1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 12 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state; 261 262 struct delayed_work poll; 263 struct delayed_work timeout; 264 struct mutex sm_mutex; /* Protects state machine */ 265 unsigned char sm_mod_state; 266 unsigned char sm_mod_tries_init; 267 unsigned char sm_mod_tries; 268 unsigned char sm_dev_state; 269 unsigned short sm_state; 270 unsigned char sm_fault_retries; 271 unsigned char sm_phy_retries; 272 273 struct sfp_eeprom_id id; 274 unsigned int module_power_mW; 275 unsigned int module_t_start_up; 276 unsigned int module_t_wait; 277 278 unsigned int rate_kbd; 279 unsigned int rs_threshold_kbd; 280 unsigned int rs_state_mask; 281 282 bool have_a2; 283 bool tx_fault_ignore; 284 285 const struct sfp_quirk *quirk; 286 287 #if IS_ENABLED(CONFIG_HWMON) 288 struct sfp_diag diag; 289 struct delayed_work hwmon_probe; 290 unsigned int hwmon_tries; 291 struct device *hwmon_dev; 292 char *hwmon_name; 293 #endif 294 295 #if IS_ENABLED(CONFIG_DEBUG_FS) 296 struct dentry *debugfs_dir; 297 #endif 298 }; 299 300 static bool sff_module_supported(const struct sfp_eeprom_id *id) 301 { 302 return id->base.phys_id == SFF8024_ID_SFF_8472 && 303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 304 } 305 306 static const struct sff_data sff_data = { 307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 308 .module_supported = sff_module_supported, 309 }; 310 311 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 312 { 313 if (id->base.phys_id == SFF8024_ID_SFP && 314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 315 return true; 316 317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 318 * phys id SFF instead of SFP. Therefore mark this module explicitly 319 * as supported based on vendor name and pn match. 320 */ 321 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 323 !memcmp(id->base.vendor_name, "UBNT ", 16) && 324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 325 return true; 326 327 return false; 328 } 329 330 static const struct sff_data sfp_data = { 331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 333 .module_supported = sfp_module_supported, 334 }; 335 336 static const struct of_device_id sfp_of_match[] = { 337 { .compatible = "sff,sff", .data = &sff_data, }, 338 { .compatible = "sff,sfp", .data = &sfp_data, }, 339 { }, 340 }; 341 MODULE_DEVICE_TABLE(of, sfp_of_match); 342 343 static void sfp_fixup_long_startup(struct sfp *sfp) 344 { 345 sfp->module_t_start_up = T_START_UP_BAD_GPON; 346 } 347 348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 349 { 350 sfp->tx_fault_ignore = true; 351 } 352 353 // For 10GBASE-T short-reach modules 354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 355 { 356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 358 } 359 360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs) 361 { 362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000); 364 } 365 366 static void sfp_fixup_fs_10gt(struct sfp *sfp) 367 { 368 sfp_fixup_10gbaset_30m(sfp); 369 370 // These SFPs need 4 seconds before the PHY can be accessed 371 sfp_fixup_rollball_proto(sfp, 4); 372 } 373 374 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 375 { 376 /* Ignore the TX_FAULT and LOS signals on this module. 377 * these are possibly used for other purposes on this 378 * module, e.g. a serial port. 379 */ 380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 381 } 382 383 static void sfp_fixup_rollball(struct sfp *sfp) 384 { 385 // Rollball SFPs need 25 seconds before the PHY can be accessed 386 sfp_fixup_rollball_proto(sfp, 25); 387 } 388 389 static void sfp_fixup_rollball_cc(struct sfp *sfp) 390 { 391 sfp_fixup_rollball(sfp); 392 393 /* Some RollBall SFPs may have wrong (zero) extended compliance code 394 * burned in EEPROM. For PHY probing we need the correct one. 395 */ 396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 397 } 398 399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 400 unsigned long *modes, 401 unsigned long *interfaces) 402 { 403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 405 } 406 407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 408 unsigned long *modes, 409 unsigned long *interfaces) 410 { 411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 412 } 413 414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 415 unsigned long *modes, 416 unsigned long *interfaces) 417 { 418 /* Copper 2.5G SFP */ 419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 421 sfp_quirk_disable_autoneg(id, modes, interfaces); 422 } 423 424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 429 * types including 10G Ethernet which is not truth. So clear all claimed 430 * modes and set only one mode which module supports: 1000baseX_Full. 431 */ 432 linkmode_zero(modes); 433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 434 } 435 436 #define SFP_QUIRK(_v, _p, _m, _f) \ 437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 440 441 static const struct sfp_quirk sfp_quirks[] = { 442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 443 // report 2500MBd NRZ in their EEPROM 444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 445 446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 447 // NRZ in their EEPROM 448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 449 sfp_fixup_long_startup), 450 451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 452 // Rollball protocol to talk to the PHY. 453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 454 455 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 456 // NRZ in their EEPROM 457 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 458 sfp_fixup_ignore_tx_fault), 459 460 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 461 462 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 463 // 2600MBd in their EERPOM 464 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 465 466 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 467 // their EEPROM 468 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 469 sfp_fixup_ignore_tx_fault), 470 471 // FS 2.5G Base-T 472 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 473 474 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 475 // 2500MBd NRZ in their EEPROM 476 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 477 478 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 479 480 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 481 // Rollball protocol to talk to the PHY. 482 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 483 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 484 485 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 486 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 487 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 488 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 489 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 490 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 491 }; 492 493 static size_t sfp_strlen(const char *str, size_t maxlen) 494 { 495 size_t size, i; 496 497 /* Trailing characters should be filled with space chars, but 498 * some manufacturers can't read SFF-8472 and use NUL. 499 */ 500 for (i = 0, size = 0; i < maxlen; i++) 501 if (str[i] != ' ' && str[i] != '\0') 502 size = i + 1; 503 504 return size; 505 } 506 507 static bool sfp_match(const char *qs, const char *str, size_t len) 508 { 509 if (!qs) 510 return true; 511 if (strlen(qs) != len) 512 return false; 513 return !strncmp(qs, str, len); 514 } 515 516 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 517 { 518 const struct sfp_quirk *q; 519 unsigned int i; 520 size_t vs, ps; 521 522 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 523 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 524 525 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 526 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 527 sfp_match(q->part, id->base.vendor_pn, ps)) 528 return q; 529 530 return NULL; 531 } 532 533 static unsigned long poll_jiffies; 534 535 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 536 { 537 unsigned int i, state, v; 538 539 for (i = state = 0; i < GPIO_MAX; i++) { 540 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 541 continue; 542 543 v = gpiod_get_value_cansleep(sfp->gpio[i]); 544 if (v) 545 state |= BIT(i); 546 } 547 548 return state; 549 } 550 551 static unsigned int sff_gpio_get_state(struct sfp *sfp) 552 { 553 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 554 } 555 556 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 557 { 558 unsigned int drive; 559 560 if (state & SFP_F_PRESENT) 561 /* If the module is present, drive the requested signals */ 562 drive = sfp->state_hw_drive; 563 else 564 /* Otherwise, let them float to the pull-ups */ 565 drive = 0; 566 567 if (sfp->gpio[GPIO_TX_DISABLE]) { 568 if (drive & SFP_F_TX_DISABLE) 569 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 570 state & SFP_F_TX_DISABLE); 571 else 572 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 573 } 574 575 if (sfp->gpio[GPIO_RS0]) { 576 if (drive & SFP_F_RS0) 577 gpiod_direction_output(sfp->gpio[GPIO_RS0], 578 state & SFP_F_RS0); 579 else 580 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 581 } 582 583 if (sfp->gpio[GPIO_RS1]) { 584 if (drive & SFP_F_RS1) 585 gpiod_direction_output(sfp->gpio[GPIO_RS1], 586 state & SFP_F_RS1); 587 else 588 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 589 } 590 } 591 592 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 593 size_t len) 594 { 595 struct i2c_msg msgs[2]; 596 u8 bus_addr = a2 ? 