xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 994f77f3)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state;
261 
262 	struct delayed_work poll;
263 	struct delayed_work timeout;
264 	struct mutex sm_mutex;			/* Protects state machine */
265 	unsigned char sm_mod_state;
266 	unsigned char sm_mod_tries_init;
267 	unsigned char sm_mod_tries;
268 	unsigned char sm_dev_state;
269 	unsigned short sm_state;
270 	unsigned char sm_fault_retries;
271 	unsigned char sm_phy_retries;
272 
273 	struct sfp_eeprom_id id;
274 	unsigned int module_power_mW;
275 	unsigned int module_t_start_up;
276 	unsigned int module_t_wait;
277 
278 	unsigned int rate_kbd;
279 	unsigned int rs_threshold_kbd;
280 	unsigned int rs_state_mask;
281 
282 	bool have_a2;
283 	bool tx_fault_ignore;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 	sfp->tx_fault_ignore = true;
351 }
352 
353 // For 10GBASE-T short-reach modules
354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359 
360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365 
366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 	sfp_fixup_10gbaset_30m(sfp);
369 
370 	// These SFPs need 4 seconds before the PHY can be accessed
371 	sfp_fixup_rollball_proto(sfp, 4);
372 }
373 
374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 	/* Ignore the TX_FAULT and LOS signals on this module.
377 	 * these are possibly used for other purposes on this
378 	 * module, e.g. a serial port.
379 	 */
380 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382 
383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 	// Rollball SFPs need 25 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 25);
387 }
388 
389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 	sfp_fixup_rollball(sfp);
392 
393 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394 	 * burned in EEPROM. For PHY probing we need the correct one.
395 	 */
396 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398 
399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 				unsigned long *modes,
401 				unsigned long *interfaces)
402 {
403 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406 
407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 				      unsigned long *modes,
409 				      unsigned long *interfaces)
410 {
411 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413 
414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 			       unsigned long *modes,
416 			       unsigned long *interfaces)
417 {
418 	/* Copper 2.5G SFP */
419 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 	sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423 
424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 				      unsigned long *modes,
426 				      unsigned long *interfaces)
427 {
428 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 	 * types including 10G Ethernet which is not truth. So clear all claimed
430 	 * modes and set only one mode which module supports: 1000baseX_Full.
431 	 */
432 	linkmode_zero(modes);
433 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435 
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440 
441 static const struct sfp_quirk sfp_quirks[] = {
442 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 	// report 2500MBd NRZ in their EEPROM
444 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445 
446 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 	// NRZ in their EEPROM
448 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 		  sfp_fixup_long_startup),
450 
451 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 	// Rollball protocol to talk to the PHY.
453 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454 
455 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456 	// NRZ in their EEPROM
457 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458 		  sfp_fixup_ignore_tx_fault),
459 
460 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461 
462 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463 	// 2600MBd in their EERPOM
464 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465 
466 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467 	// their EEPROM
468 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469 		  sfp_fixup_ignore_tx_fault),
470 
471 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
472 	// 2500MBd NRZ in their EEPROM
473 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
474 
475 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
476 
477 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
478 	// Rollball protocol to talk to the PHY.
479 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
480 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
481 
482 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
483 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
484 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
485 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
486 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
487 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
488 };
489 
490 static size_t sfp_strlen(const char *str, size_t maxlen)
491 {
492 	size_t size, i;
493 
494 	/* Trailing characters should be filled with space chars, but
495 	 * some manufacturers can't read SFF-8472 and use NUL.
496 	 */
497 	for (i = 0, size = 0; i < maxlen; i++)
498 		if (str[i] != ' ' && str[i] != '\0')
499 			size = i + 1;
500 
501 	return size;
502 }
503 
504 static bool sfp_match(const char *qs, const char *str, size_t len)
505 {
506 	if (!qs)
507 		return true;
508 	if (strlen(qs) != len)
509 		return false;
510 	return !strncmp(qs, str, len);
511 }
512 
513 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
514 {
515 	const struct sfp_quirk *q;
516 	unsigned int i;
517 	size_t vs, ps;
518 
519 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
520 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
521 
522 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
523 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
524 		    sfp_match(q->part, id->base.vendor_pn, ps))
525 			return q;
526 
527 	return NULL;
528 }
529 
530 static unsigned long poll_jiffies;
531 
532 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
533 {
534 	unsigned int i, state, v;
535 
536 	for (i = state = 0; i < GPIO_MAX; i++) {
537 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
538 			continue;
539 
540 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
541 		if (v)
542 			state |= BIT(i);
543 	}
544 
545 	return state;
546 }
547 
548 static unsigned int sff_gpio_get_state(struct sfp *sfp)
549 {
550 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
551 }
552 
553 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
554 {
555 	unsigned int drive;
556 
557 	if (state & SFP_F_PRESENT)
558 		/* If the module is present, drive the requested signals */
559 		drive = sfp->state_hw_drive;
560 	else
561 		/* Otherwise, let them float to the pull-ups */
562 		drive = 0;
563 
564 	if (sfp->gpio[GPIO_TX_DISABLE]) {
565 		if (drive & SFP_F_TX_DISABLE)
566 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
567 					       state & SFP_F_TX_DISABLE);
568 		else
569 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
570 	}
571 
572 	if (sfp->gpio[GPIO_RS0]) {
573 		if (drive & SFP_F_RS0)
574 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
575 					       state & SFP_F_RS0);
576 		else
577 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
578 	}
579 
580 	if (sfp->gpio[GPIO_RS1]) {
581 		if (drive & SFP_F_RS1)
582 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
583 					       state & SFP_F_RS1);
584 		else
585 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
586 	}
587 }
588 
589 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
590 			size_t len)
591 {
592 	struct i2c_msg msgs[2];
593 	u8 bus_addr = a2 ? 0x51 : 0x50;
594 	size_t block_size = sfp->i2c_block_size;
595 	size_t this_len;
596 	int ret;
597 
598 	msgs[0].addr = bus_addr;
599 	msgs[0].flags = 0;
600 	msgs[0].len = 1;
601 	msgs[0].buf = &dev_addr;
602 	msgs[1].addr = bus_addr;
603 	msgs[1].flags = I2C_M_RD;
604 	msgs[1].len = len;
605 	msgs[1].buf = buf;
606 
607 	while (len) {
608 		this_len = len;
609 		if (this_len > block_size)
610 			this_len = block_size;
611 
612 		msgs[1].len = this_len;
613 
614 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
615 		if (ret < 0)
616 			return ret;
617 
618 		if (ret != ARRAY_SIZE(msgs))
619 			break;
620 
621 		msgs[1].buf += this_len;
622 		dev_addr += this_len;
623 		len -= this_len;
624 	}
625 
626 	return msgs[1].buf - (u8 *)buf;
627 }
628 
629 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
630 	size_t len)
631 {
632 	struct i2c_msg msgs[1];
633 	u8 bus_addr = a2 ? 0x51 : 0x50;
634 	int ret;
635 
636 	msgs[0].addr = bus_addr;
637 	msgs[0].flags = 0;
638 	msgs[0].len = 1 + len;
639 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
640 	if (!msgs[0].buf)
641 		return -ENOMEM;
642 
643 	msgs[0].buf[0] = dev_addr;
644 	memcpy(&msgs[0].buf[1], buf, len);
645 
646 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
647 
648 	kfree(msgs[0].buf);
649 
650 	if (ret < 0)
651 		return ret;
652 
653 	return ret == ARRAY_SIZE(msgs) ? len : 0;
654 }
655 
656 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
657 {
658 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
659 		return -EINVAL;
660 
661 	sfp->i2c = i2c;
662 	sfp->read = sfp_i2c_read;
663 	sfp->write = sfp_i2c_write;
664 
665 	return 0;
666 }
667 
668 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
669 {
670 	struct mii_bus *i2c_mii;
671 	int ret;
672 
673 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
674 	if (IS_ERR(i2c_mii))
675 		return PTR_ERR(i2c_mii);
676 
677 	i2c_mii->name = "SFP I2C Bus";
678 	i2c_mii->phy_mask = ~0;
679 
680 	ret = mdiobus_register(i2c_mii);
681 	if (ret < 0) {
682 		mdiobus_free(i2c_mii);
683 		return ret;
684 	}
685 
686 	sfp->i2c_mii = i2c_mii;
687 
688 	return 0;
689 }
690 
691 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
692 {
693 	mdiobus_unregister(sfp->i2c_mii);
694 	sfp->i2c_mii = NULL;
695 }
696 
697 /* Interface */
698 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
699 {
700 	return sfp->read(sfp, a2, addr, buf, len);
701 }
702 
703 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
704 {
705 	return sfp->write(sfp, a2, addr, buf, len);
706 }
707 
708 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
709 {
710 	int ret;
711 	u8 old, v;
712 
713 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
714 	if (ret != sizeof(old))
715 		return ret;
716 
717 	v = (old & ~mask) | (val & mask);
718 	if (v == old)
719 		return sizeof(v);
720 
721 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
722 }
723 
724 static unsigned int sfp_soft_get_state(struct sfp *sfp)
725 {
726 	unsigned int state = 0;
727 	u8 status;
728 	int ret;
729 
730 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
731 	if (ret == sizeof(status)) {
732 		if (status & SFP_STATUS_RX_LOS)
733 			state |= SFP_F_LOS;
734 		if (status & SFP_STATUS_TX_FAULT)
735 			state |= SFP_F_TX_FAULT;
736 	} else {
737 		dev_err_ratelimited(sfp->dev,
738 				    "failed to read SFP soft status: %pe\n",
739 				    ERR_PTR(ret));
740 		/* Preserve the current state */
741 		state = sfp->state;
742 	}
743 
744 	return state & sfp->state_soft_mask;
745 }
746 
747 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
748 			       unsigned int soft)
749 {
750 	u8 mask = 0;
751 	u8 val = 0;
752 
753 	if (soft & SFP_F_TX_DISABLE)
754 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
755 	if (state & SFP_F_TX_DISABLE)
756 		val |= SFP_STATUS_TX_DISABLE_FORCE;
757 
758 	if (soft & SFP_F_RS0)
759 		mask |= SFP_STATUS_RS0_SELECT;
760 	if (state & SFP_F_RS0)
761 		val |= SFP_STATUS_RS0_SELECT;
762 
763 	if (mask)
764 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
765 
766 	val = mask = 0;
767 	if (soft & SFP_F_RS1)
768 		mask |= SFP_EXT_STATUS_RS1_SELECT;
769 	if (state & SFP_F_RS1)
770 		val |= SFP_EXT_STATUS_RS1_SELECT;
771 
772 	if (mask)
773 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
774 }
775 
776 static void sfp_soft_start_poll(struct sfp *sfp)
777 {
778 	const struct sfp_eeprom_id *id = &sfp->id;
779 	unsigned int mask = 0;
780 
781 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
782 		mask |= SFP_F_TX_DISABLE;
783 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
784 		mask |= SFP_F_TX_FAULT;
785 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
786 		mask |= SFP_F_LOS;
787 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
788 		mask |= sfp->rs_state_mask;
789 
790 	mutex_lock(&sfp->st_mutex);
791 	// Poll the soft state for hardware pins we want to ignore
792 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
793 
794 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
795 	    !sfp->need_poll)
796 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
797 	mutex_unlock(&sfp->st_mutex);
798 }
799 
800 static void sfp_soft_stop_poll(struct sfp *sfp)
801 {
802 	mutex_lock(&sfp->st_mutex);
803 	sfp->state_soft_mask = 0;
804 	mutex_unlock(&sfp->st_mutex);
805 }
806 
807 /* sfp_get_state() - must be called with st_mutex held, or in the
808  * initialisation path.
