1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "tx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 170 #define T_START_UP msecs_to_jiffies(300) 171 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 172 173 /* t_reset is the time required to assert the TX_DISABLE signal to reset 174 * an indicated TX_FAULT. 175 */ 176 #define T_RESET_US 10 177 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 178 179 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 180 * time. If the TX_FAULT signal is not deasserted after this number of 181 * attempts at clearing it, we decide that the module is faulty. 182 * N_FAULT is the same but after the module has initialised. 183 */ 184 #define N_FAULT_INIT 5 185 #define N_FAULT 5 186 187 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 188 * R_PHY_RETRY is the number of attempts. 189 */ 190 #define T_PHY_RETRY msecs_to_jiffies(50) 191 #define R_PHY_RETRY 12 192 193 /* SFP module presence detection is poor: the three MOD DEF signals are 194 * the same length on the PCB, which means it's possible for MOD DEF 0 to 195 * connect before the I2C bus on MOD DEF 1/2. 196 * 197 * The SFF-8472 specifies t_serial ("Time from power on until module is 198 * ready for data transmission over the two wire serial bus.") as 300ms. 199 */ 200 #define T_SERIAL msecs_to_jiffies(300) 201 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 202 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 203 #define R_PROBE_RETRY_INIT 10 204 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 205 #define R_PROBE_RETRY_SLOW 12 206 207 /* SFP modules appear to always have their PHY configured for bus address 208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 211 */ 212 #define SFP_PHY_ADDR 22 213 #define SFP_PHY_ADDR_ROLLBALL 17 214 215 struct sff_data { 216 unsigned int gpios; 217 bool (*module_supported)(const struct sfp_eeprom_id *id); 218 }; 219 220 struct sfp { 221 struct device *dev; 222 struct i2c_adapter *i2c; 223 struct mii_bus *i2c_mii; 224 struct sfp_bus *sfp_bus; 225 enum mdio_i2c_proto mdio_protocol; 226 struct phy_device *mod_phy; 227 const struct sff_data *type; 228 size_t i2c_block_size; 229 u32 max_power_mW; 230 231 unsigned int (*get_state)(struct sfp *); 232 void (*set_state)(struct sfp *, unsigned int); 233 int (*read)(struct sfp *, bool, u8, void *, size_t); 234 int (*write)(struct sfp *, bool, u8, void *, size_t); 235 236 struct gpio_desc *gpio[GPIO_MAX]; 237 int gpio_irq[GPIO_MAX]; 238 239 bool need_poll; 240 241 struct mutex st_mutex; /* Protects state */ 242 unsigned int state_hw_mask; 243 unsigned int state_soft_mask; 244 unsigned int state; 245 struct delayed_work poll; 246 struct delayed_work timeout; 247 struct mutex sm_mutex; /* Protects state machine */ 248 unsigned char sm_mod_state; 249 unsigned char sm_mod_tries_init; 250 unsigned char sm_mod_tries; 251 unsigned char sm_dev_state; 252 unsigned short sm_state; 253 unsigned char sm_fault_retries; 254 unsigned char sm_phy_retries; 255 256 struct sfp_eeprom_id id; 257 unsigned int module_power_mW; 258 unsigned int module_t_start_up; 259 unsigned int module_t_wait; 260 bool tx_fault_ignore; 261 262 const struct sfp_quirk *quirk; 263 264 #if IS_ENABLED(CONFIG_HWMON) 265 struct sfp_diag diag; 266 struct delayed_work hwmon_probe; 267 unsigned int hwmon_tries; 268 struct device *hwmon_dev; 269 char *hwmon_name; 270 #endif 271 272 #if IS_ENABLED(CONFIG_DEBUG_FS) 273 struct dentry *debugfs_dir; 274 #endif 275 }; 276 277 static bool sff_module_supported(const struct sfp_eeprom_id *id) 278 { 279 return id->base.phys_id == SFF8024_ID_SFF_8472 && 280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 281 } 282 283 static const struct sff_data sff_data = { 284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 285 .module_supported = sff_module_supported, 286 }; 287 288 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 289 { 290 if (id->base.phys_id == SFF8024_ID_SFP && 291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 292 return true; 293 294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 295 * phys id SFF instead of SFP. Therefore mark this module explicitly 296 * as supported based on vendor name and pn match. 297 */ 298 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 300 !memcmp(id->base.vendor_name, "UBNT ", 16) && 301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 302 return true; 303 304 return false; 305 } 306 307 static const struct sff_data sfp_data = { 308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 310 .module_supported = sfp_module_supported, 311 }; 312 313 static const struct of_device_id sfp_of_match[] = { 314 { .compatible = "sff,sff", .data = &sff_data, }, 315 { .compatible = "sff,sfp", .data = &sfp_data, }, 316 { }, 317 }; 318 MODULE_DEVICE_TABLE(of, sfp_of_match); 319 320 static void sfp_fixup_long_startup(struct sfp *sfp) 321 { 322 sfp->module_t_start_up = T_START_UP_BAD_GPON; 323 } 324 325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 326 { 327 sfp->tx_fault_ignore = true; 328 } 329 330 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 331 { 332 /* Ignore the TX_FAULT and LOS signals on this module. 333 * these are possibly used for other purposes on this 334 * module, e.g. a serial port. 335 */ 336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 337 } 338 339 static void sfp_fixup_rollball(struct sfp *sfp) 340 { 341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 342 sfp->module_t_wait = T_WAIT_ROLLBALL; 343 } 344 345 static void sfp_fixup_rollball_cc(struct sfp *sfp) 346 { 347 sfp_fixup_rollball(sfp); 348 349 /* Some RollBall SFPs may have wrong (zero) extended compliance code 350 * burned in EEPROM. For PHY probing we need the correct one. 351 */ 352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 353 } 354 355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 356 unsigned long *modes, 357 unsigned long *interfaces) 358 { 359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 361 } 362 363 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 364 unsigned long *modes, 365 unsigned long *interfaces) 366 { 367 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 368 * types including 10G Ethernet which is not truth. So clear all claimed 369 * modes and set only one mode which module supports: 1000baseX_Full. 370 */ 371 linkmode_zero(modes); 372 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 373 } 374 375 #define SFP_QUIRK(_v, _p, _m, _f) \ 376 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 377 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 378 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 379 380 static const struct sfp_quirk sfp_quirks[] = { 381 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 382 // report 2500MBd NRZ in their EEPROM 383 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 384 385 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 386 // NRZ in their EEPROM 387 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 388 sfp_fixup_long_startup), 389 390 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 391 392 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 393 // their EEPROM 394 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 395 sfp_fixup_ignore_tx_fault), 396 397 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 398 // 2500MBd NRZ in their EEPROM 399 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 400 401 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 402 403 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 404 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 405 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 406 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 407 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 408 }; 409 410 static size_t sfp_strlen(const char *str, size_t maxlen) 411 { 412 size_t size, i; 413 414 /* Trailing characters should be filled with space chars, but 415 * some manufacturers can't read SFF-8472 and use NUL. 416 */ 417 for (i = 0, size = 0; i < maxlen; i++) 418 if (str[i] != ' ' && str[i] != '\0') 419 size = i + 1; 420 421 return size; 422 } 423 424 static bool sfp_match(const char *qs, const char *str, size_t len) 425 { 426 if (!qs) 427 return true; 428 if (strlen(qs) != len) 429 return false; 430 return !strncmp(qs, str, len); 431 } 432 433 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 434 { 435 const struct sfp_quirk *q; 436 unsigned int i; 437 size_t vs, ps; 438 439 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 440 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 441 442 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 443 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 444 sfp_match(q->part, id->base.vendor_pn, ps)) 445 return q; 446 447 return NULL; 448 } 449 450 static unsigned long poll_jiffies; 451 452 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 453 { 454 unsigned int i, state, v; 455 456 for (i = state = 0; i < GPIO_MAX; i++) { 457 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 458 continue; 459 460 v = gpiod_get_value_cansleep(sfp->gpio[i]); 461 if (v) 462 state |= BIT(i); 463 } 464 465 return state; 466 } 467 468 static unsigned int sff_gpio_get_state(struct sfp *sfp) 469 { 470 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 471 } 472 473 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 474 { 475 if (state & SFP_F_PRESENT) { 476 /* If the module is present, drive the signals */ 477 if (sfp->gpio[GPIO_TX_DISABLE]) 478 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 479 state & SFP_F_TX_DISABLE); 480 if (state & SFP_F_RATE_SELECT) 481 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 482 state & SFP_F_RATE_SELECT); 483 } else { 484 /* Otherwise, let them float to the pull-ups */ 485 if (sfp->gpio[GPIO_TX_DISABLE]) 486 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 487 if (state & SFP_F_RATE_SELECT) 488 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 489 } 490 } 491 492 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 493 size_t len) 494 { 495 struct i2c_msg msgs[2]; 496 u8 bus_addr = a2 ? 