1 #include <linux/ctype.h> 2 #include <linux/delay.h> 3 #include <linux/gpio/consumer.h> 4 #include <linux/hwmon.h> 5 #include <linux/i2c.h> 6 #include <linux/interrupt.h> 7 #include <linux/jiffies.h> 8 #include <linux/module.h> 9 #include <linux/mutex.h> 10 #include <linux/of.h> 11 #include <linux/phy.h> 12 #include <linux/platform_device.h> 13 #include <linux/rtnetlink.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 17 #include "mdio-i2c.h" 18 #include "sfp.h" 19 #include "swphy.h" 20 21 enum { 22 GPIO_MODDEF0, 23 GPIO_LOS, 24 GPIO_TX_FAULT, 25 GPIO_TX_DISABLE, 26 GPIO_RATE_SELECT, 27 GPIO_MAX, 28 29 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 30 SFP_F_LOS = BIT(GPIO_LOS), 31 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 32 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 33 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 34 35 SFP_E_INSERT = 0, 36 SFP_E_REMOVE, 37 SFP_E_DEV_DOWN, 38 SFP_E_DEV_UP, 39 SFP_E_TX_FAULT, 40 SFP_E_TX_CLEAR, 41 SFP_E_LOS_HIGH, 42 SFP_E_LOS_LOW, 43 SFP_E_TIMEOUT, 44 45 SFP_MOD_EMPTY = 0, 46 SFP_MOD_PROBE, 47 SFP_MOD_HPOWER, 48 SFP_MOD_PRESENT, 49 SFP_MOD_ERROR, 50 51 SFP_DEV_DOWN = 0, 52 SFP_DEV_UP, 53 54 SFP_S_DOWN = 0, 55 SFP_S_INIT, 56 SFP_S_WAIT_LOS, 57 SFP_S_LINK_UP, 58 SFP_S_TX_FAULT, 59 SFP_S_REINIT, 60 SFP_S_TX_DISABLE, 61 }; 62 63 static const char *gpio_of_names[] = { 64 "mod-def0", 65 "los", 66 "tx-fault", 67 "tx-disable", 68 "rate-select0", 69 }; 70 71 static const enum gpiod_flags gpio_flags[] = { 72 GPIOD_IN, 73 GPIOD_IN, 74 GPIOD_IN, 75 GPIOD_ASIS, 76 GPIOD_ASIS, 77 }; 78 79 #define T_INIT_JIFFIES msecs_to_jiffies(300) 80 #define T_RESET_US 10 81 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 82 83 /* SFP module presence detection is poor: the three MOD DEF signals are 84 * the same length on the PCB, which means it's possible for MOD DEF 0 to 85 * connect before the I2C bus on MOD DEF 1/2. 86 * 87 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to 88 * be deasserted) but makes no mention of the earliest time before we can 89 * access the I2C EEPROM. However, Avago modules require 300ms. 90 */ 91 #define T_PROBE_INIT msecs_to_jiffies(300) 92 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 93 #define T_PROBE_RETRY msecs_to_jiffies(100) 94 95 /* SFP modules appear to always have their PHY configured for bus address 96 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 97 */ 98 #define SFP_PHY_ADDR 22 99 100 /* Give this long for the PHY to reset. */ 101 #define T_PHY_RESET_MS 50 102 103 static DEFINE_MUTEX(sfp_mutex); 104 105 struct sff_data { 106 unsigned int gpios; 107 bool (*module_supported)(const struct sfp_eeprom_id *id); 108 }; 109 110 struct sfp { 111 struct device *dev; 112 struct i2c_adapter *i2c; 113 struct mii_bus *i2c_mii; 114 struct sfp_bus *sfp_bus; 115 struct phy_device *mod_phy; 116 const struct sff_data *type; 117 u32 max_power_mW; 118 119 unsigned int (*get_state)(struct sfp *); 120 void (*set_state)(struct sfp *, unsigned int); 121 int (*read)(struct sfp *, bool, u8, void *, size_t); 122 int (*write)(struct sfp *, bool, u8, void *, size_t); 123 124 struct gpio_desc *gpio[GPIO_MAX]; 125 126 unsigned int state; 127 struct delayed_work poll; 128 struct delayed_work timeout; 129 struct mutex sm_mutex; 130 unsigned char sm_mod_state; 131 unsigned char sm_dev_state; 132 unsigned short sm_state; 133 unsigned int sm_retries; 134 135 struct sfp_eeprom_id id; 136 #if IS_ENABLED(CONFIG_HWMON) 137 struct sfp_diag diag; 138 struct device *hwmon_dev; 139 char *hwmon_name; 140 #endif 141 142 }; 143 144 static bool sff_module_supported(const struct sfp_eeprom_id *id) 145 { 146 return id->base.phys_id == SFP_PHYS_ID_SFF && 147 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 148 } 149 150 static const struct sff_data sff_data = { 151 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 152 .module_supported = sff_module_supported, 153 }; 154 155 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 156 { 157 return id->base.phys_id == SFP_PHYS_ID_SFP && 158 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 159 } 160 161 static const struct sff_data sfp_data = { 162 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 163 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 164 .module_supported = sfp_module_supported, 165 }; 166 167 static const struct of_device_id sfp_of_match[] = { 168 { .compatible = "sff,sff", .data = &sff_data, }, 169 { .compatible = "sff,sfp", .data = &sfp_data, }, 170 { }, 171 }; 172 MODULE_DEVICE_TABLE(of, sfp_of_match); 173 174 static unsigned long poll_jiffies; 175 176 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 177 { 178 unsigned int i, state, v; 179 180 for (i = state = 0; i < GPIO_MAX; i++) { 181 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 182 continue; 183 184 v = gpiod_get_value_cansleep(sfp->gpio[i]); 185 if (v) 186 state |= BIT(i); 187 } 188 189 return state; 190 } 191 192 static unsigned int sff_gpio_get_state(struct sfp *sfp) 193 { 194 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 195 } 196 197 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 198 { 199 if (state & SFP_F_PRESENT) { 200 /* If the module is present, drive the signals */ 201 if (sfp->gpio[GPIO_TX_DISABLE]) 202 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 203 state & SFP_F_TX_DISABLE); 204 if (state & SFP_F_RATE_SELECT) 205 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 206 state & SFP_F_RATE_SELECT); 207 } else { 208 /* Otherwise, let them float to the pull-ups */ 209 if (sfp->gpio[GPIO_TX_DISABLE]) 210 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 211 if (state & SFP_F_RATE_SELECT) 212 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 213 } 214 } 215 216 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 217 size_t len) 218 { 219 struct i2c_msg msgs[2]; 220 u8 bus_addr = a2 ? 