809  */
810 static unsigned int sfp_get_state(struct sfp *sfp)
811 {
812 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
813 	unsigned int state;
814 
815 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
816 	if (state & SFP_F_PRESENT && soft)
817 		state |= sfp_soft_get_state(sfp);
818 
819 	return state;
820 }
821 
822 /* sfp_set_state() - must be called with st_mutex held, or in the
823  * initialisation path.
824  */
825 static void sfp_set_state(struct sfp *sfp, unsigned int state)
826 {
827 	unsigned int soft;
828 
829 	sfp->set_state(sfp, state);
830 
831 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
832 	if (state & SFP_F_PRESENT && soft)
833 		sfp_soft_set_state(sfp, state, soft);
834 }
835 
836 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
837 {
838 	mutex_lock(&sfp->st_mutex);
839 	sfp->state = (sfp->state & ~mask) | set;
840 	sfp_set_state(sfp, sfp->state);
841 	mutex_unlock(&sfp->st_mutex);
842 }
843 
844 static unsigned int sfp_check(void *buf, size_t len)
845 {
846 	u8 *p, check;
847 
848 	for (p = buf, check = 0; len; p++, len--)
849 		check += *p;
850 
851 	return check;
852 }
853 
854 /* hwmon */
855 #if IS_ENABLED(CONFIG_HWMON)
856 static umode_t sfp_hwmon_is_visible(const void *data,
857 				    enum hwmon_sensor_types type,
858 				    u32 attr, int channel)
859 {
860 	const struct sfp *sfp = data;
861 
862 	switch (type) {
863 	case hwmon_temp:
864 		switch (attr) {
865 		case hwmon_temp_min_alarm:
866 		case hwmon_temp_max_alarm:
867 		case hwmon_temp_lcrit_alarm:
868 		case hwmon_temp_crit_alarm:
869 		case hwmon_temp_min:
870 		case hwmon_temp_max:
871 		case hwmon_temp_lcrit:
872 		case hwmon_temp_crit:
873 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
874 				return 0;
875 			fallthrough;
876 		case hwmon_temp_input:
877 		case hwmon_temp_label:
878 			return 0444;
879 		default:
880 			return 0;
881 		}
882 	case hwmon_in:
883 		switch (attr) {
884 		case hwmon_in_min_alarm:
885 		case hwmon_in_max_alarm:
886 		case hwmon_in_lcrit_alarm:
887 		case hwmon_in_crit_alarm:
888 		case hwmon_in_min:
889 		case hwmon_in_max:
890 		case hwmon_in_lcrit:
891 		case hwmon_in_crit:
892 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
893 				return 0;
894 			fallthrough;
895 		case hwmon_in_input:
896 		case hwmon_in_label:
897 			return 0444;
898 		default:
899 			return 0;
900 		}
901 	case hwmon_curr:
902 		switch (attr) {
903 		case hwmon_curr_min_alarm:
904 		case hwmon_curr_max_alarm:
905 		case hwmon_curr_lcrit_alarm:
906 		case hwmon_curr_crit_alarm:
907 		case hwmon_curr_min:
908 		case hwmon_curr_max:
909 		case hwmon_curr_lcrit:
910 		case hwmon_curr_crit:
911 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
912 				return 0;
913 			fallthrough;
914 		case hwmon_curr_input:
915 		case hwmon_curr_label:
916 			return 0444;
917 		default:
918 			return 0;
919 		}
920 	case hwmon_power:
921 		/* External calibration of receive power requires
922 		 * floating point arithmetic. Doing that in the kernel
923 		 * is not easy, so just skip it. If the module does
924 		 * not require external calibration, we can however
925 		 * show receiver power, since FP is then not needed.
926 		 */
927 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
928 		    channel == 1)
929 			return 0;
930 		switch (attr) {
931 		case hwmon_power_min_alarm:
932 		case hwmon_power_max_alarm:
933 		case hwmon_power_lcrit_alarm:
934 		case hwmon_power_crit_alarm:
935 		case hwmon_power_min:
936 		case hwmon_power_max:
937 		case hwmon_power_lcrit:
938 		case hwmon_power_crit:
939 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
940 				return 0;
941 			fallthrough;
942 		case hwmon_power_input:
943 		case hwmon_power_label:
944 			return 0444;
945 		default:
946 			return 0;
947 		}
948 	default:
949 		return 0;
950 	}
951 }
952 
953 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
954 {
955 	__be16 val;
956 	int err;
957 
958 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
959 	if (err < 0)
960 		return err;
961 
962 	*value = be16_to_cpu(val);
963 
964 	return 0;
965 }
966 
967 static void sfp_hwmon_to_rx_power(long *value)
968 {
969 	*value = DIV_ROUND_CLOSEST(*value, 10);
970 }
971 
972 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
973 				long *value)
974 {
975 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
976 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
977 }
978 
979 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
980 {
981 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
982 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
983 
984 	if (*value >= 0x8000)
985 		*value -= 0x10000;
986 
987 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
988 }
989 
990 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
991 {
992 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
993 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
994 
995 	*value = DIV_ROUND_CLOSEST(*value, 10);
996 }
997 
998 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
999 {
1000 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1001 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1002 
1003 	*value = DIV_ROUND_CLOSEST(*value, 500);
1004 }
1005 
1006 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1007 {
1008 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1009 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1010 
1011 	*value = DIV_ROUND_CLOSEST(*value, 10);
1012 }
1013 
1014 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1015 {
1016 	int err;
1017 
1018 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1019 	if (err < 0)
1020 		return err;
1021 
1022 	sfp_hwmon_calibrate_temp(sfp, value);
1023 
1024 	return 0;
1025 }
1026 
1027 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1028 {
1029 	int err;
1030 
1031 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1032 	if (err < 0)
1033 		return err;
1034 
1035 	sfp_hwmon_calibrate_vcc(sfp, value);
1036 
1037 	return 0;
1038 }
1039 
1040 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1041 {
1042 	int err;
1043 
1044 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1045 	if (err < 0)
1046 		return err;
1047 
1048 	sfp_hwmon_calibrate_bias(sfp, value);
1049 
1050 	return 0;
1051 }
1052 
1053 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1054 {
1055 	int err;
1056 
1057 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1058 	if (err < 0)
1059 		return err;
1060 
1061 	sfp_hwmon_calibrate_tx_power(sfp, value);
1062 
1063 	return 0;
1064 }
1065 
1066 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1067 {
1068 	int err;
1069 
1070 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1071 	if (err < 0)
1072 		return err;
1073 
1074 	sfp_hwmon_to_rx_power(value);
1075 
1076 	return 0;
1077 }
1078 
1079 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1080 {
1081 	u8 status;
1082 	int err;
1083 
1084 	switch (attr) {
1085 	case hwmon_temp_input:
1086 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1087 
1088 	case hwmon_temp_lcrit:
1089 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1090 		sfp_hwmon_calibrate_temp(sfp, value);
1091 		return 0;
1092 
1093 	case hwmon_temp_min:
1094 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1095 		sfp_hwmon_calibrate_temp(sfp, value);
1096 		return 0;
1097 	case hwmon_temp_max:
1098 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1099 		sfp_hwmon_calibrate_temp(sfp, value);
1100 		return 0;
1101 
1102 	case hwmon_temp_crit:
1103 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1104 		sfp_hwmon_calibrate_temp(sfp, value);
1105 		return 0;
1106 
1107 	case hwmon_temp_lcrit_alarm:
1108 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1109 		if (err < 0)
1110 			return err;
1111 
1112 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1113 		return 0;
1114 
1115 	case hwmon_temp_min_alarm:
1116 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1117 		if (err < 0)
1118 			return err;
1119 
1120 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1121 		return 0;
1122 
1123 	case hwmon_temp_max_alarm:
1124 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1125 		if (err < 0)
1126 			return err;
1127 
1128 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1129 		return 0;
1130 
1131 	case hwmon_temp_crit_alarm:
1132 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133 		if (err < 0)
1134 			return err;
1135 
1136 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1137 		return 0;
1138 	default:
1139 		return -EOPNOTSUPP;
1140 	}
1141 
1142 	return -EOPNOTSUPP;
1143 }
1144 
1145 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1146 {
1147 	u8 status;
1148 	int err;
1149 
1150 	switch (attr) {
1151 	case hwmon_in_input:
1152 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1153 
1154 	case hwmon_in_lcrit:
1155 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1156 		sfp_hwmon_calibrate_vcc(sfp, value);
1157 		return 0;
1158 
1159 	case hwmon_in_min:
1160 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1161 		sfp_hwmon_calibrate_vcc(sfp, value);
1162 		return 0;
1163 
1164 	case hwmon_in_max:
1165 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1166 		sfp_hwmon_calibrate_vcc(sfp, value);
1167 		return 0;
1168 
1169 	case hwmon_in_crit:
1170 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1171 		sfp_hwmon_calibrate_vcc(sfp, value);
1172 		return 0;
1173 
1174 	case hwmon_in_lcrit_alarm:
1175 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1176 		if (err < 0)
1177 			return err;
1178 
1179 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1180 		return 0;
1181 
1182 	case hwmon_in_min_alarm:
1183 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1184 		if (err < 0)
1185 			return err;
1186 
1187 		*value = !!(status & SFP_WARN0_VCC_LOW);
1188 		return 0;
1189 
1190 	case hwmon_in_max_alarm:
1191 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1192 		if (err < 0)
1193 			return err;
1194 
1195 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1196 		return 0;