0x51 : 0x50; 497 size_t block_size = sfp->i2c_block_size; 498 size_t this_len; 499 int ret; 500 501 msgs[0].addr = bus_addr; 502 msgs[0].flags = 0; 503 msgs[0].len = 1; 504 msgs[0].buf = &dev_addr; 505 msgs[1].addr = bus_addr; 506 msgs[1].flags = I2C_M_RD; 507 msgs[1].len = len; 508 msgs[1].buf = buf; 509 510 while (len) { 511 this_len = len; 512 if (this_len > block_size) 513 this_len = block_size; 514 515 msgs[1].len = this_len; 516 517 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 518 if (ret < 0) 519 return ret; 520 521 if (ret != ARRAY_SIZE(msgs)) 522 break; 523 524 msgs[1].buf += this_len; 525 dev_addr += this_len; 526 len -= this_len; 527 } 528 529 return msgs[1].buf - (u8 *)buf; 530 } 531 532 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 533 size_t len) 534 { 535 struct i2c_msg msgs[1]; 536 u8 bus_addr = a2 ? 0x51 : 0x50; 537 int ret; 538 539 msgs[0].addr = bus_addr; 540 msgs[0].flags = 0; 541 msgs[0].len = 1 + len; 542 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 543 if (!msgs[0].buf) 544 return -ENOMEM; 545 546 msgs[0].buf[0] = dev_addr; 547 memcpy(&msgs[0].buf[1], buf, len); 548 549 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 550 551 kfree(msgs[0].buf); 552 553 if (ret < 0) 554 return ret; 555 556 return ret == ARRAY_SIZE(msgs) ? len : 0; 557 } 558 559 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 560 { 561 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 562 return -EINVAL; 563 564 sfp->i2c = i2c; 565 sfp->read = sfp_i2c_read; 566 sfp->write = sfp_i2c_write; 567 568 return 0; 569 } 570 571 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 572 { 573 struct mii_bus *i2c_mii; 574 int ret; 575 576 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 577 if (IS_ERR(i2c_mii)) 578 return PTR_ERR(i2c_mii); 579 580 i2c_mii->name = "SFP I2C Bus"; 581 i2c_mii->phy_mask = ~0; 582 583 ret = mdiobus_register(i2c_mii); 584 if (ret < 0) { 585 mdiobus_free(i2c_mii); 586 return ret; 587 } 588 589 sfp->i2c_mii = i2c_mii; 590 591 return 0; 592 } 593 594 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 595 { 596 mdiobus_unregister(sfp->i2c_mii); 597 sfp->i2c_mii = NULL; 598 } 599 600 /* Interface */ 601 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 602 { 603 return sfp->read(sfp, a2, addr, buf, len); 604 } 605 606 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 607 { 608 return sfp->write(sfp, a2, addr, buf, len); 609 } 610 611 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 612 { 613 int ret; 614 u8 old, v; 615 616 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 617 if (ret != sizeof(old)) 618 return ret; 619 620 v = (old & ~mask) | (val & mask); 621 if (v == old) 622 return sizeof(v); 623 624 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 625 } 626 627 static unsigned int sfp_soft_get_state(struct sfp *sfp) 628 { 629 unsigned int state = 0; 630 u8 status; 631 int ret; 632 633 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 634 if (ret == sizeof(status)) { 635 if (status & SFP_STATUS_RX_LOS) 636 state |= SFP_F_LOS; 637 if (status & SFP_STATUS_TX_FAULT) 638 state |= SFP_F_TX_FAULT; 639 } else { 640 dev_err_ratelimited(sfp->dev, 641 "failed to read SFP soft status: %pe\n", 642 ERR_PTR(ret)); 643 /* Preserve the current state */ 644 state = sfp->state; 645 } 646 647 return state & sfp->state_soft_mask; 648 } 649 650 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 651 { 652 u8 mask = SFP_STATUS_TX_DISABLE_FORCE; 653 u8 val = 0; 654 655 if (state & SFP_F_TX_DISABLE) 656 val |= SFP_STATUS_TX_DISABLE_FORCE; 657 658 659 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 660 } 661 662 static void sfp_soft_start_poll(struct sfp *sfp) 663 { 664 const struct sfp_eeprom_id *id = &sfp->id; 665 unsigned int mask = 0; 666 667 sfp->state_soft_mask = 0; 668 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 669 mask |= SFP_F_TX_DISABLE; 670 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 671 mask |= SFP_F_TX_FAULT; 672 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 673 mask |= SFP_F_LOS; 674 675 // Poll the soft state for hardware pins we want to ignore 676 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 677 678 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 679 !sfp->need_poll) 680 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 681 } 682 683 static void sfp_soft_stop_poll(struct sfp *sfp) 684 { 685 sfp->state_soft_mask = 0; 686 } 687 688 static unsigned int sfp_get_state(struct sfp *sfp) 689 { 690 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 691 unsigned int state; 692 693 state = sfp->get_state(sfp) & sfp->state_hw_mask; 694 if (state & SFP_F_PRESENT && soft) 695 state |= sfp_soft_get_state(sfp); 696 697 return state; 698 } 699 700 static void sfp_set_state(struct sfp *sfp, unsigned int state) 701 { 702 sfp->set_state(sfp, state); 703 704 if (state & SFP_F_PRESENT && 705 sfp->state_soft_mask & SFP_F_TX_DISABLE) 706 sfp_soft_set_state(sfp, state); 707 } 708 709 static unsigned int sfp_check(void *buf, size_t len) 710 { 711 u8 *p, check; 712 713 for (p = buf, check = 0; len; p++, len--) 714 check += *p; 715 716 return check; 717 } 718 719 /* hwmon */ 720 #if IS_ENABLED(CONFIG_HWMON) 721 static umode_t sfp_hwmon_is_visible(const void *data, 722 enum hwmon_sensor_types type, 723 u32 attr, int channel) 724 { 725 const struct sfp *sfp = data; 726 727 switch (type) { 728 case hwmon_temp: 729 switch (attr) { 730 case hwmon_temp_min_alarm: 731 case hwmon_temp_max_alarm: 732 case hwmon_temp_lcrit_alarm: 733 case hwmon_temp_crit_alarm: 734 case hwmon_temp_min: 735 case hwmon_temp_max: 736 case hwmon_temp_lcrit: 737 case hwmon_temp_crit: 738 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 739 return 0; 740 fallthrough; 741 case hwmon_temp_input: 742 case hwmon_temp_label: 743 return 0444; 744 default: 745 return 0; 746 } 747 case hwmon_in: 748 switch (attr) { 749 case hwmon_in_min_alarm: 750 case hwmon_in_max_alarm: 751 case hwmon_in_lcrit_alarm: 752 case hwmon_in_crit_alarm: 753 case hwmon_in_min: 754 case hwmon_in_max: 755 case hwmon_in_lcrit: 756 case hwmon_in_crit: 757 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 758 return 0; 759 fallthrough; 760 case hwmon_in_input: 761 case hwmon_in_label: 762 return 0444; 763 default: 764 return 0; 765 } 766 case hwmon_curr: 767 switch (attr) { 768 case hwmon_curr_min_alarm: 769 case hwmon_curr_max_alarm: 770 case hwmon_curr_lcrit_alarm: 771 case hwmon_curr_crit_alarm: 772 case hwmon_curr_min: 773 case hwmon_curr_max: 774 case hwmon_curr_lcrit: 775 case hwmon_curr_crit: 776 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 777 return 0; 778 fallthrough; 779 case hwmon_curr_input: 780 case hwmon_curr_label: 781 return 0444; 782 default: 783 return 0; 784 } 785 case hwmon_power: 786 /* External calibration of receive power requires 787 * floating point arithmetic. Doing that in the kernel 788 * is not easy, so just skip it. If the module does 789 * not require external calibration, we can however 790 * show receiver power, since FP is then not needed. 791 */ 792 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 793 channel == 1) 794 return 0; 795 switch (attr) { 796 case hwmon_power_min_alarm: 797 case hwmon_power_max_alarm: 798 case hwmon_power_lcrit_alarm: 799 case hwmon_power_crit_alarm: 800 case hwmon_power_min: 801 case hwmon_power_max: 802 case hwmon_power_lcrit: 803 case hwmon_power_crit: 804 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 805 return 0; 806 fallthrough; 807 case hwmon_power_input: 808 case hwmon_power_label: 809 return 0444; 810 default: 811 return 0; 812 } 813 default: 814 return 0; 815 } 816 } 817 818 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 819 { 820 __be16 val; 821 int err; 822 823 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 824 if (err < 0) 825 return err; 826 827 *value = be16_to_cpu(val); 828 829 return 0; 830 } 831 832 static void sfp_hwmon_to_rx_power(long *value) 833 { 834 *value = DIV_ROUND_CLOSEST(*value, 10); 835 } 836 837 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 838 long *value) 839 { 840 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 841 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 842 } 843 844 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 845 { 846 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 847 be16_to_cpu(sfp->diag.cal_t_offset), value); 848 849 if (*value >= 0x8000) 850 *value -= 0x10000; 851 852 