0x51 : 0x50; 597 size_t block_size = sfp->i2c_block_size; 598 size_t this_len; 599 int ret; 600 601 msgs[0].addr = bus_addr; 602 msgs[0].flags = 0; 603 msgs[0].len = 1; 604 msgs[0].buf = &dev_addr; 605 msgs[1].addr = bus_addr; 606 msgs[1].flags = I2C_M_RD; 607 msgs[1].len = len; 608 msgs[1].buf = buf; 609 610 while (len) { 611 this_len = len; 612 if (this_len > block_size) 613 this_len = block_size; 614 615 msgs[1].len = this_len; 616 617 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 618 if (ret < 0) 619 return ret; 620 621 if (ret != ARRAY_SIZE(msgs)) 622 break; 623 624 msgs[1].buf += this_len; 625 dev_addr += this_len; 626 len -= this_len; 627 } 628 629 return msgs[1].buf - (u8 *)buf; 630 } 631 632 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 633 size_t len) 634 { 635 struct i2c_msg msgs[1]; 636 u8 bus_addr = a2 ? 0x51 : 0x50; 637 int ret; 638 639 msgs[0].addr = bus_addr; 640 msgs[0].flags = 0; 641 msgs[0].len = 1 + len; 642 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 643 if (!msgs[0].buf) 644 return -ENOMEM; 645 646 msgs[0].buf[0] = dev_addr; 647 memcpy(&msgs[0].buf[1], buf, len); 648 649 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 650 651 kfree(msgs[0].buf); 652 653 if (ret < 0) 654 return ret; 655 656 return ret == ARRAY_SIZE(msgs) ? len : 0; 657 } 658 659 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 660 { 661 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 662 return -EINVAL; 663 664 sfp->i2c = i2c; 665 sfp->read = sfp_i2c_read; 666 sfp->write = sfp_i2c_write; 667 668 return 0; 669 } 670 671 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 672 { 673 struct mii_bus *i2c_mii; 674 int ret; 675 676 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 677 if (IS_ERR(i2c_mii)) 678 return PTR_ERR(i2c_mii); 679 680 i2c_mii->name = "SFP I2C Bus"; 681 i2c_mii->phy_mask = ~0; 682 683 ret = mdiobus_register(i2c_mii); 684 if (ret < 0) { 685 mdiobus_free(i2c_mii); 686 return ret; 687 } 688 689 sfp->i2c_mii = i2c_mii; 690 691 return 0; 692 } 693 694 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 695 { 696 mdiobus_unregister(sfp->i2c_mii); 697 sfp->i2c_mii = NULL; 698 } 699 700 /* Interface */ 701 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 702 { 703 return sfp->read(sfp, a2, addr, buf, len); 704 } 705 706 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 707 { 708 return sfp->write(sfp, a2, addr, buf, len); 709 } 710 711 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 712 { 713 int ret; 714 u8 old, v; 715 716 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 717 if (ret != sizeof(old)) 718 return ret; 719 720 v = (old & ~mask) | (val & mask); 721 if (v == old) 722 return sizeof(v); 723 724 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 725 } 726 727 static unsigned int sfp_soft_get_state(struct sfp *sfp) 728 { 729 unsigned int state = 0; 730 u8 status; 731 int ret; 732 733 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 734 if (ret == sizeof(status)) { 735 if (status & SFP_STATUS_RX_LOS) 736 state |= SFP_F_LOS; 737 if (status & SFP_STATUS_TX_FAULT) 738 state |= SFP_F_TX_FAULT; 739 } else { 740 dev_err_ratelimited(sfp->dev, 741 "failed to read SFP soft status: %pe\n", 742 ERR_PTR(ret)); 743 /* Preserve the current state */ 744 state = sfp->state; 745 } 746 747 return state & sfp->state_soft_mask; 748 } 749 750 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 751 unsigned int soft) 752 { 753 u8 mask = 0; 754 u8 val = 0; 755 756 if (soft & SFP_F_TX_DISABLE) 757 mask |= SFP_STATUS_TX_DISABLE_FORCE; 758 if (state & SFP_F_TX_DISABLE) 759 val |= SFP_STATUS_TX_DISABLE_FORCE; 760 761 if (soft & SFP_F_RS0) 762 mask |= SFP_STATUS_RS0_SELECT; 763 if (state & SFP_F_RS0) 764 val |= SFP_STATUS_RS0_SELECT; 765 766 if (mask) 767 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 768 769 val = mask = 0; 770 if (soft & SFP_F_RS1) 771 mask |= SFP_EXT_STATUS_RS1_SELECT; 772 if (state & SFP_F_RS1) 773 val |= SFP_EXT_STATUS_RS1_SELECT; 774 775 if (mask) 776 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 777 } 778 779 static void sfp_soft_start_poll(struct sfp *sfp) 780 { 781 const struct sfp_eeprom_id *id = &sfp->id; 782 unsigned int mask = 0; 783 784 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 785 mask |= SFP_F_TX_DISABLE; 786 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 787 mask |= SFP_F_TX_FAULT; 788 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 789 mask |= SFP_F_LOS; 790 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 791 mask |= sfp->rs_state_mask; 792 793 mutex_lock(&sfp->st_mutex); 794 // Poll the soft state for hardware pins we want to ignore 795 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 796 797 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 798 !sfp->need_poll) 799 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 800 mutex_unlock(&sfp->st_mutex); 801 } 802 803 static void sfp_soft_stop_poll(struct sfp *sfp) 804 { 805 mutex_lock(&sfp->st_mutex); 806 sfp->state_soft_mask = 0; 807 mutex_unlock(&sfp->st_mutex); 808 } 809 810 /* sfp_get_state() - must be called with st_mutex held, or in the 811 * initialisation path. 812 */ 813 static unsigned int sfp_get_state(struct sfp *sfp) 814 { 815 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 816 unsigned int state; 817 818 state = sfp->get_state(sfp) & sfp->state_hw_mask; 819 if (state & SFP_F_PRESENT && soft) 820 state |= sfp_soft_get_state(sfp); 821 822 return state; 823 } 824 825 /* sfp_set_state() - must be called with st_mutex held, or in the 826 * initialisation path. 827 */ 828 static void sfp_set_state(struct sfp *sfp, unsigned int state) 829 { 830 unsigned int soft; 831 832 sfp->set_state(sfp, state); 833 834 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 835 if (state & SFP_F_PRESENT && soft) 836 sfp_soft_set_state(sfp, state, soft); 837 } 838 839 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 840 { 841 mutex_lock(&sfp->st_mutex); 842 sfp->state = (sfp->state & ~mask) | set; 843 sfp_set_state(sfp, sfp->state); 844 mutex_unlock(&sfp->st_mutex); 845 } 846 847 static unsigned int sfp_check(void *buf, size_t len) 848 { 849 u8 *p, check; 850 851 for (p = buf, check = 0; len; p++, len--) 852 check += *p; 853 854 return check; 855 } 856 857 /* hwmon */ 858 #if IS_ENABLED(CONFIG_HWMON) 859 static umode_t sfp_hwmon_is_visible(const void *data, 860 enum hwmon_sensor_types type, 861 u32 attr, int channel) 862 { 863 const struct sfp *sfp = data; 864 865 switch (type) { 866 case hwmon_temp: 867 switch (attr) { 868 case hwmon_temp_min_alarm: 869 case hwmon_temp_max_alarm: 870 case hwmon_temp_lcrit_alarm: 871 case hwmon_temp_crit_alarm: 872 case hwmon_temp_min: 873 case hwmon_temp_max: 874 case hwmon_temp_lcrit: 875 case hwmon_temp_crit: 876 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 877 return 0; 878 fallthrough; 879 case hwmon_temp_input: 880 case hwmon_temp_label: 881 return 0444; 882 default: 883 return 0; 884 } 885 case hwmon_in: 886 switch (attr) { 887 case hwmon_in_min_alarm: 888 case hwmon_in_max_alarm: 889 case hwmon_in_lcrit_alarm: 890 case hwmon_in_crit_alarm: 891 case hwmon_in_min: 892 case hwmon_in_max: 893 case hwmon_in_lcrit: 894 case hwmon_in_crit: 895 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 896 return 0; 897 fallthrough; 898 case hwmon_in_input: 899 case hwmon_in_label: 900 return 0444; 901 default: 902 return 0; 903 } 904 case hwmon_curr: 905 switch (attr) { 906 case hwmon_curr_min_alarm: 907 case hwmon_curr_max_alarm: 908 case hwmon_curr_lcrit_alarm: 909 case hwmon_curr_crit_alarm: 910 case hwmon_curr_min: 911 case hwmon_curr_max: 912 case hwmon_curr_lcrit: 913 case hwmon_curr_crit: 914 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 915 return 0; 916 fallthrough; 917 case hwmon_curr_input: 918 case hwmon_curr_label: 919 return 0444; 920 default: 921 return 0; 922 } 923 case hwmon_power: 924 /* External calibration of receive power requires 925 * floating point arithmetic. Doing that in the kernel 926 * is not easy, so just skip it. If the module does 927 * not require external calibration, we can however 928 * show receiver power, since FP is then not needed. 929 */ 930 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 931 channel == 1) 932 return 0; 933 switch (attr) { 934 case hwmon_power_min_alarm: 935 case hwmon_power_max_alarm: 936 case hwmon_power_lcrit_alarm: 937 case hwmon_power_crit_alarm: 938 case hwmon_power_min: 939 case hwmon_power_max: 940 case hwmon_power_lcrit: 941 case hwmon_power_crit: 942 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 943 return 0; 944 fallthrough; 945 case hwmon_power_input: 946 case hwmon_power_label: 947 return 0444; 948 default: 949 return 0; 950 } 951 default: 952 return 0; 953 } 954 } 955 956 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 957 { 958 __be16 val; 959 int err; 960 961 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 962 if (err < 0) 963 return err; 964 965 *value = be16_to_cpu(val); 966 967 return 0; 968 } 969 970 static void sfp_hwmon_to_rx_power(long *value) 971 { 972 *value = DIV_ROUND_CLOSEST(*value, 10); 973 } 974 975 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 976 long *value) 977 { 978 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 979 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 980 } 981 982 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 983 { 984 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 985 be16_to_cpu(sfp->diag.cal_t_offset), value); 986 987 if (*value >= 0x8000) 988 *value -= 0x10000; 989 990 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 991 } 992 993 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 994 { 995 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 996 be16_to_cpu(sfp->diag.cal_v_offset), value); 997 998 *value = DIV_ROUND_CLOSEST(*value, 10); 999 } 1000 1001 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1002 { 1003 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1004 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1005 1006 *value = DIV_ROUND_CLOSEST(*value, 500); 1007 } 1008 1009 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1010 { 1011 