1197 
1198 	case hwmon_in_crit_alarm:
1199 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200 		if (err < 0)
1201 			return err;
1202 
1203 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1204 		return 0;
1205 	default:
1206 		return -EOPNOTSUPP;
1207 	}
1208 
1209 	return -EOPNOTSUPP;
1210 }
1211 
1212 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1213 {
1214 	u8 status;
1215 	int err;
1216 
1217 	switch (attr) {
1218 	case hwmon_curr_input:
1219 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1220 
1221 	case hwmon_curr_lcrit:
1222 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1223 		sfp_hwmon_calibrate_bias(sfp, value);
1224 		return 0;
1225 
1226 	case hwmon_curr_min:
1227 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1228 		sfp_hwmon_calibrate_bias(sfp, value);
1229 		return 0;
1230 
1231 	case hwmon_curr_max:
1232 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1233 		sfp_hwmon_calibrate_bias(sfp, value);
1234 		return 0;
1235 
1236 	case hwmon_curr_crit:
1237 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1238 		sfp_hwmon_calibrate_bias(sfp, value);
1239 		return 0;
1240 
1241 	case hwmon_curr_lcrit_alarm:
1242 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1243 		if (err < 0)
1244 			return err;
1245 
1246 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1247 		return 0;
1248 
1249 	case hwmon_curr_min_alarm:
1250 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1251 		if (err < 0)
1252 			return err;
1253 
1254 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1255 		return 0;
1256 
1257 	case hwmon_curr_max_alarm:
1258 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1259 		if (err < 0)
1260 			return err;
1261 
1262 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1263 		return 0;
1264 
1265 	case hwmon_curr_crit_alarm:
1266 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1267 		if (err < 0)
1268 			return err;
1269 
1270 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1271 		return 0;
1272 	default:
1273 		return -EOPNOTSUPP;
1274 	}
1275 
1276 	return -EOPNOTSUPP;
1277 }
1278 
1279 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1280 {
1281 	u8 status;
1282 	int err;
1283 
1284 	switch (attr) {
1285 	case hwmon_power_input:
1286 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1287 
1288 	case hwmon_power_lcrit:
1289 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1290 		sfp_hwmon_calibrate_tx_power(sfp, value);
1291 		return 0;
1292 
1293 	case hwmon_power_min:
1294 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1295 		sfp_hwmon_calibrate_tx_power(sfp, value);
1296 		return 0;
1297 
1298 	case hwmon_power_max:
1299 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1300 		sfp_hwmon_calibrate_tx_power(sfp, value);
1301 		return 0;
1302 
1303 	case hwmon_power_crit:
1304 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1305 		sfp_hwmon_calibrate_tx_power(sfp, value);
1306 		return 0;
1307 
1308 	case hwmon_power_lcrit_alarm:
1309 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1310 		if (err < 0)
1311 			return err;
1312 
1313 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1314 		return 0;
1315 
1316 	case hwmon_power_min_alarm:
1317 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1318 		if (err < 0)
1319 			return err;
1320 
1321 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1322 		return 0;
1323 
1324 	case hwmon_power_max_alarm:
1325 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1326 		if (err < 0)
1327 			return err;
1328 
1329 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1330 		return 0;
1331 
1332 	case hwmon_power_crit_alarm:
1333 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1334 		if (err < 0)
1335 			return err;
1336 
1337 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1338 		return 0;
1339 	default:
1340 		return -EOPNOTSUPP;
1341 	}
1342 
1343 	return -EOPNOTSUPP;
1344 }
1345 
1346 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1347 {
1348 	u8 status;
1349 	int err;
1350 
1351 	switch (attr) {
1352 	case hwmon_power_input:
1353 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1354 
1355 	case hwmon_power_lcrit:
1356 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1357 		sfp_hwmon_to_rx_power(value);
1358 		return 0;
1359 
1360 	case hwmon_power_min:
1361 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1362 		sfp_hwmon_to_rx_power(value);
1363 		return 0;
1364 
1365 	case hwmon_power_max:
1366 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1367 		sfp_hwmon_to_rx_power(value);
1368 		return 0;
1369 
1370 	case hwmon_power_crit:
1371 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1372 		sfp_hwmon_to_rx_power(value);
1373 		return 0;
1374 
1375 	case hwmon_power_lcrit_alarm:
1376 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1377 		if (err < 0)
1378 			return err;
1379 
1380 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1381 		return 0;
1382 
1383 	case hwmon_power_min_alarm:
1384 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1385 		if (err < 0)
1386 			return err;
1387 
1388 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1389 		return 0;
1390 
1391 	case hwmon_power_max_alarm:
1392 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1393 		if (err < 0)
1394 			return err;
1395 
1396 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1397 		return 0;
1398 
1399 	case hwmon_power_crit_alarm:
1400 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1401 		if (err < 0)
1402 			return err;
1403 
1404 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1405 		return 0;
1406 	default:
1407 		return -EOPNOTSUPP;
1408 	}
1409 
1410 	return -EOPNOTSUPP;
1411 }
1412 
1413 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1414 			  u32 attr, int channel, long *value)
1415 {
1416 	struct sfp *sfp = dev_get_drvdata(dev);
1417 
1418 	switch (type) {
1419 	case hwmon_temp:
1420 		return sfp_hwmon_temp(sfp, attr, value);
1421 	case hwmon_in:
1422 		return sfp_hwmon_vcc(sfp, attr, value);
1423 	case hwmon_curr:
1424 		return sfp_hwmon_bias(sfp, attr, value);
1425 	case hwmon_power:
1426 		switch (channel) {
1427 		case 0:
1428 			return sfp_hwmon_tx_power(sfp, attr, value);
1429 		case 1:
1430 			return sfp_hwmon_rx_power(sfp, attr, value);
1431 		default:
1432 			return -EOPNOTSUPP;
1433 		}
1434 	default:
1435 		return -EOPNOTSUPP;
1436 	}
1437 }
1438 
1439 static const char *const sfp_hwmon_power_labels[] = {
1440 	"TX_power",
1441 	"RX_power",
1442 };
1443 
1444 static int sfp_hwmon_read_string(struct device *dev,
1445 				 enum hwmon_sensor_types type,
1446 				 u32 attr, int channel, const char **str)
1447 {
1448 	switch (type) {
1449 	case hwmon_curr:
1450 		switch (attr) {
1451 		case hwmon_curr_label:
1452 			*str = "bias";
1453 			return 0;
1454 		default:
1455 			return -EOPNOTSUPP;
1456 		}
1457 		break;
1458 	case hwmon_temp:
1459 		switch (attr) {
1460 		case hwmon_temp_label:
1461 			*str = "temperature";
1462 			return 0;
1463 		default:
1464 			return -EOPNOTSUPP;
1465 		}
1466 		break;
1467 	case hwmon_in:
1468 		switch (attr) {
1469 		case hwmon_in_label:
1470 			*str = "VCC";
1471 			return 0;
1472 		default:
1473 			return -EOPNOTSUPP;
1474 		}
1475 		break;
1476 	case hwmon_power:
1477 		switch (attr) {
1478 		case hwmon_power_label:
1479 			*str = sfp_hwmon_power_labels[channel];
1480 			return 0;
1481 		default:
1482 			return -EOPNOTSUPP;
1483 		}
1484 		break;
1485 	default:
1486 		return -EOPNOTSUPP;
1487 	}
1488 
1489 	return -EOPNOTSUPP;
1490 }
1491 
1492 static const struct hwmon_ops sfp_hwmon_ops = {
1493 	.is_visible = sfp_hwmon_is_visible,
1494 	.read = sfp_hwmon_read,
1495 	.read_string = sfp_hwmon_read_string,
1496 };
1497 
1498 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1499 	HWMON_CHANNEL_INFO(chip,
1500 			   HWMON_C_REGISTER_TZ),
1501 	HWMON_CHANNEL_INFO(in,
1502 			   HWMON_I_INPUT |
1503 			   HWMON_I_MAX | HWMON_I_MIN |
1504 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1505 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1506 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1507 			   HWMON_I_LABEL),
1508 	HWMON_CHANNEL_INFO(temp,
1509 			   HWMON_T_INPUT |
1510 			   HWMON_T_MAX | HWMON_T_MIN |
1511 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1512 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1513 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1514 			   HWMON_T_LABEL),
1515 	HWMON_CHANNEL_INFO(curr,
1516 			   HWMON_C_INPUT |
1517 			   HWMON_C_MAX | HWMON_C_MIN |
1518 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1519 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1520 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1521 			   HWMON_C_LABEL),
1522 	HWMON_CHANNEL_INFO(power,
1523 			   /* Transmit power */
1524 			   HWMON_P_INPUT |
1525 			   HWMON_P_MAX | HWMON_P_MIN |
1526 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1527 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1528 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1529 			   HWMON_P_LABEL,
1530 			   /* Receive power */
1531 			   HWMON_P_INPUT |
1532 			   HWMON_P_MAX | HWMON_P_MIN |
1533 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1534 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1535 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1536 			   HWMON_P_LABEL),
1537 	NULL,
1538 };
1539 
1540 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1541 	.ops = &sfp_hwmon_ops,
1542 	.info = sfp_hwmon_info,
1543 };
1544 
1545 static void sfp_hwmon_probe(struct work_struct *work)
1546 {
1547 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1548 	int err;
1549 
1550 	/* hwmon interface needs to access 16bit registers in atomic way to
1551 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1552 	 * possible to guarantee coherency because EEPROM is broken in such way
1553 	 * that does not support atomic 16bit read operation then we have to
1554 	 * skip registration of hwmon device.