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 853 } 854 855 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 856 { 857 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 858 be16_to_cpu(sfp->diag.cal_v_offset), value); 859 860 *value = DIV_ROUND_CLOSEST(*value, 10); 861 } 862 863 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 864 { 865 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 866 be16_to_cpu(sfp->diag.cal_txi_offset), value); 867 868 *value = DIV_ROUND_CLOSEST(*value, 500); 869 } 870 871 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 872 { 873 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 874 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 875 876 *value = DIV_ROUND_CLOSEST(*value, 10); 877 } 878 879 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 880 { 881 int err; 882 883 err = sfp_hwmon_read_sensor(sfp, reg, value); 884 if (err < 0) 885 return err; 886 887 sfp_hwmon_calibrate_temp(sfp, value); 888 889 return 0; 890 } 891 892 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 893 { 894 int err; 895 896 err = sfp_hwmon_read_sensor(sfp, reg, value); 897 if (err < 0) 898 return err; 899 900 sfp_hwmon_calibrate_vcc(sfp, value); 901 902 return 0; 903 } 904 905 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 906 { 907 int err; 908 909 err = sfp_hwmon_read_sensor(sfp, reg, value); 910 if (err < 0) 911 return err; 912 913 sfp_hwmon_calibrate_bias(sfp, value); 914 915 return 0; 916 } 917 918 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 919 { 920 int err; 921 922 err = sfp_hwmon_read_sensor(sfp, reg, value); 923 if (err < 0) 924 return err; 925 926 sfp_hwmon_calibrate_tx_power(sfp, value); 927 928 return 0; 929 } 930 931 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 932 { 933 int err; 934 935 err = sfp_hwmon_read_sensor(sfp, reg, value); 936 if (err < 0) 937 return err; 938 939 sfp_hwmon_to_rx_power(value); 940 941 return 0; 942 } 943 944 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 945 { 946 u8 status; 947 int err; 948 949 switch (attr) { 950 case hwmon_temp_input: 951 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 952 953 case hwmon_temp_lcrit: 954 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 955 sfp_hwmon_calibrate_temp(sfp, value); 956 return 0; 957 958 case hwmon_temp_min: 959 *value = be16_to_cpu(sfp->diag.temp_low_warn); 960 sfp_hwmon_calibrate_temp(sfp, value); 961 return 0; 962 case hwmon_temp_max: 963 *value = be16_to_cpu(sfp->diag.temp_high_warn); 964 sfp_hwmon_calibrate_temp(sfp, value); 965 return 0; 966 967 case hwmon_temp_crit: 968 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 969 sfp_hwmon_calibrate_temp(sfp, value); 970 return 0; 971 972 case hwmon_temp_lcrit_alarm: 973 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 974 if (err < 0) 975 return err; 976 977 *value = !!(status & SFP_ALARM0_TEMP_LOW); 978 return 0; 979 980 case hwmon_temp_min_alarm: 981 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 982 if (err < 0) 983 return err; 984 985 *value = !!(status & SFP_WARN0_TEMP_LOW); 986 return 0; 987 988 case hwmon_temp_max_alarm: 989 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 990 if (err < 0) 991 return err; 992 993 *value = !!(status & SFP_WARN0_TEMP_HIGH); 994 return 0; 995 996 case hwmon_temp_crit_alarm: 997 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 998 if (err < 0) 999 return err; 1000 1001 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1002 return 0; 1003 default: 1004 return -EOPNOTSUPP; 1005 } 1006 1007 return -EOPNOTSUPP; 1008 } 1009 1010 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1011 { 1012 u8 status; 1013 int err; 1014 1015 switch (attr) { 1016 case hwmon_in_input: 1017 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1018 1019 case hwmon_in_lcrit: 1020 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1021 sfp_hwmon_calibrate_vcc(sfp, value); 1022 return 0; 1023 1024 case hwmon_in_min: 1025 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1026 sfp_hwmon_calibrate_vcc(sfp, value); 1027 return 0; 1028 1029 case hwmon_in_max: 1030 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1031 sfp_hwmon_calibrate_vcc(sfp, value); 1032 return 0; 1033 1034 case hwmon_in_crit: 1035 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1036 sfp_hwmon_calibrate_vcc(sfp, value); 1037 return 0; 1038 1039 case hwmon_in_lcrit_alarm: 1040 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1041 if (err < 0) 1042 return err; 1043 1044 *value = !!(status & SFP_ALARM0_VCC_LOW); 1045 return 0; 1046 1047 case hwmon_in_min_alarm: 1048 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1049 if (err < 0) 1050 return err; 1051 1052 *value = !!(status & SFP_WARN0_VCC_LOW); 1053 return 0; 1054 1055 case hwmon_in_max_alarm: 1056 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1057 if (err < 0) 1058 return err; 1059 1060 *value = !!(status & SFP_WARN0_VCC_HIGH); 1061 return 0; 1062 1063 case hwmon_in_crit_alarm: 1064 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1065 if (err < 0) 1066 return err; 1067 1068 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1069 return 0; 1070 default: 1071 return -EOPNOTSUPP; 1072 } 1073 1074 return -EOPNOTSUPP; 1075 } 1076 1077 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1078 { 1079 u8 status; 1080 int err; 1081 1082 switch (attr) { 1083 case hwmon_curr_input: 1084 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1085 1086 case hwmon_curr_lcrit: 1087 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1088 sfp_hwmon_calibrate_bias(sfp, value); 1089 return 0; 1090 1091 case hwmon_curr_min: 1092 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1093 sfp_hwmon_calibrate_bias(sfp, value); 1094 return 0; 1095 1096 case hwmon_curr_max: 1097 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1098 sfp_hwmon_calibrate_bias(sfp, value); 1099 return 0; 1100 1101 case hwmon_curr_crit: 1102 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1103 sfp_hwmon_calibrate_bias(sfp, value); 1104 return 0; 1105 1106 case hwmon_curr_lcrit_alarm: 1107 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1108 if (err < 0) 1109 return err; 1110 1111 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1112 return 0; 1113 1114 case hwmon_curr_min_alarm: 1115 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1116 if (err < 0) 1117 return err; 1118 1119 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1120 return 0; 1121 1122 case hwmon_curr_max_alarm: 1123 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1124 if (err < 0) 1125 return err; 1126 1127 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1128 return 0; 1129 1130 case hwmon_curr_crit_alarm: 1131 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1132 if (err < 0) 1133 return err; 1134 1135 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1136 return 0; 1137 default: 1138 return -EOPNOTSUPP; 1139 } 1140 1141 return -EOPNOTSUPP; 1142 } 1143 1144 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1145 { 1146 u8 status; 1147 int err; 1148 1149 switch (attr) { 1150 case hwmon_power_input: 1151 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1152 1153 case hwmon_power_lcrit: 1154 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1155 sfp_hwmon_calibrate_tx_power(sfp, value); 1156 return 0; 1157 1158 case hwmon_power_min: 1159 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1160 sfp_hwmon_calibrate_tx_power(sfp, value); 1161 return 0; 1162 1163 case hwmon_power_max: 1164 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1165 sfp_hwmon_calibrate_tx_power(sfp, value); 1166 return 0; 1167 1168 case hwmon_power_crit: 1169 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1170 sfp_hwmon_calibrate_tx_power(sfp, value); 1171 return 0; 1172 1173 case hwmon_power_lcrit_alarm: 1174 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1175 if (err < 0) 1176 return err; 1177 1178 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1179 return 0; 1180 1181 case hwmon_power_min_alarm: 1182 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1183 if (err < 0) 1184 return err; 1185 1186 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1187 return 0; 1188 1189 case hwmon_power_max_alarm: 1190 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1191 if (err < 0) 1192 return err; 1193 1194 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1195 return 0; 1196 1197 case hwmon_power_crit_alarm: 1198 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1199 if (err < 0) 1200 return err; 1201 1202 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1203 return 0; 1204 default: 1205 return -EOPNOTSUPP; 1206 } 1207 1208 return -EOPNOTSUPP; 1209 } 1210 1211 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1212 { 1213 u8 status; 1214 int err; 1215 1216 switch (attr) { 1217 case hwmon_power_input: 1218 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1219 1220 case hwmon_power_lcrit: 1221 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1222 sfp_hwmon_to_rx_power(value); 1223 return 0; 1224 1225 case hwmon_power_min: 1226 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1227 sfp_hwmon_to_rx_power(value); 1228 return 0; 1229 1230 case hwmon_power_max: 1231 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1232 