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1012 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1013 1014 *value = DIV_ROUND_CLOSEST(*value, 10); 1015 } 1016 1017 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1018 { 1019 int err; 1020 1021 err = sfp_hwmon_read_sensor(sfp, reg, value); 1022 if (err < 0) 1023 return err; 1024 1025 sfp_hwmon_calibrate_temp(sfp, value); 1026 1027 return 0; 1028 } 1029 1030 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1031 { 1032 int err; 1033 1034 err = sfp_hwmon_read_sensor(sfp, reg, value); 1035 if (err < 0) 1036 return err; 1037 1038 sfp_hwmon_calibrate_vcc(sfp, value); 1039 1040 return 0; 1041 } 1042 1043 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1044 { 1045 int err; 1046 1047 err = sfp_hwmon_read_sensor(sfp, reg, value); 1048 if (err < 0) 1049 return err; 1050 1051 sfp_hwmon_calibrate_bias(sfp, value); 1052 1053 return 0; 1054 } 1055 1056 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1057 { 1058 int err; 1059 1060 err = sfp_hwmon_read_sensor(sfp, reg, value); 1061 if (err < 0) 1062 return err; 1063 1064 sfp_hwmon_calibrate_tx_power(sfp, value); 1065 1066 return 0; 1067 } 1068 1069 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1070 { 1071 int err; 1072 1073 err = sfp_hwmon_read_sensor(sfp, reg, value); 1074 if (err < 0) 1075 return err; 1076 1077 sfp_hwmon_to_rx_power(value); 1078 1079 return 0; 1080 } 1081 1082 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1083 { 1084 u8 status; 1085 int err; 1086 1087 switch (attr) { 1088 case hwmon_temp_input: 1089 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1090 1091 case hwmon_temp_lcrit: 1092 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1093 sfp_hwmon_calibrate_temp(sfp, value); 1094 return 0; 1095 1096 case hwmon_temp_min: 1097 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1098 sfp_hwmon_calibrate_temp(sfp, value); 1099 return 0; 1100 case hwmon_temp_max: 1101 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1102 sfp_hwmon_calibrate_temp(sfp, value); 1103 return 0; 1104 1105 case hwmon_temp_crit: 1106 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1107 sfp_hwmon_calibrate_temp(sfp, value); 1108 return 0; 1109 1110 case hwmon_temp_lcrit_alarm: 1111 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1112 if (err < 0) 1113 return err; 1114 1115 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1116 return 0; 1117 1118 case hwmon_temp_min_alarm: 1119 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1120 if (err < 0) 1121 return err; 1122 1123 *value = !!(status & SFP_WARN0_TEMP_LOW); 1124 return 0; 1125 1126 case hwmon_temp_max_alarm: 1127 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1128 if (err < 0) 1129 return err; 1130 1131 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1132 return 0; 1133 1134 case hwmon_temp_crit_alarm: 1135 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1136 if (err < 0) 1137 return err; 1138 1139 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1140 return 0; 1141 default: 1142 return -EOPNOTSUPP; 1143 } 1144 1145 return -EOPNOTSUPP; 1146 } 1147 1148 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1149 { 1150 u8 status; 1151 int err; 1152 1153 switch (attr) { 1154 case hwmon_in_input: 1155 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1156 1157 case hwmon_in_lcrit: 1158 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1159 sfp_hwmon_calibrate_vcc(sfp, value); 1160 return 0; 1161 1162 case hwmon_in_min: 1163 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1164 sfp_hwmon_calibrate_vcc(sfp, value); 1165 return 0; 1166 1167 case hwmon_in_max: 1168 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1169 sfp_hwmon_calibrate_vcc(sfp, value); 1170 return 0; 1171 1172 case hwmon_in_crit: 1173 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1174 sfp_hwmon_calibrate_vcc(sfp, value); 1175 return 0; 1176 1177 case hwmon_in_lcrit_alarm: 1178 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1179 if (err < 0) 1180 return err; 1181 1182 *value = !!(status & SFP_ALARM0_VCC_LOW); 1183 return 0; 1184 1185 case hwmon_in_min_alarm: 1186 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1187 if (err < 0) 1188 return err; 1189 1190 *value = !!(status & SFP_WARN0_VCC_LOW); 1191 return 0; 1192 1193 case hwmon_in_max_alarm: 1194 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1195 if (err < 0) 1196 return err; 1197 1198 *value = !!(status & SFP_WARN0_VCC_HIGH); 1199 return 0; 1200 1201 case hwmon_in_crit_alarm: 1202 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1203 if (err < 0) 1204 return err; 1205 1206 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1207 return 0; 1208 default: 1209 return -EOPNOTSUPP; 1210 } 1211 1212 return -EOPNOTSUPP; 1213 } 1214 1215 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1216 { 1217 u8 status; 1218 int err; 1219 1220 switch (attr) { 1221 case hwmon_curr_input: 1222 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1223 1224 case hwmon_curr_lcrit: 1225 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1226 sfp_hwmon_calibrate_bias(sfp, value); 1227 return 0; 1228 1229 case hwmon_curr_min: 1230 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1231 sfp_hwmon_calibrate_bias(sfp, value); 1232 return 0; 1233 1234 case hwmon_curr_max: 1235 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1236 sfp_hwmon_calibrate_bias(sfp, value); 1237 return 0; 1238 1239 case hwmon_curr_crit: 1240 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1241 sfp_hwmon_calibrate_bias(sfp, value); 1242 return 0; 1243 1244 case hwmon_curr_lcrit_alarm: 1245 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1246 if (err < 0) 1247 return err; 1248 1249 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1250 return 0; 1251 1252 case hwmon_curr_min_alarm: 1253 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1254 if (err < 0) 1255 return err; 1256 1257 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1258 return 0; 1259 1260 case hwmon_curr_max_alarm: 1261 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1262 if (err < 0) 1263 return err; 1264 1265 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1266 return 0; 1267 1268 case hwmon_curr_crit_alarm: 1269 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1270 if (err < 0) 1271 return err; 1272 1273 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1274 return 0; 1275 default: 1276 return -EOPNOTSUPP; 1277 } 1278 1279 return -EOPNOTSUPP; 1280 } 1281 1282 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1283 { 1284 u8 status; 1285 int err; 1286 1287 switch (attr) { 1288 case hwmon_power_input: 1289 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1290 1291 case hwmon_power_lcrit: 1292 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1293 sfp_hwmon_calibrate_tx_power(sfp, value); 1294 return 0; 1295 1296 case hwmon_power_min: 1297 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1298 sfp_hwmon_calibrate_tx_power(sfp, value); 1299 return 0; 1300 1301 case hwmon_power_max: 1302 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1303 sfp_hwmon_calibrate_tx_power(sfp, value); 1304 return 0; 1305 1306 case hwmon_power_crit: 1307 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1308 sfp_hwmon_calibrate_tx_power(sfp, value); 1309 return 0; 1310 1311 case hwmon_power_lcrit_alarm: 1312 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1313 if (err < 0) 1314 return err; 1315 1316 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1317 return 0; 1318 1319 case hwmon_power_min_alarm: 1320 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1321 if (err < 0) 1322 return err; 1323 1324 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1325 return 0; 1326 1327 case hwmon_power_max_alarm: 1328 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1329 if (err < 0) 1330 return err; 1331 1332 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1333 return 0; 1334 1335 case hwmon_power_crit_alarm: 1336 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1337 if (err < 0) 1338 return err; 1339 1340 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1341 return 0; 1342 default: 1343 return -EOPNOTSUPP; 1344 } 1345 1346 return -EOPNOTSUPP; 1347 } 1348 1349 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1350 { 1351 u8 status; 1352 int err; 1353 1354 switch (attr) { 1355 case hwmon_power_input: 1356 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1357 1358 case hwmon_power_lcrit: 1359 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1360 sfp_hwmon_to_rx_power(value); 1361 return 0; 1362 1363 case hwmon_power_min: 1364 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1365 sfp_hwmon_to_rx_power(value); 1366 return 0; 1367 1368 case hwmon_power_max: 1369 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1370 sfp_hwmon_to_rx_power(value); 1371 return 0; 1372 1373 case hwmon_power_crit: 1374 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1375 sfp_hwmon_to_rx_power(value); 1376 return 0; 1377 1378 case hwmon_power_lcrit_alarm: 1379 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1380 if (err < 0) 1381 return err; 1382 1383 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1384 return 0; 1385 1386 case hwmon_power_min_alarm: 1387 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1388 if (err < 0) 1389 return err; 1390 1391 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1392 return 0; 1393 1394 case hwmon_power_max_alarm: 1395 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1396 if (err < 0) 1397 return err; 1398 1399 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1400 return 0; 1401 1402 case hwmon_power_crit_alarm: 1403 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1404 if (err < 0) 1405 return err; 1406 1407 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1408 return 0; 1409 default: 1410 return -EOPNOTSUPP; 1411 } 