0x51 : 0x50; 221 int ret; 222 223 msgs[0].addr = bus_addr; 224 msgs[0].flags = 0; 225 msgs[0].len = 1; 226 msgs[0].buf = &dev_addr; 227 msgs[1].addr = bus_addr; 228 msgs[1].flags = I2C_M_RD; 229 msgs[1].len = len; 230 msgs[1].buf = buf; 231 232 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 233 if (ret < 0) 234 return ret; 235 236 return ret == ARRAY_SIZE(msgs) ? len : 0; 237 } 238 239 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 240 size_t len) 241 { 242 struct i2c_msg msgs[1]; 243 u8 bus_addr = a2 ? 0x51 : 0x50; 244 int ret; 245 246 msgs[0].addr = bus_addr; 247 msgs[0].flags = 0; 248 msgs[0].len = 1 + len; 249 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 250 if (!msgs[0].buf) 251 return -ENOMEM; 252 253 msgs[0].buf[0] = dev_addr; 254 memcpy(&msgs[0].buf[1], buf, len); 255 256 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 257 258 kfree(msgs[0].buf); 259 260 if (ret < 0) 261 return ret; 262 263 return ret == ARRAY_SIZE(msgs) ? len : 0; 264 } 265 266 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 267 { 268 struct mii_bus *i2c_mii; 269 int ret; 270 271 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 272 return -EINVAL; 273 274 sfp->i2c = i2c; 275 sfp->read = sfp_i2c_read; 276 sfp->write = sfp_i2c_write; 277 278 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 279 if (IS_ERR(i2c_mii)) 280 return PTR_ERR(i2c_mii); 281 282 i2c_mii->name = "SFP I2C Bus"; 283 i2c_mii->phy_mask = ~0; 284 285 ret = mdiobus_register(i2c_mii); 286 if (ret < 0) { 287 mdiobus_free(i2c_mii); 288 return ret; 289 } 290 291 sfp->i2c_mii = i2c_mii; 292 293 return 0; 294 } 295 296 /* Interface */ 297 static unsigned int sfp_get_state(struct sfp *sfp) 298 { 299 return sfp->get_state(sfp); 300 } 301 302 static void sfp_set_state(struct sfp *sfp, unsigned int state) 303 { 304 sfp->set_state(sfp, state); 305 } 306 307 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 308 { 309 return sfp->read(sfp, a2, addr, buf, len); 310 } 311 312 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 313 { 314 return sfp->write(sfp, a2, addr, buf, len); 315 } 316 317 static unsigned int sfp_check(void *buf, size_t len) 318 { 319 u8 *p, check; 320 321 for (p = buf, check = 0; len; p++, len--) 322 check += *p; 323 324 return check; 325 } 326 327 /* hwmon */ 328 #if IS_ENABLED(CONFIG_HWMON) 329 static umode_t sfp_hwmon_is_visible(const void *data, 330 enum hwmon_sensor_types type, 331 u32 attr, int channel) 332 { 333 const struct sfp *sfp = data; 334 335 switch (type) { 336 case hwmon_temp: 337 switch (attr) { 338 case hwmon_temp_input: 339 case hwmon_temp_min_alarm: 340 case hwmon_temp_max_alarm: 341 case hwmon_temp_lcrit_alarm: 342 case hwmon_temp_crit_alarm: 343 case hwmon_temp_min: 344 case hwmon_temp_max: 345 case hwmon_temp_lcrit: 346 case hwmon_temp_crit: 347 return 0444; 348 default: 349 return 0; 350 } 351 case hwmon_in: 352 switch (attr) { 353 case hwmon_in_input: 354 case hwmon_in_min_alarm: 355 case hwmon_in_max_alarm: 356 case hwmon_in_lcrit_alarm: 357 case hwmon_in_crit_alarm: 358 case hwmon_in_min: 359 case hwmon_in_max: 360 case hwmon_in_lcrit: 361 case hwmon_in_crit: 362 return 0444; 363 default: 364 return 0; 365 } 366 case hwmon_curr: 367 switch (attr) { 368 case hwmon_curr_input: 369 case hwmon_curr_min_alarm: 370 case hwmon_curr_max_alarm: 371 case hwmon_curr_lcrit_alarm: 372 case hwmon_curr_crit_alarm: 373 case hwmon_curr_min: 374 case hwmon_curr_max: 375 case hwmon_curr_lcrit: 376 case hwmon_curr_crit: 377 return 0444; 378 default: 379 return 0; 380 } 381 case hwmon_power: 382 /* External calibration of receive power requires 383 * floating point arithmetic. Doing that in the kernel 384 * is not easy, so just skip it. If the module does 385 * not require external calibration, we can however 386 * show receiver power, since FP is then not needed. 387 */ 388 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 389 channel == 1) 390 return 0; 391 switch (attr) { 392 case hwmon_power_input: 393 case hwmon_power_min_alarm: 394 case hwmon_power_max_alarm: 395 case hwmon_power_lcrit_alarm: 396 case hwmon_power_crit_alarm: 397 case hwmon_power_min: 398 case hwmon_power_max: 399 case hwmon_power_lcrit: 400 case hwmon_power_crit: 401 return 0444; 402 default: 403 return 0; 404 } 405 default: 406 return 0; 407 } 408 } 409 410 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 411 { 412 __be16 val; 413 int err; 414 415 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 416 if (err < 0) 417 return err; 418 419 *value = be16_to_cpu(val); 420 421 return 0; 422 } 423 424 static void sfp_hwmon_to_rx_power(long *value) 425 { 426 *value = DIV_ROUND_CLOSEST(*value, 100); 427 } 428 429 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 430 long *value) 431 { 432 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 433 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 434 } 435 436 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 437 { 438 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 439 be16_to_cpu(sfp->diag.cal_t_offset), value); 440 441 if (*value >= 0x8000) 442 *value -= 0x10000; 443 444 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 445 } 446 447 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 448 { 449 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 450 be16_to_cpu(sfp->diag.cal_v_offset), value); 451 452 *value = DIV_ROUND_CLOSEST(*value, 10); 453 } 454 455 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 456 { 457 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 458 be16_to_cpu(sfp->diag.cal_txi_offset), value); 459 460 *value = DIV_ROUND_CLOSEST(*value, 500); 461 } 462 463 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 464 { 465 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 466 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 467 468 *value = DIV_ROUND_CLOSEST(*value, 10); 469 } 470 471 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 472 { 473 int err; 474 475 err = sfp_hwmon_read_sensor(sfp, reg, value); 476 if (err < 0) 477 return err; 478 479 