sfp_hwmon_to_rx_power(value); 1233 return 0; 1234 1235 case hwmon_power_crit: 1236 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1237 sfp_hwmon_to_rx_power(value); 1238 return 0; 1239 1240 case hwmon_power_lcrit_alarm: 1241 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1242 if (err < 0) 1243 return err; 1244 1245 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1246 return 0; 1247 1248 case hwmon_power_min_alarm: 1249 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1250 if (err < 0) 1251 return err; 1252 1253 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1254 return 0; 1255 1256 case hwmon_power_max_alarm: 1257 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1258 if (err < 0) 1259 return err; 1260 1261 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1262 return 0; 1263 1264 case hwmon_power_crit_alarm: 1265 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1266 if (err < 0) 1267 return err; 1268 1269 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1270 return 0; 1271 default: 1272 return -EOPNOTSUPP; 1273 } 1274 1275 return -EOPNOTSUPP; 1276 } 1277 1278 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1279 u32 attr, int channel, long *value) 1280 { 1281 struct sfp *sfp = dev_get_drvdata(dev); 1282 1283 switch (type) { 1284 case hwmon_temp: 1285 return sfp_hwmon_temp(sfp, attr, value); 1286 case hwmon_in: 1287 return sfp_hwmon_vcc(sfp, attr, value); 1288 case hwmon_curr: 1289 return sfp_hwmon_bias(sfp, attr, value); 1290 case hwmon_power: 1291 switch (channel) { 1292 case 0: 1293 return sfp_hwmon_tx_power(sfp, attr, value); 1294 case 1: 1295 return sfp_hwmon_rx_power(sfp, attr, value); 1296 default: 1297 return -EOPNOTSUPP; 1298 } 1299 default: 1300 return -EOPNOTSUPP; 1301 } 1302 } 1303 1304 static const char *const sfp_hwmon_power_labels[] = { 1305 "TX_power", 1306 "RX_power", 1307 }; 1308 1309 static int sfp_hwmon_read_string(struct device *dev, 1310 enum hwmon_sensor_types type, 1311 u32 attr, int channel, const char **str) 1312 { 1313 switch (type) { 1314 case hwmon_curr: 1315 switch (attr) { 1316 case hwmon_curr_label: 1317 *str = "bias"; 1318 return 0; 1319 default: 1320 return -EOPNOTSUPP; 1321 } 1322 break; 1323 case hwmon_temp: 1324 switch (attr) { 1325 case hwmon_temp_label: 1326 *str = "temperature"; 1327 return 0; 1328 default: 1329 return -EOPNOTSUPP; 1330 } 1331 break; 1332 case hwmon_in: 1333 switch (attr) { 1334 case hwmon_in_label: 1335 *str = "VCC"; 1336 return 0; 1337 default: 1338 return -EOPNOTSUPP; 1339 } 1340 break; 1341 case hwmon_power: 1342 switch (attr) { 1343 case hwmon_power_label: 1344 *str = sfp_hwmon_power_labels[channel]; 1345 return 0; 1346 default: 1347 return -EOPNOTSUPP; 1348 } 1349 break; 1350 default: 1351 return -EOPNOTSUPP; 1352 } 1353 1354 return -EOPNOTSUPP; 1355 } 1356 1357 static const struct hwmon_ops sfp_hwmon_ops = { 1358 .is_visible = sfp_hwmon_is_visible, 1359 .read = sfp_hwmon_read, 1360 .read_string = sfp_hwmon_read_string, 1361 }; 1362 1363 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1364 HWMON_CHANNEL_INFO(chip, 1365 HWMON_C_REGISTER_TZ), 1366 HWMON_CHANNEL_INFO(in, 1367 HWMON_I_INPUT | 1368 HWMON_I_MAX | HWMON_I_MIN | 1369 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1370 HWMON_I_CRIT | HWMON_I_LCRIT | 1371 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1372 HWMON_I_LABEL), 1373 HWMON_CHANNEL_INFO(temp, 1374 HWMON_T_INPUT | 1375 HWMON_T_MAX | HWMON_T_MIN | 1376 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1377 HWMON_T_CRIT | HWMON_T_LCRIT | 1378 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1379 HWMON_T_LABEL), 1380 HWMON_CHANNEL_INFO(curr, 1381 HWMON_C_INPUT | 1382 HWMON_C_MAX | HWMON_C_MIN | 1383 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1384 HWMON_C_CRIT | HWMON_C_LCRIT | 1385 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1386 HWMON_C_LABEL), 1387 HWMON_CHANNEL_INFO(power, 1388 /* Transmit power */ 1389 HWMON_P_INPUT | 1390 HWMON_P_MAX | HWMON_P_MIN | 1391 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1392 HWMON_P_CRIT | HWMON_P_LCRIT | 1393 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1394 HWMON_P_LABEL, 1395 /* Receive power */ 1396 HWMON_P_INPUT | 1397 HWMON_P_MAX | HWMON_P_MIN | 1398 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1399 HWMON_P_CRIT | HWMON_P_LCRIT | 1400 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1401 HWMON_P_LABEL), 1402 NULL, 1403 }; 1404 1405 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1406 .ops = &sfp_hwmon_ops, 1407 .info = sfp_hwmon_info, 1408 }; 1409 1410 static void sfp_hwmon_probe(struct work_struct *work) 1411 { 1412 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1413 int err; 1414 1415 /* hwmon interface needs to access 16bit registers in atomic way to 1416 * guarantee coherency of the diagnostic monitoring data. If it is not 1417 * possible to guarantee coherency because EEPROM is broken in such way 1418 * that does not support atomic 16bit read operation then we have to 1419 * skip registration of hwmon device. 1420 */ 1421 if (sfp->i2c_block_size < 2) { 1422 dev_info(sfp->dev, 1423 "skipping hwmon device registration due to broken EEPROM\n"); 1424 dev_info(sfp->dev, 1425 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1426 return; 1427 } 1428 1429 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1430 if (err < 0) { 1431 if (sfp->hwmon_tries--) { 1432 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1433 T_PROBE_RETRY_SLOW); 1434 } else { 1435 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1436 ERR_PTR(err)); 1437 } 1438 return; 1439 } 1440 1441 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1442 if (IS_ERR(sfp->hwmon_name)) { 1443 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1444 return; 1445 } 1446 1447 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1448 sfp->hwmon_name, sfp, 1449 &sfp_hwmon_chip_info, 1450 NULL); 1451 if (IS_ERR(sfp->hwmon_dev)) 1452 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1453 PTR_ERR(sfp->hwmon_dev)); 1454 } 1455 1456 static int sfp_hwmon_insert(struct sfp *sfp) 1457 { 1458 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1459 return 0; 1460 1461 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1462 return 0; 1463 1464 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1465 /* This driver in general does not support address 1466 * change. 1467 */ 1468 return 0; 1469 1470 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1471 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1472 1473 return 0; 1474 } 1475 1476 static void sfp_hwmon_remove(struct sfp *sfp) 1477 { 1478 cancel_delayed_work_sync(&sfp->hwmon_probe); 1479 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1480 hwmon_device_unregister(sfp->hwmon_dev); 1481 sfp->hwmon_dev = NULL; 1482 kfree(sfp->hwmon_name); 1483 } 1484 } 1485 1486 static int sfp_hwmon_init(struct sfp *sfp) 1487 { 1488 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1489 1490 return 0; 1491 } 1492 1493 static void sfp_hwmon_exit(struct sfp *sfp) 1494 { 1495 cancel_delayed_work_sync(&sfp->hwmon_probe); 1496 } 1497 #else 1498 static int sfp_hwmon_insert(struct sfp *sfp) 1499 { 1500 return 0; 1501 } 1502 1503 static void sfp_hwmon_remove(struct sfp *sfp) 1504 { 1505 } 1506 1507 static int sfp_hwmon_init(struct sfp *sfp) 1508 { 1509 return 0; 1510 } 1511 1512 static void sfp_hwmon_exit(struct sfp *sfp) 1513 { 1514 } 1515 #endif 1516 1517 /* Helpers */ 1518 static void sfp_module_tx_disable(struct sfp *sfp) 1519 { 1520 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1521 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1522 sfp->state |= SFP_F_TX_DISABLE; 1523 sfp_set_state(sfp, sfp->state); 1524 } 1525 1526 static void sfp_module_tx_enable(struct sfp *sfp) 1527 { 1528 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1529 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1530 sfp->state &= ~SFP_F_TX_DISABLE; 1531 sfp_set_state(sfp, sfp->state); 1532 } 1533 1534 #if IS_ENABLED(CONFIG_DEBUG_FS) 1535 static int sfp_debug_state_show(struct seq_file *s, void *data) 1536 { 1537 struct sfp *sfp = s->private; 1538 1539 seq_printf(s, "Module state: %s\n", 1540 mod_state_to_str(sfp->sm_mod_state)); 1541 seq_printf(s, "Module probe attempts: %d %d\n", 1542 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1543 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1544 seq_printf(s, "Device state: %s\n", 1545 dev_state_to_str(sfp->sm_dev_state)); 1546 seq_printf(s, "Main state: %s\n", 1547 sm_state_to_str(sfp->sm_state)); 1548 seq_printf(s, "Fault recovery remaining retries: %d\n", 1549 sfp->sm_fault_retries); 1550 seq_printf(s, "PHY probe remaining retries: %d\n", 1551 sfp->sm_phy_retries); 1552 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1553 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1554 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1555 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1556 return 0; 1557 } 1558 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1559 1560 static void sfp_debugfs_init(struct sfp *sfp) 1561 { 1562 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1563 1564 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1565 &sfp_debug_state_fops); 1566 } 1567 1568 static void