383 } 2384 2385 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2386 page->data, page->length); 2387 }; 2388 2389 static const struct sfp_socket_ops sfp_module_ops = { 2390 .attach = sfp_attach, 2391 .detach = sfp_detach, 2392 .start = sfp_start, 2393 .stop = sfp_stop, 2394 .module_info = sfp_module_info, 2395 .module_eeprom = sfp_module_eeprom, 2396 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2397 }; 2398 2399 static void sfp_timeout(struct work_struct *work) 2400 { 2401 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2402 2403 rtnl_lock(); 2404 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2405 rtnl_unlock(); 2406 } 2407 2408 static void sfp_check_state(struct sfp *sfp) 2409 { 2410 unsigned int state, i, changed; 2411 2412 mutex_lock(&sfp->st_mutex); 2413 state = sfp_get_state(sfp); 2414 changed = state ^ sfp->state; 2415 if (sfp->tx_fault_ignore) 2416 changed &= SFP_F_PRESENT | SFP_F_LOS; 2417 else 2418 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2419 2420 for (i = 0; i < GPIO_MAX; i++) 2421 if (changed & BIT(i)) 2422 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2423 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2424 2425 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2426 sfp->state = state; 2427 2428 rtnl_lock(); 2429 if (changed & SFP_F_PRESENT) 2430 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2431 SFP_E_INSERT : SFP_E_REMOVE); 2432 2433 if (changed & SFP_F_TX_FAULT) 2434 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2435 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2436 2437 if (changed & SFP_F_LOS) 2438 sfp_sm_event(sfp, state & SFP_F_LOS ? 2439 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2440 rtnl_unlock(); 2441 mutex_unlock(&sfp->st_mutex); 2442 } 2443 2444 static irqreturn_t sfp_irq(int irq, void *data) 2445 { 2446 struct sfp *sfp = data; 2447 2448 sfp_check_state(sfp); 2449 2450 return IRQ_HANDLED; 2451 } 2452 2453 static void sfp_poll(struct work_struct *work) 2454 { 2455 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2456 2457 sfp_check_state(sfp); 2458 2459 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2460 sfp->need_poll) 2461 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2462 } 2463 2464 static struct sfp *sfp_alloc(struct device *dev) 2465 { 2466 struct sfp *sfp; 2467 2468 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2469 if (!sfp) 2470 return ERR_PTR(-ENOMEM); 2471 2472 sfp->dev = dev; 2473 2474 mutex_init(&sfp->sm_mutex); 2475 mutex_init(&sfp->st_mutex); 2476 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2477 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2478 2479 sfp_hwmon_init(sfp); 2480 2481 return sfp; 2482 } 2483 2484 static void sfp_cleanup(void *data) 2485 { 2486 struct sfp *sfp = data; 2487 2488 sfp_hwmon_exit(sfp); 2489 2490 cancel_delayed_work_sync(&sfp->poll); 2491 cancel_delayed_work_sync(&sfp->timeout); 2492 if (sfp->i2c_mii) { 2493 mdiobus_unregister(sfp->i2c_mii); 2494 mdiobus_free(sfp->i2c_mii); 2495 } 2496 if (sfp->i2c) 2497 i2c_put_adapter(sfp->i2c); 2498 kfree(sfp); 2499 } 2500 2501 static int sfp_probe(struct platform_device *pdev) 2502 { 2503 const struct sff_data *sff; 2504 struct i2c_adapter *i2c; 2505 char *sfp_irq_name; 2506 struct sfp *sfp; 2507 int err, i; 2508 2509 sfp = sfp_alloc(&pdev->dev); 2510 if (IS_ERR(sfp)) 2511 return PTR_ERR(sfp); 2512 2513 platform_set_drvdata(pdev, sfp); 2514 2515 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2516 if (err < 0) 2517 return err; 2518 2519 sff = sfp->type = &sfp_data; 2520 2521 if (pdev->dev.of_node) { 2522 struct device_node *node = pdev->dev.of_node; 2523 const struct of_device_id *id; 2524 struct device_node *np; 2525 2526 id = of_match_node(sfp_of_match, node); 2527 if (WARN_ON(!id)) 2528 return -EINVAL; 2529 2530 sff = sfp->type = id->data; 2531 2532 np = of_parse_phandle(node, "i2c-bus", 0); 2533 if (!np) { 2534 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2535 return -ENODEV; 2536 } 2537 2538 i2c = of_find_i2c_adapter_by_node(np); 2539 of_node_put(np); 2540 } else if (has_acpi_companion(&pdev->dev)) { 2541 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2542 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2543 struct fwnode_reference_args args; 2544 struct acpi_handle *acpi_handle; 2545 int ret; 2546 2547 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2548 if (ret || !is_acpi_device_node(args.fwnode)) { 