1412 1413 return -EOPNOTSUPP; 1414 } 1415 1416 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1417 u32 attr, int channel, long *value) 1418 { 1419 struct sfp *sfp = dev_get_drvdata(dev); 1420 1421 switch (type) { 1422 case hwmon_temp: 1423 return sfp_hwmon_temp(sfp, attr, value); 1424 case hwmon_in: 1425 return sfp_hwmon_vcc(sfp, attr, value); 1426 case hwmon_curr: 1427 return sfp_hwmon_bias(sfp, attr, value); 1428 case hwmon_power: 1429 switch (channel) { 1430 case 0: 1431 return sfp_hwmon_tx_power(sfp, attr, value); 1432 case 1: 1433 return sfp_hwmon_rx_power(sfp, attr, value); 1434 default: 1435 return -EOPNOTSUPP; 1436 } 1437 default: 1438 return -EOPNOTSUPP; 1439 } 1440 } 1441 1442 static const char *const sfp_hwmon_power_labels[] = { 1443 "TX_power", 1444 "RX_power", 1445 }; 1446 1447 static int sfp_hwmon_read_string(struct device *dev, 1448 enum hwmon_sensor_types type, 1449 u32 attr, int channel, const char **str) 1450 { 1451 switch (type) { 1452 case hwmon_curr: 1453 switch (attr) { 1454 case hwmon_curr_label: 1455 *str = "bias"; 1456 return 0; 1457 default: 1458 return -EOPNOTSUPP; 1459 } 1460 break; 1461 case hwmon_temp: 1462 switch (attr) { 1463 case hwmon_temp_label: 1464 *str = "temperature"; 1465 return 0; 1466 default: 1467 return -EOPNOTSUPP; 1468 } 1469 break; 1470 case hwmon_in: 1471 switch (attr) { 1472 case hwmon_in_label: 1473 *str = "VCC"; 1474 return 0; 1475 default: 1476 return -EOPNOTSUPP; 1477 } 1478 break; 1479 case hwmon_power: 1480 switch (attr) { 1481 case hwmon_power_label: 1482 *str = sfp_hwmon_power_labels[channel]; 1483 return 0; 1484 default: 1485 return -EOPNOTSUPP; 1486 } 1487 break; 1488 default: 1489 return -EOPNOTSUPP; 1490 } 1491 1492 return -EOPNOTSUPP; 1493 } 1494 1495 static const struct hwmon_ops sfp_hwmon_ops = { 1496 .is_visible = sfp_hwmon_is_visible, 1497 .read = sfp_hwmon_read, 1498 .read_string = sfp_hwmon_read_string, 1499 }; 1500 1501 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1502 HWMON_CHANNEL_INFO(chip, 1503 HWMON_C_REGISTER_TZ), 1504 HWMON_CHANNEL_INFO(in, 1505 HWMON_I_INPUT | 1506 HWMON_I_MAX | HWMON_I_MIN | 1507 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1508 HWMON_I_CRIT | HWMON_I_LCRIT | 1509 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1510 HWMON_I_LABEL), 1511 HWMON_CHANNEL_INFO(temp, 1512 HWMON_T_INPUT | 1513 HWMON_T_MAX | HWMON_T_MIN | 1514 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1515 HWMON_T_CRIT | HWMON_T_LCRIT | 1516 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1517 HWMON_T_LABEL), 1518 HWMON_CHANNEL_INFO(curr, 1519 HWMON_C_INPUT | 1520 HWMON_C_MAX | HWMON_C_MIN | 1521 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1522 HWMON_C_CRIT | HWMON_C_LCRIT | 1523 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1524 HWMON_C_LABEL), 1525 HWMON_CHANNEL_INFO(power, 1526 /* Transmit power */ 1527 HWMON_P_INPUT | 1528 HWMON_P_MAX | HWMON_P_MIN | 1529 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1530 HWMON_P_CRIT | HWMON_P_LCRIT | 1531 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1532 HWMON_P_LABEL, 1533 /* Receive power */ 1534 HWMON_P_INPUT | 1535 HWMON_P_MAX | HWMON_P_MIN | 1536 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1537 HWMON_P_CRIT | HWMON_P_LCRIT | 1538 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1539 HWMON_P_LABEL), 1540 NULL, 1541 }; 1542 1543 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1544 .ops = &sfp_hwmon_ops, 1545 .info = sfp_hwmon_info, 1546 }; 1547 1548 static void sfp_hwmon_probe(struct work_struct *work) 1549 { 1550 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1551 int err; 1552 1553 /* hwmon interface needs to access 16bit registers in atomic way to 1554 * guarantee coherency of the diagnostic monitoring data. If it is not 1555 * possible to guarantee coherency because EEPROM is broken in such way 1556 * that does not support atomic 16bit read operation then we have to 1557 * skip registration of hwmon device. 1558 */ 1559 if (sfp->i2c_block_size < 2) { 1560 dev_info(sfp->dev, 1561 "skipping hwmon device registration due to broken EEPROM\n"); 1562 dev_info(sfp->dev, 1563 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1564 return; 1565 } 1566 1567 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1568 if (err < 0) { 1569 if (sfp->hwmon_tries--) { 1570 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1571 T_PROBE_RETRY_SLOW); 1572 } else { 1573 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1574 ERR_PTR(err)); 1575 } 1576 return; 1577 } 1578 1579 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1580 if (IS_ERR(sfp->hwmon_name)) { 1581 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1582 return; 1583 } 1584 1585 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1586 sfp->hwmon_name, sfp, 1587 &sfp_hwmon_chip_info, 1588 NULL); 1589 if (IS_ERR(sfp->hwmon_dev)) 1590 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1591 PTR_ERR(sfp->hwmon_dev)); 1592 } 1593 1594 static int sfp_hwmon_insert(struct sfp *sfp) 1595 { 1596 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1597 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1598 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static void sfp_hwmon_remove(struct sfp *sfp) 1605 { 1606 cancel_delayed_work_sync(&sfp->hwmon_probe); 1607 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1608 hwmon_device_unregister(sfp->hwmon_dev); 1609 sfp->hwmon_dev = NULL; 1610 kfree(sfp->hwmon_name); 1611 } 1612 } 1613 1614 static int sfp_hwmon_init(struct sfp *sfp) 1615 { 1616 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1617 1618 return 0; 1619 } 1620 1621 static void sfp_hwmon_exit(struct sfp *sfp) 1622 { 1623 cancel_delayed_work_sync(&sfp->hwmon_probe); 1624 } 1625 #else 1626 static int sfp_hwmon_insert(struct sfp *sfp) 1627 { 1628 return 0; 1629 } 1630 1631 static void sfp_hwmon_remove(struct sfp *sfp) 1632 { 1633 } 1634 1635 static int sfp_hwmon_init(struct sfp *sfp) 1636 { 1637 return 0; 1638 } 1639 1640 static void sfp_hwmon_exit(struct sfp *sfp) 1641 { 1642 } 1643 #endif 1644 1645 /* Helpers */ 1646 static void sfp_module_tx_disable(struct sfp *sfp) 1647 { 1648 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1649 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1650 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1651 } 1652 1653 static void sfp_module_tx_enable(struct sfp *sfp) 1654 { 1655 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1656 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1657 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1658 } 1659 1660 #if IS_ENABLED(CONFIG_DEBUG_FS) 1661 static int sfp_debug_state_show(struct seq_file *s, void *data) 1662 { 1663 struct sfp *sfp = s->private; 1664 1665 seq_printf(s, "Module state: %s\n", 1666 mod_state_to_str(sfp->sm_mod_state)); 1667 seq_printf(s, "Module probe attempts: %d %d\n", 1668 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1669 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1670 seq_printf(s, "Device state: %s\n", 1671 dev_state_to_str(sfp->sm_dev_state)); 1672 seq_printf(s, "Main state: %s\n", 1673 sm_state_to_str(sfp->sm_state)); 1674 seq_printf(s, "Fault recovery remaining retries: %d\n", 1675 sfp->sm_fault_retries); 1676 seq_printf(s, "PHY probe remaining retries: %d\n", 1677 sfp->sm_phy_retries); 1678 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1679 seq_printf(s, "Rate select threshold: %u kBd\n", 1680 sfp->rs_threshold_kbd); 1681 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1682 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1683 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1684 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1685 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1686 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1687 return 0; 1688 } 1689 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1690 1691 static void sfp_debugfs_init(struct sfp *sfp) 1692 { 1693 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1694 1695 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1696 &sfp_debug_state_fops); 1697 } 1698 1699 static void sfp_debugfs_exit(struct sfp *sfp) 1700 { 1701 debugfs_remove_recursive(sfp->debugfs_dir); 1702 } 1703 #else 1704 static void sfp_debugfs_init(struct sfp *sfp) 1705 { 1706 } 1707 1708 static void sfp_debugfs_exit(struct sfp *sfp) 1709 { 1710 } 1711 #endif 1712 1713 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1714 { 1715 unsigned int state; 1716 1717 mutex_lock(&sfp->st_mutex); 1718 state = sfp->state; 1719 if (!(state & SFP_F_TX_DISABLE)) { 1720 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1721 1722 udelay(T_RESET_US); 1723 1724 sfp_set_state(sfp, state); 1725 } 1726 mutex_unlock(&sfp->st_mutex); 1727 } 1728 1729 /* SFP state machine */ 1730 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1731 { 1732 if (timeout) 1733 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1734 timeout); 1735 else 1736 cancel_delayed_work(&sfp->timeout); 1737 } 1738 1739 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1740 unsigned int timeout) 1741 { 1742 sfp->sm_state = state; 1743 sfp_sm_set_timer(sfp, timeout); 1744 } 1745 1746 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1747 unsigned int timeout) 1748 { 1749 sfp->sm_mod_state = state; 1750 sfp_sm_set_timer(sfp, timeout); 1751 } 1752 1753 static void sfp_sm_phy_detach(struct sfp *sfp) 1754 { 1755 sfp_remove_phy(sfp->sfp_bus); 1756 phy_device_remove(sfp->mod_phy); 1757 phy_device_free(sfp->mod_phy); 1758 sfp->mod_phy = NULL; 1759 } 1760 1761 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1762 { 1763 struct phy_device *phy; 1764 int err; 1765 1766 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1767 if (phy == ERR_PTR(-ENODEV)) 1768 return PTR_ERR(phy); 1769 if (IS_ERR(phy)) { 1770 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1771 return PTR_ERR(phy); 1772 } 1773 1774 /* Mark this PHY as being on a SFP module */ 1775 phy->is_on_sfp_module = true; 1776 1777 err = phy_device_register(phy); 1778 if (err) { 1779 phy_device_free(phy); 1780 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1781 ERR_PTR(err)); 1782 return err; 1783 } 1784 1785 err = sfp_add_phy(sfp->sfp_bus, phy); 1786 if (err) { 1787 phy_device_remove(phy); 1788 phy_device_free(phy); 1789 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1790 return err; 1791 } 1792 1793 sfp->mod_phy = phy; 1794 1795 return 0; 1796 } 1797 1798 static void sfp_sm_link_up(struct sfp *sfp) 1799 { 1800 sfp_link_up(sfp->sfp_bus); 1801 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1802 } 1803 1804 static void sfp_sm_link_down(struct sfp *sfp) 1805 { 1806 sfp_link_down(sfp->sfp_bus); 1807 } 1808 1809 static void sfp_sm_link_check_los(struct sfp *sfp) 1810 { 1811 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1812 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1813 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1814 bool los = false; 1815 1816 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1817 * are set, we assume that no LOS signal is available. If both are 1818 * set, we assume LOS is not implemented (and is meaningless.) 