sfp_debugfs_exit(struct sfp *sfp) 1569 { 1570 debugfs_remove_recursive(sfp->debugfs_dir); 1571 } 1572 #else 1573 static void sfp_debugfs_init(struct sfp *sfp) 1574 { 1575 } 1576 1577 static void sfp_debugfs_exit(struct sfp *sfp) 1578 { 1579 } 1580 #endif 1581 1582 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1583 { 1584 unsigned int state = sfp->state; 1585 1586 if (state & SFP_F_TX_DISABLE) 1587 return; 1588 1589 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1590 1591 udelay(T_RESET_US); 1592 1593 sfp_set_state(sfp, state); 1594 } 1595 1596 /* SFP state machine */ 1597 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1598 { 1599 if (timeout) 1600 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1601 timeout); 1602 else 1603 cancel_delayed_work(&sfp->timeout); 1604 } 1605 1606 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1607 unsigned int timeout) 1608 { 1609 sfp->sm_state = state; 1610 sfp_sm_set_timer(sfp, timeout); 1611 } 1612 1613 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1614 unsigned int timeout) 1615 { 1616 sfp->sm_mod_state = state; 1617 sfp_sm_set_timer(sfp, timeout); 1618 } 1619 1620 static void sfp_sm_phy_detach(struct sfp *sfp) 1621 { 1622 sfp_remove_phy(sfp->sfp_bus); 1623 phy_device_remove(sfp->mod_phy); 1624 phy_device_free(sfp->mod_phy); 1625 sfp->mod_phy = NULL; 1626 } 1627 1628 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1629 { 1630 struct phy_device *phy; 1631 int err; 1632 1633 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1634 if (phy == ERR_PTR(-ENODEV)) 1635 return PTR_ERR(phy); 1636 if (IS_ERR(phy)) { 1637 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1638 return PTR_ERR(phy); 1639 } 1640 1641 err = phy_device_register(phy); 1642 if (err) { 1643 phy_device_free(phy); 1644 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1645 ERR_PTR(err)); 1646 return err; 1647 } 1648 1649 err = sfp_add_phy(sfp->sfp_bus, phy); 1650 if (err) { 1651 phy_device_remove(phy); 1652 phy_device_free(phy); 1653 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1654 return err; 1655 } 1656 1657 sfp->mod_phy = phy; 1658 1659 return 0; 1660 } 1661 1662 static void sfp_sm_link_up(struct sfp *sfp) 1663 { 1664 sfp_link_up(sfp->sfp_bus); 1665 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1666 } 1667 1668 static void sfp_sm_link_down(struct sfp *sfp) 1669 { 1670 sfp_link_down(sfp->sfp_bus); 1671 } 1672 1673 static void sfp_sm_link_check_los(struct sfp *sfp) 1674 { 1675 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1676 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1677 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1678 bool los = false; 1679 1680 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1681 * are set, we assume that no LOS signal is available. If both are 1682 * set, we assume LOS is not implemented (and is meaningless.) 1683 */ 1684 if (los_options == los_inverted) 1685 los = !(sfp->state & SFP_F_LOS); 1686 else if (los_options == los_normal) 1687 los = !!(sfp->state & SFP_F_LOS); 1688 1689 if (los) 1690 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1691 else 1692 sfp_sm_link_up(sfp); 1693 } 1694 1695 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1696 { 1697 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1698 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1699 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1700 1701 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1702 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1703 } 1704 1705 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1706 { 1707 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1708 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1709 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1710 1711 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1712 (los_options == los_normal && event == SFP_E_LOS_LOW); 1713 } 1714 1715 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1716 { 1717 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1718 dev_err(sfp->dev, 1719 "module persistently indicates fault, disabling\n"); 1720 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1721 } else { 1722 if (warn) 1723 dev_err(sfp->dev, "module transmit fault indicated\n"); 1724 1725 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1726 } 1727 } 1728 1729 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1730 { 1731 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1732 return sfp_i2c_mdiobus_create(sfp); 1733 1734 return 0; 1735 } 1736 1737 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1738 * normally sits at I2C bus address 0x56, and may either be a clause 22 1739 * or clause 45 PHY. 1740 * 1741 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1742 * negotiation enabled, but some may be in 1000base-X - which is for the 1743 * PHY driver to determine. 1744 * 1745 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1746 * mode according to the negotiated line speed. 1747 */ 1748 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1749 { 1750 int err = 0; 1751 1752 switch (sfp->mdio_protocol) { 1753 case MDIO_I2C_NONE: 1754 break; 1755 1756 case MDIO_I2C_MARVELL_C22: 1757 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1758 break; 1759 1760 case MDIO_I2C_C45: 1761 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1762 break; 1763 1764 case MDIO_I2C_ROLLBALL: 1765 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1766 break; 1767 } 1768 1769 return err; 1770 } 1771 1772 static int sfp_module_parse_power(struct sfp *sfp) 1773 { 1774 u32 power_mW = 1000; 1775 bool supports_a2; 1776 1777 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1778 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1779 power_mW = 1500; 1780 /* Added in Rev 11.9, but there is no compliance code for this */ 1781 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1782 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1783 power_mW = 2000; 1784 1785 /* Power level 1 modules (max. 1W) are always supported. */ 1786 if (power_mW <= 1000) { 1787 sfp->module_power_mW = power_mW; 1788 return 0; 1789 } 1790 1791 supports_a2 = sfp->id.ext.sff8472_compliance != 1792 SFP_SFF8472_COMPLIANCE_NONE || 1793 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1794 1795 if (power_mW > sfp->max_power_mW) { 1796 /* Module power specification exceeds the allowed maximum. */ 1797 if (!supports_a2) { 1798 /* The module appears not to implement bus address 1799 * 0xa2, so assume that the module powers up in the 1800 * indicated mode. 1801 */ 1802 dev_err(sfp->dev, 1803 "Host does not support %u.%uW modules\n", 1804 power_mW / 1000, (power_mW / 100) % 10); 1805 return -EINVAL; 1806 } else { 1807 dev_warn(sfp->dev, 1808 "Host does not support %u.%uW modules, module left in power mode 1\n", 1809 power_mW / 1000, (power_mW / 100) % 10); 1810 return 0; 1811 } 1812 } 1813 1814 if (!supports_a2) { 1815 /* The module power level is below the host maximum and the 1816 * module appears not to implement bus address 0xa2, so assume 1817 * that the module powers up in the indicated mode. 1818 */ 1819 return 0; 1820 } 1821 1822 /* If the module requires a higher power mode, but also requires 1823 * an address change sequence, warn the user that the module may 1824 * not be functional. 1825 */ 1826 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1827 dev_warn(sfp->dev, 1828 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1829 power_mW / 1000, (power_mW / 100) % 10); 1830 return 0; 1831 } 1832 1833 sfp->module_power_mW = power_mW; 1834 1835 return 0; 1836 } 1837 1838 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1839 { 1840 int err; 1841 1842 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1843 SFP_EXT_STATUS_PWRLVL_SELECT, 1844 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1845 if (err != sizeof(u8)) { 1846 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1847 enable ? "en" : "dis", ERR_PTR(err)); 1848 return -EAGAIN; 1849 } 1850 1851 if (enable) 1852 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1853 sfp->module_power_mW / 1000, 1854 (sfp->module_power_mW / 100) % 10); 1855 1856 return 0; 1857 } 1858 1859 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1860 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1861 * not support multibyte reads from the EEPROM. Each multi-byte read 1862 * operation returns just one byte of EEPROM followed by zeros. There is 1863 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1864 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1865 * name and vendor id into EEPROM, so there is even no way to detect if 1866 * module is V-SOL V2801F. Therefore check for those zeros in the read 1867 * data and then based on check switch to reading EEPROM to one byte 1868 * at a time. 1869 */ 1870 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1871 { 1872 size_t i, block_size = sfp->i2c_block_size; 1873 1874 /* Already using byte IO */ 1875 if (block_size == 1) 1876 return false; 1877 1878 for (i = 1; i < len; i += block_size) { 1879 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1880 return false; 1881 } 1882 return true; 1883 } 1884 1885 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1886 { 1887 u8 check; 1888 int err; 1889 1890 