1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/delay.h> 5 #include <linux/gpio/consumer.h> 6 #include <linux/hwmon.h> 7 #include <linux/i2c.h> 8 #include <linux/interrupt.h> 9 #include <linux/jiffies.h> 10 #include <linux/mdio/mdio-i2c.h> 11 #include <linux/module.h> 12 #include <linux/mutex.h> 13 #include <linux/of.h> 14 #include <linux/phy.h> 15 #include <linux/platform_device.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 20 #include "sfp.h" 21 #include "swphy.h" 22 23 enum { 24 GPIO_MODDEF0, 25 GPIO_LOS, 26 GPIO_TX_FAULT, 27 GPIO_TX_DISABLE, 28 GPIO_RATE_SELECT, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 36 37 SFP_E_INSERT = 0, 38 SFP_E_REMOVE, 39 SFP_E_DEV_ATTACH, 40 SFP_E_DEV_DETACH, 41 SFP_E_DEV_DOWN, 42 SFP_E_DEV_UP, 43 SFP_E_TX_FAULT, 44 SFP_E_TX_CLEAR, 45 SFP_E_LOS_HIGH, 46 SFP_E_LOS_LOW, 47 SFP_E_TIMEOUT, 48 49 SFP_MOD_EMPTY = 0, 50 SFP_MOD_ERROR, 51 SFP_MOD_PROBE, 52 SFP_MOD_WAITDEV, 53 SFP_MOD_HPOWER, 54 SFP_MOD_WAITPWR, 55 SFP_MOD_PRESENT, 56 57 SFP_DEV_DETACHED = 0, 58 SFP_DEV_DOWN, 59 SFP_DEV_UP, 60 61 SFP_S_DOWN = 0, 62 SFP_S_FAIL, 63 SFP_S_WAIT, 64 SFP_S_INIT, 65 SFP_S_INIT_PHY, 66 SFP_S_INIT_TX_FAULT, 67 SFP_S_WAIT_LOS, 68 SFP_S_LINK_UP, 69 SFP_S_TX_FAULT, 70 SFP_S_REINIT, 71 SFP_S_TX_DISABLE, 72 }; 73 74 static const char * const mod_state_strings[] = { 75 [SFP_MOD_EMPTY] = "empty", 76 [SFP_MOD_ERROR] = "error", 77 [SFP_MOD_PROBE] = "probe", 78 [SFP_MOD_WAITDEV] = "waitdev", 79 [SFP_MOD_HPOWER] = "hpower", 80 [SFP_MOD_WAITPWR] = "waitpwr", 81 [SFP_MOD_PRESENT] = "present", 82 }; 83 84 static const char *mod_state_to_str(unsigned short mod_state) 85 { 86 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 87 return "Unknown module state"; 88 return mod_state_strings[mod_state]; 89 } 90 91 static const char * const dev_state_strings[] = { 92 [SFP_DEV_DETACHED] = "detached", 93 [SFP_DEV_DOWN] = "down", 94 [SFP_DEV_UP] = "up", 95 }; 96 97 static const char *dev_state_to_str(unsigned short dev_state) 98 { 99 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 100 return "Unknown device state"; 101 return dev_state_strings[dev_state]; 102 } 103 104 static const char * const event_strings[] = { 105 [SFP_E_INSERT] = "insert", 106 [SFP_E_REMOVE] = "remove", 107 [SFP_E_DEV_ATTACH] = "dev_attach", 108 [SFP_E_DEV_DETACH] = "dev_detach", 109 [SFP_E_DEV_DOWN] = "dev_down", 110 [SFP_E_DEV_UP] = "dev_up", 111 [SFP_E_TX_FAULT] = "tx_fault", 112 [SFP_E_TX_CLEAR] = "tx_clear", 113 [SFP_E_LOS_HIGH] = "los_high", 114 [SFP_E_LOS_LOW] = "los_low", 115 [SFP_E_TIMEOUT] = "timeout", 116 }; 117 118 static const char *event_to_str(unsigned short event) 119 { 120 if (event >= ARRAY_SIZE(event_strings)) 121 return "Unknown event"; 122 return event_strings[event]; 123 } 124 125 static const char * const sm_state_strings[] = { 126 [SFP_S_DOWN] = "down", 127 [SFP_S_FAIL] = "fail", 128 [SFP_S_WAIT] = "wait", 129 [SFP_S_INIT] = "init", 130 [SFP_S_INIT_PHY] = "init_phy", 131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 132 [SFP_S_WAIT_LOS] = "wait_los", 133 [SFP_S_LINK_UP] = "link_up", 134 [SFP_S_TX_FAULT] = "tx_fault", 135 [SFP_S_REINIT] = "reinit", 136 [SFP_S_TX_DISABLE] = "rx_disable", 137 }; 138 139 static const char *sm_state_to_str(unsigned short sm_state) 140 { 141 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 142 return "Unknown state"; 143 return sm_state_strings[sm_state]; 144 } 145 146 static const char *gpio_of_names[] = { 147 "mod-def0", 148 "los", 149 "tx-fault", 150 "tx-disable", 151 "rate-select0", 152 }; 153 154 static const enum gpiod_flags gpio_flags[] = { 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_ASIS, 159 GPIOD_ASIS, 160 }; 161 162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 163 * non-cooled module to initialise its laser safety circuitry. We wait 164 * an initial T_WAIT period before we check the tx fault to give any PHY 165 * on board (for a copper SFP) time to initialise. 166 */ 167 #define T_WAIT msecs_to_jiffies(50) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 */ 208 #define SFP_PHY_ADDR 22 209 210 struct sff_data { 211 unsigned int gpios; 212 bool (*module_supported)(const struct sfp_eeprom_id *id); 213 }; 214 215 struct sfp { 216 struct device *dev; 217 struct i2c_adapter *i2c; 218 struct mii_bus *i2c_mii; 219 struct sfp_bus *sfp_bus; 220 struct phy_device *mod_phy; 221 const struct sff_data *type; 222 size_t i2c_block_size; 223 u32 max_power_mW; 224 225 unsigned int (*get_state)(struct sfp *); 226 void (*set_state)(struct sfp *, unsigned int); 227 int (*read)(struct sfp *, bool, u8, void *, size_t); 228 int (*write)(struct sfp *, bool, u8, void *, size_t); 229 230 struct gpio_desc *gpio[GPIO_MAX]; 231 int gpio_irq[GPIO_MAX]; 232 233 bool need_poll; 234 235 struct mutex st_mutex; /* Protects state */ 236 unsigned int state_soft_mask; 237 unsigned int state; 238 struct delayed_work poll; 239 struct delayed_work timeout; 240 struct mutex sm_mutex; /* Protects state machine */ 241 unsigned char sm_mod_state; 242 unsigned char sm_mod_tries_init; 243 unsigned char sm_mod_tries; 244 unsigned char sm_dev_state; 245 unsigned short sm_state; 246 unsigned char sm_fault_retries; 247 unsigned char sm_phy_retries; 248 249 struct sfp_eeprom_id id; 250 unsigned int module_power_mW; 251 unsigned int module_t_start_up; 252 253 #if IS_ENABLED(CONFIG_HWMON) 254 struct sfp_diag diag; 255 struct delayed_work hwmon_probe; 256 unsigned int hwmon_tries; 257 struct device *hwmon_dev; 258 char *hwmon_name; 259 #endif 260 261 }; 262 263 static bool sff_module_supported(const struct sfp_eeprom_id *id) 264 { 265 return id->base.phys_id == SFF8024_ID_SFF_8472 && 266 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 267 } 268 269 static const struct sff_data sff_data = { 270 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 271 .module_supported = sff_module_supported, 272 }; 273 274 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 275 { 276 return id->base.phys_id == SFF8024_ID_SFP && 277 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 278 } 279 280 static const struct sff_data sfp_data = { 281 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 282 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 283 .module_supported = sfp_module_supported, 284 }; 285 286 static const struct of_device_id sfp_of_match[] = { 287 { .compatible = "sff,sff", .data = &sff_data, }, 288 { .compatible = "sff,sfp", .data = &sfp_data, }, 289 { }, 290 }; 291 MODULE_DEVICE_TABLE(of, sfp_of_match); 292 293 static unsigned long poll_jiffies; 294 295 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 296 { 297 unsigned int i, state, v; 298 299 for (i = state = 0; i < GPIO_MAX; i++) { 300 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 301 continue; 302 303 v = gpiod_get_value_cansleep(sfp->gpio[i]); 304 if (v) 305 state |= BIT(i); 306 } 307 308 return state; 309 } 310 311 static unsigned int sff_gpio_get_state(struct sfp *sfp) 312 { 313 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 314 } 315 316 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 317 { 318 if (state & SFP_F_PRESENT) { 319 /* If the module is present, drive the signals */ 320 if (sfp->gpio[GPIO_TX_DISABLE]) 321 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 322 state & SFP_F_TX_DISABLE); 323 if (state & SFP_F_RATE_SELECT) 324 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 325 state & SFP_F_RATE_SELECT); 326 } else { 327 /* Otherwise, let them float to the pull-ups */ 328 if (sfp->gpio[GPIO_TX_DISABLE]) 329 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 330 if (state & SFP_F_RATE_SELECT) 331 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 332 } 333 } 334 335 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 336 size_t len) 337 { 338 struct i2c_msg msgs[2]; 339 size_t block_size; 340 size_t this_len; 341 u8 bus_addr; 342 int ret; 343 344 if (a2) { 345 block_size = 16; 346 bus_addr = 0x51; 347 } else { 348 block_size = sfp->i2c_block_size; 349 bus_addr = 0x50; 350 } 351 352 msgs[0].addr = bus_addr; 353 msgs[0].flags = 0; 354 msgs[0].len = 1; 355 msgs[0].buf = &dev_addr; 356 msgs[1].addr = bus_addr; 357 msgs[1].flags = I2C_M_RD; 358 msgs[1].len = len; 359 msgs[1].buf = buf; 360 361 while (len) { 362 this_len = len; 363 if (this_len > block_size) 364 this_len = block_size; 365 366 msgs[1].len = this_len; 367 368 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 369 if (ret < 0) 370 return ret; 371 372 if (ret != ARRAY_SIZE(msgs)) 373 break; 374 375 msgs[1].buf += this_len; 376 dev_addr += this_len; 377 len -= this_len; 378 } 379 380 return msgs[1].buf - (u8 *)buf; 381 } 382 383 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 384 size_t len) 385 { 386 struct i2c_msg msgs[1]; 387 u8 bus_addr = a2 ? 