sfp_hwmon_calibrate_temp(sfp, value); 480 481 return 0; 482 } 483 484 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 485 { 486 int err; 487 488 err = sfp_hwmon_read_sensor(sfp, reg, value); 489 if (err < 0) 490 return err; 491 492 sfp_hwmon_calibrate_vcc(sfp, value); 493 494 return 0; 495 } 496 497 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 498 { 499 int err; 500 501 err = sfp_hwmon_read_sensor(sfp, reg, value); 502 if (err < 0) 503 return err; 504 505 sfp_hwmon_calibrate_bias(sfp, value); 506 507 return 0; 508 } 509 510 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 511 { 512 int err; 513 514 err = sfp_hwmon_read_sensor(sfp, reg, value); 515 if (err < 0) 516 return err; 517 518 sfp_hwmon_calibrate_tx_power(sfp, value); 519 520 return 0; 521 } 522 523 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 524 { 525 int err; 526 527 err = sfp_hwmon_read_sensor(sfp, reg, value); 528 if (err < 0) 529 return err; 530 531 sfp_hwmon_to_rx_power(value); 532 533 return 0; 534 } 535 536 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 537 { 538 u8 status; 539 int err; 540 541 switch (attr) { 542 case hwmon_temp_input: 543 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 544 545 case hwmon_temp_lcrit: 546 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 547 sfp_hwmon_calibrate_temp(sfp, value); 548 return 0; 549 550 case hwmon_temp_min: 551 *value = be16_to_cpu(sfp->diag.temp_low_warn); 552 sfp_hwmon_calibrate_temp(sfp, value); 553 return 0; 554 case hwmon_temp_max: 555 *value = be16_to_cpu(sfp->diag.temp_high_warn); 556 sfp_hwmon_calibrate_temp(sfp, value); 557 return 0; 558 559 case hwmon_temp_crit: 560 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 561 sfp_hwmon_calibrate_temp(sfp, value); 562 return 0; 563 564 case hwmon_temp_lcrit_alarm: 565 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 566 if (err < 0) 567 return err; 568 569 *value = !!(status & SFP_ALARM0_TEMP_LOW); 570 return 0; 571 572 case hwmon_temp_min_alarm: 573 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 574 if (err < 0) 575 return err; 576 577 *value = !!(status & SFP_WARN0_TEMP_LOW); 578 return 0; 579 580 case hwmon_temp_max_alarm: 581 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 582 if (err < 0) 583 return err; 584 585 *value = !!(status & SFP_WARN0_TEMP_HIGH); 586 return 0; 587 588 case hwmon_temp_crit_alarm: 589 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 590 if (err < 0) 591 return err; 592 593 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 594 return 0; 595 default: 596 return -EOPNOTSUPP; 597 } 598 599 return -EOPNOTSUPP; 600 } 601 602 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 603 { 604 u8 status; 605 int err; 606 607 switch (attr) { 608 case hwmon_in_input: 609 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 610 611 case hwmon_in_lcrit: 612 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 613 sfp_hwmon_calibrate_vcc(sfp, value); 614 return 0; 615 616 case hwmon_in_min: 617 *value = be16_to_cpu(sfp->diag.volt_low_warn); 618 sfp_hwmon_calibrate_vcc(sfp, value); 619 return 0; 620 621 case hwmon_in_max: 622 *value = be16_to_cpu(sfp->diag.volt_high_warn); 623 sfp_hwmon_calibrate_vcc(sfp, value); 624 return 0; 625 626 case hwmon_in_crit: 627 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 628 sfp_hwmon_calibrate_vcc(sfp, value); 629 return 0; 630 631 case hwmon_in_lcrit_alarm: 632 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 633 if (err < 0) 634 return err; 635 636 *value = !!(status & SFP_ALARM0_VCC_LOW); 637 return 0; 638 639 case hwmon_in_min_alarm: 640 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 641 if (err < 0) 642 return err; 643 644 *value = !!(status & SFP_WARN0_VCC_LOW); 645 return 0; 646 647 case hwmon_in_max_alarm: 648 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 649 if (err < 0) 650 return err; 651 652 *value = !!(status & SFP_WARN0_VCC_HIGH); 653 return 0; 654 655 case hwmon_in_crit_alarm: 656 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 657 if (err < 0) 658 return err; 659 660 *value = !!(status & SFP_ALARM0_VCC_HIGH); 661 return 0; 662 default: 663 return -EOPNOTSUPP; 664 } 665 666 return -EOPNOTSUPP; 667 } 668 669 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 670 { 671 u8 status; 672 int err; 673 674 switch (attr) { 675 case hwmon_curr_input: 676 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 677 678 case hwmon_curr_lcrit: 679 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 680 sfp_hwmon_calibrate_bias(sfp, value); 681 return 0; 682 683 case hwmon_curr_min: 684 *value = be16_to_cpu(sfp->diag.bias_low_warn); 685 sfp_hwmon_calibrate_bias(sfp, value); 686 return 0; 687 688 case hwmon_curr_max: 689 *value = be16_to_cpu(sfp->diag.bias_high_warn); 690 sfp_hwmon_calibrate_bias(sfp, value); 691 return 0; 692 693 case hwmon_curr_crit: 694 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 695 sfp_hwmon_calibrate_bias(sfp, value); 696 return 0; 697 698 case hwmon_curr_lcrit_alarm: 699 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 700 if (err < 0) 701 return err; 702 703 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 704 return 0; 705 706 case hwmon_curr_min_alarm: 707 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 708 if (err < 0) 709 return err; 710 711 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 712 return 0; 713 714 case hwmon_curr_max_alarm: 715 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 716 if (err < 0) 717 return err; 718 719 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 720 return 0; 721 722 case hwmon_curr_crit_alarm: 723 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 724 if (err < 0) 725 return err; 726 727 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 728 return 0; 729 default: 730 return -EOPNOTSUPP; 731 } 732 733 return -EOPNOTSUPP; 734 } 735 736 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 737 { 738 u8 status; 739 int err; 