1819 */ 1820 if (los_options == los_inverted) 1821 los = !(sfp->state & SFP_F_LOS); 1822 else if (los_options == los_normal) 1823 los = !!(sfp->state & SFP_F_LOS); 1824 1825 if (los) 1826 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1827 else 1828 sfp_sm_link_up(sfp); 1829 } 1830 1831 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1832 { 1833 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1834 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1835 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1836 1837 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1838 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1839 } 1840 1841 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1842 { 1843 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1844 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1845 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1846 1847 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1848 (los_options == los_normal && event == SFP_E_LOS_LOW); 1849 } 1850 1851 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1852 { 1853 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1854 dev_err(sfp->dev, 1855 "module persistently indicates fault, disabling\n"); 1856 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1857 } else { 1858 if (warn) 1859 dev_err(sfp->dev, "module transmit fault indicated\n"); 1860 1861 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1862 } 1863 } 1864 1865 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1866 { 1867 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1868 return sfp_i2c_mdiobus_create(sfp); 1869 1870 return 0; 1871 } 1872 1873 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1874 * normally sits at I2C bus address 0x56, and may either be a clause 22 1875 * or clause 45 PHY. 1876 * 1877 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1878 * negotiation enabled, but some may be in 1000base-X - which is for the 1879 * PHY driver to determine. 1880 * 1881 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1882 * mode according to the negotiated line speed. 1883 */ 1884 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1885 { 1886 int err = 0; 1887 1888 switch (sfp->mdio_protocol) { 1889 case MDIO_I2C_NONE: 1890 break; 1891 1892 case MDIO_I2C_MARVELL_C22: 1893 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1894 break; 1895 1896 case MDIO_I2C_C45: 1897 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1898 break; 1899 1900 case MDIO_I2C_ROLLBALL: 1901 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1902 break; 1903 } 1904 1905 return err; 1906 } 1907 1908 static int sfp_module_parse_power(struct sfp *sfp) 1909 { 1910 u32 power_mW = 1000; 1911 bool supports_a2; 1912 1913 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1914 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1915 power_mW = 1500; 1916 /* Added in Rev 11.9, but there is no compliance code for this */ 1917 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1918 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1919 power_mW = 2000; 1920 1921 /* Power level 1 modules (max. 1W) are always supported. */ 1922 if (power_mW <= 1000) { 1923 sfp->module_power_mW = power_mW; 1924 return 0; 1925 } 1926 1927 supports_a2 = sfp->id.ext.sff8472_compliance != 1928 SFP_SFF8472_COMPLIANCE_NONE || 1929 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1930 1931 if (power_mW > sfp->max_power_mW) { 1932 /* Module power specification exceeds the allowed maximum. */ 1933 if (!supports_a2) { 1934 /* The module appears not to implement bus address 1935 * 0xa2, so assume that the module powers up in the 1936 * indicated mode. 1937 */ 1938 dev_err(sfp->dev, 1939 "Host does not support %u.%uW modules\n", 1940 power_mW / 1000, (power_mW / 100) % 10); 1941 return -EINVAL; 1942 } else { 1943 dev_warn(sfp->dev, 1944 "Host does not support %u.%uW modules, module left in power mode 1\n", 1945 power_mW / 1000, (power_mW / 100) % 10); 1946 return 0; 1947 } 1948 } 1949 1950 if (!supports_a2) { 1951 /* The module power level is below the host maximum and the 1952 * module appears not to implement bus address 0xa2, so assume 1953 * that the module powers up in the indicated mode. 1954 */ 1955 return 0; 1956 } 1957 1958 /* If the module requires a higher power mode, but also requires 1959 * an address change sequence, warn the user that the module may 1960 * not be functional. 1961 */ 1962 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1963 dev_warn(sfp->dev, 1964 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1965 power_mW / 1000, (power_mW / 100) % 10); 1966 return 0; 1967 } 1968 1969 sfp->module_power_mW = power_mW; 1970 1971 return 0; 1972 } 1973 1974 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1975 { 1976 int err; 1977 1978 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1979 SFP_EXT_STATUS_PWRLVL_SELECT, 1980 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1981 if (err != sizeof(u8)) { 1982 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1983 enable ? "en" : "dis", ERR_PTR(err)); 1984 return -EAGAIN; 1985 } 1986 1987 if (enable) 1988 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1989 sfp->module_power_mW / 1000, 1990 (sfp->module_power_mW / 100) % 10); 1991 1992 return 0; 1993 } 1994 1995 static void sfp_module_parse_rate_select(struct sfp *sfp) 1996 { 1997 u8 rate_id; 1998 1999 sfp->rs_threshold_kbd = 0; 2000 sfp->rs_state_mask = 0; 2001 2002 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2003 /* No support for RateSelect */ 2004 return; 2005 2006 /* Default to INF-8074 RateSelect operation. The signalling threshold 2007 * rate is not well specified, so always select "Full Bandwidth", but 2008 * SFF-8079 reveals that it is understood that RS0 will be low for 2009 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2010 * This method exists prior to SFF-8472. 2011 */ 2012 sfp->rs_state_mask = SFP_F_RS0; 2013 sfp->rs_threshold_kbd = 1594; 2014 2015 /* Parse the rate identifier, which is complicated due to history: 2016 * SFF-8472 rev 9.5 marks this field as reserved. 2017 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2018 * compliance is not required. 2019 * SFF-8472 rev 10.2 defines this field using values 0..4 2020 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2021 * and even values. 2022 */ 2023 rate_id = sfp->id.base.rate_id; 2024 if (rate_id == 0) 2025 /* Unspecified */ 2026 return; 2027 2028 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2029 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2030 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2031 */ 2032 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2033 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2034 rate_id == 3) 2035 rate_id = SFF_RID_8431; 2036 2037 if (rate_id & SFF_RID_8079) { 2038 /* SFF-8079 RateSelect / Application Select in conjunction with 2039 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2040 * with only bit 0 used, which takes precedence over SFF-8472. 2041 */ 2042 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2043 /* SFF-8079 Part 1 - rate selection between Fibre 2044 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2045 * is high for 2125, so we have to subtract 1 to 2046 * include it. 2047 */ 2048 sfp->rs_threshold_kbd = 2125 - 1; 2049 sfp->rs_state_mask = SFP_F_RS0; 2050 } 2051 return; 2052 } 2053 2054 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2055 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2056 return; 2057 2058 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2059 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2060 */ 2061 switch (rate_id) { 2062 case SFF_RID_8431_RX_ONLY: 2063 sfp->rs_threshold_kbd = 4250; 2064 sfp->rs_state_mask = SFP_F_RS0; 2065 break; 2066 2067 case SFF_RID_8431_TX_ONLY: 2068 sfp->rs_threshold_kbd = 4250; 2069 sfp->rs_state_mask = SFP_F_RS1; 2070 break; 2071 2072 case SFF_RID_8431: 2073 sfp->rs_threshold_kbd = 4250; 2074 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2075 break; 2076 2077 case SFF_RID_10G8G: 2078 sfp->rs_threshold_kbd = 9000; 2079 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2080 break; 2081 } 2082 } 2083 2084 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2085 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2086 * not support multibyte reads from the EEPROM. Each multi-byte read 2087 * operation returns just one byte of EEPROM followed by zeros. There is 2088 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2089 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2090 * name