0x51 : 0x50; 388 int ret; 389 390 msgs[0].addr = bus_addr; 391 msgs[0].flags = 0; 392 msgs[0].len = 1 + len; 393 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 394 if (!msgs[0].buf) 395 return -ENOMEM; 396 397 msgs[0].buf[0] = dev_addr; 398 memcpy(&msgs[0].buf[1], buf, len); 399 400 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 401 402 kfree(msgs[0].buf); 403 404 if (ret < 0) 405 return ret; 406 407 return ret == ARRAY_SIZE(msgs) ? len : 0; 408 } 409 410 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 411 { 412 struct mii_bus *i2c_mii; 413 int ret; 414 415 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 416 return -EINVAL; 417 418 sfp->i2c = i2c; 419 sfp->read = sfp_i2c_read; 420 sfp->write = sfp_i2c_write; 421 422 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 423 if (IS_ERR(i2c_mii)) 424 return PTR_ERR(i2c_mii); 425 426 i2c_mii->name = "SFP I2C Bus"; 427 i2c_mii->phy_mask = ~0; 428 429 ret = mdiobus_register(i2c_mii); 430 if (ret < 0) { 431 mdiobus_free(i2c_mii); 432 return ret; 433 } 434 435 sfp->i2c_mii = i2c_mii; 436 437 return 0; 438 } 439 440 /* Interface */ 441 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 442 { 443 return sfp->read(sfp, a2, addr, buf, len); 444 } 445 446 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 447 { 448 return sfp->write(sfp, a2, addr, buf, len); 449 } 450 451 static unsigned int sfp_soft_get_state(struct sfp *sfp) 452 { 453 unsigned int state = 0; 454 u8 status; 455 int ret; 456 457 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 458 if (ret == sizeof(status)) { 459 if (status & SFP_STATUS_RX_LOS) 460 state |= SFP_F_LOS; 461 if (status & SFP_STATUS_TX_FAULT) 462 state |= SFP_F_TX_FAULT; 463 } else { 464 dev_err_ratelimited(sfp->dev, 465 "failed to read SFP soft status: %d\n", 466 ret); 467 /* Preserve the current state */ 468 state = sfp->state; 469 } 470 471 return state & sfp->state_soft_mask; 472 } 473 474 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 475 { 476 u8 status; 477 478 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 479 sizeof(status)) { 480 if (state & SFP_F_TX_DISABLE) 481 status |= SFP_STATUS_TX_DISABLE_FORCE; 482 else 483 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 484 485 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 486 } 487 } 488 489 static void sfp_soft_start_poll(struct sfp *sfp) 490 { 491 const struct sfp_eeprom_id *id = &sfp->id; 492 493 sfp->state_soft_mask = 0; 494 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 495 !sfp->gpio[GPIO_TX_DISABLE]) 496 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 497 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 498 !sfp->gpio[GPIO_TX_FAULT]) 499 sfp->state_soft_mask |= SFP_F_TX_FAULT; 500 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 501 !sfp->gpio[GPIO_LOS]) 502 sfp->state_soft_mask |= SFP_F_LOS; 503 504 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 505 !sfp->need_poll) 506 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 507 } 508 509 static void sfp_soft_stop_poll(struct sfp *sfp) 510 { 511 sfp->state_soft_mask = 0; 512 } 513 514 static unsigned int sfp_get_state(struct sfp *sfp) 515 { 516 unsigned int state = sfp->get_state(sfp); 517 518 if (state & SFP_F_PRESENT && 519 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 520 state |= sfp_soft_get_state(sfp); 521 522 return state; 523 } 524 525 static void sfp_set_state(struct sfp *sfp, unsigned int state) 526 { 527 sfp->set_state(sfp, state); 528 529 if (state & SFP_F_PRESENT && 530 sfp->state_soft_mask & SFP_F_TX_DISABLE) 531 sfp_soft_set_state(sfp, state); 532 } 533 534 static unsigned int sfp_check(void *buf, size_t len) 535 { 536 u8 *p, check; 537 538 for (p = buf, check = 0; len; p++, len--) 539 check += *p; 540 541 return check; 542 } 543 544 /* hwmon */ 545 #if IS_ENABLED(CONFIG_HWMON) 546 static umode_t sfp_hwmon_is_visible(const void *data, 547 enum hwmon_sensor_types type, 548 u32 attr, int channel) 549 { 550 const struct sfp *sfp = data; 551 552 switch (type) { 553 case hwmon_temp: 554 switch (attr) { 555 case hwmon_temp_min_alarm: 556 case hwmon_temp_max_alarm: 557 case hwmon_temp_lcrit_alarm: 558 case hwmon_temp_crit_alarm: 559 case hwmon_temp_min: 560 case hwmon_temp_max: 561 case hwmon_temp_lcrit: 562 case hwmon_temp_crit: 563 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 564 return 0; 565 fallthrough; 566 case hwmon_temp_input: 567 case hwmon_temp_label: 568 return 0444; 569 default: 570 return 0; 571 } 572 case hwmon_in: 573 switch (attr) { 574 case hwmon_in_min_alarm: 575 case hwmon_in_max_alarm: 576 case hwmon_in_lcrit_alarm: 577 case hwmon_in_crit_alarm: 578 case hwmon_in_min: 579 case hwmon_in_max: 580 case hwmon_in_lcrit: 581 case hwmon_in_crit: 582 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 583 return 0; 584 fallthrough; 585 case hwmon_in_input: 586 case hwmon_in_label: 587 return 0444; 588 default: 589 return 0; 590 } 591 case hwmon_curr: 592 switch (attr) { 593 case hwmon_curr_min_alarm: 594 case hwmon_curr_max_alarm: 595 case hwmon_curr_lcrit_alarm: 596 case hwmon_curr_crit_alarm: 597 case hwmon_curr_min: 598 case hwmon_curr_max: 599 case hwmon_curr_lcrit: 600 case hwmon_curr_crit: 601 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 602 return 0; 603 fallthrough; 604 case hwmon_curr_input: 605 case hwmon_curr_label: 606 return 0444; 607 default: 608 return 0; 609 } 610 case hwmon_power: 611 /* External calibration of receive power requires 612 * floating point arithmetic. Doing that in the kernel 613 * is not easy, so just skip it. If the module does 614 * not require external calibration, we can however 615 * show receiver power, since FP is then not needed. 616 */ 617 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 618 channel == 1) 619 return 0; 620 switch (attr) { 621 case hwmon_power_min_alarm: 622 case hwmon_power_max_alarm: 623 case hwmon_power_lcrit_alarm: 624 case hwmon_power_crit_alarm: 625 case hwmon_power_min: 626 case hwmon_power_max: 627 case hwmon_power_lcrit: 628 case hwmon_power_crit: 629 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 630 return 0; 631 fallthrough; 632 case hwmon_power_input: 633 case hwmon_power_label: 634 return 0444; 635 default: 636 return 0; 637 } 638 default: 639 return 0; 640 } 641 } 642 643 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 644 { 645 __be16 val; 646 int err; 647 648 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 649 if (err < 0) 650 return err; 651 652 *value = be16_to_cpu(val); 653 654 return 0; 655 } 656 657 static void sfp_hwmon_to_rx_power(long *value) 658 { 659 *value = DIV_ROUND_CLOSEST(*value, 10); 660 } 661 662 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 663 long *value) 664 { 665 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 666 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 667 } 668 669 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 670 { 671 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 672 be16_to_cpu(sfp->diag.cal_t_offset), value); 673 674 if (*value >= 0x8000) 675 *value -= 0x10000; 676 677 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 678 } 679 680 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 681 { 682 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 683 be16_to_cpu(sfp->diag.cal_v_offset), value); 684 685 *value = DIV_ROUND_CLOSEST(*value, 10); 686 } 687 688 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 689 { 690 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 691 be16_to_cpu(sfp->diag.cal_txi_offset), value); 692 693 *value = DIV_ROUND_CLOSEST(*value, 500); 694 } 695 696 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 697 { 698 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 699 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 