xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ctype.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/mutex.h>
11 #include <linux/of.h>
12 #include <linux/phy.h>
13 #include <linux/platform_device.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 
18 #include "mdio-i2c.h"
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RATE_SELECT,
28 	GPIO_MAX,
29 
30 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
31 	SFP_F_LOS = BIT(GPIO_LOS),
32 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
33 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
34 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
35 
36 	SFP_E_INSERT = 0,
37 	SFP_E_REMOVE,
38 	SFP_E_DEV_DOWN,
39 	SFP_E_DEV_UP,
40 	SFP_E_TX_FAULT,
41 	SFP_E_TX_CLEAR,
42 	SFP_E_LOS_HIGH,
43 	SFP_E_LOS_LOW,
44 	SFP_E_TIMEOUT,
45 
46 	SFP_MOD_EMPTY = 0,
47 	SFP_MOD_PROBE,
48 	SFP_MOD_HPOWER,
49 	SFP_MOD_PRESENT,
50 	SFP_MOD_ERROR,
51 
52 	SFP_DEV_DOWN = 0,
53 	SFP_DEV_UP,
54 
55 	SFP_S_DOWN = 0,
56 	SFP_S_INIT,
57 	SFP_S_WAIT_LOS,
58 	SFP_S_LINK_UP,
59 	SFP_S_TX_FAULT,
60 	SFP_S_REINIT,
61 	SFP_S_TX_DISABLE,
62 };
63 
64 static const char  * const mod_state_strings[] = {
65 	[SFP_MOD_EMPTY] = "empty",
66 	[SFP_MOD_PROBE] = "probe",
67 	[SFP_MOD_HPOWER] = "hpower",
68 	[SFP_MOD_PRESENT] = "present",
69 	[SFP_MOD_ERROR] = "error",
70 };
71 
72 static const char *mod_state_to_str(unsigned short mod_state)
73 {
74 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
75 		return "Unknown module state";
76 	return mod_state_strings[mod_state];
77 }
78 
79 static const char * const dev_state_strings[] = {
80 	[SFP_DEV_DOWN] = "down",
81 	[SFP_DEV_UP] = "up",
82 };
83 
84 static const char *dev_state_to_str(unsigned short dev_state)
85 {
86 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
87 		return "Unknown device state";
88 	return dev_state_strings[dev_state];
89 }
90 
91 static const char * const event_strings[] = {
92 	[SFP_E_INSERT] = "insert",
93 	[SFP_E_REMOVE] = "remove",
94 	[SFP_E_DEV_DOWN] = "dev_down",
95 	[SFP_E_DEV_UP] = "dev_up",
96 	[SFP_E_TX_FAULT] = "tx_fault",
97 	[SFP_E_TX_CLEAR] = "tx_clear",
98 	[SFP_E_LOS_HIGH] = "los_high",
99 	[SFP_E_LOS_LOW] = "los_low",
100 	[SFP_E_TIMEOUT] = "timeout",
101 };
102 
103 static const char *event_to_str(unsigned short event)
104 {
105 	if (event >= ARRAY_SIZE(event_strings))
106 		return "Unknown event";
107 	return event_strings[event];
108 }
109 
110 static const char * const sm_state_strings[] = {
111 	[SFP_S_DOWN] = "down",
112 	[SFP_S_INIT] = "init",
113 	[SFP_S_WAIT_LOS] = "wait_los",
114 	[SFP_S_LINK_UP] = "link_up",
115 	[SFP_S_TX_FAULT] = "tx_fault",
116 	[SFP_S_REINIT] = "reinit",
117 	[SFP_S_TX_DISABLE] = "rx_disable",
118 };
119 
120 static const char *sm_state_to_str(unsigned short sm_state)
121 {
122 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
123 		return "Unknown state";
124 	return sm_state_strings[sm_state];
125 }
126 
127 static const char *gpio_of_names[] = {
128 	"mod-def0",
129 	"los",
130 	"tx-fault",
131 	"tx-disable",
132 	"rate-select0",
133 };
134 
135 static const enum gpiod_flags gpio_flags[] = {
136 	GPIOD_IN,
137 	GPIOD_IN,
138 	GPIOD_IN,
139 	GPIOD_ASIS,
140 	GPIOD_ASIS,
141 };
142 
143 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
144 #define T_RESET_US	10
145 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
146 
147 /* SFP module presence detection is poor: the three MOD DEF signals are
148  * the same length on the PCB, which means it's possible for MOD DEF 0 to
149  * connect before the I2C bus on MOD DEF 1/2.
150  *
151  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
152  * be deasserted) but makes no mention of the earliest time before we can
153  * access the I2C EEPROM.  However, Avago modules require 300ms.
154  */
155 #define T_PROBE_INIT	msecs_to_jiffies(300)
156 #define T_HPOWER_LEVEL	msecs_to_jiffies(300)
157 #define T_PROBE_RETRY	msecs_to_jiffies(100)
158 
159 /* SFP modules appear to always have their PHY configured for bus address
160  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
161  */
162 #define SFP_PHY_ADDR	22
163 
164 /* Give this long for the PHY to reset. */
165 #define T_PHY_RESET_MS	50
166 
167 struct sff_data {
168 	unsigned int gpios;
169 	bool (*module_supported)(const struct sfp_eeprom_id *id);
170 };
171 
172 struct sfp {
173 	struct device *dev;
174 	struct i2c_adapter *i2c;
175 	struct mii_bus *i2c_mii;
176 	struct sfp_bus *sfp_bus;
177 	struct phy_device *mod_phy;
178 	const struct sff_data *type;
179 	u32 max_power_mW;
180 
181 	unsigned int (*get_state)(struct sfp *);
182 	void (*set_state)(struct sfp *, unsigned int);
183 	int (*read)(struct sfp *, bool, u8, void *, size_t);
184 	int (*write)(struct sfp *, bool, u8, void *, size_t);
185 
186 	struct gpio_desc *gpio[GPIO_MAX];
187 
188 	unsigned int state;
189 	struct delayed_work poll;
190 	struct delayed_work timeout;
191 	struct mutex sm_mutex;
192 	unsigned char sm_mod_state;
193 	unsigned char sm_dev_state;
194 	unsigned short sm_state;
195 	unsigned int sm_retries;
196 
197 	struct sfp_eeprom_id id;
198 #if IS_ENABLED(CONFIG_HWMON)
199 	struct sfp_diag diag;
200 	struct device *hwmon_dev;
201 	char *hwmon_name;
202 #endif
203 
204 };
205 
206 static bool sff_module_supported(const struct sfp_eeprom_id *id)
207 {
208 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
209 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
210 }
211 
212 static const struct sff_data sff_data = {
213 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
214 	.module_supported = sff_module_supported,
215 };
216 
217 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
218 {
219 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
220 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
221 }
222 
223 static const struct sff_data sfp_data = {
224 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
225 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
226 	.module_supported = sfp_module_supported,