and vendor id into EEPROM, so there is even no way to detect if 2091 * module is V-SOL V2801F. Therefore check for those zeros in the read 2092 * data and then based on check switch to reading EEPROM to one byte 2093 * at a time. 2094 */ 2095 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2096 { 2097 size_t i, block_size = sfp->i2c_block_size; 2098 2099 /* Already using byte IO */ 2100 if (block_size == 1) 2101 return false; 2102 2103 for (i = 1; i < len; i += block_size) { 2104 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2105 return false; 2106 } 2107 return true; 2108 } 2109 2110 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2111 { 2112 u8 check; 2113 int err; 2114 2115 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2116 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2117 id->base.connector != SFF8024_CONNECTOR_LC) { 2118 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2119 id->base.phys_id = SFF8024_ID_SFF_8472; 2120 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2121 id->base.connector = SFF8024_CONNECTOR_LC; 2122 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2123 if (err != 3) { 2124 dev_err(sfp->dev, 2125 "Failed to rewrite module EEPROM: %pe\n", 2126 ERR_PTR(err)); 2127 return err; 2128 } 2129 2130 /* Cotsworks modules have been found to require a delay between write operations. */ 2131 mdelay(50); 2132 2133 /* Update base structure checksum */ 2134 check = sfp_check(&id->base, sizeof(id->base) - 1); 2135 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2136 if (err != 1) { 2137 dev_err(sfp->dev, 2138 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2139 ERR_PTR(err)); 2140 return err; 2141 } 2142 } 2143 return 0; 2144 } 2145 2146 static int sfp_module_parse_sff8472(struct sfp *sfp) 2147 { 2148 /* If the module requires address swap mode, warn about it */ 2149 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2150 dev_warn(sfp->dev, 2151 "module address swap to access page 0xA2 is not supported.\n"); 2152 else 2153 sfp->have_a2 = true; 2154 2155 return 0; 2156 } 2157 2158 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2159 { 2160 /* SFP module inserted - read I2C data */ 2161 struct sfp_eeprom_id id; 2162 bool cotsworks_sfbg; 2163 unsigned int mask; 2164 bool cotsworks; 2165 u8 check; 2166 int ret; 2167 2168 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2169 2170 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2171 if (ret < 0) { 2172 if (report) 2173 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2174 ERR_PTR(ret)); 2175 return -EAGAIN; 2176 } 2177 2178 if (ret != sizeof(id.base)) { 2179 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2180 return -EAGAIN; 2181 } 2182 2183 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2184 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2185 * that EEPROM supports atomic 16bit read operation for diagnostic 2186 * fields, so do not switch to one byte reading at a time unless it 2187 * is really required and we have no other option. 2188 */ 2189 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2190 dev_info(sfp->dev, 2191 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2192 dev_info(sfp->dev, 2193 "Switching to reading EEPROM to one byte at a time\n"); 2194 sfp->i2c_block_size = 1; 2195 2196 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2197 if (ret < 0) { 2198 if (report) 2199 dev_err(sfp->dev, 2200 "failed to read EEPROM: %pe\n", 2201 ERR_PTR(ret)); 2202 return -EAGAIN; 2203 } 2204 2205 if (ret != sizeof(id.base)) { 2206 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2207 ERR_PTR(ret)); 2208 return -EAGAIN; 2209 } 2210 } 2211 2212 /* Cotsworks do not seem to update the checksums when they 2213 * do the final programming with the final module part number, 2214 * serial number and date code. 2215 */ 2216 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2217 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2218 2219 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2220 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2221 * Cotsworks PN matches and bytes are not correct. 2222 */ 2223 if (cotsworks && cotsworks_sfbg) { 2224 ret = sfp_cotsworks_fixup_check(sfp, &id); 2225 if (ret < 0) 2226 return ret; 2227 } 2228 2229 /* Validate the checksum over the base structure */ 2230 check = sfp_check(&id.base, sizeof(id.base) - 1); 2231 if (check != id.base.cc_base) { 2232 if (cotsworks) { 2233 dev_warn(sfp->dev, 2234 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2235 check, id.base.cc_base); 2236 } else { 2237 dev_err(sfp->dev, 2238 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2239 check, id.base.cc_base); 2240 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2241 16, 1, &id, sizeof(id), true); 2242 return -EINVAL; 2243 } 2244 } 2245 2246 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2247 if (ret < 0) { 2248 if (report) 2249 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2250 ERR_PTR(ret)); 2251 return -EAGAIN; 2252 } 2253 2254 if (ret != sizeof(id.ext)) { 2255 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2256 return -EAGAIN; 2257 } 2258 2259 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2260 if (check != id.ext.cc_ext) { 2261 if (cotsworks) { 2262 dev_warn(sfp->dev, 2263 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2264 check, id.ext.cc_ext); 2265 } else { 2266 dev_err(sfp->dev, 2267 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2268 check, id.ext.cc_ext); 2269 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2270 16, 1, &id, sizeof(id), true); 2271 memset(&id.ext, 0, sizeof(id.ext)); 2272 } 2273 } 2274 2275 sfp->id = id; 2276 2277 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2278 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2279 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2280 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2281 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2282 (int)sizeof(id.ext.datecode), id.ext.datecode); 2283 2284 /* Check whether we support this module */ 2285 if (!sfp->type->module_supported(&id)) { 2286 dev_err(sfp->dev, 2287 "module is not supported - phys id 0x%02x 0x%02x\n", 2288 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2289 return -EINVAL; 2290 } 2291 2292 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2293 ret = sfp_module_parse_sff8472(sfp); 2294 if (ret < 0) 2295 return ret; 2296 } 2297 2298 /* Parse the module power requirement */ 2299 ret = sfp_module_parse_power(sfp); 2300 if (ret < 0) 2301 return ret; 2302 2303 sfp_module_parse_rate_select(sfp); 2304 2305 mask = SFP_F_PRESENT; 2306 if (sfp->gpio[GPIO_TX_DISABLE]) 2307 mask |= SFP_F_TX_DISABLE; 2308 if (sfp->gpio[GPIO_TX_FAULT]) 2309 mask |= SFP_F_TX_FAULT; 2310 if (sfp->gpio[GPIO_LOS]) 2311 mask |= SFP_F_LOS; 2312 if (sfp->gpio[GPIO_RS0]) 2313 mask |= SFP_F_RS0; 2314 if (sfp->gpio[GPIO_RS1]) 2315 mask |= SFP_F_RS1; 2316 2317 sfp->module_t_start_up = T_START_UP; 2318 sfp->module_t_wait = T_WAIT; 2319 2320 sfp->tx_fault_ignore = false; 2321 2322 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2323 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2324 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2325 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2326 sfp->mdio_protocol = MDIO_I2C_C45; 2327 else if (sfp->id.base.e1000_base_t) 2328 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2329 else 2330 sfp->mdio_protocol = MDIO_I2C_NONE; 2331 2332 sfp->quirk = sfp_lookup_quirk(&id); 2333 2334 mutex_lock(&sfp->st_mutex); 2335 /* Initialise state bits to use from hardware */ 2336 sfp->state_hw_mask = mask; 2337 2338 /* We want to drive the rate select pins that the module is using */ 2339 sfp->state_hw_drive |= sfp->rs_state_mask; 2340 2341 if (sfp->quirk && sfp->quirk->fixup) 2342 sfp->quirk->fixup(sfp); 2343 mutex_unlock(&sfp->st_mutex); 2344 2345 return 0; 2346 } 2347 2348 static void sfp_sm_mod_remove(struct sfp *sfp) 2349 { 2350 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2351 sfp_module_remove(sfp->sfp_bus); 2352 2353 sfp_hwmon_remove(sfp); 2354 2355 memset(&sfp->id, 0, sizeof(sfp->id)); 2356 sfp->module_power_mW = 0; 2357 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2358 sfp->have_a2 = false; 2359 2360 dev_info(sfp->dev, "module removed\n"); 2361 } 2362 2363 /* This state machine tracks the upstream's state */ 2364 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2365 { 2366 switch (sfp->sm_dev_state) { 2367 default: 2368 if (event == SFP_E_DEV_ATTACH) 2369 sfp->sm_dev_state = SFP_DEV_DOWN; 2370 break; 2371 2372 case SFP_DEV_DOWN: 2373 if (event == SFP_E_DEV_DETACH) 2374 sfp->sm_dev_state = SFP_DEV_DETACHED; 2375 else if (event == SFP_E_DEV_UP) 2376 sfp->sm_dev_state = SFP_DEV_UP; 2377 break; 2378 2379 case SFP_DEV_UP: 2380 if (event == SFP_E_DEV_DETACH) 2381 sfp->sm_dev_state = SFP_DEV_DETACHED; 2382 else if (event == SFP_E_DEV_DOWN) 2383 sfp->sm_dev_state = SFP_DEV_DOWN; 2384 break; 2385 } 2386 } 2387 2388 /* This state machine tracks the insert/remove state of the module, probes 2389 * the on-board EEPROM, and sets up the power level. 