1555 	 */
1556 	if (sfp->i2c_block_size < 2) {
1557 		dev_info(sfp->dev,
1558 			 "skipping hwmon device registration due to broken EEPROM\n");
1559 		dev_info(sfp->dev,
1560 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1561 		return;
1562 	}
1563 
1564 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1565 	if (err < 0) {
1566 		if (sfp->hwmon_tries--) {
1567 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1568 					 T_PROBE_RETRY_SLOW);
1569 		} else {
1570 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1571 				 ERR_PTR(err));
1572 		}
1573 		return;
1574 	}
1575 
1576 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1577 	if (IS_ERR(sfp->hwmon_name)) {
1578 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1579 		return;
1580 	}
1581 
1582 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1583 							 sfp->hwmon_name, sfp,
1584 							 &sfp_hwmon_chip_info,
1585 							 NULL);
1586 	if (IS_ERR(sfp->hwmon_dev))
1587 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1588 			PTR_ERR(sfp->hwmon_dev));
1589 }
1590 
1591 static int sfp_hwmon_insert(struct sfp *sfp)
1592 {
1593 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1594 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1595 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static void sfp_hwmon_remove(struct sfp *sfp)
1602 {
1603 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1604 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1605 		hwmon_device_unregister(sfp->hwmon_dev);
1606 		sfp->hwmon_dev = NULL;
1607 		kfree(sfp->hwmon_name);
1608 	}
1609 }
1610 
1611 static int sfp_hwmon_init(struct sfp *sfp)
1612 {
1613 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1614 
1615 	return 0;
1616 }
1617 
1618 static void sfp_hwmon_exit(struct sfp *sfp)
1619 {
1620 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1621 }
1622 #else
1623 static int sfp_hwmon_insert(struct sfp *sfp)
1624 {
1625 	return 0;
1626 }
1627 
1628 static void sfp_hwmon_remove(struct sfp *sfp)
1629 {
1630 }
1631 
1632 static int sfp_hwmon_init(struct sfp *sfp)
1633 {
1634 	return 0;
1635 }
1636 
1637 static void sfp_hwmon_exit(struct sfp *sfp)
1638 {
1639 }
1640 #endif
1641 
1642 /* Helpers */
1643 static void sfp_module_tx_disable(struct sfp *sfp)
1644 {
1645 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1646 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1647 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1648 }
1649 
1650 static void sfp_module_tx_enable(struct sfp *sfp)
1651 {
1652 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1653 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1654 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1655 }
1656 
1657 #if IS_ENABLED(CONFIG_DEBUG_FS)
1658 static int sfp_debug_state_show(struct seq_file *s, void *data)
1659 {
1660 	struct sfp *sfp = s->private;
1661 
1662 	seq_printf(s, "Module state: %s\n",
1663 		   mod_state_to_str(sfp->sm_mod_state));
1664 	seq_printf(s, "Module probe attempts: %d %d\n",
1665 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1666 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1667 	seq_printf(s, "Device state: %s\n",
1668 		   dev_state_to_str(sfp->sm_dev_state));
1669 	seq_printf(s, "Main state: %s\n",
1670 		   sm_state_to_str(sfp->sm_state));
1671 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1672 		   sfp->sm_fault_retries);
1673 	seq_printf(s, "PHY probe remaining retries: %d\n",
1674 		   sfp->sm_phy_retries);
1675 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1676 	seq_printf(s, "Rate select threshold: %u kBd\n",
1677 		   sfp->rs_threshold_kbd);
1678 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1679 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1680 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1681 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1682 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1683 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1684 	return 0;
1685 }
1686 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1687 
1688 static void sfp_debugfs_init(struct sfp *sfp)
1689 {
1690 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1691 
1692 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1693 			    &sfp_debug_state_fops);
1694 }
1695 
1696 static void sfp_debugfs_exit(struct sfp *sfp)
1697 {
1698 	debugfs_remove_recursive(sfp->debugfs_dir);
1699 }
1700 #else
1701 static void sfp_debugfs_init(struct sfp *sfp)
1702 {
1703 }
1704 
1705 static void sfp_debugfs_exit(struct sfp *sfp)
1706 {
1707 }
1708 #endif
1709 
1710 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1711 {
1712 	unsigned int state;
1713 
1714 	mutex_lock(&sfp->st_mutex);
1715 	state = sfp->state;
1716 	if (!(state & SFP_F_TX_DISABLE)) {
1717 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1718 
1719 		udelay(T_RESET_US);
1720 
1721 		sfp_set_state(sfp, state);
1722 	}
1723 	mutex_unlock(&sfp->st_mutex);
1724 }
1725 
1726 /* SFP state machine */
1727 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1728 {
1729 	if (timeout)
1730 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1731 				 timeout);
1732 	else
1733 		cancel_delayed_work(&sfp->timeout);
1734 }
1735 
1736 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1737 			unsigned int timeout)
1738 {
1739 	sfp->sm_state = state;
1740 	sfp_sm_set_timer(sfp, timeout);
1741 }
1742 
1743 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1744 			    unsigned int timeout)
1745 {
1746 	sfp->sm_mod_state = state;
1747 	sfp_sm_set_timer(sfp, timeout);
1748 }
1749 
1750 static void sfp_sm_phy_detach(struct sfp *sfp)
1751 {
1752 	sfp_remove_phy(sfp->sfp_bus);
1753 	phy_device_remove(sfp->mod_phy);
1754 	phy_device_free(sfp->mod_phy);
1755 	sfp->mod_phy = NULL;
1756 }
1757 
1758 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1759 {
1760 	struct phy_device *phy;
1761 	int err;
1762 
1763 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1764 	if (phy == ERR_PTR(-ENODEV))
1765 		return PTR_ERR(phy);
1766 	if (IS_ERR(phy)) {
1767 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1768 		return PTR_ERR(phy);
1769 	}
1770 
1771 	/* Mark this PHY as being on a SFP module */
1772 	phy->is_on_sfp_module = true;
1773 
1774 	err = phy_device_register(phy);
1775 	if (err) {
1776 		phy_device_free(phy);
1777 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1778 			ERR_PTR(err));
1779 		return err;
1780 	}
1781 
1782 	err = sfp_add_phy(sfp->sfp_bus, phy);
1783 	if (err) {
1784 		phy_device_remove(phy);
1785 		phy_device_free(phy);
1786 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1787 		return err;
1788 	}
1789 
1790 	sfp->mod_phy = phy;
1791 
1792 	return 0;
1793 }
1794 
1795 static void sfp_sm_link_up(struct sfp *sfp)
1796 {
1797 	sfp_link_up(sfp->sfp_bus);
1798 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1799 }
1800 
1801 static void sfp_sm_link_down(struct sfp *sfp)
1802 {
1803 	sfp_link_down(sfp->sfp_bus);
1804 }
1805 
1806 static void sfp_sm_link_check_los(struct sfp *sfp)
1807 {
1808 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1809 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1810 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1811 	bool los = false;
1812 
1813 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1814 	 * are set, we assume that no LOS signal is available. If both are
1815 	 * set, we assume LOS is not implemented (and is meaningless.)
1816 	 */
1817 	if (los_options == los_inverted)
1818 		los = !(sfp->state & SFP_F_LOS);
1819 	else if (los_options == los_normal)
1820 		los = !!(sfp->state & SFP_F_LOS);
1821 
1822 	if (los)
1823 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1824 	else
1825 		sfp_sm_link_up(sfp);
1826 }
1827 
1828 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1829 {
1830 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1831 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1832 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1833 
1834 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1835 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1836 }
1837 
1838 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1839 {
1840 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1841 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1842 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1843 
1844 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1845 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1846 }
1847 
1848 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1849 {
1850 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1851 		dev_err(sfp->dev,
1852 			"module persistently indicates fault, disabling\n");
1853 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1854 	} else {
1855 		if (warn)
1856 			dev_err(sfp->dev, "module transmit fault indicated\n");
1857 
1858 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1859 	}
1860 }
1861 
1862 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1863 {
1864 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1865 		return sfp_i2c_mdiobus_create(sfp);
1866 
1867 	return 0;
1868 }
1869 
1870 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1871  * normally sits at I2C bus address 0x56, and may either be a clause 22
1872  * or clause 45 PHY.