227 };
228 
229 static const struct of_device_id sfp_of_match[] = {
230 	{ .compatible = "sff,sff", .data = &sff_data, },
231 	{ .compatible = "sff,sfp", .data = &sfp_data, },
232 	{ },
233 };
234 MODULE_DEVICE_TABLE(of, sfp_of_match);
235 
236 static unsigned long poll_jiffies;
237 
238 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
239 {
240 	unsigned int i, state, v;
241 
242 	for (i = state = 0; i < GPIO_MAX; i++) {
243 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
244 			continue;
245 
246 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
247 		if (v)
248 			state |= BIT(i);
249 	}
250 
251 	return state;
252 }
253 
254 static unsigned int sff_gpio_get_state(struct sfp *sfp)
255 {
256 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
257 }
258 
259 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
260 {
261 	if (state & SFP_F_PRESENT) {
262 		/* If the module is present, drive the signals */
263 		if (sfp->gpio[GPIO_TX_DISABLE])
264 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
265 					       state & SFP_F_TX_DISABLE);
266 		if (state & SFP_F_RATE_SELECT)
267 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
268 					       state & SFP_F_RATE_SELECT);
269 	} else {
270 		/* Otherwise, let them float to the pull-ups */
271 		if (sfp->gpio[GPIO_TX_DISABLE])
272 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
273 		if (state & SFP_F_RATE_SELECT)
274 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
275 	}
276 }
277 
278 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
279 			size_t len)
280 {
281 	struct i2c_msg msgs[2];
282 	u8 bus_addr = a2 ? 0x51 : 0x50;
283 	int ret;
284 
285 	msgs[0].addr = bus_addr;
286 	msgs[0].flags = 0;
287 	msgs[0].len = 1;
288 	msgs[0].buf = &dev_addr;
289 	msgs[1].addr = bus_addr;
290 	msgs[1].flags = I2C_M_RD;
291 	msgs[1].len = len;
292 	msgs[1].buf = buf;
293 
294 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
295 	if (ret < 0)
296 		return ret;
297 
298 	return ret == ARRAY_SIZE(msgs) ? len : 0;
299 }
300 
301 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
302 	size_t len)
303 {
304 	struct i2c_msg msgs[1];
305 	u8 bus_addr = a2 ? 0x51 : 0x50;
306 	int ret;
307 
308 	msgs[0].addr = bus_addr;
309 	msgs[0].flags = 0;
310 	msgs[0].len = 1 + len;
311 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
312 	if (!msgs[0].buf)
313 		return -ENOMEM;
314 
315 	msgs[0].buf[0] = dev_addr;
316 	memcpy(&msgs[0].buf[1], buf, len);
317 
318 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
319 
320 	kfree(msgs[0].buf);
321 
322 	if (ret < 0)
323 		return ret;
324 
325 	return ret == ARRAY_SIZE(msgs) ? len : 0;
326 }
327 
328 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
329 {
330 	struct mii_bus *i2c_mii;
331 	int ret;
332 
333 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
334 		return -EINVAL;
335 
336 	sfp->i2c = i2c;
337 	sfp->read = sfp_i2c_read;
338 	sfp->write = sfp_i2c_write;
339 
340 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
341 	if (IS_ERR(i2c_mii))
342 		return PTR_ERR(i2c_mii);
343 
344 	i2c_mii->name = "SFP I2C Bus";
345 	i2c_mii->phy_mask = ~0;
346 
347 	ret = mdiobus_register(i2c_mii);
348 	if (ret < 0) {
349 		mdiobus_free(i2c_mii);
350 		return ret;
351 	}
352 
353 	sfp->i2c_mii = i2c_mii;
354 
355 	return 0;
356 }
357 
358 /* Interface */
359 static unsigned int sfp_get_state(struct sfp *sfp)
360 {
361 	return sfp->get_state(sfp);
362 }
363 
364 static void sfp_set_state(struct sfp *sfp, unsigned int state)
365 {
366 	sfp->set_state(sfp, state);
367 }
368 
369 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
370 {
371 	return sfp->read(sfp, a2, addr, buf, len);
372 }
373 
374 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
375 {
376 	return sfp->write(sfp, a2, addr, buf, len);
377 }
378 
379 static unsigned int sfp_check(void *buf, size_t len)
380 {
381 	u8 *p, check;
382 
383 	for (p = buf, check = 0; len; p++, len--)
384 		check += *p;
385 
386 	return check;
387 }
388 
389 /* hwmon */
390 #if IS_ENABLED(CONFIG_HWMON)
391 static umode_t sfp_hwmon_is_visible(const void *data,
392 				    enum hwmon_sensor_types type,
393 				    u32 attr, int channel)
394 {
395 	const struct sfp *sfp = data;
396 
397 	switch (type) {
398 	case hwmon_temp:
399 		switch (attr) {
400 		case hwmon_temp_min_alarm:
401 		case hwmon_temp_max_alarm:
402 		case hwmon_temp_lcrit_alarm:
403 		case hwmon_temp_crit_alarm:
404 		case hwmon_temp_min:
405 		case hwmon_temp_max:
406 		case hwmon_temp_lcrit:
407 		case hwmon_temp_crit:
408 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
409 				return 0;
410 			/* fall through */
411 		case hwmon_temp_input:
412 			return 0444;
413 		default:
414 			return 0;
415 		}
416 	case hwmon_in:
417 		switch (attr) {
418 		case hwmon_in_min_alarm:
419 		case hwmon_in_max_alarm:
420 		case hwmon_in_lcrit_alarm:
421 		case hwmon_in_crit_alarm:
422 		case hwmon_in_min:
423 		case hwmon_in_max:
424 		case hwmon_in_lcrit:
425 		case hwmon_in_crit:
426 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
427 				return 0;
428 			/* fall through */
429 		case hwmon_in_input:
430 			return 0444;
431 		default:
432 			return 0;
433 		}
434 	case hwmon_curr:
435 		switch (attr) {
436 		case hwmon_curr_min_alarm:
437 		case hwmon_curr_max_alarm:
438 		case hwmon_curr_lcrit_alarm:
439 		case hwmon_curr_crit_alarm:
440 		case hwmon_curr_min:
441 		case hwmon_curr_max:
442 		case hwmon_curr_lcrit:
443 		case hwmon_curr_crit:
444 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
445 				return 0;
446 			/* fall through */
447 		case hwmon_curr_input:
448 			return 0444;
449 		default:
450 			return 0;
451 		}
452 	case hwmon_power:
453 		/* External calibration of receive power requires
454 		 * floating point arithmetic. Doing that in the kernel
455 		 * is not easy, so just skip it. If the module does
456 		 * not require external calibration, we can however
457 		 * show receiver power, since FP is then not needed.