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1891 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1892 id->base.connector != SFF8024_CONNECTOR_LC) { 1893 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1894 id->base.phys_id = SFF8024_ID_SFF_8472; 1895 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1896 id->base.connector = SFF8024_CONNECTOR_LC; 1897 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1898 if (err != 3) { 1899 dev_err(sfp->dev, 1900 "Failed to rewrite module EEPROM: %pe\n", 1901 ERR_PTR(err)); 1902 return err; 1903 } 1904 1905 /* Cotsworks modules have been found to require a delay between write operations. */ 1906 mdelay(50); 1907 1908 /* Update base structure checksum */ 1909 check = sfp_check(&id->base, sizeof(id->base) - 1); 1910 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1911 if (err != 1) { 1912 dev_err(sfp->dev, 1913 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1914 ERR_PTR(err)); 1915 return err; 1916 } 1917 } 1918 return 0; 1919 } 1920 1921 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1922 { 1923 /* SFP module inserted - read I2C data */ 1924 struct sfp_eeprom_id id; 1925 bool cotsworks_sfbg; 1926 bool cotsworks; 1927 u8 check; 1928 int ret; 1929 1930 /* Some SFP modules and also some Linux I2C drivers do not like reads 1931 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1932 * a time. 1933 */ 1934 sfp->i2c_block_size = 16; 1935 1936 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1937 if (ret < 0) { 1938 if (report) 1939 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1940 ERR_PTR(ret)); 1941 return -EAGAIN; 1942 } 1943 1944 if (ret != sizeof(id.base)) { 1945 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1946 return -EAGAIN; 1947 } 1948 1949 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1950 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1951 * that EEPROM supports atomic 16bit read operation for diagnostic 1952 * fields, so do not switch to one byte reading at a time unless it 1953 * is really required and we have no other option. 1954 */ 1955 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1956 dev_info(sfp->dev, 1957 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1958 dev_info(sfp->dev, 1959 "Switching to reading EEPROM to one byte at a time\n"); 1960 sfp->i2c_block_size = 1; 1961 1962 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1963 if (ret < 0) { 1964 if (report) 1965 dev_err(sfp->dev, 1966 "failed to read EEPROM: %pe\n", 1967 ERR_PTR(ret)); 1968 return -EAGAIN; 1969 } 1970 1971 if (ret != sizeof(id.base)) { 1972 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1973 ERR_PTR(ret)); 1974 return -EAGAIN; 1975 } 1976 } 1977 1978 /* Cotsworks do not seem to update the checksums when they 1979 * do the final programming with the final module part number, 1980 * serial number and date code. 1981 */ 1982 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1983 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1984 1985 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1986 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1987 * Cotsworks PN matches and bytes are not correct. 1988 */ 1989 if (cotsworks && cotsworks_sfbg) { 1990 ret = sfp_cotsworks_fixup_check(sfp, &id); 1991 if (ret < 0) 1992 return ret; 1993 } 1994 1995 /* Validate the checksum over the base structure */ 1996 check = sfp_check(&id.base, sizeof(id.base) - 1); 1997 if (check != id.base.cc_base) { 1998 if (cotsworks) { 1999 dev_warn(sfp->dev, 2000 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2001 check, id.base.cc_base); 2002 } else { 2003 dev_err(sfp->dev, 2004 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2005 check, id.base.cc_base); 2006 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2007 16, 1, &id, sizeof(id), true); 2008 return -EINVAL; 2009 } 2010 } 2011 2012 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2013 if (ret < 0) { 2014 if (report) 2015 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2016 ERR_PTR(ret)); 2017 return -EAGAIN; 2018 } 2019 2020 if (ret != sizeof(id.ext)) { 2021 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2022 return -EAGAIN; 2023 } 2024 2025 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2026 if (check != id.ext.cc_ext) { 2027 if (cotsworks) { 2028 dev_warn(sfp->dev, 2029 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2030 check, id.ext.cc_ext); 2031 } else { 2032 dev_err(sfp->dev, 2033 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2034 check, id.ext.cc_ext); 2035 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2036 16, 1, &id, sizeof(id), true); 2037 memset(&id.ext, 0, sizeof(id.ext)); 2038 } 2039 } 2040 2041 sfp->id = id; 2042 2043 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2044 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2045 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2046 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2047 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2048 (int)sizeof(id.ext.datecode), id.ext.datecode); 2049 2050 /* Check whether we support this module */ 2051 if (!sfp->type->module_supported(&id)) { 2052 dev_err(sfp->dev, 2053 "module is not supported - phys id 0x%02x 0x%02x\n", 2054 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2055 return -EINVAL; 2056 } 2057 2058 /* If the module requires address swap mode, warn about it */ 2059 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2060 dev_warn(sfp->dev, 2061 "module address swap to access page 0xA2 is not supported.\n"); 2062 2063 /* Parse the module power requirement */ 2064 ret = sfp_module_parse_power(sfp); 2065 if (ret < 0) 2066 return ret; 2067 2068 /* Initialise state bits to use from hardware */ 2069 sfp->state_hw_mask = SFP_F_PRESENT; 2070 if (sfp->gpio[GPIO_TX_DISABLE]) 2071 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2072 if (sfp->gpio[GPIO_TX_FAULT]) 2073 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2074 if (sfp->gpio[GPIO_LOS]) 2075 sfp->state_hw_mask |= SFP_F_LOS; 2076 2077 sfp->module_t_start_up = T_START_UP; 2078 sfp->module_t_wait = T_WAIT; 2079 2080 sfp->tx_fault_ignore = false; 2081 2082 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2083 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2084 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2085 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2086 sfp->mdio_protocol = MDIO_I2C_C45; 2087 else if (sfp->id.base.e1000_base_t) 2088 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2089 else 2090 sfp->mdio_protocol = MDIO_I2C_NONE; 2091 2092 sfp->quirk = sfp_lookup_quirk(&id); 2093 if (sfp->quirk && sfp->quirk->fixup) 2094 sfp->quirk->fixup(sfp); 2095 2096 return 0; 2097 } 2098 2099 static void sfp_sm_mod_remove(struct sfp *sfp) 2100 { 2101 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2102 sfp_module_remove(sfp->sfp_bus); 2103 2104 sfp_hwmon_remove(sfp); 2105 2106 memset(&sfp->id, 0, sizeof(sfp->id)); 2107 sfp->module_power_mW = 0; 2108 2109 dev_info(sfp->dev, "module removed\n"); 2110 } 2111 2112 /* This state machine tracks the upstream's state */ 2113 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2114 { 2115 switch (sfp->sm_dev_state) { 2116 default: 2117 if (event == SFP_E_DEV_ATTACH) 2118 sfp->sm_dev_state = SFP_DEV_DOWN; 2119 break; 2120 2121 case SFP_DEV_DOWN: 2122 if (event == SFP_E_DEV_DETACH) 2123 sfp->sm_dev_state = SFP_DEV_DETACHED; 2124 else if (event == SFP_E_DEV_UP) 2125 sfp->sm_dev_state = SFP_DEV_UP; 2126 break; 2127 2128 case SFP_DEV_UP: 2129 if (event == SFP_E_DEV_DETACH) 2130 sfp->sm_dev_state = SFP_DEV_DETACHED; 2131 else if (event == SFP_E_DEV_DOWN) 2132 sfp->sm_dev_state = SFP_DEV_DOWN; 2133 break; 2134 } 2135 } 2136 2137 /* This state machine tracks the insert/remove state of the module, probes 2138 * the on-board EEPROM, and sets up the power level. 2139 */ 2140 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2141 { 2142 int err; 2143 2144 /* Handle remove event globally, it resets this state machine */ 2145 if (event == SFP_E_REMOVE) { 2146 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2147 sfp_sm_mod_remove(sfp); 2148 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2149 return; 2150 } 2151 2152 /* Handle device detach globally */ 2153 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2154 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2155 if (sfp->module_power_mW > 1000 && 2156 sfp->sm_mod_state > SFP_MOD_HPOWER) 2157 sfp_sm_mod_hpower(sfp, false); 2158 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2159 return; 2160 } 2161 2162 switch (sfp->sm_mod_state) { 2163 default: 2164 if (event == SFP_E_INSERT) { 2165 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2166 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2167 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2168 } 2169 break; 2170 2171 case SFP_MOD_PROBE: 2172 /* Wait for T_PROBE_INIT to time out */ 2173 if (event != SFP_E_TIMEOUT) 2174 break; 2175 2176 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2177 if (err == -EAGAIN) { 2178 if (sfp->sm_mod_tries_init && 2179 --sfp->sm_mod_tries_init) { 2180 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2181 break; 2182 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2183 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2184 