740 741 switch (attr) { 742 case hwmon_power_input: 743 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 744 745 case hwmon_power_lcrit: 746 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 747 sfp_hwmon_calibrate_tx_power(sfp, value); 748 return 0; 749 750 case hwmon_power_min: 751 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 752 sfp_hwmon_calibrate_tx_power(sfp, value); 753 return 0; 754 755 case hwmon_power_max: 756 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 757 sfp_hwmon_calibrate_tx_power(sfp, value); 758 return 0; 759 760 case hwmon_power_crit: 761 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 762 sfp_hwmon_calibrate_tx_power(sfp, value); 763 return 0; 764 765 case hwmon_power_lcrit_alarm: 766 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 767 if (err < 0) 768 return err; 769 770 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 771 return 0; 772 773 case hwmon_power_min_alarm: 774 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 775 if (err < 0) 776 return err; 777 778 *value = !!(status & SFP_WARN0_TXPWR_LOW); 779 return 0; 780 781 case hwmon_power_max_alarm: 782 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 783 if (err < 0) 784 return err; 785 786 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 787 return 0; 788 789 case hwmon_power_crit_alarm: 790 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 791 if (err < 0) 792 return err; 793 794 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 795 return 0; 796 default: 797 return -EOPNOTSUPP; 798 } 799 800 return -EOPNOTSUPP; 801 } 802 803 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 804 { 805 u8 status; 806 int err; 807 808 switch (attr) { 809 case hwmon_power_input: 810 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 811 812 case hwmon_power_lcrit: 813 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 814 sfp_hwmon_to_rx_power(value); 815 return 0; 816 817 case hwmon_power_min: 818 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 819 sfp_hwmon_to_rx_power(value); 820 return 0; 821 822 case hwmon_power_max: 823 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 824 sfp_hwmon_to_rx_power(value); 825 return 0; 826 827 case hwmon_power_crit: 828 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 829 sfp_hwmon_to_rx_power(value); 830 return 0; 831 832 case hwmon_power_lcrit_alarm: 833 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 834 if (err < 0) 835 return err; 836 837 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 838 return 0; 839 840 case hwmon_power_min_alarm: 841 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 842 if (err < 0) 843 return err; 844 845 *value = !!(status & SFP_WARN1_RXPWR_LOW); 846 return 0; 847 848 case hwmon_power_max_alarm: 849 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 850 if (err < 0) 851 return err; 852 853 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 854 return 0; 855 856 case hwmon_power_crit_alarm: 857 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 858 if (err < 0) 859 return err; 860 861 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 862 return 0; 863 default: 864 return -EOPNOTSUPP; 865 } 866 867 return -EOPNOTSUPP; 868 } 869 870 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 871 u32 attr, int channel, long *value) 872 { 873 struct sfp *sfp = dev_get_drvdata(dev); 874 875 switch (type) { 876 case hwmon_temp: 877 return sfp_hwmon_temp(sfp, attr, value); 878 case hwmon_in: 879 return sfp_hwmon_vcc(sfp, attr, value); 880 case hwmon_curr: 881 return sfp_hwmon_bias(sfp, attr, value); 882 case hwmon_power: 883 switch (channel) { 884 case 0: 885 return sfp_hwmon_tx_power(sfp, attr, value); 886 case 1: 887 return sfp_hwmon_rx_power(sfp, attr, value); 888 default: 889 return -EOPNOTSUPP; 890 } 891 default: 892 return -EOPNOTSUPP; 893 } 894 } 895 896 static const struct hwmon_ops sfp_hwmon_ops = { 897 .is_visible = sfp_hwmon_is_visible, 898 .read = sfp_hwmon_read, 899 }; 900 901 static u32 sfp_hwmon_chip_config[] = { 902 HWMON_C_REGISTER_TZ, 903 0, 904 }; 905 906 static const struct hwmon_channel_info sfp_hwmon_chip = { 907 .type = hwmon_chip, 908 .config = sfp_hwmon_chip_config, 909 }; 910 911 static u32 sfp_hwmon_temp_config[] = { 912 HWMON_T_INPUT | 913 HWMON_T_MAX | HWMON_T_MIN | 914 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 915 HWMON_T_CRIT | HWMON_T_LCRIT | 916 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM, 917 0, 918 }; 919 920 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 921 .type = hwmon_temp, 922 .config = sfp_hwmon_temp_config, 923 }; 924 925 static u32 sfp_hwmon_vcc_config[] = { 926 HWMON_I_INPUT | 927 HWMON_I_MAX | HWMON_I_MIN | 928 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 929 HWMON_I_CRIT | HWMON_I_LCRIT | 930 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM, 931 0, 932 }; 933 934 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 935 .type = hwmon_in, 936 .config = sfp_hwmon_vcc_config, 937 }; 938 939 static u32 sfp_hwmon_bias_config[] = { 940 HWMON_C_INPUT | 941 HWMON_C_MAX | HWMON_C_MIN | 942 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 943 HWMON_C_CRIT | HWMON_C_LCRIT | 944 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM, 945 0, 946 }; 947 948 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 949 .type = hwmon_curr, 950 .config = sfp_hwmon_bias_config, 951 }; 952 953 static u32 sfp_hwmon_power_config[] = { 954 /* Transmit power */ 955 HWMON_P_INPUT | 956 HWMON_P_MAX | HWMON_P_MIN | 957 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 958 HWMON_P_CRIT | HWMON_P_LCRIT | 959 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM, 960 /* Receive power */ 961 HWMON_P_INPUT | 962 HWMON_P_MAX | HWMON_P_MIN | 963 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 964 HWMON_P_CRIT | HWMON_P_LCRIT | 965 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM, 966 0, 967 }; 968 969 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 970 .type = hwmon_power, 971 .config = sfp_hwmon_power_config, 972 }; 973 974 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 975 &sfp_hwmon_chip, 976 &sfp_hwmon_vcc_channel_info, 977 &sfp_hwmon_temp_channel_info, 978 &sfp_hwmon_bias_channel_info, 979 &sfp_hwmon_power_channel_info, 980 NULL, 981 }; 982 983 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 984 .ops = &sfp_hwmon_ops, 985 .info = sfp_hwmon_info, 986 }; 987 988 static int sfp_hwmon_insert(struct sfp *sfp) 989 { 990 int err, i; 991 992 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 993 return 0; 994 995 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 996 return 0; 997 998 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 999 /* This driver in general does not support address 1000 * change. 