1873  *
1874  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1875  * negotiation enabled, but some may be in 1000base-X - which is for the
1876  * PHY driver to determine.
1877  *
1878  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1879  * mode according to the negotiated line speed.
1880  */
1881 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1882 {
1883 	int err = 0;
1884 
1885 	switch (sfp->mdio_protocol) {
1886 	case MDIO_I2C_NONE:
1887 		break;
1888 
1889 	case MDIO_I2C_MARVELL_C22:
1890 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1891 		break;
1892 
1893 	case MDIO_I2C_C45:
1894 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1895 		break;
1896 
1897 	case MDIO_I2C_ROLLBALL:
1898 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1899 		break;
1900 	}
1901 
1902 	return err;
1903 }
1904 
1905 static int sfp_module_parse_power(struct sfp *sfp)
1906 {
1907 	u32 power_mW = 1000;
1908 	bool supports_a2;
1909 
1910 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1911 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1912 		power_mW = 1500;
1913 	/* Added in Rev 11.9, but there is no compliance code for this */
1914 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1915 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1916 		power_mW = 2000;
1917 
1918 	/* Power level 1 modules (max. 1W) are always supported. */
1919 	if (power_mW <= 1000) {
1920 		sfp->module_power_mW = power_mW;
1921 		return 0;
1922 	}
1923 
1924 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1925 				SFP_SFF8472_COMPLIANCE_NONE ||
1926 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1927 
1928 	if (power_mW > sfp->max_power_mW) {
1929 		/* Module power specification exceeds the allowed maximum. */
1930 		if (!supports_a2) {
1931 			/* The module appears not to implement bus address
1932 			 * 0xa2, so assume that the module powers up in the
1933 			 * indicated mode.
1934 			 */
1935 			dev_err(sfp->dev,
1936 				"Host does not support %u.%uW modules\n",
1937 				power_mW / 1000, (power_mW / 100) % 10);
1938 			return -EINVAL;
1939 		} else {
1940 			dev_warn(sfp->dev,
1941 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1942 				 power_mW / 1000, (power_mW / 100) % 10);
1943 			return 0;
1944 		}
1945 	}
1946 
1947 	if (!supports_a2) {
1948 		/* The module power level is below the host maximum and the
1949 		 * module appears not to implement bus address 0xa2, so assume
1950 		 * that the module powers up in the indicated mode.
1951 		 */
1952 		return 0;
1953 	}
1954 
1955 	/* If the module requires a higher power mode, but also requires
1956 	 * an address change sequence, warn the user that the module may
1957 	 * not be functional.
1958 	 */
1959 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1960 		dev_warn(sfp->dev,
1961 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1962 			 power_mW / 1000, (power_mW / 100) % 10);
1963 		return 0;
1964 	}
1965 
1966 	sfp->module_power_mW = power_mW;
1967 
1968 	return 0;
1969 }
1970 
1971 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1972 {
1973 	int err;
1974 
1975 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1976 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1977 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1978 	if (err != sizeof(u8)) {
1979 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1980 			enable ? "en" : "dis", ERR_PTR(err));
1981 		return -EAGAIN;
1982 	}
1983 
1984 	if (enable)
1985 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1986 			 sfp->module_power_mW / 1000,
1987 			 (sfp->module_power_mW / 100) % 10);
1988 
1989 	return 0;
1990 }
1991 
1992 static void sfp_module_parse_rate_select(struct sfp *sfp)
1993 {
1994 	u8 rate_id;
1995 
1996 	sfp->rs_threshold_kbd = 0;
1997 	sfp->rs_state_mask = 0;
1998 
1999 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2000 		/* No support for RateSelect */
2001 		return;
2002 
2003 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2004 	 * rate is not well specified, so always select "Full Bandwidth", but
2005 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2006 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2007 	 * This method exists prior to SFF-8472.
2008 	 */
2009 	sfp->rs_state_mask = SFP_F_RS0;
2010 	sfp->rs_threshold_kbd = 1594;
2011 
2012 	/* Parse the rate identifier, which is complicated due to history:
2013 	 * SFF-8472 rev 9.5 marks this field as reserved.
2014 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2015 	 *  compliance is not required.
2016 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2017 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2018 	 * and even values.
2019 	 */
2020 	rate_id = sfp->id.base.rate_id;
2021 	if (rate_id == 0)
2022 		/* Unspecified */
2023 		return;
2024 
2025 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2026 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2027 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2028 	 */
2029 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2030 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2031 	    rate_id == 3)
2032 		rate_id = SFF_RID_8431;
2033 
2034 	if (rate_id & SFF_RID_8079) {
2035 		/* SFF-8079 RateSelect / Application Select in conjunction with
2036 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2037 		 * with only bit 0 used, which takes precedence over SFF-8472.
2038 		 */
2039 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2040 			/* SFF-8079 Part 1 - rate selection between Fibre
2041 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2042 			 * is high for 2125, so we have to subtract 1 to
2043 			 * include it.
2044 			 */
2045 			sfp->rs_threshold_kbd = 2125 - 1;
2046 			sfp->rs_state_mask = SFP_F_RS0;
2047 		}
2048 		return;
2049 	}
2050 
2051 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2052 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2053 		return;
2054 
2055 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2056 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2057 	 */
2058 	switch (rate_id) {
2059 	case SFF_RID_8431_RX_ONLY:
2060 		sfp->rs_threshold_kbd = 4250;
2061 		sfp->rs_state_mask = SFP_F_RS0;
2062 		break;
2063 
2064 	case SFF_RID_8431_TX_ONLY:
2065 		sfp->rs_threshold_kbd = 4250;
2066 		sfp->rs_state_mask = SFP_F_RS1;
2067 		break;
2068 
2069 	case SFF_RID_8431:
2070 		sfp->rs_threshold_kbd = 4250;
2071 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2072 		break;
2073 
2074 	case SFF_RID_10G8G:
2075 		sfp->rs_threshold_kbd = 9000;
2076 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2077 		break;
2078 	}
2079 }
2080 
2081 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2082  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2083  * not support multibyte reads from the EEPROM. Each multi-byte read
2084  * operation returns just one byte of EEPROM followed by zeros. There is
2085  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2086  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2087  * name and vendor id into EEPROM, so there is even no way to detect if
2088  * module is V-SOL V2801F. Therefore check for those zeros in the read
2089  * data and then based on check switch to reading EEPROM to one byte
2090  * at a time.
2091  */
2092 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2093 {
2094 	size_t i, block_size = sfp->i2c_block_size;
2095 
2096 	/* Already using byte IO */
2097 	if (block_size == 1)
2098 		return false;
2099 
2100 	for (i = 1; i < len; i += block_size) {
2101 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2102 			return false;
2103 	}
2104 	return true;
2105 }
2106 
2107 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2108 {
2109 	u8 check;
2110 	int err;
2111 
2112 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2113 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2114 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2115 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2116 		id->base.phys_id = SFF8024_ID_SFF_8472;
2117 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2118 		id->base.connector = SFF8024_CONNECTOR_LC;
2119 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2120 		if (err != 3) {
2121 			dev_err(sfp->dev,
2122 				"Failed to rewrite module EEPROM: %pe\n",
2123 				ERR_PTR(err));
2124 			return err;
2125 		}
2126 
2127 		/* Cotsworks modules have been found to require a delay between write operations. */
2128 		mdelay(50);
2129 
2130 		/* Update base structure checksum */
2131 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2132 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2133 		if (err != 1) {
2134 			dev_err(sfp->dev,
2135 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2136 				ERR_PTR(err));
2137 			return err;
2138 		}
2139 	}
2140 	return 0;
2141 }
2142 
2143 static int sfp_module_parse_sff8472(struct sfp *sfp)
2144 {
2145 	/* If the module requires address swap mode, warn about it */
2146 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2147 		dev_warn(sfp->dev,
2148 			 "module address swap to access page 0xA2 is not supported.\n");
2149 	else
2150 		sfp->have_a2 = true;
2151 
2152 	return 0;
2153 }
2154 
2155 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2156 {
2157 	/* SFP module inserted - read I2C data */
2158 	struct sfp_eeprom_id id;
2159 	bool cotsworks_sfbg;
2160 	unsigned int mask;
2161 	bool cotsworks;
2162 	u8 check;
2163 	int ret;
2164 
2165 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2166 
2167 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2168 	if (ret < 0) {
2169 		if (report)
2170 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2171 				ERR_PTR(ret));
2172 		return -EAGAIN;
2173 	}
2174 
2175 	if (ret != sizeof(id.base)) {
2176 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2177 		return -EAGAIN;
2178 	}
2179 
2180 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2181 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2182 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2183 	 * fields, so do not switch to one byte reading at a time unless it
2184 	 * is really required and we have no other option.