458 		 */
459 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
460 		    channel == 1)
461 			return 0;
462 		switch (attr) {
463 		case hwmon_power_min_alarm:
464 		case hwmon_power_max_alarm:
465 		case hwmon_power_lcrit_alarm:
466 		case hwmon_power_crit_alarm:
467 		case hwmon_power_min:
468 		case hwmon_power_max:
469 		case hwmon_power_lcrit:
470 		case hwmon_power_crit:
471 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
472 				return 0;
473 			/* fall through */
474 		case hwmon_power_input:
475 			return 0444;
476 		default:
477 			return 0;
478 		}
479 	default:
480 		return 0;
481 	}
482 }
483 
484 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
485 {
486 	__be16 val;
487 	int err;
488 
489 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
490 	if (err < 0)
491 		return err;
492 
493 	*value = be16_to_cpu(val);
494 
495 	return 0;
496 }
497 
498 static void sfp_hwmon_to_rx_power(long *value)
499 {
500 	*value = DIV_ROUND_CLOSEST(*value, 100);
501 }
502 
503 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
504 				long *value)
505 {
506 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
507 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
508 }
509 
510 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
511 {
512 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
513 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
514 
515 	if (*value >= 0x8000)
516 		*value -= 0x10000;
517 
518 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
519 }
520 
521 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
522 {
523 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
524 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
525 
526 	*value = DIV_ROUND_CLOSEST(*value, 10);
527 }
528 
529 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
530 {
531 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
532 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
533 
534 	*value = DIV_ROUND_CLOSEST(*value, 500);
535 }
536 
537 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
538 {
539 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
540 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
541 
542 	*value = DIV_ROUND_CLOSEST(*value, 10);
543 }
544 
545 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
546 {
547 	int err;
548 
549 	err = sfp_hwmon_read_sensor(sfp, reg, value);
550 	if (err < 0)
551 		return err;
552 
553 	sfp_hwmon_calibrate_temp(sfp, value);
554 
555 	return 0;
556 }
557 
558 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
559 {
560 	int err;
561 
562 	err = sfp_hwmon_read_sensor(sfp, reg, value);
563 	if (err < 0)
564 		return err;
565 
566 	sfp_hwmon_calibrate_vcc(sfp, value);
567 
568 	return 0;
569 }
570 
571 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
572 {
573 	int err;
574 
575 	err = sfp_hwmon_read_sensor(sfp, reg, value);
576 	if (err < 0)
577 		return err;
578 
579 	sfp_hwmon_calibrate_bias(sfp, value);
580 
581 	return 0;
582 }
583 
584 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
585 {
586 	int err;
587 
588 	err = sfp_hwmon_read_sensor(sfp, reg, value);
589 	if (err < 0)
590 		return err;
591 
592 	sfp_hwmon_calibrate_tx_power(sfp, value);
593 
594 	return 0;
595 }
596 
597 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
598 {
599 	int err;
600 
601 	err = sfp_hwmon_read_sensor(sfp, reg, value);
602 	if (err < 0)
603 		return err;
604 
605 	sfp_hwmon_to_rx_power(value);
606 
607 	return 0;
608 }
609 
610 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
611 {
612 	u8 status;
613 	int err;
614 
615 	switch (attr) {
616 	case hwmon_temp_input:
617 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
618 
619 	case hwmon_temp_lcrit:
620 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
621 		sfp_hwmon_calibrate_temp(sfp, value);
622 		return 0;
623 
624 	case hwmon_temp_min:
625 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
626 		sfp_hwmon_calibrate_temp(sfp, value);
627 		return 0;
628 	case hwmon_temp_max:
629 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
630 		sfp_hwmon_calibrate_temp(sfp, value);
631 		return 0;
632 
633 	case hwmon_temp_crit:
634 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
635 		sfp_hwmon_calibrate_temp(sfp, value);
636 		return 0;
637 
638 	case hwmon_temp_lcrit_alarm:
639 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
640 		if (err < 0)
641 			return err;
642 
643 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
644 		return 0;
645 
646 	case hwmon_temp_min_alarm:
647 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
648 		if (err < 0)
649 			return err;
650 
651 		*value = !!(status & SFP_WARN0_TEMP_LOW);
652 		return 0;
653 
654 	case hwmon_temp_max_alarm:
655 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
656 		if (err < 0)
657 			return err;
658 
659 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
660 		return 0;
661 
662 	case hwmon_temp_crit_alarm:
663 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664 		if (err < 0)
665 			return err;
666 
667 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
668 		return 0;
669 	default:
670 		return -EOPNOTSUPP;
671 	}
672 
673 	return -EOPNOTSUPP;
674 }
675 
676 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
677 {
678 	u8 status;
679 	int err;
680 
681 	switch (attr) {
682 	case hwmon_in_input:
683 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
684 
685 	case hwmon_in_lcrit:
686 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
687 		sfp_hwmon_calibrate_vcc(sfp, value);
688 		return 0;
689 
690 	case hwmon_in_min:
691 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
692 		sfp_hwmon_calibrate_vcc(sfp, value);
693 		return 0;
694 
695 	case hwmon_in_max:
696 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
697 		sfp_hwmon_calibrate_vcc(sfp, value);
698 		return 0;
699 
700 	case hwmon_in_crit:
701 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
702 		sfp_hwmon_calibrate_vcc(sfp, value);
703 		return 0;
704 
705 	case hwmon_in_lcrit_alarm:
706 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
707 		if (err < 0)
708 			return err;
709 
710 		*value = !!(status & SFP_ALARM0_VCC_LOW);
711 		return 0;
712 
713 	case hwmon_in_min_alarm:
714 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
715 		if (err < 0)
716 			return err;
717 
718 		*value = !!(status & SFP_WARN0_VCC_LOW);
719 		return 0;
720 
721 	case hwmon_in_max_alarm:
722 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
723 		if (err < 0)
724 			return err;
725 
726 		*value = !!(status & SFP_WARN0_VCC_HIGH);
727 		return 0;
728 
729 	case hwmon_in_crit_alarm:
730 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731 		if (err < 0)
732 			return err;
733 
734 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
735 		return 0;
736 	default:
737 		return -EOPNOTSUPP;
738 	}
739 
740 	return -EOPNOTSUPP;
741 }
742 
743 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
744 {
745 	u8 status;
746 	int err;
747 
748 	switch (attr) {
749 	case hwmon_curr_input:
750 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
751 
752 	case hwmon_curr_lcrit:
753 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
754 		sfp_hwmon_calibrate_bias(sfp, value);
755 		return 0;
756 
757 	case hwmon_curr_min:
758 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
759 		sfp_hwmon_calibrate_bias(sfp, value);
760 		return 0;
761 
762 	case hwmon_curr_max:
763 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
764 		sfp_hwmon_calibrate_bias(sfp, value);
765 		return 0;
766 
767 	case hwmon_curr_crit:
768 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
769 		sfp_hwmon_calibrate_bias(sfp, value);
770 		return 0;
771 
772 	case hwmon_curr_lcrit_alarm:
773 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
774 		if (err < 0)
775 			return err;
776 
777 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