1001 */ 1002 return 0; 1003 1004 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1005 if (err < 0) 1006 return err; 1007 1008 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1009 if (!sfp->hwmon_name) 1010 return -ENODEV; 1011 1012 for (i = 0; sfp->hwmon_name[i]; i++) 1013 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1014 sfp->hwmon_name[i] = '_'; 1015 1016 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1017 sfp->hwmon_name, sfp, 1018 &sfp_hwmon_chip_info, 1019 NULL); 1020 1021 return PTR_ERR_OR_ZERO(sfp->hwmon_dev); 1022 } 1023 1024 static void sfp_hwmon_remove(struct sfp *sfp) 1025 { 1026 hwmon_device_unregister(sfp->hwmon_dev); 1027 kfree(sfp->hwmon_name); 1028 } 1029 #else 1030 static int sfp_hwmon_insert(struct sfp *sfp) 1031 { 1032 return 0; 1033 } 1034 1035 static void sfp_hwmon_remove(struct sfp *sfp) 1036 { 1037 } 1038 #endif 1039 1040 /* Helpers */ 1041 static void sfp_module_tx_disable(struct sfp *sfp) 1042 { 1043 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1044 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1045 sfp->state |= SFP_F_TX_DISABLE; 1046 sfp_set_state(sfp, sfp->state); 1047 } 1048 1049 static void sfp_module_tx_enable(struct sfp *sfp) 1050 { 1051 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1052 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1053 sfp->state &= ~SFP_F_TX_DISABLE; 1054 sfp_set_state(sfp, sfp->state); 1055 } 1056 1057 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1058 { 1059 unsigned int state = sfp->state; 1060 1061 if (state & SFP_F_TX_DISABLE) 1062 return; 1063 1064 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1065 1066 udelay(T_RESET_US); 1067 1068 sfp_set_state(sfp, state); 1069 } 1070 1071 /* SFP state machine */ 1072 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1073 { 1074 if (timeout) 1075 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1076 timeout); 1077 else 1078 cancel_delayed_work(&sfp->timeout); 1079 } 1080 1081 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1082 unsigned int timeout) 1083 { 1084 sfp->sm_state = state; 1085 sfp_sm_set_timer(sfp, timeout); 1086 } 1087 1088 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state, 1089 unsigned int timeout) 1090 { 1091 sfp->sm_mod_state = state; 1092 sfp_sm_set_timer(sfp, timeout); 1093 } 1094 1095 static void sfp_sm_phy_detach(struct sfp *sfp) 1096 { 1097 phy_stop(sfp->mod_phy); 1098 sfp_remove_phy(sfp->sfp_bus); 1099 phy_device_remove(sfp->mod_phy); 1100 phy_device_free(sfp->mod_phy); 1101 sfp->mod_phy = NULL; 1102 } 1103 1104 static void sfp_sm_probe_phy(struct sfp *sfp) 1105 { 1106 struct phy_device *phy; 1107 int err; 1108 1109 msleep(T_PHY_RESET_MS); 1110 1111 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR); 1112 if (phy == ERR_PTR(-ENODEV)) { 1113 dev_info(sfp->dev, "no PHY detected\n"); 1114 return; 1115 } 1116 if (IS_ERR(phy)) { 1117 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1118 return; 1119 } 1120 1121 err = sfp_add_phy(sfp->sfp_bus, phy); 1122 if (err) { 1123 phy_device_remove(phy); 1124 phy_device_free(phy); 1125 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1126 return; 1127 } 1128 1129 sfp->mod_phy = phy; 1130 phy_start(phy); 1131 } 1132 1133 static void sfp_sm_link_up(struct sfp *sfp) 1134 { 1135 sfp_link_up(sfp->sfp_bus); 1136 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1137 } 1138 1139 static void sfp_sm_link_down(struct sfp *sfp) 1140 { 1141 sfp_link_down(sfp->sfp_bus); 1142 } 1143 1144 static void sfp_sm_link_check_los(struct sfp *sfp) 1145 { 1146 unsigned int los = sfp->state & SFP_F_LOS; 1147 1148 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1149 * are set, we assume that no LOS signal is available. 1150 */ 1151 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) 1152 los ^= SFP_F_LOS; 1153 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) 1154 los = 0; 1155 1156 if (los) 1157 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1158 else 1159 sfp_sm_link_up(sfp); 1160 } 1161 1162 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1163 { 1164 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1165 event == SFP_E_LOS_LOW) || 1166 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1167 event == SFP_E_LOS_HIGH); 1168 } 1169 1170 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1171 { 1172 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1173 event == SFP_E_LOS_HIGH) || 1174 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1175 event == SFP_E_LOS_LOW); 1176 } 1177 1178 static void sfp_sm_fault(struct sfp *sfp, bool warn) 1179 { 1180 if (sfp->sm_retries && !