700 701 *value = DIV_ROUND_CLOSEST(*value, 10); 702 } 703 704 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 705 { 706 int err; 707 708 err = sfp_hwmon_read_sensor(sfp, reg, value); 709 if (err < 0) 710 return err; 711 712 sfp_hwmon_calibrate_temp(sfp, value); 713 714 return 0; 715 } 716 717 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 718 { 719 int err; 720 721 err = sfp_hwmon_read_sensor(sfp, reg, value); 722 if (err < 0) 723 return err; 724 725 sfp_hwmon_calibrate_vcc(sfp, value); 726 727 return 0; 728 } 729 730 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 731 { 732 int err; 733 734 err = sfp_hwmon_read_sensor(sfp, reg, value); 735 if (err < 0) 736 return err; 737 738 sfp_hwmon_calibrate_bias(sfp, value); 739 740 return 0; 741 } 742 743 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 744 { 745 int err; 746 747 err = sfp_hwmon_read_sensor(sfp, reg, value); 748 if (err < 0) 749 return err; 750 751 sfp_hwmon_calibrate_tx_power(sfp, value); 752 753 return 0; 754 } 755 756 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 757 { 758 int err; 759 760 err = sfp_hwmon_read_sensor(sfp, reg, value); 761 if (err < 0) 762 return err; 763 764 sfp_hwmon_to_rx_power(value); 765 766 return 0; 767 } 768 769 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 770 { 771 u8 status; 772 int err; 773 774 switch (attr) { 775 case hwmon_temp_input: 776 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 777 778 case hwmon_temp_lcrit: 779 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 780 sfp_hwmon_calibrate_temp(sfp, value); 781 return 0; 782 783 case hwmon_temp_min: 784 *value = be16_to_cpu(sfp->diag.temp_low_warn); 785 sfp_hwmon_calibrate_temp(sfp, value); 786 return 0; 787 case hwmon_temp_max: 788 *value = be16_to_cpu(sfp->diag.temp_high_warn); 789 sfp_hwmon_calibrate_temp(sfp, value); 790 return 0; 791 792 case hwmon_temp_crit: 793 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 794 sfp_hwmon_calibrate_temp(sfp, value); 795 return 0; 796 797 case hwmon_temp_lcrit_alarm: 798 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 799 if (err < 0) 800 return err; 801 802 *value = !!(status & SFP_ALARM0_TEMP_LOW); 803 return 0; 804 805 case hwmon_temp_min_alarm: 806 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 807 if (err < 0) 808 return err; 809 810 *value = !!(status & SFP_WARN0_TEMP_LOW); 811 return 0; 812 813 case hwmon_temp_max_alarm: 814 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 815 if (err < 0) 816 return err; 817 818 *value = !!(status & SFP_WARN0_TEMP_HIGH); 819 return 0; 820 821 case hwmon_temp_crit_alarm: 822 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 823 if (err < 0) 824 return err; 825 826 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 827 return 0; 828 default: 829 return -EOPNOTSUPP; 830 } 831 832 return -EOPNOTSUPP; 833 } 834 835 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 836 { 837 u8 status; 838 int err; 839 840 switch (attr) { 841 case hwmon_in_input: 842 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 843 844 case hwmon_in_lcrit: 845 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 846 sfp_hwmon_calibrate_vcc(sfp, value); 847 return 0; 848 849 case hwmon_in_min: 850 *value = be16_to_cpu(sfp->diag.volt_low_warn); 851 sfp_hwmon_calibrate_vcc(sfp, value); 852 return 0; 853 854 case hwmon_in_max: 855 *value = be16_to_cpu(sfp->diag.volt_high_warn); 856 sfp_hwmon_calibrate_vcc(sfp, value); 857 return 0; 858 859 case hwmon_in_crit: 860 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 861 sfp_hwmon_calibrate_vcc(sfp, value); 862 return 0; 863 864 case hwmon_in_lcrit_alarm: 865 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 866 if (err < 0) 867 return err; 868 869 *value = !!(status & SFP_ALARM0_VCC_LOW); 870 return 0; 871 872 case hwmon_in_min_alarm: 873 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 874 if (err < 0) 875 return err; 876 877 *value = !!(status & SFP_WARN0_VCC_LOW); 878 return 0; 879 880 case hwmon_in_max_alarm: 881 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 882 if (err < 0) 883 return err; 884 885 *value = !!(status & SFP_WARN0_VCC_HIGH); 886 return 0; 887 888 case hwmon_in_crit_alarm: 889 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 890 if (err < 0) 891 return err; 892 893 *value = !!(status & SFP_ALARM0_VCC_HIGH); 894 return 0; 895 default: 896 return -EOPNOTSUPP; 897 } 898 899 return -EOPNOTSUPP; 900 } 901 902 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 903 { 904 u8 status; 905 int err; 906 907 switch (attr) { 908 case hwmon_curr_input: 909 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 910 911 case hwmon_curr_lcrit: 912 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 913 sfp_hwmon_calibrate_bias(sfp, value); 914 return 0; 915 916 case hwmon_curr_min: 917 *value = be16_to_cpu(sfp->diag.bias_low_warn); 918 sfp_hwmon_calibrate_bias(sfp, value); 919 return 0; 920 921 case hwmon_curr_max: 922 *value = be16_to_cpu(sfp->diag.bias_high_warn); 923 sfp_hwmon_calibrate_bias(sfp, value); 924 return 0; 925 926 case hwmon_curr_crit: 927 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 928 sfp_hwmon_calibrate_bias(sfp, value); 929 return 0; 930 931 case hwmon_curr_lcrit_alarm: 932 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 933 if (err < 0) 934 return err; 935 936 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 937 return 0; 938 939 case hwmon_curr_min_alarm: 940 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 941 if (err < 0) 942 return err; 943 944 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 945 return 0; 946 947 case hwmon_curr_max_alarm: 948 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 949 if (err < 0) 950 return err; 951 952 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 953 return 0; 954 955 case hwmon_curr_crit_alarm: 956 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 957 if (err < 0) 958 return err; 959 960 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 961 return 0; 962 default: 963 return -EOPNOTSUPP; 964 } 965 966 return -EOPNOTSUPP; 967 } 968 969 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 970 { 971 u8 status; 972 int err; 973 974 switch (attr) { 975 case hwmon_power_input: 976 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 977 978 case hwmon_power_lcrit: 979 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 980 sfp_hwmon_calibrate_tx_power(sfp, value); 981 return 0; 982 983 case hwmon_power_min: 984 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 985 sfp_hwmon_calibrate_tx_power(sfp, value); 986 return 0; 987 988 case hwmon_power_max: 989 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 990 sfp_hwmon_calibrate_tx_power(sfp, value); 991 return 0; 992 993 case hwmon_power_crit: 994 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 995 sfp_hwmon_calibrate_tx_power(sfp, value); 996 return 0; 997 998 case hwmon_power_lcrit_alarm: 999 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1000 if (err < 0) 1001 return err; 1002 1003 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1004 return 0; 1005 1006 case hwmon_power_min_alarm: 1007 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1008 if (err < 0) 1009 return err; 1010 1011 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1012 return 0; 1013 1014 case hwmon_power_max_alarm: 1015 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1016 if (err < 0) 1017 return err; 1018 1019 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1020 return 0; 1021 1022 case hwmon_power_crit_alarm: 1023 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1024 if (err < 0) 1025 return err; 1026 1027 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1028 return 0; 1029 default: 1030 return -EOPNOTSUPP; 1031 } 1032 1033 return -EOPNOTSUPP; 1034 } 1035 1036 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1037 { 1038 u8 status; 1039 int err; 1040 1041 switch (attr) { 1042 case hwmon_power_input: 1043 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1044 1045 case hwmon_power_lcrit: 1046 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1047 sfp_hwmon_to_rx_power(value); 1048 return 0; 1049 1050 case hwmon_power_min: 1051 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1052 