778 		return 0;
779 
780 	case hwmon_curr_min_alarm:
781 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
782 		if (err < 0)
783 			return err;
784 
785 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
786 		return 0;
787 
788 	case hwmon_curr_max_alarm:
789 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
790 		if (err < 0)
791 			return err;
792 
793 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
794 		return 0;
795 
796 	case hwmon_curr_crit_alarm:
797 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798 		if (err < 0)
799 			return err;
800 
801 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
802 		return 0;
803 	default:
804 		return -EOPNOTSUPP;
805 	}
806 
807 	return -EOPNOTSUPP;
808 }
809 
810 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
811 {
812 	u8 status;
813 	int err;
814 
815 	switch (attr) {
816 	case hwmon_power_input:
817 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
818 
819 	case hwmon_power_lcrit:
820 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
821 		sfp_hwmon_calibrate_tx_power(sfp, value);
822 		return 0;
823 
824 	case hwmon_power_min:
825 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
826 		sfp_hwmon_calibrate_tx_power(sfp, value);
827 		return 0;
828 
829 	case hwmon_power_max:
830 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
831 		sfp_hwmon_calibrate_tx_power(sfp, value);
832 		return 0;
833 
834 	case hwmon_power_crit:
835 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
836 		sfp_hwmon_calibrate_tx_power(sfp, value);
837 		return 0;
838 
839 	case hwmon_power_lcrit_alarm:
840 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
841 		if (err < 0)
842 			return err;
843 
844 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
845 		return 0;
846 
847 	case hwmon_power_min_alarm:
848 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
849 		if (err < 0)
850 			return err;
851 
852 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
853 		return 0;
854 
855 	case hwmon_power_max_alarm:
856 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
857 		if (err < 0)
858 			return err;
859 
860 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
861 		return 0;
862 
863 	case hwmon_power_crit_alarm:
864 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865 		if (err < 0)
866 			return err;
867 
868 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
869 		return 0;
870 	default:
871 		return -EOPNOTSUPP;
872 	}
873 
874 	return -EOPNOTSUPP;
875 }
876 
877 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
878 {
879 	u8 status;
880 	int err;
881 
882 	switch (attr) {
883 	case hwmon_power_input:
884 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
885 
886 	case hwmon_power_lcrit:
887 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
888 		sfp_hwmon_to_rx_power(value);
889 		return 0;
890 
891 	case hwmon_power_min:
892 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
893 		sfp_hwmon_to_rx_power(value);
894 		return 0;
895 
896 	case hwmon_power_max:
897 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
898 		sfp_hwmon_to_rx_power(value);
899 		return 0;
900 
901 	case hwmon_power_crit:
902 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
903 		sfp_hwmon_to_rx_power(value);
904 		return 0;
905 
906 	case hwmon_power_lcrit_alarm:
907 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
908 		if (err < 0)
909 			return err;
910 
911 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
912 		return 0;
913 
914 	case hwmon_power_min_alarm:
915 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
916 		if (err < 0)
917 			return err;
918 
919 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
920 		return 0;
921 
922 	case hwmon_power_max_alarm:
923 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
924 		if (err < 0)
925 			return err;
926 
927 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
928 		return 0;
929 
930 	case hwmon_power_crit_alarm:
931 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932 		if (err < 0)
933 			return err;
934 
935 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
936 		return 0;
937 	default:
938 		return -EOPNOTSUPP;
939 	}
940 
941 	return -EOPNOTSUPP;
942 }
943 
944 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
945 			  u32 attr, int channel, long *value)
946 {
947 	struct sfp *sfp = dev_get_drvdata(dev);
948 
949 	switch (type) {
950 	case hwmon_temp:
951 		return sfp_hwmon_temp(sfp, attr, value);
952 	case hwmon_in:
953 		return sfp_hwmon_vcc(sfp, attr, value);
954 	case hwmon_curr:
955 		return sfp_hwmon_bias(sfp, attr, value);
956 	case hwmon_power:
957 		switch (channel) {
958 		case 0:
959 			return sfp_hwmon_tx_power(sfp, attr, value);
960 		case 1:
961 			return sfp_hwmon_rx_power(sfp, attr, value);
962 		default:
963 			return -EOPNOTSUPP;
964 		}
965 	default:
966 		return -EOPNOTSUPP;
967 	}
968 }
969 
970 static const struct hwmon_ops sfp_hwmon_ops = {
971 	.is_visible = sfp_hwmon_is_visible,
972 	.read = sfp_hwmon_read,
973 };
974 
975 static u32 sfp_hwmon_chip_config[] = {
976 	HWMON_C_REGISTER_TZ,
977 	0,
978 };
979 
980 static const struct hwmon_channel_info sfp_hwmon_chip = {
981 	.type = hwmon_chip,
982 	.config = sfp_hwmon_chip_config,
983 };
984 
985 static u32 sfp_hwmon_temp_config[] = {
986 	HWMON_T_INPUT |
987 	HWMON_T_MAX | HWMON_T_MIN |
988 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
989 	HWMON_T_CRIT | HWMON_T_LCRIT |
990 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
991 	0,
992 };
993 
994 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
995 	.type = hwmon_temp,
996 	.config = sfp_hwmon_temp_config,
997 };
998 
999 static u32 sfp_hwmon_vcc_config[] = {
1000 	HWMON_I_INPUT |
1001 	HWMON_I_MAX | HWMON_I_MIN |
1002 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1003 	HWMON_I_CRIT | HWMON_I_LCRIT |
1004 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1005 	0,
1006 };
1007 
1008 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1009 	.type = hwmon_in,
1010 	.config = sfp_hwmon_vcc_config,
1011 };
1012 
1013 static u32 sfp_hwmon_bias_config[] = {
1014 	HWMON_C_INPUT |
1015 	HWMON_C_MAX | HWMON_C_MIN |
1016 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1017 	HWMON_C_CRIT | HWMON_C_LCRIT |
1018 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1019 	0,
1020 };
1021 
1022 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1023 	.type = hwmon_curr,
1024 	.config = sfp_hwmon_bias_config,
1025 };
1026 
1027 static u32 sfp_hwmon_power_config[] = {
1028 	/* Transmit power */
1029 	HWMON_P_INPUT |
1030 	HWMON_P_MAX | HWMON_P_MIN |
1031 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1032 	HWMON_P_CRIT | HWMON_P_LCRIT |
1033 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1034 	/* Receive power */
1035 	HWMON_P_INPUT |
1036 	HWMON_P_MAX | HWMON_P_MIN |
1037 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1038 	HWMON_P_CRIT | HWMON_P_LCRIT |
1039 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1040 	0,
1041 };
1042 
1043 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1044 	.type = hwmon_power,
1045 	.config = sfp_hwmon_power_config,
1046 };
1047 
1048 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1049 	&sfp_hwmon_chip,
1050 	&sfp_hwmon_vcc_channel_info,
1051 	&sfp_hwmon_temp_channel_info,
1052 	&sfp_hwmon_bias_channel_info,
1053 	&sfp_hwmon_power_channel_info,
1054 	NULL,
1055 };
1056 
1057 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1058 	.ops = &sfp_hwmon_ops,
1059 	.info = sfp_hwmon_info,
1060 };
1061 
1062 static int sfp_hwmon_insert(struct sfp *sfp)
1063 {
1064 	int err, i;
1065 
1066 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1067 		return 0;
1068 
1069 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1070 		return 0;
1071 
1072 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1073 		/* This driver in general does not support address
1074 		 * change.