--sfp->sm_retries) { 1181 dev_err(sfp->dev, 1182 "module persistently indicates fault, disabling\n"); 1183 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1184 } else { 1185 if (warn) 1186 dev_err(sfp->dev, "module transmit fault indicated\n"); 1187 1188 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER); 1189 } 1190 } 1191 1192 static void sfp_sm_mod_init(struct sfp *sfp) 1193 { 1194 sfp_module_tx_enable(sfp); 1195 1196 /* Wait t_init before indicating that the link is up, provided the 1197 * current state indicates no TX_FAULT. If TX_FAULT clears before 1198 * this time, that's fine too. 1199 */ 1200 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES); 1201 sfp->sm_retries = 5; 1202 1203 /* Setting the serdes link mode is guesswork: there's no 1204 * field in the EEPROM which indicates what mode should 1205 * be used. 1206 * 1207 * If it's a gigabit-only fiber module, it probably does 1208 * not have a PHY, so switch to 802.3z negotiation mode. 1209 * Otherwise, switch to SGMII mode (which is required to 1210 * support non-gigabit speeds) and probe for a PHY. 1211 */ 1212 if (sfp->id.base.e1000_base_t || 1213 sfp->id.base.e100_base_lx || 1214 sfp->id.base.e100_base_fx) 1215 sfp_sm_probe_phy(sfp); 1216 } 1217 1218 static int sfp_sm_mod_hpower(struct sfp *sfp) 1219 { 1220 u32 power; 1221 u8 val; 1222 int err; 1223 1224 power = 1000; 1225 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1226 power = 1500; 1227 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1228 power = 2000; 1229 1230 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE && 1231 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) != 1232 SFP_DIAGMON_DDM) { 1233 /* The module appears not to implement bus address 0xa2, 1234 * or requires an address change sequence, so assume that 1235 * the module powers up in the indicated power mode. 1236 */ 1237 if (power > sfp->max_power_mW) { 1238 dev_err(sfp->dev, 1239 "Host does not support %u.%uW modules\n", 1240 power / 1000, (power / 100) % 10); 1241 return -EINVAL; 1242 } 1243 return 0; 1244 } 1245 1246 if (power > sfp->max_power_mW) { 1247 dev_warn(sfp->dev, 1248 "Host does not support %u.%uW modules, module left in power mode 1\n", 1249 power / 1000, (power / 100) % 10); 1250 return 0; 1251 } 1252 1253 if (power <= 1000) 1254 return 0; 1255 1256 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1257 if (err != sizeof(val)) { 1258 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1259 err = -EAGAIN; 1260 goto err; 1261 } 1262 1263 val |= BIT(0); 1264 1265 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1266 if (err != sizeof(val)) { 1267 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1268 err = -EAGAIN; 1269 goto err; 1270 } 1271 1272 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1273 power / 1000, (power / 100) % 10); 1274 return T_HPOWER_LEVEL; 1275 1276 err: 1277 return err; 1278 } 1279 1280 static int sfp_sm_mod_probe(struct sfp *sfp) 1281 { 1282 /* SFP module inserted - read I2C data */ 1283 struct sfp_eeprom_id id; 1284 bool cotsworks; 1285 u8 check; 1286 int ret; 1287 1288 ret = sfp_read(sfp, false, 0, &id, sizeof(id)); 1289 if (ret < 0) { 1290 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1291 return -EAGAIN; 1292 } 1293 1294 if (ret != sizeof(id)) { 1295 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1296 return -EAGAIN; 1297 } 1298 1299 /* Cotsworks do not seem to update the checksums when they 1300 * do the final programming with the final module part number, 1301 * serial number and date code. 1302 */ 1303 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1304 1305 /* Validate the checksum over the base structure */ 1306 check = sfp_check(&id.base, sizeof(id.base) - 1); 1307 if (check != id.base.cc_base) { 1308 if (cotsworks) { 1309 dev_warn(sfp->dev, 1310 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1311 check, id.base.cc_base); 1312 } else { 1313 dev_err(sfp->dev, 1314 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1315 check, id.base.cc_base); 1316 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1317 16, 1, &id, sizeof(id), true); 1318 return -EINVAL; 1319 } 1320 } 1321 1322 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1323 if (check != id.ext.cc_ext) { 1324 if (cotsworks) { 1325 dev_warn(sfp->dev, 1326 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1327 check, id.ext.cc_ext); 1328 } else { 1329 dev_err(sfp->dev, 1330 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1331 check, id.ext.cc_ext); 1332 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1333 16, 1, &id, sizeof(id), true); 1334 memset(&id.ext, 0, sizeof(id.ext)); 1335 } 1336 } 1337 1338 sfp->id = id; 1339 1340 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1341 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1342 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1343 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1344 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1345 (int)sizeof(id.ext.datecode), id.ext.datecode); 1346 1347 /* Check whether we support this module */ 1348 if (!sfp->type->module_supported(&sfp->id)) { 1349 dev_err(sfp->dev, 1350 "module is not supported - phys id 0x%02x 0x%02x\n", 1351 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1352 return -EINVAL; 1353 } 1354 1355 /* If the module requires address swap mode, warn about it */ 1356 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1357 dev_warn(sfp->dev, 1358 "module address swap to access page 0xA2 is not supported.\n"); 1359 1360 ret = sfp_hwmon_insert(sfp); 1361 if (ret < 0) 1362 return ret; 1363 1364 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1365 if (ret < 0) 1366 return ret; 1367 1368 return sfp_sm_mod_hpower(sfp); 1369 } 1370 1371 static void sfp_sm_mod_remove(struct sfp *sfp) 1372 { 1373 sfp_module_remove(sfp->sfp_bus); 1374 1375 sfp_hwmon_remove(sfp); 1376 1377 if (sfp->mod_phy) 1378 sfp_sm_phy_detach(sfp); 1379 1380 sfp_module_tx_disable(sfp); 1381 1382 memset(&sfp->id, 0, sizeof(sfp->id)); 1383 1384 dev_info(sfp->dev, "module removed\n"); 1385 } 1386 1387 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 1388 { 1389 mutex_lock(&sfp->sm_mutex); 1390 1391 dev_dbg(sfp->dev, "SM: enter %u:%u:%u event %u\n", 1392 sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state, event); 1393 1394 /* This state machine tracks the insert/remove state of 1395 * the module, and handles probing the on-board EEPROM. 