sfp_hwmon_to_rx_power(value); 1053 return 0; 1054 1055 case hwmon_power_max: 1056 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1057 sfp_hwmon_to_rx_power(value); 1058 return 0; 1059 1060 case hwmon_power_crit: 1061 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1062 sfp_hwmon_to_rx_power(value); 1063 return 0; 1064 1065 case hwmon_power_lcrit_alarm: 1066 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1067 if (err < 0) 1068 return err; 1069 1070 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1071 return 0; 1072 1073 case hwmon_power_min_alarm: 1074 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1075 if (err < 0) 1076 return err; 1077 1078 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1079 return 0; 1080 1081 case hwmon_power_max_alarm: 1082 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1083 if (err < 0) 1084 return err; 1085 1086 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1087 return 0; 1088 1089 case hwmon_power_crit_alarm: 1090 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1091 if (err < 0) 1092 return err; 1093 1094 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1095 return 0; 1096 default: 1097 return -EOPNOTSUPP; 1098 } 1099 1100 return -EOPNOTSUPP; 1101 } 1102 1103 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1104 u32 attr, int channel, long *value) 1105 { 1106 struct sfp *sfp = dev_get_drvdata(dev); 1107 1108 switch (type) { 1109 case hwmon_temp: 1110 return sfp_hwmon_temp(sfp, attr, value); 1111 case hwmon_in: 1112 return sfp_hwmon_vcc(sfp, attr, value); 1113 case hwmon_curr: 1114 return sfp_hwmon_bias(sfp, attr, value); 1115 case hwmon_power: 1116 switch (channel) { 1117 case 0: 1118 return sfp_hwmon_tx_power(sfp, attr, value); 1119 case 1: 1120 return sfp_hwmon_rx_power(sfp, attr, value); 1121 default: 1122 return -EOPNOTSUPP; 1123 } 1124 default: 1125 return -EOPNOTSUPP; 1126 } 1127 } 1128 1129 static const char *const sfp_hwmon_power_labels[] = { 1130 "TX_power", 1131 "RX_power", 1132 }; 1133 1134 static int sfp_hwmon_read_string(struct device *dev, 1135 enum hwmon_sensor_types type, 1136 u32 attr, int channel, const char **str) 1137 { 1138 switch (type) { 1139 case hwmon_curr: 1140 switch (attr) { 1141 case hwmon_curr_label: 1142 *str = "bias"; 1143 return 0; 1144 default: 1145 return -EOPNOTSUPP; 1146 } 1147 break; 1148 case hwmon_temp: 1149 switch (attr) { 1150 case hwmon_temp_label: 1151 *str = "temperature"; 1152 return 0; 1153 default: 1154 return -EOPNOTSUPP; 1155 } 1156 break; 1157 case hwmon_in: 1158 switch (attr) { 1159 case hwmon_in_label: 1160 *str = "VCC"; 1161 return 0; 1162 default: 1163 return -EOPNOTSUPP; 1164 } 1165 break; 1166 case hwmon_power: 1167 switch (attr) { 1168 case hwmon_power_label: 1169 *str = sfp_hwmon_power_labels[channel]; 1170 return 0; 1171 default: 1172 return -EOPNOTSUPP; 1173 } 1174 break; 1175 default: 1176 return -EOPNOTSUPP; 1177 } 1178 1179 return -EOPNOTSUPP; 1180 } 1181 1182 static const struct hwmon_ops sfp_hwmon_ops = { 1183 .is_visible = sfp_hwmon_is_visible, 1184 .read = sfp_hwmon_read, 1185 .read_string = sfp_hwmon_read_string, 1186 }; 1187 1188 static u32 sfp_hwmon_chip_config[] = { 1189 HWMON_C_REGISTER_TZ, 1190 0, 1191 }; 1192 1193 static const struct hwmon_channel_info sfp_hwmon_chip = { 1194 .type = hwmon_chip, 1195 .config = sfp_hwmon_chip_config, 1196 }; 1197 1198 static u32 sfp_hwmon_temp_config[] = { 1199 HWMON_T_INPUT | 1200 HWMON_T_MAX | HWMON_T_MIN | 1201 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1202 HWMON_T_CRIT | HWMON_T_LCRIT | 1203 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1204 HWMON_T_LABEL, 1205 0, 1206 }; 1207 1208 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1209 .type = hwmon_temp, 1210 .config = sfp_hwmon_temp_config, 1211 }; 1212 1213 static u32 sfp_hwmon_vcc_config[] = { 1214 HWMON_I_INPUT | 1215 HWMON_I_MAX | HWMON_I_MIN | 1216 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1217 HWMON_I_CRIT | HWMON_I_LCRIT | 1218 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1219 HWMON_I_LABEL, 1220 0, 1221 }; 1222 1223 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1224 .type = hwmon_in, 1225 .config = sfp_hwmon_vcc_config, 1226 }; 1227 1228 static u32 sfp_hwmon_bias_config[] = { 1229 HWMON_C_INPUT | 1230 HWMON_C_MAX | HWMON_C_MIN | 1231 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1232 HWMON_C_CRIT | HWMON_C_LCRIT | 1233 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1234 HWMON_C_LABEL, 1235 0, 1236 }; 1237 1238 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1239 .type = hwmon_curr, 1240 .config = sfp_hwmon_bias_config, 1241 }; 1242 1243 static u32 sfp_hwmon_power_config[] = { 1244 /* Transmit power */ 1245 HWMON_P_INPUT | 1246 HWMON_P_MAX | HWMON_P_MIN | 1247 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1248 HWMON_P_CRIT | HWMON_P_LCRIT | 1249 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1250 HWMON_P_LABEL, 1251 /* Receive power */ 1252 HWMON_P_INPUT | 1253 HWMON_P_MAX | HWMON_P_MIN | 1254 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1255 HWMON_P_CRIT | HWMON_P_LCRIT | 1256 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1257 HWMON_P_LABEL, 1258 0, 1259 }; 1260 1261 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1262 .type = hwmon_power, 1263 .config = sfp_hwmon_power_config, 1264 }; 1265 1266 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1267 &sfp_hwmon_chip, 1268 &sfp_hwmon_vcc_channel_info, 1269 &sfp_hwmon_temp_channel_info, 1270 &sfp_hwmon_bias_channel_info, 1271 &sfp_hwmon_power_channel_info, 1272 NULL, 1273 }; 1274 1275 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1276 .ops = &sfp_hwmon_ops, 1277 .info = sfp_hwmon_info, 1278 }; 1279 1280 static void sfp_hwmon_probe(struct work_struct *work) 1281 { 1282 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1283 int err, i; 1284 1285 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1286 if (err < 0) { 1287 if (sfp->hwmon_tries--) { 1288 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1289 T_PROBE_RETRY_SLOW); 1290 } else { 1291 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1292 } 1293 return; 1294 } 1295 1296 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1297 if (!sfp->hwmon_name) { 1298 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1299 return; 1300 } 1301 1302 for (i = 0; sfp->hwmon_name[i]; i++) 1303 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1304 sfp->hwmon_name[i] = '_'; 1305 1306 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1307 sfp->hwmon_name, sfp, 1308 &sfp_hwmon_chip_info, 1309 NULL); 1310 if (IS_ERR(sfp->hwmon_dev)) 1311 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1312 PTR_ERR(sfp->hwmon_dev)); 1313 } 1314 1315 static int sfp_hwmon_insert(struct sfp *sfp) 1316 { 1317 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1318 return 0; 1319 1320 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1321 return 0; 1322 1323 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1324 /* This driver in general does not support address 1325 * change. 