2390 */ 2391 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2392 { 2393 int err; 2394 2395 /* Handle remove event globally, it resets this state machine */ 2396 if (event == SFP_E_REMOVE) { 2397 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2398 sfp_sm_mod_remove(sfp); 2399 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2400 return; 2401 } 2402 2403 /* Handle device detach globally */ 2404 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2405 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2406 if (sfp->module_power_mW > 1000 && 2407 sfp->sm_mod_state > SFP_MOD_HPOWER) 2408 sfp_sm_mod_hpower(sfp, false); 2409 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2410 return; 2411 } 2412 2413 switch (sfp->sm_mod_state) { 2414 default: 2415 if (event == SFP_E_INSERT) { 2416 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2417 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2418 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2419 } 2420 break; 2421 2422 case SFP_MOD_PROBE: 2423 /* Wait for T_PROBE_INIT to time out */ 2424 if (event != SFP_E_TIMEOUT) 2425 break; 2426 2427 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2428 if (err == -EAGAIN) { 2429 if (sfp->sm_mod_tries_init && 2430 --sfp->sm_mod_tries_init) { 2431 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2432 break; 2433 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2434 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2435 dev_warn(sfp->dev, 2436 "please wait, module slow to respond\n"); 2437 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2438 break; 2439 } 2440 } 2441 if (err < 0) { 2442 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2443 break; 2444 } 2445 2446 /* Force a poll to re-read the hardware signal state after 2447 * sfp_sm_mod_probe() changed state_hw_mask. 2448 */ 2449 mod_delayed_work(system_wq, &sfp->poll, 1); 2450 2451 err = sfp_hwmon_insert(sfp); 2452 if (err) 2453 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2454 ERR_PTR(err)); 2455 2456 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2457 fallthrough; 2458 case SFP_MOD_WAITDEV: 2459 /* Ensure that the device is attached before proceeding */ 2460 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2461 break; 2462 2463 /* Report the module insertion to the upstream device */ 2464 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2465 sfp->quirk); 2466 if (err < 0) { 2467 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2468 break; 2469 } 2470 2471 /* If this is a power level 1 module, we are done */ 2472 if (sfp->module_power_mW <= 1000) 2473 goto insert; 2474 2475 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2476 fallthrough; 2477 case SFP_MOD_HPOWER: 2478 /* Enable high power mode */ 2479 err = sfp_sm_mod_hpower(sfp, true); 2480 if (err < 0) { 2481 if (err != -EAGAIN) { 2482 sfp_module_remove(sfp->sfp_bus); 2483 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2484 } else { 2485 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2486 } 2487 break; 2488 } 2489 2490 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2491 break; 2492 2493 case SFP_MOD_WAITPWR: 2494 /* Wait for T_HPOWER_LEVEL to time out */ 2495 if (event != SFP_E_TIMEOUT) 2496 break; 2497 2498 insert: 2499 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2500 break; 2501 2502 case SFP_MOD_PRESENT: 2503 case SFP_MOD_ERROR: 2504 break; 2505 } 2506 } 2507 2508 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2509 { 2510 unsigned long timeout; 2511 int ret; 2512 2513 /* Some events are global */ 2514 if (sfp->sm_state != SFP_S_DOWN && 2515 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2516 sfp->sm_dev_state != SFP_DEV_UP)) { 2517 if (sfp->sm_state == SFP_S_LINK_UP && 2518 sfp->sm_dev_state == SFP_DEV_UP) 2519 sfp_sm_link_down(sfp); 2520 if (sfp->sm_state > SFP_S_INIT) 2521 sfp_module_stop(sfp->sfp_bus); 2522 if (sfp->mod_phy) 2523 sfp_sm_phy_detach(sfp); 2524 if (sfp->i2c_mii) 2525 sfp_i2c_mdiobus_destroy(sfp); 2526 sfp_module_tx_disable(sfp); 2527 sfp_soft_stop_poll(sfp); 2528 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2529 return; 2530 } 2531 2532 /* The main state machine */ 2533 switch (sfp->sm_state) { 2534 case SFP_S_DOWN: 2535 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2536 sfp->sm_dev_state != SFP_DEV_UP) 2537 break; 2538 2539 /* Only use the soft state bits if we have access to the A2h 2540 * memory, which implies that we have some level of SFF-8472 2541 * compliance. 2542 */ 2543 if (sfp->have_a2) 2544 sfp_soft_start_poll(sfp); 2545 2546 sfp_module_tx_enable(sfp); 2547 2548 /* Initialise the fault clearance retries */ 2549 sfp->sm_fault_retries = N_FAULT_INIT; 2550 2551 /* We need to check the TX_FAULT state, which is not defined 2552 * while TX_DISABLE is asserted. The earliest we want to do 2553 * anything (such as probe for a PHY) is 50ms (or more on 2554 * specific modules). 2555 */ 2556 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2557 break; 2558 2559 case SFP_S_WAIT: 2560 if (event != SFP_E_TIMEOUT) 2561 break; 2562 2563 if (sfp->state & SFP_F_TX_FAULT) { 2564 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2565 * from the TX_DISABLE deassertion for the module to 2566 * initialise, which is indicated by TX_FAULT 2567 * deasserting. 2568 */ 2569 timeout = sfp->module_t_start_up; 2570 if (timeout > sfp->module_t_wait) 2571 timeout -= sfp->module_t_wait; 2572 else 2573 timeout = 1; 2574 2575 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2576 } else { 2577 /* TX_FAULT is not asserted, assume the module has 2578 * finished initialising. 2579 */ 2580 goto init_done; 2581 } 2582 break; 2583 2584 case SFP_S_INIT: 2585 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2586 /* TX_FAULT is still asserted after t_init 2587 * or t_start_up, so assume there is a fault. 2588 */ 2589 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2590 sfp->sm_fault_retries == N_FAULT_INIT); 2591 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2592 init_done: 2593 /* Create mdiobus and start trying for PHY */ 2594 ret = sfp_sm_add_mdio_bus(sfp); 2595 if (ret < 0) { 2596 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2597 break; 2598 } 2599 sfp->sm_phy_retries = R_PHY_RETRY; 2600 goto phy_probe; 2601 } 2602 break; 2603 2604 case SFP_S_INIT_PHY: 2605 if (event != SFP_E_TIMEOUT) 2606 break; 2607 phy_probe: 2608 /* TX_FAULT deasserted or we timed out with TX_FAULT 2609 * clear. Probe for the PHY and check the LOS state. 2610 */ 2611 ret = sfp_sm_probe_for_phy(sfp); 2612 if (ret == -ENODEV) { 2613 if (--sfp->sm_phy_retries) { 2614 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2615 break; 2616 } else { 2617 dev_info(sfp->dev, "no PHY detected\n"); 2618 } 2619 } else if (ret) { 2620 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2621 break; 2622 } 2623 if (sfp_module_start(sfp->sfp_bus)) { 2624 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2625 break; 2626 } 2627 sfp_sm_link_check_los(sfp); 2628 2629 /* Reset the fault retry count */ 2630 sfp->sm_fault_retries = N_FAULT; 2631 break; 2632 2633 case SFP_S_INIT_TX_FAULT: 2634 if (event == SFP_E_TIMEOUT) { 2635 sfp_module_tx_fault_reset(sfp); 2636 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2637 } 2638 break; 2639 2640 case SFP_S_WAIT_LOS: 2641 if (event == SFP_E_TX_FAULT) 2642 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2643 else if (sfp_los_event_inactive(sfp, event)) 2644 sfp_sm_link_up(sfp); 2645 break; 2646 2647 case SFP_S_LINK_UP: 2648 if (event == SFP_E_TX_FAULT) { 2649 sfp_sm_link_down(sfp); 2650 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2651 } else if (sfp_los_event_active(sfp, event)) { 2652 sfp_sm_link_down(sfp); 2653 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2654 } 2655 break; 2656 2657 case SFP_S_TX_FAULT: 2658 if (event == SFP_E_TIMEOUT) { 2659 sfp_module_tx_fault_reset(sfp); 2660 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2661 } 2662 break; 2663 2664 case SFP_S_REINIT: 2665 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2666 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2667 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2668 dev_info(sfp->dev, "module transmit fault recovered\n"); 2669 sfp_sm_link_check_los(sfp); 2670 } 2671 break; 2672 2673 case SFP_S_TX_DISABLE: 2674 break; 2675 } 2676 } 2677 2678 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2679 { 2680 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2681 mod_state_to_str(sfp->sm_mod_state), 2682 dev_state_to_str(sfp->sm_dev_state), 2683 sm_state_to_str(sfp->sm_state), 2684 event_to_str(event)); 2685 2686 sfp_sm_device(sfp, event); 2687 sfp_sm_module(sfp, event); 2688 sfp_sm_main(sfp, event); 2689 2690 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2691 mod_state_to_str(sfp->sm_mod_state), 2692 dev_state_to_str(sfp->sm_dev_state), 2693 sm_state_to_str(sfp->sm_state)); 2694 } 2695 2696 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2697 { 2698 mutex_lock(&sfp->sm_mutex); 2699 __sfp_sm_event(sfp, event); 2700 mutex_unlock(&sfp->sm_mutex); 2701 } 2702 2703 static void sfp_attach(struct sfp *sfp) 2704 { 2705 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2706 } 2707 2708 static void sfp_detach(struct sfp *sfp) 2709 { 2710 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2711 } 2712 2713 static void sfp_start(struct sfp *sfp) 2714 { 2715 sfp_sm_event(sfp, SFP_E_DEV_UP); 2716 } 2717 2718 static void sfp_stop(struct sfp *sfp) 2719 { 2720 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2721 } 2722 2723 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2724 { 2725 unsigned int set; 2726 2727 sfp->rate_kbd = rate_kbd; 2728 2729 if (rate_kbd > sfp->rs_threshold_kbd) 2730 set = sfp->rs_state_mask; 2731 else 2732 set = 0; 2733 2734 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2735 } 2736 2737 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2738 { 2739 /* locking... and check module is present */ 2740 2741 if (sfp->id.ext.sff8472_compliance && 2742 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2743 modinfo->type = ETH_MODULE_SFF_8472; 2744 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2745 } else { 2746 modinfo->type = ETH_MODULE_SFF_8079; 2747 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2748 } 2749 return 0; 2750 } 2751 2752 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2753 u8 *data) 2754 { 2755 unsigned int first, last, len; 2756 int ret; 2757 2758 if (!