1396 */ 1397 switch (sfp->sm_mod_state) { 1398 default: 1399 if (event == SFP_E_INSERT) { 1400 sfp_module_tx_disable(sfp); 1401 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT); 1402 } 1403 break; 1404 1405 case SFP_MOD_PROBE: 1406 if (event == SFP_E_REMOVE) { 1407 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1408 } else if (event == SFP_E_TIMEOUT) { 1409 int val = sfp_sm_mod_probe(sfp); 1410 1411 if (val == 0) 1412 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1413 else if (val > 0) 1414 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val); 1415 else if (val != -EAGAIN) 1416 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0); 1417 else 1418 sfp_sm_set_timer(sfp, T_PROBE_RETRY); 1419 } 1420 break; 1421 1422 case SFP_MOD_HPOWER: 1423 if (event == SFP_E_TIMEOUT) { 1424 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1425 break; 1426 } 1427 /* fallthrough */ 1428 case SFP_MOD_PRESENT: 1429 case SFP_MOD_ERROR: 1430 if (event == SFP_E_REMOVE) { 1431 sfp_sm_mod_remove(sfp); 1432 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1433 } 1434 break; 1435 } 1436 1437 /* This state machine tracks the netdev up/down state */ 1438 switch (sfp->sm_dev_state) { 1439 default: 1440 if (event == SFP_E_DEV_UP) 1441 sfp->sm_dev_state = SFP_DEV_UP; 1442 break; 1443 1444 case SFP_DEV_UP: 1445 if (event == SFP_E_DEV_DOWN) { 1446 /* If the module has a PHY, avoid raising TX disable 1447 * as this resets the PHY. Otherwise, raise it to 1448 * turn the laser off. 1449 */ 1450 if (!sfp->mod_phy) 1451 sfp_module_tx_disable(sfp); 1452 sfp->sm_dev_state = SFP_DEV_DOWN; 1453 } 1454 break; 1455 } 1456 1457 /* Some events are global */ 1458 if (sfp->sm_state != SFP_S_DOWN && 1459 (sfp->sm_mod_state != SFP_MOD_PRESENT || 1460 sfp->sm_dev_state != SFP_DEV_UP)) { 1461 if (sfp->sm_state == SFP_S_LINK_UP && 1462 sfp->sm_dev_state == SFP_DEV_UP) 1463 sfp_sm_link_down(sfp); 1464 if (sfp->mod_phy) 1465 sfp_sm_phy_detach(sfp); 1466 sfp_sm_next(sfp, SFP_S_DOWN, 0); 1467 mutex_unlock(&sfp->sm_mutex); 1468 return; 1469 } 1470 1471 /* The main state machine */ 1472 switch (sfp->sm_state) { 1473 case SFP_S_DOWN: 1474 if (sfp->sm_mod_state == SFP_MOD_PRESENT && 1475 sfp->sm_dev_state == SFP_DEV_UP) 1476 sfp_sm_mod_init(sfp); 1477 break; 1478 1479 case SFP_S_INIT: 1480 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) 1481 sfp_sm_fault(sfp, true); 1482 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) 1483 sfp_sm_link_check_los(sfp); 1484 break; 1485 1486 case SFP_S_WAIT_LOS: 1487 if (event == SFP_E_TX_FAULT) 1488 sfp_sm_fault(sfp, true); 1489 else if (sfp_los_event_inactive(sfp, event)) 1490 sfp_sm_link_up(sfp); 1491 break; 1492 1493 case SFP_S_LINK_UP: 1494 if (event == SFP_E_TX_FAULT) { 1495 sfp_sm_link_down(sfp); 1496 sfp_sm_fault(sfp, true); 1497 } else if (sfp_los_event_active(sfp, event)) { 1498 sfp_sm_link_down(sfp); 1499 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1500 } 1501 break; 1502 1503 case SFP_S_TX_FAULT: 1504 if (event == SFP_E_TIMEOUT) { 1505 sfp_module_tx_fault_reset(sfp); 1506 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES); 1507 } 1508 break; 1509 1510 case SFP_S_REINIT: 1511 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 1512 sfp_sm_fault(sfp, false); 1513 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 1514 dev_info(sfp->dev, "module transmit fault recovered\n"); 1515 sfp_sm_link_check_los(sfp); 1516 } 1517 break; 1518 1519 case SFP_S_TX_DISABLE: 1520 break; 1521 } 1522 1523 dev_dbg(sfp->dev, "SM: exit %u:%u:%u\n", 1524 sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state); 1525 1526 mutex_unlock(&sfp->sm_mutex); 1527 } 1528 1529 static void sfp_start(struct sfp *sfp) 1530 { 1531 sfp_sm_event(sfp, SFP_E_DEV_UP); 1532 } 1533 1534 static void sfp_stop(struct sfp *sfp) 1535 { 1536 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 1537 } 1538 1539 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 1540 { 1541 /* locking... and check module is present */ 1542 1543 if (sfp->id.ext.sff8472_compliance && 1544 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 1545 modinfo->type = ETH_MODULE_SFF_8472; 1546 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 1547 } else { 1548 modinfo->type = ETH_MODULE_SFF_8079; 1549 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 1550 } 1551 return 0; 1552 } 1553 1554 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 1555 u8 *data) 1556 { 1557 unsigned int first, last, len; 1558 int ret; 1559 1560 if (ee->len == 0) 1561 return -EINVAL; 1562 1563 first = ee->offset; 1564 last = ee->offset + ee->len; 1565 if (first < ETH_MODULE_SFF_8079_LEN) { 1566 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 1567 len -= first; 1568 1569 ret = sfp_read(sfp, false, first, data, len); 1570 if (ret < 0) 1571 return ret; 1572 1573 first += len; 1574 data += len; 1575 } 1576 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 1577 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 1578 len -= first; 1579 first -= ETH_MODULE_SFF_8079_LEN; 1580 1581 ret = sfp_read(sfp, true, first, data, len); 1582 if (ret < 0) 1583 return ret; 1584 } 1585 return 0; 1586 } 1587 1588 static const struct sfp_socket_ops sfp_module_ops = { 1589 .start = sfp_start, 1590 .stop = sfp_stop, 1591 .module_info = sfp_module_info, 1592 .module_eeprom = sfp_module_eeprom, 1593 }; 1594 1595 static void sfp_timeout(struct work_struct *work) 1596 { 1597 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 1598 1599 rtnl_lock(); 1600 sfp_sm_event(sfp, SFP_E_TIMEOUT); 1601 rtnl_unlock(); 1602 } 1603 1604 static void sfp_check_state(struct sfp *sfp) 1605 { 1606 unsigned int state, i, changed; 1607 1608 state = sfp_get_state(sfp); 1609 changed = state ^ sfp->state; 1610 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 1611 1612 for (i = 0; i < GPIO_MAX; i++) 1613 if (changed & BIT(i)) 1614 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 1615 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 1616 1617 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 1618 sfp->state = state; 1619 1620 rtnl_lock(); 1621 if (changed & SFP_F_PRESENT) 1622 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 1623 SFP_E_INSERT : SFP_E_REMOVE); 1624 1625 if (changed & SFP_F_TX_FAULT) 1626 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 1627 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 1628 1629 if (changed & SFP_F_LOS) 1630 sfp_sm_event(sfp, state & SFP_F_LOS ? 