dev_warn(sfp->dev, 2185 "please wait, module slow to respond\n"); 2186 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2187 break; 2188 } 2189 } 2190 if (err < 0) { 2191 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2192 break; 2193 } 2194 2195 err = sfp_hwmon_insert(sfp); 2196 if (err) 2197 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2198 ERR_PTR(err)); 2199 2200 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2201 fallthrough; 2202 case SFP_MOD_WAITDEV: 2203 /* Ensure that the device is attached before proceeding */ 2204 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2205 break; 2206 2207 /* Report the module insertion to the upstream device */ 2208 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2209 sfp->quirk); 2210 if (err < 0) { 2211 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2212 break; 2213 } 2214 2215 /* If this is a power level 1 module, we are done */ 2216 if (sfp->module_power_mW <= 1000) 2217 goto insert; 2218 2219 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2220 fallthrough; 2221 case SFP_MOD_HPOWER: 2222 /* Enable high power mode */ 2223 err = sfp_sm_mod_hpower(sfp, true); 2224 if (err < 0) { 2225 if (err != -EAGAIN) { 2226 sfp_module_remove(sfp->sfp_bus); 2227 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2228 } else { 2229 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2230 } 2231 break; 2232 } 2233 2234 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2235 break; 2236 2237 case SFP_MOD_WAITPWR: 2238 /* Wait for T_HPOWER_LEVEL to time out */ 2239 if (event != SFP_E_TIMEOUT) 2240 break; 2241 2242 insert: 2243 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2244 break; 2245 2246 case SFP_MOD_PRESENT: 2247 case SFP_MOD_ERROR: 2248 break; 2249 } 2250 } 2251 2252 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2253 { 2254 unsigned long timeout; 2255 int ret; 2256 2257 /* Some events are global */ 2258 if (sfp->sm_state != SFP_S_DOWN && 2259 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2260 sfp->sm_dev_state != SFP_DEV_UP)) { 2261 if (sfp->sm_state == SFP_S_LINK_UP && 2262 sfp->sm_dev_state == SFP_DEV_UP) 2263 sfp_sm_link_down(sfp); 2264 if (sfp->sm_state > SFP_S_INIT) 2265 sfp_module_stop(sfp->sfp_bus); 2266 if (sfp->mod_phy) 2267 sfp_sm_phy_detach(sfp); 2268 if (sfp->i2c_mii) 2269 sfp_i2c_mdiobus_destroy(sfp); 2270 sfp_module_tx_disable(sfp); 2271 sfp_soft_stop_poll(sfp); 2272 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2273 return; 2274 } 2275 2276 /* The main state machine */ 2277 switch (sfp->sm_state) { 2278 case SFP_S_DOWN: 2279 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2280 sfp->sm_dev_state != SFP_DEV_UP) 2281 break; 2282 2283 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2284 sfp_soft_start_poll(sfp); 2285 2286 sfp_module_tx_enable(sfp); 2287 2288 /* Initialise the fault clearance retries */ 2289 sfp->sm_fault_retries = N_FAULT_INIT; 2290 2291 /* We need to check the TX_FAULT state, which is not defined 2292 * while TX_DISABLE is asserted. The earliest we want to do 2293 * anything (such as probe for a PHY) is 50ms (or more on 2294 * specific modules). 2295 */ 2296 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2297 break; 2298 2299 case SFP_S_WAIT: 2300 if (event != SFP_E_TIMEOUT) 2301 break; 2302 2303 if (sfp->state & SFP_F_TX_FAULT) { 2304 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2305 * from the TX_DISABLE deassertion for the module to 2306 * initialise, which is indicated by TX_FAULT 2307 * deasserting. 2308 */ 2309 timeout = sfp->module_t_start_up; 2310 if (timeout > sfp->module_t_wait) 2311 timeout -= sfp->module_t_wait; 2312 else 2313 timeout = 1; 2314 2315 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2316 } else { 2317 /* TX_FAULT is not asserted, assume the module has 2318 * finished initialising. 2319 */ 2320 goto init_done; 2321 } 2322 break; 2323 2324 case SFP_S_INIT: 2325 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2326 /* TX_FAULT is still asserted after t_init 2327 * or t_start_up, so assume there is a fault. 2328 */ 2329 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2330 sfp->sm_fault_retries == N_FAULT_INIT); 2331 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2332 init_done: 2333 /* Create mdiobus and start trying for PHY */ 2334 ret = sfp_sm_add_mdio_bus(sfp); 2335 if (ret < 0) { 2336 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2337 break; 2338 } 2339 sfp->sm_phy_retries = R_PHY_RETRY; 2340 goto phy_probe; 2341 } 2342 break; 2343 2344 case SFP_S_INIT_PHY: 2345 if (event != SFP_E_TIMEOUT) 2346 break; 2347 phy_probe: 2348 /* TX_FAULT deasserted or we timed out with TX_FAULT 2349 * clear. Probe for the PHY and check the LOS state. 2350 */ 2351 ret = sfp_sm_probe_for_phy(sfp); 2352 if (ret == -ENODEV) { 2353 if (--sfp->sm_phy_retries) { 2354 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2355 break; 2356 } else { 2357 dev_info(sfp->dev, "no PHY detected\n"); 2358 } 2359 } else if (ret) { 2360 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2361 break; 2362 } 2363 if (sfp_module_start(sfp->sfp_bus)) { 2364 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2365 break; 2366 } 2367 sfp_sm_link_check_los(sfp); 2368 2369 /* Reset the fault retry count */ 2370 sfp->sm_fault_retries = N_FAULT; 2371 break; 2372 2373 case SFP_S_INIT_TX_FAULT: 2374 if (event == SFP_E_TIMEOUT) { 2375 sfp_module_tx_fault_reset(sfp); 2376 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2377 } 2378 break; 2379 2380 case SFP_S_WAIT_LOS: 2381 if (event == SFP_E_TX_FAULT) 2382 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2383 else if (sfp_los_event_inactive(sfp, event)) 2384 sfp_sm_link_up(sfp); 2385 break; 2386 2387 case SFP_S_LINK_UP: 2388 if (event == SFP_E_TX_FAULT) { 2389 sfp_sm_link_down(sfp); 2390 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2391 } else if (sfp_los_event_active(sfp, event)) { 2392 sfp_sm_link_down(sfp); 2393 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2394 } 2395 break; 2396 2397 case SFP_S_TX_FAULT: 2398 if (event == SFP_E_TIMEOUT) { 2399 sfp_module_tx_fault_reset(sfp); 2400 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2401 } 2402 break; 2403 2404 case SFP_S_REINIT: 2405 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2406 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2407 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2408 dev_info(sfp->dev, "module transmit fault recovered\n"); 2409 sfp_sm_link_check_los(sfp); 2410 } 2411 break; 2412 2413 case SFP_S_TX_DISABLE: 2414 break; 2415 } 2416 } 2417 2418 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2419 { 2420 mutex_lock(&sfp->sm_mutex); 2421 2422 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2423 mod_state_to_str(sfp->sm_mod_state), 2424 dev_state_to_str(sfp->sm_dev_state), 2425 sm_state_to_str(sfp->sm_state), 2426 event_to_str(event)); 2427 2428 sfp_sm_device(sfp, event); 2429 sfp_sm_module(sfp, event); 2430 sfp_sm_main(sfp, event); 2431 2432 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2433 mod_state_to_str(sfp->sm_mod_state), 2434 dev_state_to_str(sfp->sm_dev_state), 2435 sm_state_to_str(sfp->sm_state)); 2436 2437 mutex_unlock(&sfp->sm_mutex); 2438 } 2439 2440 static void sfp_attach(struct sfp *sfp) 2441 { 2442 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2443 } 2444 2445 static void sfp_detach(struct sfp *sfp) 2446 { 2447 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2448 } 2449 2450 static void sfp_start(struct sfp *sfp) 2451 { 2452 sfp_sm_event(sfp, SFP_E_DEV_UP); 2453 } 2454 2455 static void sfp_stop(struct sfp *sfp) 2456 { 2457 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2458 } 2459 2460 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2461 { 2462 /* locking... and check module is present */ 2463 2464 if (sfp->id.ext.sff8472_compliance && 2465 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2466 modinfo->type = ETH_MODULE_SFF_8472; 2467 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2468 } else { 2469 modinfo->type = ETH_MODULE_SFF_8079; 2470 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2471 } 2472 return 0; 2473 } 2474 2475 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2476 u8 *data) 2477 { 2478 unsigned int first, last, len; 2479 int ret; 2480 2481 if (ee->len == 0) 2482 return -EINVAL; 2483 2484 first = ee->offset; 2485 last = ee->offset + ee->len; 2486 if (first < ETH_MODULE_SFF_8079_LEN) { 2487 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2488 len -= first; 2489 2490 ret = sfp_read(sfp, false, first, data, len); 2491 if (ret < 0) 2492 return ret; 2493 2494 first += len; 2495 data += len; 2496 } 2497 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2498 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2499 len -= first; 2500 first -= ETH_MODULE_SFF_8079_LEN; 2501 2502 ret = sfp_read(sfp, true, first, data, len); 2503 if (ret < 0) 2504 return ret; 2505 } 2506 return 0; 2507 } 2508 2509 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2510 const struct ethtool_module_eeprom *page, 2511 struct netlink_ext_ack *extack) 2512 { 2513 if (page->bank) { 2514 NL_SET_ERR_MSG(extack, "Banks not supported"); 2515 return -EOPNOTSUPP; 2516 } 2517 2518 if (page->page) { 2519 