2185 	 */
2186 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2187 		dev_info(sfp->dev,
2188 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2189 		dev_info(sfp->dev,
2190 			 "Switching to reading EEPROM to one byte at a time\n");
2191 		sfp->i2c_block_size = 1;
2192 
2193 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2194 		if (ret < 0) {
2195 			if (report)
2196 				dev_err(sfp->dev,
2197 					"failed to read EEPROM: %pe\n",
2198 					ERR_PTR(ret));
2199 			return -EAGAIN;
2200 		}
2201 
2202 		if (ret != sizeof(id.base)) {
2203 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2204 				ERR_PTR(ret));
2205 			return -EAGAIN;
2206 		}
2207 	}
2208 
2209 	/* Cotsworks do not seem to update the checksums when they
2210 	 * do the final programming with the final module part number,
2211 	 * serial number and date code.
2212 	 */
2213 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2214 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2215 
2216 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2217 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2218 	 * Cotsworks PN matches and bytes are not correct.
2219 	 */
2220 	if (cotsworks && cotsworks_sfbg) {
2221 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2222 		if (ret < 0)
2223 			return ret;
2224 	}
2225 
2226 	/* Validate the checksum over the base structure */
2227 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2228 	if (check != id.base.cc_base) {
2229 		if (cotsworks) {
2230 			dev_warn(sfp->dev,
2231 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2232 				 check, id.base.cc_base);
2233 		} else {
2234 			dev_err(sfp->dev,
2235 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2236 				check, id.base.cc_base);
2237 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2238 				       16, 1, &id, sizeof(id), true);
2239 			return -EINVAL;
2240 		}
2241 	}
2242 
2243 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2244 	if (ret < 0) {
2245 		if (report)
2246 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2247 				ERR_PTR(ret));
2248 		return -EAGAIN;
2249 	}
2250 
2251 	if (ret != sizeof(id.ext)) {
2252 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2253 		return -EAGAIN;
2254 	}
2255 
2256 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2257 	if (check != id.ext.cc_ext) {
2258 		if (cotsworks) {
2259 			dev_warn(sfp->dev,
2260 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2261 				 check, id.ext.cc_ext);
2262 		} else {
2263 			dev_err(sfp->dev,
2264 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2265 				check, id.ext.cc_ext);
2266 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2267 				       16, 1, &id, sizeof(id), true);
2268 			memset(&id.ext, 0, sizeof(id.ext));
2269 		}
2270 	}
2271 
2272 	sfp->id = id;
2273 
2274 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2275 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2276 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2277 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2278 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2279 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2280 
2281 	/* Check whether we support this module */
2282 	if (!sfp->type->module_supported(&id)) {
2283 		dev_err(sfp->dev,
2284 			"module is not supported - phys id 0x%02x 0x%02x\n",
2285 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2286 		return -EINVAL;
2287 	}
2288 
2289 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2290 		ret = sfp_module_parse_sff8472(sfp);
2291 		if (ret < 0)
2292 			return ret;
2293 	}
2294 
2295 	/* Parse the module power requirement */
2296 	ret = sfp_module_parse_power(sfp);
2297 	if (ret < 0)
2298 		return ret;
2299 
2300 	sfp_module_parse_rate_select(sfp);
2301 
2302 	mask = SFP_F_PRESENT;
2303 	if (sfp->gpio[GPIO_TX_DISABLE])
2304 		mask |= SFP_F_TX_DISABLE;
2305 	if (sfp->gpio[GPIO_TX_FAULT])
2306 		mask |= SFP_F_TX_FAULT;
2307 	if (sfp->gpio[GPIO_LOS])
2308 		mask |= SFP_F_LOS;
2309 	if (sfp->gpio[GPIO_RS0])
2310 		mask |= SFP_F_RS0;
2311 	if (sfp->gpio[GPIO_RS1])
2312 		mask |= SFP_F_RS1;
2313 
2314 	sfp->module_t_start_up = T_START_UP;
2315 	sfp->module_t_wait = T_WAIT;
2316 
2317 	sfp->tx_fault_ignore = false;
2318 
2319 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2320 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2321 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2322 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2323 		sfp->mdio_protocol = MDIO_I2C_C45;
2324 	else if (sfp->id.base.e1000_base_t)
2325 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2326 	else
2327 		sfp->mdio_protocol = MDIO_I2C_NONE;
2328 
2329 	sfp->quirk = sfp_lookup_quirk(&id);
2330 
2331 	mutex_lock(&sfp->st_mutex);
2332 	/* Initialise state bits to use from hardware */
2333 	sfp->state_hw_mask = mask;
2334 
2335 	/* We want to drive the rate select pins that the module is using */
2336 	sfp->state_hw_drive |= sfp->rs_state_mask;
2337 
2338 	if (sfp->quirk && sfp->quirk->fixup)
2339 		sfp->quirk->fixup(sfp);
2340 	mutex_unlock(&sfp->st_mutex);
2341 
2342 	return 0;
2343 }
2344 
2345 static void sfp_sm_mod_remove(struct sfp *sfp)
2346 {
2347 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2348 		sfp_module_remove(sfp->sfp_bus);
2349 
2350 	sfp_hwmon_remove(sfp);
2351 
2352 	memset(&sfp->id, 0, sizeof(sfp->id));
2353 	sfp->module_power_mW = 0;
2354 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2355 	sfp->have_a2 = false;
2356 
2357 	dev_info(sfp->dev, "module removed\n");
2358 }
2359 
2360 /* This state machine tracks the upstream's state */
2361 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2362 {
2363 	switch (sfp->sm_dev_state) {
2364 	default:
2365 		if (event == SFP_E_DEV_ATTACH)
2366 			sfp->sm_dev_state = SFP_DEV_DOWN;
2367 		break;
2368 
2369 	case SFP_DEV_DOWN:
2370 		if (event == SFP_E_DEV_DETACH)
2371 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2372 		else if (event == SFP_E_DEV_UP)
2373 			sfp->sm_dev_state = SFP_DEV_UP;
2374 		break;
2375 
2376 	case SFP_DEV_UP:
2377 		if (event == SFP_E_DEV_DETACH)
2378 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2379 		else if (event == SFP_E_DEV_DOWN)
2380 			sfp->sm_dev_state = SFP_DEV_DOWN;
2381 		break;
2382 	}
2383 }
2384 
2385 /* This state machine tracks the insert/remove state of the module, probes
2386  * the on-board EEPROM, and sets up the power level.
2387  */
2388 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2389 {
2390 	int err;
2391 
2392 	/* Handle remove event globally, it resets this state machine */
2393 	if (event == SFP_E_REMOVE) {
2394 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2395 			sfp_sm_mod_remove(sfp);
2396 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2397 		return;
2398 	}
2399 
2400 	/* Handle device detach globally */
2401 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2402 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2403 		if (sfp->module_power_mW > 1000 &&
2404 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2405 			sfp_sm_mod_hpower(sfp, false);
2406 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2407 		return;
2408 	}
2409 
2410 	switch (sfp->sm_mod_state) {
2411 	default:
2412 		if (event == SFP_E_INSERT) {
2413 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2414 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2415 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2416 		}
2417 		break;
2418 
2419 	case SFP_MOD_PROBE:
2420 		/* Wait for T_PROBE_INIT to time out */
2421 		if (event != SFP_E_TIMEOUT)
2422 			break;
2423 
2424 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2425 		if (err == -EAGAIN) {
2426 			if (sfp->sm_mod_tries_init &&
2427 			   --sfp->sm_mod_tries_init) {
2428 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2429 				break;
2430 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2431 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2432 					dev_warn(sfp->dev,
2433 						 "please wait, module slow to respond\n");
2434 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2435 				break;
2436 			}
2437 		}
2438 		if (err < 0) {
2439 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2440 			break;
2441 		}
2442 
2443 		/* Force a poll to re-read the hardware signal state after
2444 		 * sfp_sm_mod_probe() changed state_hw_mask.
2445 		 */
2446 		mod_delayed_work(system_wq, &sfp->poll, 1);
2447 
2448 		err = sfp_hwmon_insert(sfp);
2449 		if (err)
2450 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2451 				 ERR_PTR(err));
2452 
2453 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2454 		fallthrough;
2455 	case SFP_MOD_WAITDEV:
2456 		/* Ensure that the device is attached before proceeding */
2457 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2458 			break;
2459 
2460 		/* Report the module insertion to the upstream device */
2461 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2462 					sfp->quirk);
2463 		if (err < 0) {
2464 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2465 			break;
2466 		}
2467 
2468 		/* If this is a power level 1 module, we are done */
2469 		if (sfp->module_power_mW <= 1000)
2470 			goto insert;
2471 
2472 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2473 		fallthrough;
2474 	case SFP_MOD_HPOWER:
2475 		/* Enable high power mode */
2476 		err = sfp_sm_mod_hpower(sfp, true);
2477 		if (err < 0) {
2478 			if (err != -EAGAIN) {
2479 				sfp_module_remove(sfp->sfp_bus);
2480 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2481 			} else {
2482 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2483 			}
2484 			break;
2485 		}
2486 
2487 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2488 		break;
2489 
2490 	case SFP_MOD_WAITPWR:
2491 		/* Wait for T_HPOWER_LEVEL to time out */
2492 		if (event != SFP_E_TIMEOUT)
2493 			break;
2494 
2495 	insert:
2496 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2497 		break;
2498 
2499 	case SFP_MOD_PRESENT:
2500 	case SFP_MOD_ERROR:
2501 		break;
2502 	}
2503 }
2504 
2505 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2506 {
2507 	unsigned long timeout;
2508 	int ret;
2509 
2510 	/* Some events are global */
2511 	if (sfp->sm_state != SFP_S_DOWN &&
2512 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2513 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2514 		if (sfp->sm_state == SFP_S_LINK_UP &&
2515 		    sfp->sm_dev_state == SFP_DEV_UP)
2516 			sfp_sm_link_down(sfp);
2517 		if (sfp->sm_state > SFP_S_INIT)
2518 			sfp_module_stop(sfp->sfp_bus);
2519 		if (sfp->mod_phy)
2520 			sfp_sm_phy_detach(sfp);
2521 		if (sfp->i2c_mii)
2522 			sfp_i2c_mdiobus_destroy(sfp);
2523 		sfp_module_tx_disable(sfp);
2524 		sfp_soft_stop_poll(sfp);
2525 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2526 		return;
2527 	}
2528 
2529 	/* The main state machine */
2530 	switch (sfp->sm_state) {
2531 	case SFP_S_DOWN:
2532 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2533 		    sfp->sm_dev_state != SFP_DEV_UP)
2534 			break;
2535 
2536 		/* Only use the soft state bits if we have access to the A2h
2537 		 * memory, which implies that we have some level of SFF-8472
2538 		 * compliance.