2549 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2550 return -ENODEV; 2551 } 2552 2553 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2554 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2555 } else { 2556 return -EINVAL; 2557 } 2558 2559 if (!i2c) 2560 return -EPROBE_DEFER; 2561 2562 err = sfp_i2c_configure(sfp, i2c); 2563 if (err < 0) { 2564 i2c_put_adapter(i2c); 2565 return err; 2566 } 2567 2568 for (i = 0; i < GPIO_MAX; i++) 2569 if (sff->gpios & BIT(i)) { 2570 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2571 gpio_of_names[i], gpio_flags[i]); 2572 if (IS_ERR(sfp->gpio[i])) 2573 return PTR_ERR(sfp->gpio[i]); 2574 } 2575 2576 sfp->get_state = sfp_gpio_get_state; 2577 sfp->set_state = sfp_gpio_set_state; 2578 2579 /* Modules that have no detect signal are always present */ 2580 if (!(sfp->gpio[GPIO_MODDEF0])) 2581 sfp->get_state = sff_gpio_get_state; 2582 2583 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2584 &sfp->max_power_mW); 2585 if (!sfp->max_power_mW) 2586 sfp->max_power_mW = 1000; 2587 2588 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2589 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2590 2591 /* Get the initial state, and always signal TX disable, 2592 * since the network interface will not be up. 2593 */ 2594 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2595 2596 if (sfp->gpio[GPIO_RATE_SELECT] && 2597 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2598 sfp->state |= SFP_F_RATE_SELECT; 2599 sfp_set_state(sfp, sfp->state); 2600 sfp_module_tx_disable(sfp); 2601 if (sfp->state & SFP_F_PRESENT) { 2602 rtnl_lock(); 2603 sfp_sm_event(sfp, SFP_E_INSERT); 2604 rtnl_unlock(); 2605 } 2606 2607 for (i = 0; i < GPIO_MAX; i++) { 2608 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2609 continue; 2610 2611 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2612 if (sfp->gpio_irq[i] < 0) { 2613 sfp->gpio_irq[i] = 0; 2614 sfp->need_poll = true; 2615 continue; 2616 } 2617 2618 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2619 "%s-%s", dev_name(sfp->dev), 2620 gpio_of_names[i]); 2621 2622 if (!sfp_irq_name) 2623 return -ENOMEM; 2624 2625 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2626 NULL, sfp_irq, 2627 IRQF_ONESHOT | 2628 IRQF_TRIGGER_RISING | 2629 IRQF_TRIGGER_FALLING, 2630 sfp_irq_name, sfp); 2631 if (err) { 2632 sfp->gpio_irq[i] = 0; 2633 sfp->need_poll = true; 2634 } 2635 } 2636 2637 if (sfp->need_poll) 2638 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2639 2640 /* We could have an issue in cases no Tx disable pin is available or 2641 * wired as modules using a laser as their light source will continue to 2642 * be active when the fiber is removed. This could be a safety issue and 2643 * we should at least warn the user about that. 2644 */ 2645 if (!sfp->gpio[GPIO_TX_DISABLE]) 2646 dev_warn(sfp->dev, 2647 "No tx_disable pin: SFP modules will always be emitting.\n"); 2648 2649 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2650 if (!sfp->sfp_bus) 2651 return -ENOMEM; 2652 2653 sfp_debugfs_init(sfp); 2654 2655 return 0; 2656 } 2657 2658 static int sfp_remove(struct platform_device *pdev) 2659 { 2660 struct sfp *sfp = platform_get_drvdata(pdev); 2661 2662 sfp_debugfs_exit(sfp); 2663 sfp_unregister_socket(sfp->sfp_bus); 2664 2665 rtnl_lock(); 2666 sfp_sm_event(sfp, SFP_E_REMOVE); 2667 rtnl_unlock(); 2668 2669 return 0; 2670 } 2671 2672 static void sfp_shutdown(struct platform_device *pdev) 2673 { 2674 struct sfp *sfp = platform_get_drvdata(pdev); 2675 int i; 2676 2677 for (i = 0; i < GPIO_MAX; i++) { 2678 if (!sfp->gpio_irq[i]) 2679 continue; 2680 2681 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2682 } 2683 2684 cancel_delayed_work_sync(&sfp->poll); 2685 cancel_delayed_work_sync(&sfp->timeout); 2686 } 2687 2688 static struct platform_driver sfp_driver = { 2689 .probe = sfp_probe, 2690 .remove = sfp_remove, 2691 .shutdown = sfp_shutdown, 2692 .driver = { 2693 .name = "sfp", 2694 .of_match_table = sfp_of_match, 2695 }, 2696 }; 2697 2698 static int sfp_init(void) 2699 { 2700 poll_jiffies = msecs_to_jiffies(100); 2701 2702 return platform_driver_register(&sfp_driver); 2703 } 2704 module_init(sfp_init); 2705 2706 static void sfp_exit(void) 2707 { 2708 platform_driver_unregister(&sfp_driver); 2709 } 2710 module_exit(sfp_exit); 2711 2712 MODULE_ALIAS("platform:sfp"); 2713 MODULE_AUTHOR("Russell King"); 2714 MODULE_LICENSE("GPL v2"); 2715