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2520 return -EOPNOTSUPP; 2521 } 2522 2523 if (page->i2c_address != 0x50 && 2524 page->i2c_address != 0x51) { 2525 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2526 return -EOPNOTSUPP; 2527 } 2528 2529 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2530 page->data, page->length); 2531 }; 2532 2533 static const struct sfp_socket_ops sfp_module_ops = { 2534 .attach = sfp_attach, 2535 .detach = sfp_detach, 2536 .start = sfp_start, 2537 .stop = sfp_stop, 2538 .module_info = sfp_module_info, 2539 .module_eeprom = sfp_module_eeprom, 2540 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2541 }; 2542 2543 static void sfp_timeout(struct work_struct *work) 2544 { 2545 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2546 2547 rtnl_lock(); 2548 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2549 rtnl_unlock(); 2550 } 2551 2552 static void sfp_check_state(struct sfp *sfp) 2553 { 2554 unsigned int state, i, changed; 2555 2556 mutex_lock(&sfp->st_mutex); 2557 state = sfp_get_state(sfp); 2558 changed = state ^ sfp->state; 2559 if (sfp->tx_fault_ignore) 2560 changed &= SFP_F_PRESENT | SFP_F_LOS; 2561 else 2562 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2563 2564 for (i = 0; i < GPIO_MAX; i++) 2565 if (changed & BIT(i)) 2566 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2567 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2568 2569 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2570 sfp->state = state; 2571 2572 rtnl_lock(); 2573 if (changed & SFP_F_PRESENT) 2574 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2575 SFP_E_INSERT : SFP_E_REMOVE); 2576 2577 if (changed & SFP_F_TX_FAULT) 2578 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2579 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2580 2581 if (changed & SFP_F_LOS) 2582 sfp_sm_event(sfp, state & SFP_F_LOS ? 2583 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2584 rtnl_unlock(); 2585 mutex_unlock(&sfp->st_mutex); 2586 } 2587 2588 static irqreturn_t sfp_irq(int irq, void *data) 2589 { 2590 struct sfp *sfp = data; 2591 2592 sfp_check_state(sfp); 2593 2594 return IRQ_HANDLED; 2595 } 2596 2597 static void sfp_poll(struct work_struct *work) 2598 { 2599 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2600 2601 sfp_check_state(sfp); 2602 2603 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2604 sfp->need_poll) 2605 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2606 } 2607 2608 static struct sfp *sfp_alloc(struct device *dev) 2609 { 2610 struct sfp *sfp; 2611 2612 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2613 if (!sfp) 2614 return ERR_PTR(-ENOMEM); 2615 2616 sfp->dev = dev; 2617 2618 mutex_init(&sfp->sm_mutex); 2619 mutex_init(&sfp->st_mutex); 2620 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2621 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2622 2623 sfp_hwmon_init(sfp); 2624 2625 return sfp; 2626 } 2627 2628 static void sfp_cleanup(void *data) 2629 { 2630 struct sfp *sfp = data; 2631 2632 sfp_hwmon_exit(sfp); 2633 2634 cancel_delayed_work_sync(&sfp->poll); 2635 cancel_delayed_work_sync(&sfp->timeout); 2636 if (sfp->i2c_mii) { 2637 mdiobus_unregister(sfp->i2c_mii); 2638 mdiobus_free(sfp->i2c_mii); 2639 } 2640 if (sfp->i2c) 2641 i2c_put_adapter(sfp->i2c); 2642 kfree(sfp); 2643 } 2644 2645 static int sfp_probe(struct platform_device *pdev) 2646 { 2647 const struct sff_data *sff; 2648 struct i2c_adapter *i2c; 2649 char *sfp_irq_name; 2650 struct sfp *sfp; 2651 int err, i; 2652 2653 sfp = sfp_alloc(&pdev->dev); 2654 if (IS_ERR(sfp)) 2655 return PTR_ERR(sfp); 2656 2657 platform_set_drvdata(pdev, sfp); 2658 2659 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2660 if (err < 0) 2661 return err; 2662 2663 sff = sfp->type = &sfp_data; 2664 2665 if (pdev->dev.of_node) { 2666 struct device_node *node = pdev->dev.of_node; 2667 const struct of_device_id *id; 2668 struct device_node *np; 2669 2670 id = of_match_node(sfp_of_match, node); 2671 if (WARN_ON(!id)) 2672 return -EINVAL; 2673 2674 sff = sfp->type = id->data; 2675 2676 np = of_parse_phandle(node, "i2c-bus", 0); 2677 if (!np) { 2678 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2679 return -ENODEV; 2680 } 2681 2682 i2c = of_find_i2c_adapter_by_node(np); 2683 of_node_put(np); 2684 } else if (has_acpi_companion(&pdev->dev)) { 2685 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2686 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2687 struct fwnode_reference_args args; 2688 struct acpi_handle *acpi_handle; 2689 int ret; 2690 2691 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2692 if (ret || !is_acpi_device_node(args.fwnode)) { 2693 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2694 return -ENODEV; 2695 } 2696 2697 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2698 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2699 } else { 2700 return -EINVAL; 2701 } 2702 2703 if (!i2c) 2704 return -EPROBE_DEFER; 2705 2706 err = sfp_i2c_configure(sfp, i2c); 2707 if (err < 0) { 2708 i2c_put_adapter(i2c); 2709 return err; 2710 } 2711 2712 for (i = 0; i < GPIO_MAX; i++) 2713 if (sff->gpios & BIT(i)) { 2714 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2715 gpio_of_names[i], gpio_flags[i]); 2716 if (IS_ERR(sfp->gpio[i])) 2717 return PTR_ERR(sfp->gpio[i]); 2718 } 2719 2720 sfp->state_hw_mask = SFP_F_PRESENT; 2721 2722 sfp->get_state = sfp_gpio_get_state; 2723 sfp->set_state = sfp_gpio_set_state; 2724 2725 /* Modules that have no detect signal are always present */ 2726 if (!(sfp->gpio[GPIO_MODDEF0])) 2727 sfp->get_state = sff_gpio_get_state; 2728 2729 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2730 &sfp->max_power_mW); 2731 if (sfp->max_power_mW < 1000) { 2732 if (sfp->max_power_mW) 2733 dev_warn(sfp->dev, 2734 "Firmware bug: host maximum power should be at least 1W\n"); 2735 sfp->max_power_mW = 1000; 2736 } 2737 2738 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2739 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2740 2741 /* Get the initial state, and always signal TX disable, 2742 * since the network interface will not be up. 2743 */ 2744 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2745 2746 if (sfp->gpio[GPIO_RATE_SELECT] && 2747 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2748 sfp->state |= SFP_F_RATE_SELECT; 2749 sfp_set_state(sfp, sfp->state); 2750 sfp_module_tx_disable(sfp); 2751 if (sfp->state & SFP_F_PRESENT) { 2752 rtnl_lock(); 2753 sfp_sm_event(sfp, SFP_E_INSERT); 2754 rtnl_unlock(); 2755 } 2756 2757 for (i = 0; i < GPIO_MAX; i++) { 2758 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2759 continue; 2760 2761 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2762 if (sfp->gpio_irq[i] < 0) { 2763 sfp->gpio_irq[i] = 0; 2764 sfp->need_poll = true; 2765 continue; 2766 } 2767 2768 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2769 "%s-%s", dev_name(sfp->dev), 2770 gpio_of_names[i]); 2771 2772 if (!sfp_irq_name) 2773 return -ENOMEM; 2774 2775 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2776 NULL, sfp_irq, 2777 IRQF_ONESHOT | 2778 IRQF_TRIGGER_RISING | 2779 IRQF_TRIGGER_FALLING, 2780 sfp_irq_name, sfp); 2781 if (err) { 2782 sfp->gpio_irq[i] = 0; 2783 sfp->need_poll = true; 2784 } 2785 } 2786 2787 if (sfp->need_poll) 2788 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2789 2790 /* We could have an issue in cases no Tx disable pin is available or 2791 * wired as modules using a laser as their light source will continue to 2792 * be active when the fiber is removed. This could be a safety issue and 2793 * we should at least warn the user about that. 2794 */ 2795 if (!sfp->gpio[GPIO_TX_DISABLE]) 2796 dev_warn(sfp->dev, 2797 "No tx_disable pin: SFP modules will always be emitting.\n"); 2798 2799 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2800 if (!sfp->sfp_bus) 2801 return -ENOMEM; 2802 2803 sfp_debugfs_init(sfp); 2804 2805 return 0; 2806 } 2807 2808 static int sfp_remove(struct platform_device *pdev) 2809 { 2810 struct sfp *sfp = platform_get_drvdata(pdev); 2811 2812 sfp_debugfs_exit(sfp); 2813 sfp_unregister_socket(sfp->sfp_bus); 2814 2815 rtnl_lock(); 2816 sfp_sm_event(sfp, SFP_E_REMOVE); 2817 rtnl_unlock(); 2818 2819 return 0; 2820 } 2821 2822 static void sfp_shutdown(struct platform_device *pdev) 2823 { 2824 struct sfp *sfp = platform_get_drvdata(pdev); 2825 int i; 2826 2827 for (i = 0; i < GPIO_MAX; i++) { 2828 if (!sfp->gpio_irq[i]) 2829 continue; 2830 2831 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2832 } 2833 2834 cancel_delayed_work_sync(&sfp->poll); 2835 cancel_delayed_work_sync(&sfp->timeout); 2836 } 2837 2838 static struct platform_driver sfp_driver = { 2839 .probe = sfp_probe, 2840 .remove = sfp_remove, 2841 .shutdown = sfp_shutdown, 2842 .driver = { 2843 .name = "sfp", 2844 .of_match_table = sfp_of_match, 2845 }, 2846 }; 2847 2848 static int sfp_init(void) 2849 { 2850 poll_jiffies = msecs_to_jiffies(100); 2851 2852 return platform_driver_register(&sfp_driver); 2853 } 2854 module_init(sfp_init); 2855 2856 static void sfp_exit(void) 2857 { 2858 platform_driver_unregister(&sfp_driver); 2859 } 2860 module_exit(sfp_exit); 2861 2862 MODULE_ALIAS("platform:sfp"); 2863 MODULE_AUTHOR("Russell King"); 2864 MODULE_LICENSE("GPL v2"); 2865