1631 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 1632 rtnl_unlock(); 1633 } 1634 1635 static irqreturn_t sfp_irq(int irq, void *data) 1636 { 1637 struct sfp *sfp = data; 1638 1639 sfp_check_state(sfp); 1640 1641 return IRQ_HANDLED; 1642 } 1643 1644 static void sfp_poll(struct work_struct *work) 1645 { 1646 struct sfp *sfp = container_of(work, struct sfp, poll.work); 1647 1648 sfp_check_state(sfp); 1649 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1650 } 1651 1652 static struct sfp *sfp_alloc(struct device *dev) 1653 { 1654 struct sfp *sfp; 1655 1656 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 1657 if (!sfp) 1658 return ERR_PTR(-ENOMEM); 1659 1660 sfp->dev = dev; 1661 1662 mutex_init(&sfp->sm_mutex); 1663 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 1664 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 1665 1666 return sfp; 1667 } 1668 1669 static void sfp_cleanup(void *data) 1670 { 1671 struct sfp *sfp = data; 1672 1673 cancel_delayed_work_sync(&sfp->poll); 1674 cancel_delayed_work_sync(&sfp->timeout); 1675 if (sfp->i2c_mii) { 1676 mdiobus_unregister(sfp->i2c_mii); 1677 mdiobus_free(sfp->i2c_mii); 1678 } 1679 if (sfp->i2c) 1680 i2c_put_adapter(sfp->i2c); 1681 kfree(sfp); 1682 } 1683 1684 static int sfp_probe(struct platform_device *pdev) 1685 { 1686 const struct sff_data *sff; 1687 struct sfp *sfp; 1688 bool poll = false; 1689 int irq, err, i; 1690 1691 sfp = sfp_alloc(&pdev->dev); 1692 if (IS_ERR(sfp)) 1693 return PTR_ERR(sfp); 1694 1695 platform_set_drvdata(pdev, sfp); 1696 1697 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 1698 if (err < 0) 1699 return err; 1700 1701 sff = sfp->type = &sfp_data; 1702 1703 if (pdev->dev.of_node) { 1704 struct device_node *node = pdev->dev.of_node; 1705 const struct of_device_id *id; 1706 struct i2c_adapter *i2c; 1707 struct device_node *np; 1708 1709 id = of_match_node(sfp_of_match, node); 1710 if (WARN_ON(!id)) 1711 return -EINVAL; 1712 1713 sff = sfp->type = id->data; 1714 1715 np = of_parse_phandle(node, "i2c-bus", 0); 1716 if (!np) { 1717 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 1718 return -ENODEV; 1719 } 1720 1721 i2c = of_find_i2c_adapter_by_node(np); 1722 of_node_put(np); 1723 if (!i2c) 1724 return -EPROBE_DEFER; 1725 1726 err = sfp_i2c_configure(sfp, i2c); 1727 if (err < 0) { 1728 i2c_put_adapter(i2c); 1729 return err; 1730 } 1731 } 1732 1733 for (i = 0; i < GPIO_MAX; i++) 1734 if (sff->gpios & BIT(i)) { 1735 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 1736 gpio_of_names[i], gpio_flags[i]); 1737 if (IS_ERR(sfp->gpio[i])) 1738 return PTR_ERR(sfp->gpio[i]); 1739 } 1740 1741 sfp->get_state = sfp_gpio_get_state; 1742 sfp->set_state = sfp_gpio_set_state; 1743 1744 /* Modules that have no detect signal are always present */ 1745 if (!(sfp->gpio[GPIO_MODDEF0])) 1746 sfp->get_state = sff_gpio_get_state; 1747 1748 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 1749 &sfp->max_power_mW); 1750 if (!sfp->max_power_mW) 1751 sfp->max_power_mW = 1000; 1752 1753 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 1754 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 1755 1756 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 1757 if (!sfp->sfp_bus) 1758 return -ENOMEM; 1759 1760 /* Get the initial state, and always signal TX disable, 1761 * since the network interface will not be up. 1762 */ 1763 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 1764 1765 if (sfp->gpio[GPIO_RATE_SELECT] && 1766 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 1767 sfp->state |= SFP_F_RATE_SELECT; 1768 sfp_set_state(sfp, sfp->state); 1769 sfp_module_tx_disable(sfp); 1770 rtnl_lock(); 1771 if (sfp->state & SFP_F_PRESENT) 1772 sfp_sm_event(sfp, SFP_E_INSERT); 1773 rtnl_unlock(); 1774 1775 for (i = 0; i < GPIO_MAX; i++) { 1776 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 1777 continue; 1778 1779 irq = gpiod_to_irq(sfp->gpio[i]); 1780 if (!irq) { 1781 poll = true; 1782 continue; 1783 } 1784 1785 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq, 1786 IRQF_ONESHOT | 1787 IRQF_TRIGGER_RISING | 1788 IRQF_TRIGGER_FALLING, 1789 dev_name(sfp->dev), sfp); 1790 if (err) 1791 poll = true; 1792 } 1793 1794 if (poll) 1795 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1796 1797 /* We could have an issue in cases no Tx disable pin is available or 1798 * wired as modules using a laser as their light source will continue to 1799 * be active when the fiber is removed. This could be a safety issue and 1800 * we should at least warn the user about that. 1801 */ 1802 if (!sfp->gpio[GPIO_TX_DISABLE]) 1803 dev_warn(sfp->dev, 1804 "No tx_disable pin: SFP modules will always be emitting.\n"); 1805 1806 return 0; 1807 } 1808 1809 static int sfp_remove(struct platform_device *pdev) 1810 { 1811 struct sfp *sfp = platform_get_drvdata(pdev); 1812 1813 sfp_unregister_socket(sfp->sfp_bus); 1814 1815 return 0; 1816 } 1817 1818 static struct platform_driver sfp_driver = { 1819 .probe = sfp_probe, 1820 .remove = sfp_remove, 1821 .driver = { 1822 .name = "sfp", 1823 .of_match_table = sfp_of_match, 1824 }, 1825 }; 1826 1827 static int sfp_init(void) 1828 { 1829 poll_jiffies = msecs_to_jiffies(100); 1830 1831 return platform_driver_register(&sfp_driver); 1832 } 1833 module_init(sfp_init); 1834 1835 static void sfp_exit(void) 1836 { 1837 platform_driver_unregister(&sfp_driver); 1838 } 1839 module_exit(sfp_exit); 1840 1841 MODULE_ALIAS("platform:sfp"); 1842 MODULE_AUTHOR("Russell King"); 1843 MODULE_LICENSE("GPL v2"); 1844