1075 		 */
1076 		return 0;
1077 
1078 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1079 	if (err < 0)
1080 		return err;
1081 
1082 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1083 	if (!sfp->hwmon_name)
1084 		return -ENODEV;
1085 
1086 	for (i = 0; sfp->hwmon_name[i]; i++)
1087 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1088 			sfp->hwmon_name[i] = '_';
1089 
1090 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1091 							 sfp->hwmon_name, sfp,
1092 							 &sfp_hwmon_chip_info,
1093 							 NULL);
1094 
1095 	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1096 }
1097 
1098 static void sfp_hwmon_remove(struct sfp *sfp)
1099 {
1100 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1101 		hwmon_device_unregister(sfp->hwmon_dev);
1102 		sfp->hwmon_dev = NULL;
1103 		kfree(sfp->hwmon_name);
1104 	}
1105 }
1106 #else
1107 static int sfp_hwmon_insert(struct sfp *sfp)
1108 {
1109 	return 0;
1110 }
1111 
1112 static void sfp_hwmon_remove(struct sfp *sfp)
1113 {
1114 }
1115 #endif
1116 
1117 /* Helpers */
1118 static void sfp_module_tx_disable(struct sfp *sfp)
1119 {
1120 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1121 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1122 	sfp->state |= SFP_F_TX_DISABLE;
1123 	sfp_set_state(sfp, sfp->state);
1124 }
1125 
1126 static void sfp_module_tx_enable(struct sfp *sfp)
1127 {
1128 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1129 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1130 	sfp->state &= ~SFP_F_TX_DISABLE;
1131 	sfp_set_state(sfp, sfp->state);
1132 }
1133 
1134 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1135 {
1136 	unsigned int state = sfp->state;
1137 
1138 	if (state & SFP_F_TX_DISABLE)
1139 		return;
1140 
1141 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1142 
1143 	udelay(T_RESET_US);
1144 
1145 	sfp_set_state(sfp, state);
1146 }
1147 
1148 /* SFP state machine */
1149 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1150 {
1151 	if (timeout)
1152 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1153 				 timeout);
1154 	else
1155 		cancel_delayed_work(&sfp->timeout);
1156 }
1157 
1158 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1159 			unsigned int timeout)
1160 {
1161 	sfp->sm_state = state;
1162 	sfp_sm_set_timer(sfp, timeout);
1163 }
1164 
1165 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1166 			    unsigned int timeout)
1167 {
1168 	sfp->sm_mod_state = state;
1169 	sfp_sm_set_timer(sfp, timeout);
1170 }
1171 
1172 static void sfp_sm_phy_detach(struct sfp *sfp)
1173 {
1174 	phy_stop(sfp->mod_phy);
1175 	sfp_remove_phy(sfp->sfp_bus);
1176 	phy_device_remove(sfp->mod_phy);
1177 	phy_device_free(sfp->mod_phy);
1178 	sfp->mod_phy = NULL;
1179 }
1180 
1181 static void sfp_sm_probe_phy(struct sfp *sfp)
1182 {
1183 	struct phy_device *phy;
1184 	int err;
1185 
1186 	msleep(T_PHY_RESET_MS);
1187 
1188 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1189 	if (phy == ERR_PTR(-ENODEV)) {
1190 		dev_info(sfp->dev, "no PHY detected\n");
1191 		return;
1192 	}
1193 	if (IS_ERR(phy)) {
1194 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1195 		return;
1196 	}
1197 
1198 	err = sfp_add_phy(sfp->sfp_bus, phy);
1199 	if (err) {
1200 		phy_device_remove(phy);
1201 		phy_device_free(phy);
1202 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1203 		return;
1204 	}
1205 
1206 	sfp->mod_phy = phy;
1207 	phy_start(phy);
1208 }
1209 
1210 static void sfp_sm_link_up(struct sfp *sfp)
1211 {
1212 	sfp_link_up(sfp->sfp_bus);
1213 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1214 }
1215 
1216 static void sfp_sm_link_down(struct sfp *sfp)
1217 {
1218 	sfp_link_down(sfp->sfp_bus);
1219 }
1220 
1221 static void sfp_sm_link_check_los(struct sfp *sfp)
1222 {
1223 	unsigned int los = sfp->state & SFP_F_LOS;
1224 
1225 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1226 	 * are set, we assume that no LOS signal is available.
1227 	 */
1228 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1229 		los ^= SFP_F_LOS;
1230 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1231 		los = 0;
1232 
1233 	if (los)
1234 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1235 	else
1236 		sfp_sm_link_up(sfp);
1237 }
1238 
1239 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1240 {
1241 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1242 		event == SFP_E_LOS_LOW) ||
1243 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1244 		event == SFP_E_LOS_HIGH);
1245 }
1246 
1247 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1248 {
1249 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1250 		event == SFP_E_LOS_HIGH) ||
1251 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1252 		event == SFP_E_LOS_LOW);
1253 }
1254 
1255 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1256 {
1257 	if (sfp->sm_retries && !--sfp->sm_retries) {
1258 		dev_err(sfp->dev,
1259 			"module persistently indicates fault, disabling\n");
1260 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1261 	} else {
1262 		if (warn)
1263 			dev_err(sfp->dev, "module transmit fault indicated\n");
1264 
1265 		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1266 	}
1267 }
1268 
1269 static void sfp_sm_mod_init(struct sfp *sfp)
1270 {
1271 	sfp_module_tx_enable(sfp);
1272 
1273 	/* Wait t_init before indicating that the link is up, provided the
1274 	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1275 	 * this time, that's fine too.