1326 */ 1327 return 0; 1328 1329 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1330 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1331 1332 return 0; 1333 } 1334 1335 static void sfp_hwmon_remove(struct sfp *sfp) 1336 { 1337 cancel_delayed_work_sync(&sfp->hwmon_probe); 1338 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1339 hwmon_device_unregister(sfp->hwmon_dev); 1340 sfp->hwmon_dev = NULL; 1341 kfree(sfp->hwmon_name); 1342 } 1343 } 1344 1345 static int sfp_hwmon_init(struct sfp *sfp) 1346 { 1347 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1348 1349 return 0; 1350 } 1351 1352 static void sfp_hwmon_exit(struct sfp *sfp) 1353 { 1354 cancel_delayed_work_sync(&sfp->hwmon_probe); 1355 } 1356 #else 1357 static int sfp_hwmon_insert(struct sfp *sfp) 1358 { 1359 return 0; 1360 } 1361 1362 static void sfp_hwmon_remove(struct sfp *sfp) 1363 { 1364 } 1365 1366 static int sfp_hwmon_init(struct sfp *sfp) 1367 { 1368 return 0; 1369 } 1370 1371 static void sfp_hwmon_exit(struct sfp *sfp) 1372 { 1373 } 1374 #endif 1375 1376 /* Helpers */ 1377 static void sfp_module_tx_disable(struct sfp *sfp) 1378 { 1379 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1380 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1381 sfp->state |= SFP_F_TX_DISABLE; 1382 sfp_set_state(sfp, sfp->state); 1383 } 1384 1385 static void sfp_module_tx_enable(struct sfp *sfp) 1386 { 1387 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1388 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1389 sfp->state &= ~SFP_F_TX_DISABLE; 1390 sfp_set_state(sfp, sfp->state); 1391 } 1392 1393 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1394 { 1395 unsigned int state = sfp->state; 1396 1397 if (state & SFP_F_TX_DISABLE) 1398 return; 1399 1400 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1401 1402 udelay(T_RESET_US); 1403 1404 sfp_set_state(sfp, state); 1405 } 1406 1407 /* SFP state machine */ 1408 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1409 { 1410 if (timeout) 1411 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1412 timeout); 1413 else 1414 cancel_delayed_work(&sfp->timeout); 1415 } 1416 1417 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1418 unsigned int timeout) 1419 { 1420 sfp->sm_state = state; 1421 sfp_sm_set_timer(sfp, timeout); 1422 } 1423 1424 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1425 unsigned int timeout) 1426 { 1427 sfp->sm_mod_state = state; 1428 sfp_sm_set_timer(sfp, timeout); 1429 } 1430 1431 static void sfp_sm_phy_detach(struct sfp *sfp) 1432 { 1433 sfp_remove_phy(sfp->sfp_bus); 1434 phy_device_remove(sfp->mod_phy); 1435 phy_device_free(sfp->mod_phy); 1436 sfp->mod_phy = NULL; 1437 } 1438 1439 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1440 { 1441 struct phy_device *phy; 1442 int err; 1443 1444 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1445 if (phy == ERR_PTR(-ENODEV)) 1446 return PTR_ERR(phy); 1447 if (IS_ERR(phy)) { 1448 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1449 return PTR_ERR(phy); 1450 } 1451 1452 err = phy_device_register(phy); 1453 if (err) { 1454 phy_device_free(phy); 1455 dev_err(sfp->dev, "phy_device_register failed: %d\n", err); 1456 return err; 1457 } 1458 1459 err = sfp_add_phy(sfp->sfp_bus, phy); 1460 if (err) { 1461 phy_device_remove(phy); 1462 phy_device_free(phy); 1463 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1464 return err; 1465 } 1466 1467 sfp->mod_phy = phy; 1468 1469 return 0; 1470 } 1471 1472 static void sfp_sm_link_up(struct sfp *sfp) 1473 { 1474 sfp_link_up(sfp->sfp_bus); 1475 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1476 } 1477 1478 static void sfp_sm_link_down(struct sfp *sfp) 1479 { 1480 sfp_link_down(sfp->sfp_bus); 1481 } 1482 1483 static void sfp_sm_link_check_los(struct sfp *sfp) 1484 { 1485 unsigned int los = sfp->state & SFP_F_LOS; 1486 1487 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1488 * are set, we assume that no LOS signal is available. 1489 */ 1490 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) 1491 los ^= SFP_F_LOS; 1492 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) 1493 los = 0; 1494 1495 if (los) 1496 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1497 else 1498 sfp_sm_link_up(sfp); 1499 } 1500 1501 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1502 { 1503 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1504 event == SFP_E_LOS_LOW) || 1505 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1506 event == SFP_E_LOS_HIGH); 1507 } 1508 1509 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1510 { 1511 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1512 event == SFP_E_LOS_HIGH) || 1513 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1514 event == SFP_E_LOS_LOW); 1515 } 1516 1517 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1518 { 1519 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1520 dev_err(sfp->dev, 1521 "module persistently indicates fault, disabling\n"); 1522 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1523 } else { 1524 if (warn) 1525 dev_err(sfp->dev, "module transmit fault indicated\n"); 1526 1527 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1528 } 1529 } 1530 1531 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1532 * normally sits at I2C bus address 0x56, and may either be a clause 22 1533 * or clause 45 PHY. 1534 * 1535 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1536 * negotiation enabled, but some may be in 1000base-X - which is for the 1537 * PHY driver to determine. 1538 * 1539 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1540 * mode according to the negotiated line speed. 1541 */ 1542 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1543 { 1544 int err = 0; 1545 1546 switch (sfp->id.base.extended_cc) { 1547 case SFF8024_ECC_10GBASE_T_SFI: 1548 case SFF8024_ECC_10GBASE_T_SR: 1549 case SFF8024_ECC_5GBASE_T: 1550 case SFF8024_ECC_2_5GBASE_T: 1551 err = sfp_sm_probe_phy(sfp, true); 1552 break; 1553 1554 default: 1555 if (sfp->id.base.e1000_base_t) 1556 err = sfp_sm_probe_phy(sfp, false); 1557 break; 1558 } 1559 return err; 1560 } 1561 1562 static int sfp_module_parse_power(struct sfp *sfp) 1563 { 1564 u32 power_mW = 1000; 1565 1566 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1567 power_mW = 1500; 1568 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1569 power_mW = 2000; 1570 1571 if (power_mW > sfp->max_power_mW) { 1572 /* Module power specification exceeds the allowed maximum. */ 1573 if (sfp->id.ext.sff8472_compliance == 1574 SFP_SFF8472_COMPLIANCE_NONE && 1575 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) { 1576 /* The module appears not to implement bus address 1577 * 0xa2, so assume that the module powers up in the 1578 * indicated mode. 1579 */ 1580 dev_err(sfp->dev, 1581 "Host does not support %u.%uW modules\n", 1582 power_mW / 1000, (power_mW / 100) % 10); 1583 return -EINVAL; 1584 } else { 1585 dev_warn(sfp->dev, 1586 "Host does not support %u.%uW modules, module left in power mode 1\n", 1587 power_mW / 1000, (power_mW / 100) % 10); 1588 return 0; 1589 } 1590 } 1591 1592 /* If the module requires a higher power mode, but also requires 1593 * an address change sequence, warn the user that the module may 1594 * not be functional. 1595 */ 1596 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) { 1597 dev_warn(sfp->dev, 1598 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1599 power_mW / 1000, (power_mW / 100) % 10); 1600 return 0; 1601 } 1602 1603 sfp->module_power_mW = power_mW; 1604 1605 return 0; 1606 } 1607 1608 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1609 { 1610 u8 val; 1611 int err; 1612 1613 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1614 if (err != sizeof(val)) { 1615 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1616 return -EAGAIN; 1617 } 1618 1619 /* DM7052 reports as a high power module, responds to reads (with 1620 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1621 * if the bit is already set, we're already in high power mode. 1622 */ 1623 if (!!(val & BIT(0)) == enable) 1624 return 0; 1625 1626 if (enable) 1627 val |= BIT(0); 1628 else 1629 val &= ~BIT(0); 1630 1631 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1632 if (err != sizeof(val)) { 1633 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1634 return -EAGAIN; 1635 } 1636 1637 if (enable) 1638 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1639 sfp->module_power_mW / 1000, 1640 (sfp->module_power_mW / 100) % 10); 1641 1642 return 0; 1643 } 1644 1645 /* Some modules (Nokia 3FE46541AA) lock up if byte 0x51 is read as a 1646 * single read. Switch back to reading 16 byte blocks unless we have 1647 * a CarlitoxxPro module (rebranded VSOL V2801F). Even more annoyingly, 1648 * some VSOL V2801F have the vendor name changed to OEM. 1649 */ 1650 static int sfp_quirk_i2c_block_size(const struct sfp_eeprom_base *base) 1651 { 1652 if (!memcmp(base->vendor_name, "VSOL ", 16)) 1653 return 1; 1654 if (!memcmp(base->vendor_name, "OEM ", 16) && 1655 !memcmp(base->vendor_pn, "V2801F ", 16)) 1656 return 1; 1657 1658 /* Some modules can't cope with long reads */ 1659 return 16; 1660 } 1661 1662 static void sfp_quirks_base(struct sfp *sfp, const struct sfp_eeprom_base *base) 1663 { 1664 sfp->i2c_block_size = sfp_quirk_i2c_block_size(base); 1665 } 1666 1667 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1668 { 1669 u8 