2539 		 */
2540 		if (sfp->have_a2)
2541 			sfp_soft_start_poll(sfp);
2542 
2543 		sfp_module_tx_enable(sfp);
2544 
2545 		/* Initialise the fault clearance retries */
2546 		sfp->sm_fault_retries = N_FAULT_INIT;
2547 
2548 		/* We need to check the TX_FAULT state, which is not defined
2549 		 * while TX_DISABLE is asserted. The earliest we want to do
2550 		 * anything (such as probe for a PHY) is 50ms (or more on
2551 		 * specific modules).
2552 		 */
2553 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2554 		break;
2555 
2556 	case SFP_S_WAIT:
2557 		if (event != SFP_E_TIMEOUT)
2558 			break;
2559 
2560 		if (sfp->state & SFP_F_TX_FAULT) {
2561 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2562 			 * from the TX_DISABLE deassertion for the module to
2563 			 * initialise, which is indicated by TX_FAULT
2564 			 * deasserting.
2565 			 */
2566 			timeout = sfp->module_t_start_up;
2567 			if (timeout > sfp->module_t_wait)
2568 				timeout -= sfp->module_t_wait;
2569 			else
2570 				timeout = 1;
2571 
2572 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2573 		} else {
2574 			/* TX_FAULT is not asserted, assume the module has
2575 			 * finished initialising.
2576 			 */
2577 			goto init_done;
2578 		}
2579 		break;
2580 
2581 	case SFP_S_INIT:
2582 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2583 			/* TX_FAULT is still asserted after t_init
2584 			 * or t_start_up, so assume there is a fault.
2585 			 */
2586 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2587 				     sfp->sm_fault_retries == N_FAULT_INIT);
2588 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2589 	init_done:
2590 			/* Create mdiobus and start trying for PHY */
2591 			ret = sfp_sm_add_mdio_bus(sfp);
2592 			if (ret < 0) {
2593 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2594 				break;
2595 			}
2596 			sfp->sm_phy_retries = R_PHY_RETRY;
2597 			goto phy_probe;
2598 		}
2599 		break;
2600 
2601 	case SFP_S_INIT_PHY:
2602 		if (event != SFP_E_TIMEOUT)
2603 			break;
2604 	phy_probe:
2605 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2606 		 * clear.  Probe for the PHY and check the LOS state.
2607 		 */
2608 		ret = sfp_sm_probe_for_phy(sfp);
2609 		if (ret == -ENODEV) {
2610 			if (--sfp->sm_phy_retries) {
2611 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2612 				break;
2613 			} else {
2614 				dev_info(sfp->dev, "no PHY detected\n");
2615 			}
2616 		} else if (ret) {
2617 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2618 			break;
2619 		}
2620 		if (sfp_module_start(sfp->sfp_bus)) {
2621 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2622 			break;
2623 		}
2624 		sfp_sm_link_check_los(sfp);
2625 
2626 		/* Reset the fault retry count */
2627 		sfp->sm_fault_retries = N_FAULT;
2628 		break;
2629 
2630 	case SFP_S_INIT_TX_FAULT:
2631 		if (event == SFP_E_TIMEOUT) {
2632 			sfp_module_tx_fault_reset(sfp);
2633 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2634 		}
2635 		break;
2636 
2637 	case SFP_S_WAIT_LOS:
2638 		if (event == SFP_E_TX_FAULT)
2639 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2640 		else if (sfp_los_event_inactive(sfp, event))
2641 			sfp_sm_link_up(sfp);
2642 		break;
2643 
2644 	case SFP_S_LINK_UP:
2645 		if (event == SFP_E_TX_FAULT) {
2646 			sfp_sm_link_down(sfp);
2647 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2648 		} else if (sfp_los_event_active(sfp, event)) {
2649 			sfp_sm_link_down(sfp);
2650 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2651 		}
2652 		break;
2653 
2654 	case SFP_S_TX_FAULT:
2655 		if (event == SFP_E_TIMEOUT) {
2656 			sfp_module_tx_fault_reset(sfp);
2657 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2658 		}
2659 		break;
2660 
2661 	case SFP_S_REINIT:
2662 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2663 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2664 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2665 			dev_info(sfp->dev, "module transmit fault recovered\n");
2666 			sfp_sm_link_check_los(sfp);
2667 		}
2668 		break;
2669 
2670 	case SFP_S_TX_DISABLE:
2671 		break;
2672 	}
2673 }
2674 
2675 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2676 {
2677 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2678 		mod_state_to_str(sfp->sm_mod_state),
2679 		dev_state_to_str(sfp->sm_dev_state),
2680 		sm_state_to_str(sfp->sm_state),
2681 		event_to_str(event));
2682 
2683 	sfp_sm_device(sfp, event);
2684 	sfp_sm_module(sfp, event);
2685 	sfp_sm_main(sfp, event);
2686 
2687 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2688 		mod_state_to_str(sfp->sm_mod_state),
2689 		dev_state_to_str(sfp->sm_dev_state),
2690 		sm_state_to_str(sfp->sm_state));
2691 }
2692 
2693 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2694 {
2695 	mutex_lock(&sfp->sm_mutex);
2696 	__sfp_sm_event(sfp, event);
2697 	mutex_unlock(&sfp->sm_mutex);
2698 }
2699 
2700 static void sfp_attach(struct sfp *sfp)
2701 {
2702 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2703 }
2704 
2705 static void sfp_detach(struct sfp *sfp)
2706 {
2707 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2708 }
2709 
2710 static void sfp_start(struct sfp *sfp)
2711 {
2712 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2713 }
2714 
2715 static void sfp_stop(struct sfp *sfp)
2716 {
2717 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2718 }
2719 
2720 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2721 {
2722 	unsigned int set;
2723 
2724 	sfp->rate_kbd = rate_kbd;
2725 
2726 	if (rate_kbd > sfp->rs_threshold_kbd)
2727 		set = sfp->rs_state_mask;
2728 	else
2729 		set = 0;
2730 
2731 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2732 }
2733 
2734 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2735 {
2736 	/* locking... and check module is present */
2737 
2738 	if (sfp->id.ext.sff8472_compliance &&
2739 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2740 		modinfo->type = ETH_MODULE_SFF_8472;
2741 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2742 	} else {
2743 		modinfo->type = ETH_MODULE_SFF_8079;
2744 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2745 	}
2746 	return 0;
2747 }
2748 
2749 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2750 			     u8 *data)
2751 {
2752 	unsigned int first, last, len;
2753 	int ret;
2754 
2755 	if (!(sfp->state & SFP_F_PRESENT))
2756 		return -ENODEV;
2757 
2758 	if (ee->len == 0)
2759 		return -EINVAL;
2760 
2761 	first = ee->offset;
2762 	last = ee->offset + ee->len;
2763 	if (first < ETH_MODULE_SFF_8079_LEN) {
2764 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2765 		len -= first;
2766 
2767 		ret = sfp_read(sfp, false, first, data, len);
2768 		if (ret < 0)
2769 			return ret;
2770 
2771 		first += len;
2772 		data += len;
2773 	}
2774 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2775 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2776 		len -= first;
2777 		first -= ETH_MODULE_SFF_8079_LEN;
2778 
2779 		ret = sfp_read(sfp, true, first, data, len);
2780 		if (ret < 0)
2781 			return ret;
2782 	}
2783 	return 0;
2784 }
2785 
2786 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2787 				     const struct ethtool_module_eeprom *page,
2788 				     struct netlink_ext_ack *extack)
2789 {
2790 	if (!(sfp->state & SFP_F_PRESENT))
2791 		return -ENODEV;
2792 
2793 	if (page->bank) {
2794 		NL_SET_ERR_MSG(extack, "Banks not supported");
2795 		return -EOPNOTSUPP;
2796 	}
2797 
2798 	if (page->page) {
2799 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2800 		return -EOPNOTSUPP;
2801 	}
2802 
2803 	if (page->i2c_address != 0x50 &&
2804 	    page->i2c_address != 0x51) {
2805 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2806 		return -EOPNOTSUPP;
2807 	}
2808 
2809 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2810 			page->data, page->length);
2811 };
2812 
2813 static const struct sfp_socket_ops sfp_module_ops = {
2814 	.attach = sfp_attach,
2815 	.detach = sfp_detach,
2816 	.start = sfp_start,
2817 	.stop = sfp_stop,
2818 	.set_signal_rate = sfp_set_signal_rate,
2819 	.module_info = sfp_module_info,
2820 	.module_eeprom = sfp_module_eeprom,
2821 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2822 };
2823 
2824 static void sfp_timeout(struct work_struct *work)
2825 {
2826 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2827 
2828 	rtnl_lock();
2829 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2830 	rtnl_unlock();
2831 }
2832 
2833 static void sfp_check_state(struct sfp *sfp)
2834 {
2835 	unsigned int state, i, changed;
2836 
2837 	rtnl_lock();
2838 	mutex_lock(&sfp->st_mutex);
2839 	state = sfp_get_state(sfp);
2840 	changed = state ^ sfp->state;
2841 	if (sfp->tx_fault_ignore)
2842 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2843 	else
2844 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2845 
2846 	for (i = 0; i < GPIO_MAX; i++)
2847 		if (changed & BIT(i))
2848 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2849 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2850 
2851 	state |= sfp->state & SFP_F_OUTPUTS;
2852 	sfp->state = state;
2853 	mutex_unlock(&sfp->st_mutex);
2854 
2855 	mutex_lock(&sfp->sm_mutex);
2856 	if (changed & SFP_F_PRESENT)
2857 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2858 				    SFP_E_INSERT : SFP_E_REMOVE);
2859 
2860 	if (changed & SFP_F_TX_FAULT)
2861 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2862 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2863 
2864 	if (changed & SFP_F_LOS)
2865 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2866 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2867 	mutex_unlock(&sfp->sm_mutex);
2868 	rtnl_unlock();
2869 }
2870 
2871 static irqreturn_t sfp_irq(int irq, void *data)
2872 {
2873 	struct sfp *sfp = data;
2874 
2875 	sfp_check_state(sfp);
2876 
2877 	return IRQ_HANDLED;
2878 }
2879 
2880 static void sfp_poll(struct work_struct *work)
2881 {
2882 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2883 
2884 	sfp_check_state(sfp);
2885 
2886 	// st_mutex doesn't need to be held here for state_soft_mask,
2887 	// it's unimportant if we race while reading this.