1276 	 */
1277 	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1278 	sfp->sm_retries = 5;
1279 
1280 	/* Setting the serdes link mode is guesswork: there's no
1281 	 * field in the EEPROM which indicates what mode should
1282 	 * be used.
1283 	 *
1284 	 * If it's a gigabit-only fiber module, it probably does
1285 	 * not have a PHY, so switch to 802.3z negotiation mode.
1286 	 * Otherwise, switch to SGMII mode (which is required to
1287 	 * support non-gigabit speeds) and probe for a PHY.
1288 	 */
1289 	if (sfp->id.base.e1000_base_t ||
1290 	    sfp->id.base.e100_base_lx ||
1291 	    sfp->id.base.e100_base_fx)
1292 		sfp_sm_probe_phy(sfp);
1293 }
1294 
1295 static int sfp_sm_mod_hpower(struct sfp *sfp)
1296 {
1297 	u32 power;
1298 	u8 val;
1299 	int err;
1300 
1301 	power = 1000;
1302 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1303 		power = 1500;
1304 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1305 		power = 2000;
1306 
1307 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1308 	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1309 	    SFP_DIAGMON_DDM) {
1310 		/* The module appears not to implement bus address 0xa2,
1311 		 * or requires an address change sequence, so assume that
1312 		 * the module powers up in the indicated power mode.
1313 		 */
1314 		if (power > sfp->max_power_mW) {
1315 			dev_err(sfp->dev,
1316 				"Host does not support %u.%uW modules\n",
1317 				power / 1000, (power / 100) % 10);
1318 			return -EINVAL;
1319 		}
1320 		return 0;
1321 	}
1322 
1323 	if (power > sfp->max_power_mW) {
1324 		dev_warn(sfp->dev,
1325 			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1326 			 power / 1000, (power / 100) % 10);
1327 		return 0;
1328 	}
1329 
1330 	if (power <= 1000)
1331 		return 0;
1332 
1333 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1334 	if (err != sizeof(val)) {
1335 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1336 		err = -EAGAIN;
1337 		goto err;
1338 	}
1339 
1340 	val |= BIT(0);
1341 
1342 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1343 	if (err != sizeof(val)) {
1344 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1345 		err = -EAGAIN;
1346 		goto err;
1347 	}
1348 
1349 	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1350 		 power / 1000, (power / 100) % 10);
1351 	return T_HPOWER_LEVEL;
1352 
1353 err:
1354 	return err;
1355 }
1356 
1357 static int sfp_sm_mod_probe(struct sfp *sfp)
1358 {
1359 	/* SFP module inserted - read I2C data */
1360 	struct sfp_eeprom_id id;
1361 	bool cotsworks;
1362 	u8 check;
1363 	int ret;
1364 
1365 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1366 	if (ret < 0) {
1367 		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1368 		return -EAGAIN;
1369 	}
1370 
1371 	if (ret != sizeof(id)) {
1372 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1373 		return -EAGAIN;
1374 	}
1375 
1376 	/* Cotsworks do not seem to update the checksums when they
1377 	 * do the final programming with the final module part number,
1378 	 * serial number and date code.
1379 	 */
1380 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1381 
1382 	/* Validate the checksum over the base structure */
1383 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1384 	if (check != id.base.cc_base) {
1385 		if (cotsworks) {
1386 			dev_warn(sfp->dev,
1387 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1388 				 check, id.base.cc_base);
1389 		} else {
1390 			dev_err(sfp->dev,
1391 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1392 				check, id.base.cc_base);
1393 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1394 				       16, 1, &id, sizeof(id), true);
1395 			return -EINVAL;
1396 		}
1397 	}
1398 
1399 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1400 	if (check != id.ext.cc_ext) {
1401 		if (cotsworks) {
1402 			dev_warn(sfp->dev,
1403 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1404 				 check, id.ext.cc_ext);
1405 		} else {
1406 			dev_err(sfp->dev,
1407 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1408 				check, id.ext.cc_ext);
1409 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1410 				       16, 1, &id, sizeof(id), true);
1411 			memset(&id.ext, 0, sizeof(id.ext));
1412 		}
1413 	}
1414 
1415 	sfp->id = id;
1416 
1417 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1418 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1419 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1420 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1421 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1422 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1423 
1424 	/* Check whether we support this module */
1425 	if (!sfp->type->module_supported(&sfp->id)) {
1426 		dev_err(sfp->dev,
1427 			"module is not supported - phys id 0x%02x 0x%02x\n",
1428 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1429 		return -EINVAL;
1430 	}
1431 
1432 	/* If the module requires address swap mode, warn about it */
1433 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1434 		dev_warn(sfp->dev,
1435 			 "module address swap to access page 0xA2 is not supported.\n");
1436 
1437 	ret = sfp_hwmon_insert(sfp);
1438 	if (ret < 0)
1439 		return ret;
1440 
1441 	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	return sfp_sm_mod_hpower(sfp);
1446 }
1447 
1448 static void sfp_sm_mod_remove(struct sfp *sfp)
1449 {
1450 	sfp_module_remove(sfp->sfp_bus);
1451 
1452 	sfp_hwmon_remove(sfp);
1453 
1454 	if (sfp->mod_phy)
1455 		sfp_sm_phy_detach(sfp);
1456 
1457 	sfp_module_tx_disable(sfp);
1458 
1459 	memset(&sfp->id, 0, sizeof(sfp->id));
1460 
1461 	dev_info(sfp->dev, "module removed\n");
1462 }
1463 
1464 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1465 {
1466 	mutex_lock(&sfp->sm_mutex);
1467 
1468 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1469 		mod_state_to_str(sfp->sm_mod_state),
1470 		dev_state_to_str(sfp->sm_dev_state),
1471 		sm_state_to_str(sfp->sm_state),
1472 		event_to_str(event));
1473 
1474 	/* This state machine tracks the insert/remove state of
1475 	 * the module, and handles probing the on-board EEPROM.