check; 1670 int err; 1671 1672 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1673 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1674 id->base.connector != SFF8024_CONNECTOR_LC) { 1675 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1676 id->base.phys_id = SFF8024_ID_SFF_8472; 1677 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1678 id->base.connector = SFF8024_CONNECTOR_LC; 1679 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1680 if (err != 3) { 1681 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err); 1682 return err; 1683 } 1684 1685 /* Cotsworks modules have been found to require a delay between write operations. */ 1686 mdelay(50); 1687 1688 /* Update base structure checksum */ 1689 check = sfp_check(&id->base, sizeof(id->base) - 1); 1690 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1691 if (err != 1) { 1692 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err); 1693 return err; 1694 } 1695 } 1696 return 0; 1697 } 1698 1699 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1700 { 1701 /* SFP module inserted - read I2C data */ 1702 struct sfp_eeprom_id id; 1703 bool cotsworks_sfbg; 1704 bool cotsworks; 1705 u8 check; 1706 int ret; 1707 1708 /* Some modules (CarlitoxxPro CPGOS03-0490) do not support multibyte 1709 * reads from the EEPROM, so start by reading the base identifying 1710 * information one byte at a time. 1711 */ 1712 sfp->i2c_block_size = 1; 1713 1714 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1715 if (ret < 0) { 1716 if (report) 1717 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1718 return -EAGAIN; 1719 } 1720 1721 if (ret != sizeof(id.base)) { 1722 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1723 return -EAGAIN; 1724 } 1725 1726 /* Cotsworks do not seem to update the checksums when they 1727 * do the final programming with the final module part number, 1728 * serial number and date code. 1729 */ 1730 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1731 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1732 1733 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1734 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1735 * Cotsworks PN matches and bytes are not correct. 1736 */ 1737 if (cotsworks && cotsworks_sfbg) { 1738 ret = sfp_cotsworks_fixup_check(sfp, &id); 1739 if (ret < 0) 1740 return ret; 1741 } 1742 1743 /* Validate the checksum over the base structure */ 1744 check = sfp_check(&id.base, sizeof(id.base) - 1); 1745 if (check != id.base.cc_base) { 1746 if (cotsworks) { 1747 dev_warn(sfp->dev, 1748 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1749 check, id.base.cc_base); 1750 } else { 1751 dev_err(sfp->dev, 1752 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1753 check, id.base.cc_base); 1754 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1755 16, 1, &id, sizeof(id), true); 1756 return -EINVAL; 1757 } 1758 } 1759 1760 /* Apply any early module-specific quirks */ 1761 sfp_quirks_base(sfp, &id.base); 1762 1763 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1764 if (ret < 0) { 1765 if (report) 1766 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1767 return -EAGAIN; 1768 } 1769 1770 if (ret != sizeof(id.ext)) { 1771 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1772 return -EAGAIN; 1773 } 1774 1775 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1776 if (check != id.ext.cc_ext) { 1777 if (cotsworks) { 1778 dev_warn(sfp->dev, 1779 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1780 check, id.ext.cc_ext); 1781 } else { 1782 dev_err(sfp->dev, 1783 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1784 check, id.ext.cc_ext); 1785 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1786 16, 1, &id, sizeof(id), true); 1787 memset(&id.ext, 0, sizeof(id.ext)); 1788 } 1789 } 1790 1791 sfp->id = id; 1792 1793 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1794 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1795 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1796 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1797 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1798 (int)sizeof(id.ext.datecode), id.ext.datecode); 1799 1800 /* Check whether we support this module */ 1801 if (!sfp->type->module_supported(&id)) { 1802 dev_err(sfp->dev, 1803 "module is not supported - phys id 0x%02x 0x%02x\n", 1804 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1805 return -EINVAL; 1806 } 1807 1808 /* If the module requires address swap mode, warn about it */ 1809 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1810 dev_warn(sfp->dev, 1811 "module address swap to access page 0xA2 is not supported.\n"); 1812 1813 /* Parse the module power requirement */ 1814 ret = sfp_module_parse_power(sfp); 1815 if (ret < 0) 1816 return ret; 1817 1818 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1819 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1820 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1821 else 1822 sfp->module_t_start_up = T_START_UP; 1823 1824 return 0; 1825 } 1826 1827 static void sfp_sm_mod_remove(struct sfp *sfp) 1828 { 1829 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1830 sfp_module_remove(sfp->sfp_bus); 1831 1832 sfp_hwmon_remove(sfp); 1833 1834 memset(&sfp->id, 0, sizeof(sfp->id)); 1835 sfp->module_power_mW = 0; 1836 1837 dev_info(sfp->dev, "module removed\n"); 1838 } 1839 1840 /* This state machine tracks the upstream's state */ 1841 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1842 { 1843 switch (sfp->sm_dev_state) { 1844 default: 1845 if (event == SFP_E_DEV_ATTACH) 1846 sfp->sm_dev_state = SFP_DEV_DOWN; 1847 break; 1848 1849 case SFP_DEV_DOWN: 1850 if (event == SFP_E_DEV_DETACH) 1851 sfp->sm_dev_state = SFP_DEV_DETACHED; 1852 else if (event == SFP_E_DEV_UP) 1853 sfp->sm_dev_state = SFP_DEV_UP; 1854 break; 1855 1856 case SFP_DEV_UP: 1857 if (event == SFP_E_DEV_DETACH) 1858 sfp->sm_dev_state = SFP_DEV_DETACHED; 1859 else if (event == SFP_E_DEV_DOWN) 1860 sfp->sm_dev_state = SFP_DEV_DOWN; 1861 break; 1862 } 1863 } 1864 1865 /* This state machine tracks the insert/remove state of the module, probes 1866 * the on-board EEPROM, and sets up the power level. 1867 */ 1868 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 1869 { 1870 int err; 1871 1872 /* Handle remove event globally, it resets this state machine */ 1873 if (event == SFP_E_REMOVE) { 1874 if (sfp->sm_mod_state > SFP_MOD_PROBE) 1875 sfp_sm_mod_remove(sfp); 1876 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 1877 return; 1878 } 1879 1880 /* Handle device detach globally */ 1881 if (sfp->sm_dev_state < SFP_DEV_DOWN && 1882 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 1883 if (sfp->module_power_mW > 1000 && 1884 sfp->sm_mod_state > SFP_MOD_HPOWER) 1885 sfp_sm_mod_hpower(sfp, false); 1886 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1887 return; 1888 } 1889 1890 switch (sfp->sm_mod_state) { 1891 default: 1892 if (event == SFP_E_INSERT) { 1893 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 1894 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 1895 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 1896 } 1897 break; 1898 1899 case SFP_MOD_PROBE: 1900 /* Wait for T_PROBE_INIT to time out */ 1901 if (event != SFP_E_TIMEOUT) 1902 break; 1903 1904 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 1905 if (err == -EAGAIN) { 1906 if (sfp->sm_mod_tries_init && 1907 --sfp->sm_mod_tries_init) { 1908 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1909 break; 1910 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 1911 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 1912 dev_warn(sfp->dev, 1913 "please wait, module slow to respond\n"); 1914 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 1915 break; 1916 } 1917 } 1918 if (err < 0) { 1919 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1920 break; 1921 } 1922 1923 err = sfp_hwmon_insert(sfp); 1924 if (err) 1925 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1926 1927 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1928 fallthrough; 1929 case SFP_MOD_WAITDEV: 1930 /* Ensure that the device is attached before proceeding */ 1931 if (sfp->sm_dev_state < SFP_DEV_DOWN) 1932 break; 1933 1934 /* Report the module insertion