2888 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2889 	    sfp->need_poll)
2890 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2891 }
2892 
2893 static struct sfp *sfp_alloc(struct device *dev)
2894 {
2895 	struct sfp *sfp;
2896 
2897 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2898 	if (!sfp)
2899 		return ERR_PTR(-ENOMEM);
2900 
2901 	sfp->dev = dev;
2902 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2903 
2904 	mutex_init(&sfp->sm_mutex);
2905 	mutex_init(&sfp->st_mutex);
2906 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2907 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2908 
2909 	sfp_hwmon_init(sfp);
2910 
2911 	return sfp;
2912 }
2913 
2914 static void sfp_cleanup(void *data)
2915 {
2916 	struct sfp *sfp = data;
2917 
2918 	sfp_hwmon_exit(sfp);
2919 
2920 	cancel_delayed_work_sync(&sfp->poll);
2921 	cancel_delayed_work_sync(&sfp->timeout);
2922 	if (sfp->i2c_mii) {
2923 		mdiobus_unregister(sfp->i2c_mii);
2924 		mdiobus_free(sfp->i2c_mii);
2925 	}
2926 	if (sfp->i2c)
2927 		i2c_put_adapter(sfp->i2c);
2928 	kfree(sfp);
2929 }
2930 
2931 static int sfp_i2c_get(struct sfp *sfp)
2932 {
2933 	struct fwnode_handle *h;
2934 	struct i2c_adapter *i2c;
2935 	int err;
2936 
2937 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2938 	if (IS_ERR(h)) {
2939 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2940 		return -ENODEV;
2941 	}
2942 
2943 	i2c = i2c_get_adapter_by_fwnode(h);
2944 	if (!i2c) {
2945 		err = -EPROBE_DEFER;
2946 		goto put;
2947 	}
2948 
2949 	err = sfp_i2c_configure(sfp, i2c);
2950 	if (err)
2951 		i2c_put_adapter(i2c);
2952 put:
2953 	fwnode_handle_put(h);
2954 	return err;
2955 }
2956 
2957 static int sfp_probe(struct platform_device *pdev)
2958 {
2959 	const struct sff_data *sff;
2960 	char *sfp_irq_name;
2961 	struct sfp *sfp;
2962 	int err, i;
2963 
2964 	sfp = sfp_alloc(&pdev->dev);
2965 	if (IS_ERR(sfp))
2966 		return PTR_ERR(sfp);
2967 
2968 	platform_set_drvdata(pdev, sfp);
2969 
2970 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2971 	if (err < 0)
2972 		return err;
2973 
2974 	sff = device_get_match_data(sfp->dev);
2975 	if (!sff)
2976 		sff = &sfp_data;
2977 
2978 	sfp->type = sff;
2979 
2980 	err = sfp_i2c_get(sfp);
2981 	if (err)
2982 		return err;
2983 
2984 	for (i = 0; i < GPIO_MAX; i++)
2985 		if (sff->gpios & BIT(i)) {
2986 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2987 					   gpio_names[i], gpio_flags[i]);
2988 			if (IS_ERR(sfp->gpio[i]))
2989 				return PTR_ERR(sfp->gpio[i]);
2990 		}
2991 
2992 	sfp->state_hw_mask = SFP_F_PRESENT;
2993 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2994 
2995 	sfp->get_state = sfp_gpio_get_state;
2996 	sfp->set_state = sfp_gpio_set_state;
2997 
2998 	/* Modules that have no detect signal are always present */
2999 	if (!(sfp->gpio[GPIO_MODDEF0]))
3000 		sfp->get_state = sff_gpio_get_state;
3001 
3002 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3003 				 &sfp->max_power_mW);
3004 	if (sfp->max_power_mW < 1000) {
3005 		if (sfp->max_power_mW)
3006 			dev_warn(sfp->dev,
3007 				 "Firmware bug: host maximum power should be at least 1W\n");
3008 		sfp->max_power_mW = 1000;
3009 	}
3010 
3011 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3012 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3013 
3014 	/* Get the initial state, and always signal TX disable,
3015 	 * since the network interface will not be up.
3016 	 */
3017 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3018 
3019 	if (sfp->gpio[GPIO_RS0] &&
3020 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3021 		sfp->state |= SFP_F_RS0;
3022 	sfp_set_state(sfp, sfp->state);
3023 	sfp_module_tx_disable(sfp);
3024 	if (sfp->state & SFP_F_PRESENT) {
3025 		rtnl_lock();
3026 		sfp_sm_event(sfp, SFP_E_INSERT);
3027 		rtnl_unlock();
3028 	}
3029 
3030 	for (i = 0; i < GPIO_MAX; i++) {
3031 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3032 			continue;
3033 
3034 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3035 		if (sfp->gpio_irq[i] < 0) {
3036 			sfp->gpio_irq[i] = 0;
3037 			sfp->need_poll = true;
3038 			continue;
3039 		}
3040 
3041 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3042 					      "%s-%s", dev_name(sfp->dev),
3043 					      gpio_names[i]);
3044 
3045 		if (!sfp_irq_name)
3046 			return -ENOMEM;
3047 
3048 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3049 						NULL, sfp_irq,
3050 						IRQF_ONESHOT |
3051 						IRQF_TRIGGER_RISING |
3052 						IRQF_TRIGGER_FALLING,
3053 						sfp_irq_name, sfp);
3054 		if (err) {
3055 			sfp->gpio_irq[i] = 0;
3056 			sfp->need_poll = true;
3057 		}
3058 	}
3059 
3060 	if (sfp->need_poll)
3061 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3062 
3063 	/* We could have an issue in cases no Tx disable pin is available or
3064 	 * wired as modules using a laser as their light source will continue to
3065 	 * be active when the fiber is removed. This could be a safety issue and
3066 	 * we should at least warn the user about that.
3067 	 */
3068 	if (!sfp->gpio[GPIO_TX_DISABLE])
3069 		dev_warn(sfp->dev,
3070 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3071 
3072 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3073 	if (!sfp->sfp_bus)
3074 		return -ENOMEM;
3075 
3076 	sfp_debugfs_init(sfp);
3077 
3078 	return 0;
3079 }
3080 
3081 static int sfp_remove(struct platform_device *pdev)
3082 {
3083 	struct sfp *sfp = platform_get_drvdata(pdev);
3084 
3085 	sfp_debugfs_exit(sfp);
3086 	sfp_unregister_socket(sfp->sfp_bus);
3087 
3088 	rtnl_lock();
3089 	sfp_sm_event(sfp, SFP_E_REMOVE);
3090 	rtnl_unlock();
3091 
3092 	return 0;
3093 }
3094 
3095 static void sfp_shutdown(struct platform_device *pdev)
3096 {
3097 	struct sfp *sfp = platform_get_drvdata(pdev);
3098 	int i;
3099 
3100 	for (i = 0; i < GPIO_MAX; i++) {
3101 		if (!sfp->gpio_irq[i])
3102 			continue;
3103 
3104 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3105 	}
3106 
3107 	cancel_delayed_work_sync(&sfp->poll);
3108 	cancel_delayed_work_sync(&sfp->timeout);
3109 }
3110 
3111 static struct platform_driver sfp_driver = {
3112 	.probe = sfp_probe,
3113 	.remove = sfp_remove,
3114 	.shutdown = sfp_shutdown,
3115 	.driver = {
3116 		.name = "sfp",
3117 		.of_match_table = sfp_of_match,
3118 	},
3119 };
3120 
3121 static int sfp_init(void)
3122 {
3123 	poll_jiffies = msecs_to_jiffies(100);
3124 
3125 	return platform_driver_register(&sfp_driver);
3126 }
3127 module_init(sfp_init);
3128 
3129 static void sfp_exit(void)
3130 {
3131 	platform_driver_unregister(&sfp_driver);
3132 }
3133 module_exit(sfp_exit);
3134 
3135 MODULE_ALIAS("platform:sfp");
3136 MODULE_AUTHOR("Russell King");
3137 MODULE_LICENSE("GPL v2");
3138