1476 	 */
1477 	switch (sfp->sm_mod_state) {
1478 	default:
1479 		if (event == SFP_E_INSERT) {
1480 			sfp_module_tx_disable(sfp);
1481 			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1482 		}
1483 		break;
1484 
1485 	case SFP_MOD_PROBE:
1486 		if (event == SFP_E_REMOVE) {
1487 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1488 		} else if (event == SFP_E_TIMEOUT) {
1489 			int val = sfp_sm_mod_probe(sfp);
1490 
1491 			if (val == 0)
1492 				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1493 			else if (val > 0)
1494 				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1495 			else if (val != -EAGAIN)
1496 				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1497 			else
1498 				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1499 		}
1500 		break;
1501 
1502 	case SFP_MOD_HPOWER:
1503 		if (event == SFP_E_TIMEOUT) {
1504 			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1505 			break;
1506 		}
1507 		/* fallthrough */
1508 	case SFP_MOD_PRESENT:
1509 	case SFP_MOD_ERROR:
1510 		if (event == SFP_E_REMOVE) {
1511 			sfp_sm_mod_remove(sfp);
1512 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1513 		}
1514 		break;
1515 	}
1516 
1517 	/* This state machine tracks the netdev up/down state */
1518 	switch (sfp->sm_dev_state) {
1519 	default:
1520 		if (event == SFP_E_DEV_UP)
1521 			sfp->sm_dev_state = SFP_DEV_UP;
1522 		break;
1523 
1524 	case SFP_DEV_UP:
1525 		if (event == SFP_E_DEV_DOWN) {
1526 			/* If the module has a PHY, avoid raising TX disable
1527 			 * as this resets the PHY. Otherwise, raise it to
1528 			 * turn the laser off.
1529 			 */
1530 			if (!sfp->mod_phy)
1531 				sfp_module_tx_disable(sfp);
1532 			sfp->sm_dev_state = SFP_DEV_DOWN;
1533 		}
1534 		break;
1535 	}
1536 
1537 	/* Some events are global */
1538 	if (sfp->sm_state != SFP_S_DOWN &&
1539 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1540 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1541 		if (sfp->sm_state == SFP_S_LINK_UP &&
1542 		    sfp->sm_dev_state == SFP_DEV_UP)
1543 			sfp_sm_link_down(sfp);
1544 		if (sfp->mod_phy)
1545 			sfp_sm_phy_detach(sfp);
1546 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1547 		mutex_unlock(&sfp->sm_mutex);
1548 		return;
1549 	}
1550 
1551 	/* The main state machine */
1552 	switch (sfp->sm_state) {
1553 	case SFP_S_DOWN:
1554 		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1555 		    sfp->sm_dev_state == SFP_DEV_UP)
1556 			sfp_sm_mod_init(sfp);
1557 		break;
1558 
1559 	case SFP_S_INIT:
1560 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1561 			sfp_sm_fault(sfp, true);
1562 		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1563 			sfp_sm_link_check_los(sfp);
1564 		break;
1565 
1566 	case SFP_S_WAIT_LOS:
1567 		if (event == SFP_E_TX_FAULT)
1568 			sfp_sm_fault(sfp, true);
1569 		else if (sfp_los_event_inactive(sfp, event))
1570 			sfp_sm_link_up(sfp);
1571 		break;
1572 
1573 	case SFP_S_LINK_UP:
1574 		if (event == SFP_E_TX_FAULT) {
1575 			sfp_sm_link_down(sfp);
1576 			sfp_sm_fault(sfp, true);
1577 		} else if (sfp_los_event_active(sfp, event)) {
1578 			sfp_sm_link_down(sfp);
1579 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1580 		}
1581 		break;
1582 
1583 	case SFP_S_TX_FAULT:
1584 		if (event == SFP_E_TIMEOUT) {
1585 			sfp_module_tx_fault_reset(sfp);
1586 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1587 		}
1588 		break;
1589 
1590 	case SFP_S_REINIT:
1591 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1592 			sfp_sm_fault(sfp, false);
1593 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1594 			dev_info(sfp->dev, "module transmit fault recovered\n");
1595 			sfp_sm_link_check_los(sfp);
1596 		}
1597 		break;
1598 
1599 	case SFP_S_TX_DISABLE:
1600 		break;
1601 	}
1602 
1603 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1604 		mod_state_to_str(sfp->sm_mod_state),
1605 		dev_state_to_str(sfp->sm_dev_state),
1606 		sm_state_to_str(sfp->sm_state));
1607 
1608 	mutex_unlock(&sfp->sm_mutex);
1609 }
1610 
1611 static void sfp_start(struct sfp *sfp)
1612 {
1613 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1614 }
1615 
1616 static void sfp_stop(struct sfp *sfp)
1617 {
1618 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1619 }
1620 
1621 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1622 {
1623 	/* locking... and check module is present */
1624 
1625 	if (sfp->id.ext.sff8472_compliance &&
1626 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1627 		modinfo->type = ETH_MODULE_SFF_8472;
1628 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1629 	} else {
1630 		modinfo->type = ETH_MODULE_SFF_8079;
1631 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1637 			     u8 *data)
1638 {
1639 	unsigned int first, last, len;
1640 	int ret;
1641 
1642 	if (ee->len == 0)
1643 		return -EINVAL;
1644 
1645 	first = ee->offset;
1646 	last = ee->offset + ee->len;
1647 	if (first < ETH_MODULE_SFF_8079_LEN) {
1648 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1649 		len -= first;
1650 
1651 		ret = sfp_read(sfp, false, first, data, len);
1652 		if (ret < 0)
1653 			return ret;
1654 
1655 		first += len;
1656 		data += len;
1657 	}
1658 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1659 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1660 		len -= first;
1661 		first -= ETH_MODULE_SFF_8079_LEN;
1662 
1663 		ret = sfp_read(sfp, true, first, data, len);
1664 		if (ret < 0)
1665 			return ret;
1666 	}
1667 	return 0;
1668 }
1669 
1670 static const struct sfp_socket_ops sfp_module_ops = {
1671 	.start = sfp_start,
1672 	.stop = sfp_stop,
1673 	.module_info = sfp_module_info,
1674 	.module_eeprom = sfp_module_eeprom,
1675 };
1676 
1677 static void sfp_timeout(struct work_struct *work)
1678 {
1679 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1680 
1681 	rtnl_lock();
1682 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1683 	rtnl_unlock();
1684 }
1685 
1686 static void sfp_check_state(struct sfp *sfp)
1687 {
1688 	unsigned int state, i, changed;
1689 
1690 	state = sfp_get_state(sfp);
1691 	changed = state ^ sfp->state;
1692 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1693 
1694 	for (i = 0; i < GPIO_MAX; i++)
1695 		if (changed & BIT(i))
1696 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1697 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1698 
1699 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1700 	sfp->state = state;
1701 
1702 	rtnl_lock();
1703 	if (changed & SFP_F_PRESENT)
1704 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1705 				SFP_E_INSERT : SFP_E_REMOVE);
1706 
1707 	if (changed & SFP_F_TX_FAULT)
1708 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1709 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1710 
1711 	if (changed & SFP_F_LOS)
1712 		sfp_sm_event(sfp, state & SFP_F_LOS ?