to the upstream device */ 1935 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1936 if (err < 0) { 1937 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1938 break; 1939 } 1940 1941 /* If this is a power level 1 module, we are done */ 1942 if (sfp->module_power_mW <= 1000) 1943 goto insert; 1944 1945 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 1946 fallthrough; 1947 case SFP_MOD_HPOWER: 1948 /* Enable high power mode */ 1949 err = sfp_sm_mod_hpower(sfp, true); 1950 if (err < 0) { 1951 if (err != -EAGAIN) { 1952 sfp_module_remove(sfp->sfp_bus); 1953 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1954 } else { 1955 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1956 } 1957 break; 1958 } 1959 1960 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 1961 break; 1962 1963 case SFP_MOD_WAITPWR: 1964 /* Wait for T_HPOWER_LEVEL to time out */ 1965 if (event != SFP_E_TIMEOUT) 1966 break; 1967 1968 insert: 1969 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 1970 break; 1971 1972 case SFP_MOD_PRESENT: 1973 case SFP_MOD_ERROR: 1974 break; 1975 } 1976 } 1977 1978 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 1979 { 1980 unsigned long timeout; 1981 int ret; 1982 1983 /* Some events are global */ 1984 if (sfp->sm_state != SFP_S_DOWN && 1985 (sfp->sm_mod_state != SFP_MOD_PRESENT || 1986 sfp->sm_dev_state != SFP_DEV_UP)) { 1987 if (sfp->sm_state == SFP_S_LINK_UP && 1988 sfp->sm_dev_state == SFP_DEV_UP) 1989 sfp_sm_link_down(sfp); 1990 if (sfp->sm_state > SFP_S_INIT) 1991 sfp_module_stop(sfp->sfp_bus); 1992 if (sfp->mod_phy) 1993 sfp_sm_phy_detach(sfp); 1994 sfp_module_tx_disable(sfp); 1995 sfp_soft_stop_poll(sfp); 1996 sfp_sm_next(sfp, SFP_S_DOWN, 0); 1997 return; 1998 } 1999 2000 /* The main state machine */ 2001 switch (sfp->sm_state) { 2002 case SFP_S_DOWN: 2003 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2004 sfp->sm_dev_state != SFP_DEV_UP) 2005 break; 2006 2007 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2008 sfp_soft_start_poll(sfp); 2009 2010 sfp_module_tx_enable(sfp); 2011 2012 /* Initialise the fault clearance retries */ 2013 sfp->sm_fault_retries = N_FAULT_INIT; 2014 2015 /* We need to check the TX_FAULT state, which is not defined 2016 * while TX_DISABLE is asserted. The earliest we want to do 2017 * anything (such as probe for a PHY) is 50ms. 2018 */ 2019 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2020 break; 2021 2022 case SFP_S_WAIT: 2023 if (event != SFP_E_TIMEOUT) 2024 break; 2025 2026 if (sfp->state & SFP_F_TX_FAULT) { 2027 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2028 * from the TX_DISABLE deassertion for the module to 2029 * initialise, which is indicated by TX_FAULT 2030 * deasserting. 2031 */ 2032 timeout = sfp->module_t_start_up; 2033 if (timeout > T_WAIT) 2034 timeout -= T_WAIT; 2035 else 2036 timeout = 1; 2037 2038 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2039 } else { 2040 /* TX_FAULT is not asserted, assume the module has 2041 * finished initialising. 2042 */ 2043 goto init_done; 2044 } 2045 break; 2046 2047 case SFP_S_INIT: 2048 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2049 /* TX_FAULT is still asserted after t_init or 2050 * or t_start_up, so assume there is a fault. 2051 */ 2052 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2053 sfp->sm_fault_retries == N_FAULT_INIT); 2054 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2055 init_done: 2056 sfp->sm_phy_retries = R_PHY_RETRY; 2057 goto phy_probe; 2058 } 2059 break; 2060 2061 case SFP_S_INIT_PHY: 2062 if (event != SFP_E_TIMEOUT) 2063 break; 2064 phy_probe: 2065 /* TX_FAULT deasserted or we timed out with TX_FAULT 2066 * clear. Probe for the PHY and check the LOS state. 2067 */ 2068 ret = sfp_sm_probe_for_phy(sfp); 2069 if (ret == -ENODEV) { 2070 if (--sfp->sm_phy_retries) { 2071 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2072 break; 2073 } else { 2074 dev_info(sfp->dev, "no PHY detected\n"); 2075 } 2076 } else if (ret) { 2077 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2078 break; 2079 } 2080 if (sfp_module_start(sfp->sfp_bus)) { 2081 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2082 break; 2083 } 2084 sfp_sm_link_check_los(sfp); 2085 2086 /* Reset the fault retry count */ 2087 sfp->sm_fault_retries = N_FAULT; 2088 break; 2089 2090 case SFP_S_INIT_TX_FAULT: 2091 if (event == SFP_E_TIMEOUT) { 2092 sfp_module_tx_fault_reset(sfp); 2093 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2094 } 2095 break; 2096 2097 case SFP_S_WAIT_LOS: 2098 if (event == SFP_E_TX_FAULT) 2099 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2100 else if (sfp_los_event_inactive(sfp, event)) 2101 sfp_sm_link_up(sfp); 2102 break; 2103 2104 case SFP_S_LINK_UP: 2105 if (event == SFP_E_TX_FAULT) { 2106 sfp_sm_link_down(sfp); 2107 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2108 } else if (sfp_los_event_active(sfp, event)) { 2109 sfp_sm_link_down(sfp); 2110 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2111 } 2112 break; 2113 2114 case SFP_S_TX_FAULT: 2115 if (event == SFP_E_TIMEOUT) { 2116 sfp_module_tx_fault_reset(sfp); 2117 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2118 } 2119 break; 2120 2121 case SFP_S_REINIT: 2122 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2123 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2124 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2125 dev_info(sfp->dev, "module transmit fault recovered\n"); 2126 sfp_sm_link_check_los(sfp); 2127 } 2128 break; 2129 2130 case SFP_S_TX_DISABLE: 2131 break; 2132 } 2133 } 2134 2135 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2136 { 2137 mutex_lock(&sfp->sm_mutex); 2138 2139 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2140 mod_state_to_str(sfp->sm_mod_state), 2141 dev_state_to_str(sfp->sm_dev_state), 2142 sm_state_to_str(sfp->sm_state), 2143 event_to_str(event)); 2144 2145 sfp_sm_device(sfp, event); 2146 sfp_sm_module(sfp, event); 2147 sfp_sm_main(sfp, event); 2148 2149 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2150 mod_state_to_str(sfp->sm_mod_state), 2151 dev_state_to_str(sfp->sm_dev_state), 2152 sm_state_to_str(sfp->sm_state)); 2153 2154 mutex_unlock(&sfp->sm_mutex); 2155 } 2156 2157 static void sfp_attach(struct sfp *sfp) 2158 { 2159 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2160 } 2161 2162 static void sfp_detach(struct sfp *sfp) 2163 { 2164 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2165 } 2166 2167 static void sfp_start(struct sfp *sfp) 2168 { 2169 sfp_sm_event(sfp, SFP_E_DEV_UP); 2170 } 2171 2172 static void sfp_stop(struct sfp *sfp) 2173 { 2174 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2175 } 2176 2177 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2178 { 2179 /* locking... and check module is present */ 2180 2181 if (sfp->id.ext.sff8472_compliance && 2182 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2183 modinfo->type = ETH_MODULE_SFF_8472; 2184 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2185 } else { 2186 modinfo->type = ETH_MODULE_SFF_8079; 2187 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2188 } 2189 return 0; 2190 } 2191 2192 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2193 u8 *data) 2194 { 2195 unsigned int first, last, len; 2196 int ret; 2197 2198 if (ee->len == 0) 2199 return -EINVAL; 2200 2201 first = ee->offset; 2202 last = ee->offset + ee->len; 2203 if (first < ETH_MODULE_SFF_8079_LEN) { 2204 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2205 len -= first; 2206 2207 ret = sfp_read(sfp, false, first, data, len); 2208 if (ret < 0) 2209 return ret; 2210 2211 first += len; 2212 data += len; 2213 } 2214 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2215 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2216 len -= first; 2217 first -= ETH_MODULE_SFF_8079_LEN; 2218 2219 ret = sfp_read(sfp, true, first, data, len); 2220 if (ret < 0) 2221 return ret; 2222 } 2223 return 0; 2224 } 2225 2226 static const struct sfp_socket_ops sfp_module_ops = { 2227 .attach = sfp_attach, 2228 .detach = sfp_detach, 2229 .start = sfp_start, 2230 .stop = sfp_stop, 2231 .module_info = sfp_module_info, 2232 .module_eeprom = sfp_module_eeprom, 2233 }; 2234 2235 static void sfp_timeout(struct work_struct *work) 2236 { 2237 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2238 2239 rtnl_lock(); 2240 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2241 rtnl_unlock(); 2242 } 2243 2244 static void sfp_check_state(struct sfp *sfp) 2245 { 2246 unsigned int state, i, changed; 2247 2248 mutex_lock(&sfp->st_mutex); 2249 state = sfp_get_state(sfp); 2250 changed = state ^ sfp->state; 2251 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2252 2253 for (i = 0; i < GPIO_MAX; i++) 2254 if (changed & BIT(i)) 2255 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2256 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2257 2258 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2259 sfp->state = state; 2260 2261 rtnl_lock(); 2262 if (changed & SFP_F_PRESENT) 2263 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2264 SFP_E_INSERT : SFP_E_REMOVE); 2265 2266 if (changed & SFP_F_TX_FAULT) 2267 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2268 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2269 2270 if (changed & SFP_F_LOS) 2271 sfp_sm_event(sfp, state & SFP_F_LOS ? 