(sfp->state & SFP_F_PRESENT)) 2759 return -ENODEV; 2760 2761 if (ee->len == 0) 2762 return -EINVAL; 2763 2764 first = ee->offset; 2765 last = ee->offset + ee->len; 2766 if (first < ETH_MODULE_SFF_8079_LEN) { 2767 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2768 len -= first; 2769 2770 ret = sfp_read(sfp, false, first, data, len); 2771 if (ret < 0) 2772 return ret; 2773 2774 first += len; 2775 data += len; 2776 } 2777 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2778 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2779 len -= first; 2780 first -= ETH_MODULE_SFF_8079_LEN; 2781 2782 ret = sfp_read(sfp, true, first, data, len); 2783 if (ret < 0) 2784 return ret; 2785 } 2786 return 0; 2787 } 2788 2789 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2790 const struct ethtool_module_eeprom *page, 2791 struct netlink_ext_ack *extack) 2792 { 2793 if (!(sfp->state & SFP_F_PRESENT)) 2794 return -ENODEV; 2795 2796 if (page->bank) { 2797 NL_SET_ERR_MSG(extack, "Banks not supported"); 2798 return -EOPNOTSUPP; 2799 } 2800 2801 if (page->page) { 2802 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2803 return -EOPNOTSUPP; 2804 } 2805 2806 if (page->i2c_address != 0x50 && 2807 page->i2c_address != 0x51) { 2808 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2809 return -EOPNOTSUPP; 2810 } 2811 2812 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2813 page->data, page->length); 2814 }; 2815 2816 static const struct sfp_socket_ops sfp_module_ops = { 2817 .attach = sfp_attach, 2818 .detach = sfp_detach, 2819 .start = sfp_start, 2820 .stop = sfp_stop, 2821 .set_signal_rate = sfp_set_signal_rate, 2822 .module_info = sfp_module_info, 2823 .module_eeprom = sfp_module_eeprom, 2824 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2825 }; 2826 2827 static void sfp_timeout(struct work_struct *work) 2828 { 2829 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2830 2831 rtnl_lock(); 2832 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2833 rtnl_unlock(); 2834 } 2835 2836 static void sfp_check_state(struct sfp *sfp) 2837 { 2838 unsigned int state, i, changed; 2839 2840 rtnl_lock(); 2841 mutex_lock(&sfp->st_mutex); 2842 state = sfp_get_state(sfp); 2843 changed = state ^ sfp->state; 2844 if (sfp->tx_fault_ignore) 2845 changed &= SFP_F_PRESENT | SFP_F_LOS; 2846 else 2847 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2848 2849 for (i = 0; i < GPIO_MAX; i++) 2850 if (changed & BIT(i)) 2851 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2852 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2853 2854 state |= sfp->state & SFP_F_OUTPUTS; 2855 sfp->state = state; 2856 mutex_unlock(&sfp->st_mutex); 2857 2858 mutex_lock(&sfp->sm_mutex); 2859 if (changed & SFP_F_PRESENT) 2860 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2861 SFP_E_INSERT : SFP_E_REMOVE); 2862 2863 if (changed & SFP_F_TX_FAULT) 2864 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2865 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2866 2867 if (changed & SFP_F_LOS) 2868 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2869 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2870 mutex_unlock(&sfp->sm_mutex); 2871 rtnl_unlock(); 2872 } 2873 2874 static irqreturn_t sfp_irq(int irq, void *data) 2875 { 2876 struct sfp *sfp = data; 2877 2878 sfp_check_state(sfp); 2879 2880 return IRQ_HANDLED; 2881 } 2882 2883 static void sfp_poll(struct work_struct *work) 2884 { 2885 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2886 2887 sfp_check_state(sfp); 2888 2889 // st_mutex doesn't need to be held here for state_soft_mask, 2890 // it's unimportant if we race while reading this. 2891 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2892 sfp->need_poll) 2893 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2894 } 2895 2896 static struct sfp *sfp_alloc(struct device *dev) 2897 { 2898 struct sfp *sfp; 2899 2900 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2901 if (!sfp) 2902 return ERR_PTR(-ENOMEM); 2903 2904 sfp->dev = dev; 2905 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2906 2907 mutex_init(&sfp->sm_mutex); 2908 mutex_init(&sfp->st_mutex); 2909 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2910 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2911 2912 sfp_hwmon_init(sfp); 2913 2914 return sfp; 2915 } 2916 2917 static void sfp_cleanup(void *data) 2918 { 2919 struct sfp *sfp = data; 2920 2921 sfp_hwmon_exit(sfp); 2922 2923 cancel_delayed_work_sync(&sfp->poll); 2924 cancel_delayed_work_sync(&sfp->timeout); 2925 if (sfp->i2c_mii) { 2926 mdiobus_unregister(sfp->i2c_mii); 2927 mdiobus_free(sfp->i2c_mii); 2928 } 2929 if (sfp->i2c) 2930 i2c_put_adapter(sfp->i2c); 2931 kfree(sfp); 2932 } 2933 2934 static int sfp_i2c_get(struct sfp *sfp) 2935 { 2936 struct fwnode_handle *h; 2937 struct i2c_adapter *i2c; 2938 int err; 2939 2940 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2941 if (IS_ERR(h)) { 2942 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2943 return -ENODEV; 2944 } 2945 2946 i2c = i2c_get_adapter_by_fwnode(h); 2947 if (!i2c) { 2948 err = -EPROBE_DEFER; 2949 goto put; 2950 } 2951 2952 err = sfp_i2c_configure(sfp, i2c); 2953 if (err) 2954 i2c_put_adapter(i2c); 2955 put: 2956 fwnode_handle_put(h); 2957 return err; 2958 } 2959 2960 static int sfp_probe(struct platform_device *pdev) 2961 { 2962 const struct sff_data *sff; 2963 char *sfp_irq_name; 2964 struct sfp *sfp; 2965 int err, i; 2966 2967 sfp = sfp_alloc(&pdev->dev); 2968 if (IS_ERR(sfp)) 2969 return PTR_ERR(sfp); 2970 2971 platform_set_drvdata(pdev, sfp); 2972 2973 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2974 if (err < 0) 2975 return err; 2976 2977 sff = device_get_match_data(sfp->dev); 2978 if (!sff) 2979 sff = &sfp_data; 2980 2981 sfp->type = sff; 2982 2983 err = sfp_i2c_get(sfp); 2984 if (err) 2985 return err; 2986 2987 for (i = 0; i < GPIO_MAX; i++) 2988 if (sff->gpios & BIT(i)) { 2989 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2990 gpio_names[i], gpio_flags[i]); 2991 if (IS_ERR(sfp->gpio[i])) 2992 return PTR_ERR(sfp->gpio[i]); 2993 } 2994 2995 sfp->state_hw_mask = SFP_F_PRESENT; 2996 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2997 2998 sfp->get_state = sfp_gpio_get_state; 2999 sfp->set_state = sfp_gpio_set_state; 3000 3001 /* Modules that have no detect signal are always present */ 3002 if (!(sfp->gpio[GPIO_MODDEF0])) 3003 sfp->get_state = sff_gpio_get_state; 3004 3005 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3006 &sfp->max_power_mW); 3007 if (sfp->max_power_mW < 1000) { 3008 if (sfp->max_power_mW) 3009 dev_warn(sfp->dev, 3010 "Firmware bug: host maximum power should be at least 1W\n"); 3011 sfp->max_power_mW = 1000; 3012 } 3013 3014 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3015 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3016 3017 /* Get the initial state, and always signal TX disable, 3018 * since the network interface will not be up. 3019 */ 3020 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3021 3022 if (sfp->gpio[GPIO_RS0] && 3023 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3024 sfp->state |= SFP_F_RS0; 3025 sfp_set_state(sfp, sfp->state); 3026 sfp_module_tx_disable(sfp); 3027 if (sfp->state & SFP_F_PRESENT) { 3028 rtnl_lock(); 3029 sfp_sm_event(sfp, SFP_E_INSERT); 3030 rtnl_unlock(); 3031 } 3032 3033 for (i = 0; i < GPIO_MAX; i++) { 3034 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3035 continue; 3036 3037 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3038 if (sfp->gpio_irq[i] < 0) { 3039 sfp->gpio_irq[i] = 0; 3040 sfp->need_poll = true; 3041 continue; 3042 } 3043 3044 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3045 "%s-%s", dev_name(sfp->dev), 3046 gpio_names[i]); 3047 3048 if (!sfp_irq_name) 3049 return -ENOMEM; 3050 3051 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3052 NULL, sfp_irq, 3053 IRQF_ONESHOT | 3054 IRQF_TRIGGER_RISING | 3055 IRQF_TRIGGER_FALLING, 3056 sfp_irq_name, sfp); 3057 if (err) { 3058 sfp->gpio_irq[i] = 0; 3059 sfp->need_poll = true; 3060 } 3061 } 3062 3063 if (sfp->need_poll) 3064 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3065 3066 /* We could have an issue in cases no Tx disable pin is available or 3067 * wired as modules using a laser as their light source will continue to 3068 * be active when the fiber is removed. This could be a safety issue and 3069 * we should at least warn the user about that. 3070 */ 3071 if (!sfp->gpio[GPIO_TX_DISABLE]) 3072 dev_warn(sfp->dev, 3073 "No tx_disable pin: SFP modules will always be emitting.\n"); 3074 3075 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3076 if (!sfp->sfp_bus) 3077 return -ENOMEM; 3078 3079 sfp_debugfs_init(sfp); 3080 3081 return 0; 3082 } 3083 3084 static int sfp_remove(struct platform_device *pdev) 3085 { 3086 struct sfp *sfp = platform_get_drvdata(pdev); 3087 3088 sfp_debugfs_exit(sfp); 3089 sfp_unregister_socket(sfp->sfp_bus); 3090 3091 rtnl_lock(); 3092 sfp_sm_event(sfp, SFP_E_REMOVE); 3093 rtnl_unlock(); 3094 3095 return 0; 3096 } 3097 3098 static void sfp_shutdown(struct platform_device *pdev) 3099 { 3100 struct sfp *sfp = platform_get_drvdata(pdev); 3101 int i; 3102 3103 for (i = 0; i < GPIO_MAX; i++) { 3104 if (!sfp->gpio_irq[i]) 3105 continue; 3106 3107 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3108 } 3109 3110 cancel_delayed_work_sync(&sfp->poll); 3111 cancel_delayed_work_sync(&sfp->timeout); 3112 } 3113 3114 static struct platform_driver sfp_driver = { 3115 .probe = sfp_probe, 3116 .remove = sfp_remove, 3117 .shutdown = sfp_shutdown, 3118 .driver = { 3119 .name = "sfp", 3120 .of_match_table = sfp_of_match, 3121 }, 3122 }; 3123 3124 static int sfp_init(void) 3125 { 3126 poll_jiffies = msecs_to_jiffies(100); 3127 3128 return platform_driver_register(&sfp_driver); 3129 } 3130 module_init(sfp_init); 3131 3132 static void sfp_exit(void) 3133 { 3134 platform_driver_unregister(&sfp_driver); 3135 } 3136 module_exit(sfp_exit); 3137 3138 MODULE_ALIAS("platform:sfp"); 3139 MODULE_AUTHOR("Russell King"); 3140 MODULE_LICENSE("GPL v2"); 3141