1713 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1714 	rtnl_unlock();
1715 }
1716 
1717 static irqreturn_t sfp_irq(int irq, void *data)
1718 {
1719 	struct sfp *sfp = data;
1720 
1721 	sfp_check_state(sfp);
1722 
1723 	return IRQ_HANDLED;
1724 }
1725 
1726 static void sfp_poll(struct work_struct *work)
1727 {
1728 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1729 
1730 	sfp_check_state(sfp);
1731 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1732 }
1733 
1734 static struct sfp *sfp_alloc(struct device *dev)
1735 {
1736 	struct sfp *sfp;
1737 
1738 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1739 	if (!sfp)
1740 		return ERR_PTR(-ENOMEM);
1741 
1742 	sfp->dev = dev;
1743 
1744 	mutex_init(&sfp->sm_mutex);
1745 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1746 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1747 
1748 	return sfp;
1749 }
1750 
1751 static void sfp_cleanup(void *data)
1752 {
1753 	struct sfp *sfp = data;
1754 
1755 	cancel_delayed_work_sync(&sfp->poll);
1756 	cancel_delayed_work_sync(&sfp->timeout);
1757 	if (sfp->i2c_mii) {
1758 		mdiobus_unregister(sfp->i2c_mii);
1759 		mdiobus_free(sfp->i2c_mii);
1760 	}
1761 	if (sfp->i2c)
1762 		i2c_put_adapter(sfp->i2c);
1763 	kfree(sfp);
1764 }
1765 
1766 static int sfp_probe(struct platform_device *pdev)
1767 {
1768 	const struct sff_data *sff;
1769 	struct sfp *sfp;
1770 	bool poll = false;
1771 	int irq, err, i;
1772 
1773 	sfp = sfp_alloc(&pdev->dev);
1774 	if (IS_ERR(sfp))
1775 		return PTR_ERR(sfp);
1776 
1777 	platform_set_drvdata(pdev, sfp);
1778 
1779 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1780 	if (err < 0)
1781 		return err;
1782 
1783 	sff = sfp->type = &sfp_data;
1784 
1785 	if (pdev->dev.of_node) {
1786 		struct device_node *node = pdev->dev.of_node;
1787 		const struct of_device_id *id;
1788 		struct i2c_adapter *i2c;
1789 		struct device_node *np;
1790 
1791 		id = of_match_node(sfp_of_match, node);
1792 		if (WARN_ON(!id))
1793 			return -EINVAL;
1794 
1795 		sff = sfp->type = id->data;
1796 
1797 		np = of_parse_phandle(node, "i2c-bus", 0);
1798 		if (!np) {
1799 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1800 			return -ENODEV;
1801 		}
1802 
1803 		i2c = of_find_i2c_adapter_by_node(np);
1804 		of_node_put(np);
1805 		if (!i2c)
1806 			return -EPROBE_DEFER;
1807 
1808 		err = sfp_i2c_configure(sfp, i2c);
1809 		if (err < 0) {
1810 			i2c_put_adapter(i2c);
1811 			return err;
1812 		}
1813 	}
1814 
1815 	for (i = 0; i < GPIO_MAX; i++)
1816 		if (sff->gpios & BIT(i)) {
1817 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1818 					   gpio_of_names[i], gpio_flags[i]);
1819 			if (IS_ERR(sfp->gpio[i]))
1820 				return PTR_ERR(sfp->gpio[i]);
1821 		}
1822 
1823 	sfp->get_state = sfp_gpio_get_state;
1824 	sfp->set_state = sfp_gpio_set_state;
1825 
1826 	/* Modules that have no detect signal are always present */
1827 	if (!(sfp->gpio[GPIO_MODDEF0]))
1828 		sfp->get_state = sff_gpio_get_state;
1829 
1830 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1831 				 &sfp->max_power_mW);
1832 	if (!sfp->max_power_mW)
1833 		sfp->max_power_mW = 1000;
1834 
1835 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1836 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1837 
1838 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1839 	if (!sfp->sfp_bus)
1840 		return -ENOMEM;
1841 
1842 	/* Get the initial state, and always signal TX disable,
1843 	 * since the network interface will not be up.
1844 	 */
1845 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1846 
1847 	if (sfp->gpio[GPIO_RATE_SELECT] &&
1848 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1849 		sfp->state |= SFP_F_RATE_SELECT;
1850 	sfp_set_state(sfp, sfp->state);
1851 	sfp_module_tx_disable(sfp);
1852 	rtnl_lock();
1853 	if (sfp->state & SFP_F_PRESENT)
1854 		sfp_sm_event(sfp, SFP_E_INSERT);
1855 	rtnl_unlock();
1856 
1857 	for (i = 0; i < GPIO_MAX; i++) {
1858 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1859 			continue;
1860 
1861 		irq = gpiod_to_irq(sfp->gpio[i]);
1862 		if (!irq) {
1863 			poll = true;
1864 			continue;
1865 		}
1866 
1867 		err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1868 						IRQF_ONESHOT |
1869 						IRQF_TRIGGER_RISING |
1870 						IRQF_TRIGGER_FALLING,
1871 						dev_name(sfp->dev), sfp);
1872 		if (err)
1873 			poll = true;
1874 	}
1875 
1876 	if (poll)
1877 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1878 
1879 	/* We could have an issue in cases no Tx disable pin is available or
1880 	 * wired as modules using a laser as their light source will continue to
1881 	 * be active when the fiber is removed. This could be a safety issue and
1882 	 * we should at least warn the user about that.
1883 	 */
1884 	if (!sfp->gpio[GPIO_TX_DISABLE])
1885 		dev_warn(sfp->dev,
1886 			 "No tx_disable pin: SFP modules will always be emitting.\n");
1887 
1888 	return 0;
1889 }
1890 
1891 static int sfp_remove(struct platform_device *pdev)
1892 {
1893 	struct sfp *sfp = platform_get_drvdata(pdev);
1894 
1895 	sfp_unregister_socket(sfp->sfp_bus);
1896 
1897 	return 0;
1898 }
1899 
1900 static struct platform_driver sfp_driver = {
1901 	.probe = sfp_probe,
1902 	.remove = sfp_remove,
1903 	.driver = {
1904 		.name = "sfp",
1905 		.of_match_table = sfp_of_match,
1906 	},
1907 };
1908 
1909 static int sfp_init(void)
1910 {
1911 	poll_jiffies = msecs_to_jiffies(100);
1912 
1913 	return platform_driver_register(&sfp_driver);
1914 }
1915 module_init(sfp_init);
1916 
1917 static void sfp_exit(void)
1918 {
1919 	platform_driver_unregister(&sfp_driver);
1920 }
1921 module_exit(sfp_exit);
1922 
1923 MODULE_ALIAS("platform:sfp");
1924 MODULE_AUTHOR("Russell King");
1925 MODULE_LICENSE("GPL v2");
1926