2272 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2273 rtnl_unlock(); 2274 mutex_unlock(&sfp->st_mutex); 2275 } 2276 2277 static irqreturn_t sfp_irq(int irq, void *data) 2278 { 2279 struct sfp *sfp = data; 2280 2281 sfp_check_state(sfp); 2282 2283 return IRQ_HANDLED; 2284 } 2285 2286 static void sfp_poll(struct work_struct *work) 2287 { 2288 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2289 2290 sfp_check_state(sfp); 2291 2292 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2293 sfp->need_poll) 2294 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2295 } 2296 2297 static struct sfp *sfp_alloc(struct device *dev) 2298 { 2299 struct sfp *sfp; 2300 2301 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2302 if (!sfp) 2303 return ERR_PTR(-ENOMEM); 2304 2305 sfp->dev = dev; 2306 2307 mutex_init(&sfp->sm_mutex); 2308 mutex_init(&sfp->st_mutex); 2309 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2310 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2311 2312 sfp_hwmon_init(sfp); 2313 2314 return sfp; 2315 } 2316 2317 static void sfp_cleanup(void *data) 2318 { 2319 struct sfp *sfp = data; 2320 2321 sfp_hwmon_exit(sfp); 2322 2323 cancel_delayed_work_sync(&sfp->poll); 2324 cancel_delayed_work_sync(&sfp->timeout); 2325 if (sfp->i2c_mii) { 2326 mdiobus_unregister(sfp->i2c_mii); 2327 mdiobus_free(sfp->i2c_mii); 2328 } 2329 if (sfp->i2c) 2330 i2c_put_adapter(sfp->i2c); 2331 kfree(sfp); 2332 } 2333 2334 static int sfp_probe(struct platform_device *pdev) 2335 { 2336 const struct sff_data *sff; 2337 struct i2c_adapter *i2c; 2338 char *sfp_irq_name; 2339 struct sfp *sfp; 2340 int err, i; 2341 2342 sfp = sfp_alloc(&pdev->dev); 2343 if (IS_ERR(sfp)) 2344 return PTR_ERR(sfp); 2345 2346 platform_set_drvdata(pdev, sfp); 2347 2348 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 2349 if (err < 0) 2350 return err; 2351 2352 sff = sfp->type = &sfp_data; 2353 2354 if (pdev->dev.of_node) { 2355 struct device_node *node = pdev->dev.of_node; 2356 const struct of_device_id *id; 2357 struct device_node *np; 2358 2359 id = of_match_node(sfp_of_match, node); 2360 if (WARN_ON(!id)) 2361 return -EINVAL; 2362 2363 sff = sfp->type = id->data; 2364 2365 np = of_parse_phandle(node, "i2c-bus", 0); 2366 if (!np) { 2367 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2368 return -ENODEV; 2369 } 2370 2371 i2c = of_find_i2c_adapter_by_node(np); 2372 of_node_put(np); 2373 } else if (has_acpi_companion(&pdev->dev)) { 2374 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2375 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2376 struct fwnode_reference_args args; 2377 struct acpi_handle *acpi_handle; 2378 int ret; 2379 2380 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2381 if (ret || !is_acpi_device_node(args.fwnode)) { 2382 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2383 return -ENODEV; 2384 } 2385 2386 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2387 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2388 } else { 2389 return -EINVAL; 2390 } 2391 2392 if (!i2c) 2393 return -EPROBE_DEFER; 2394 2395 err = sfp_i2c_configure(sfp, i2c); 2396 if (err < 0) { 2397 i2c_put_adapter(i2c); 2398 return err; 2399 } 2400 2401 for (i = 0; i < GPIO_MAX; i++) 2402 if (sff->gpios & BIT(i)) { 2403 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2404 gpio_of_names[i], gpio_flags[i]); 2405 if (IS_ERR(sfp->gpio[i])) 2406 return PTR_ERR(sfp->gpio[i]); 2407 } 2408 2409 sfp->get_state = sfp_gpio_get_state; 2410 sfp->set_state = sfp_gpio_set_state; 2411 2412 /* Modules that have no detect signal are always present */ 2413 if (!(sfp->gpio[GPIO_MODDEF0])) 2414 sfp->get_state = sff_gpio_get_state; 2415 2416 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2417 &sfp->max_power_mW); 2418 if (!sfp->max_power_mW) 2419 sfp->max_power_mW = 1000; 2420 2421 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2422 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2423 2424 /* Get the initial state, and always signal TX disable, 2425 * since the network interface will not be up. 2426 */ 2427 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2428 2429 if (sfp->gpio[GPIO_RATE_SELECT] && 2430 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2431 sfp->state |= SFP_F_RATE_SELECT; 2432 sfp_set_state(sfp, sfp->state); 2433 sfp_module_tx_disable(sfp); 2434 if (sfp->state & SFP_F_PRESENT) { 2435 rtnl_lock(); 2436 sfp_sm_event(sfp, SFP_E_INSERT); 2437 rtnl_unlock(); 2438 } 2439 2440 for (i = 0; i < GPIO_MAX; i++) { 2441 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2442 continue; 2443 2444 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2445 if (sfp->gpio_irq[i] < 0) { 2446 sfp->gpio_irq[i] = 0; 2447 sfp->need_poll = true; 2448 continue; 2449 } 2450 2451 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2452 "%s-%s", dev_name(sfp->dev), 2453 gpio_of_names[i]); 2454 2455 if (!sfp_irq_name) 2456 return -ENOMEM; 2457 2458 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2459 NULL, sfp_irq, 2460 IRQF_ONESHOT | 2461 IRQF_TRIGGER_RISING | 2462 IRQF_TRIGGER_FALLING, 2463 sfp_irq_name, sfp); 2464 if (err) { 2465 sfp->gpio_irq[i] = 0; 2466 sfp->need_poll = true; 2467 } 2468 } 2469 2470 if (sfp->need_poll) 2471 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2472 2473 /* We could have an issue in cases no Tx disable pin is available or 2474 * wired as modules using a laser as their light source will continue to 2475 * be active when the fiber is removed. This could be a safety issue and 2476 * we should at least warn the user about that. 2477 */ 2478 if (!sfp->gpio[GPIO_TX_DISABLE]) 2479 dev_warn(sfp->dev, 2480 "No tx_disable pin: SFP modules will always be emitting.\n"); 2481 2482 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2483 if (!sfp->sfp_bus) 2484 return -ENOMEM; 2485 2486 return 0; 2487 } 2488 2489 static int sfp_remove(struct platform_device *pdev) 2490 { 2491 struct sfp *sfp = platform_get_drvdata(pdev); 2492 2493 sfp_unregister_socket(sfp->sfp_bus); 2494 2495 rtnl_lock(); 2496 sfp_sm_event(sfp, SFP_E_REMOVE); 2497 rtnl_unlock(); 2498 2499 return 0; 2500 } 2501 2502 static void sfp_shutdown(struct platform_device *pdev) 2503 { 2504 struct sfp *sfp = platform_get_drvdata(pdev); 2505 int i; 2506 2507 for (i = 0; i < GPIO_MAX; i++) { 2508 if (!sfp->gpio_irq[i]) 2509 continue; 2510 2511 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2512 } 2513 2514 cancel_delayed_work_sync(&sfp->poll); 2515 cancel_delayed_work_sync(&sfp->timeout); 2516 } 2517 2518 static struct platform_driver sfp_driver = { 2519 .probe = sfp_probe, 2520 .remove = sfp_remove, 2521 .shutdown = sfp_shutdown, 2522 .driver = { 2523 .name = "sfp", 2524 .of_match_table = sfp_of_match, 2525 }, 2526 }; 2527 2528 static int sfp_init(void) 2529 { 2530 poll_jiffies = msecs_to_jiffies(100); 2531 2532 return platform_driver_register(&sfp_driver); 2533 } 2534 module_init(sfp_init); 2535 2536 static void sfp_exit(void) 2537 { 2538 platform_driver_unregister(&sfp_driver); 2539 } 2540 module_exit(sfp_exit); 2541 2542 MODULE_ALIAS("platform:sfp"); 2543 MODULE_AUTHOR("Russell King"); 2544 MODULE_LICENSE("GPL v2"); 2545