1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/delay.h> 5 #include <linux/gpio/consumer.h> 6 #include <linux/hwmon.h> 7 #include <linux/i2c.h> 8 #include <linux/interrupt.h> 9 #include <linux/jiffies.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "mdio-i2c.h" 20 #include "sfp.h" 21 #include "swphy.h" 22 23 enum { 24 GPIO_MODDEF0, 25 GPIO_LOS, 26 GPIO_TX_FAULT, 27 GPIO_TX_DISABLE, 28 GPIO_RATE_SELECT, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 36 37 SFP_E_INSERT = 0, 38 SFP_E_REMOVE, 39 SFP_E_DEV_DOWN, 40 SFP_E_DEV_UP, 41 SFP_E_TX_FAULT, 42 SFP_E_TX_CLEAR, 43 SFP_E_LOS_HIGH, 44 SFP_E_LOS_LOW, 45 SFP_E_TIMEOUT, 46 47 SFP_MOD_EMPTY = 0, 48 SFP_MOD_PROBE, 49 SFP_MOD_HPOWER, 50 SFP_MOD_PRESENT, 51 SFP_MOD_ERROR, 52 53 SFP_DEV_DOWN = 0, 54 SFP_DEV_UP, 55 56 SFP_S_DOWN = 0, 57 SFP_S_INIT, 58 SFP_S_WAIT_LOS, 59 SFP_S_LINK_UP, 60 SFP_S_TX_FAULT, 61 SFP_S_REINIT, 62 SFP_S_TX_DISABLE, 63 }; 64 65 static const char * const mod_state_strings[] = { 66 [SFP_MOD_EMPTY] = "empty", 67 [SFP_MOD_PROBE] = "probe", 68 [SFP_MOD_HPOWER] = "hpower", 69 [SFP_MOD_PRESENT] = "present", 70 [SFP_MOD_ERROR] = "error", 71 }; 72 73 static const char *mod_state_to_str(unsigned short mod_state) 74 { 75 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 76 return "Unknown module state"; 77 return mod_state_strings[mod_state]; 78 } 79 80 static const char * const dev_state_strings[] = { 81 [SFP_DEV_DOWN] = "down", 82 [SFP_DEV_UP] = "up", 83 }; 84 85 static const char *dev_state_to_str(unsigned short dev_state) 86 { 87 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 88 return "Unknown device state"; 89 return dev_state_strings[dev_state]; 90 } 91 92 static const char * const event_strings[] = { 93 [SFP_E_INSERT] = "insert", 94 [SFP_E_REMOVE] = "remove", 95 [SFP_E_DEV_DOWN] = "dev_down", 96 [SFP_E_DEV_UP] = "dev_up", 97 [SFP_E_TX_FAULT] = "tx_fault", 98 [SFP_E_TX_CLEAR] = "tx_clear", 99 [SFP_E_LOS_HIGH] = "los_high", 100 [SFP_E_LOS_LOW] = "los_low", 101 [SFP_E_TIMEOUT] = "timeout", 102 }; 103 104 static const char *event_to_str(unsigned short event) 105 { 106 if (event >= ARRAY_SIZE(event_strings)) 107 return "Unknown event"; 108 return event_strings[event]; 109 } 110 111 static const char * const sm_state_strings[] = { 112 [SFP_S_DOWN] = "down", 113 [SFP_S_INIT] = "init", 114 [SFP_S_WAIT_LOS] = "wait_los", 115 [SFP_S_LINK_UP] = "link_up", 116 [SFP_S_TX_FAULT] = "tx_fault", 117 [SFP_S_REINIT] = "reinit", 118 [SFP_S_TX_DISABLE] = "rx_disable", 119 }; 120 121 static const char *sm_state_to_str(unsigned short sm_state) 122 { 123 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 124 return "Unknown state"; 125 return sm_state_strings[sm_state]; 126 } 127 128 static const char *gpio_of_names[] = { 129 "mod-def0", 130 "los", 131 "tx-fault", 132 "tx-disable", 133 "rate-select0", 134 }; 135 136 static const enum gpiod_flags gpio_flags[] = { 137 GPIOD_IN, 138 GPIOD_IN, 139 GPIOD_IN, 140 GPIOD_ASIS, 141 GPIOD_ASIS, 142 }; 143 144 #define T_INIT_JIFFIES msecs_to_jiffies(300) 145 #define T_RESET_US 10 146 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 147 148 /* SFP module presence detection is poor: the three MOD DEF signals are 149 * the same length on the PCB, which means it's possible for MOD DEF 0 to 150 * connect before the I2C bus on MOD DEF 1/2. 151 * 152 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to 153 * be deasserted) but makes no mention of the earliest time before we can 154 * access the I2C EEPROM. However, Avago modules require 300ms. 155 */ 156 #define T_PROBE_INIT msecs_to_jiffies(300) 157 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 158 #define T_PROBE_RETRY msecs_to_jiffies(100) 159 160 /* SFP modules appear to always have their PHY configured for bus address 161 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 162 */ 163 #define SFP_PHY_ADDR 22 164 165 /* Give this long for the PHY to reset. */ 166 #define T_PHY_RESET_MS 50 167 168 struct sff_data { 169 unsigned int gpios; 170 bool (*module_supported)(const struct sfp_eeprom_id *id); 171 }; 172 173 struct sfp { 174 struct device *dev; 175 struct i2c_adapter *i2c; 176 struct mii_bus *i2c_mii; 177 struct sfp_bus *sfp_bus; 178 struct phy_device *mod_phy; 179 const struct sff_data *type; 180 u32 max_power_mW; 181 182 unsigned int (*get_state)(struct sfp *); 183 void (*set_state)(struct sfp *, unsigned int); 184 int (*read)(struct sfp *, bool, u8, void *, size_t); 185 int (*write)(struct sfp *, bool, u8, void *, size_t); 186 187 struct gpio_desc *gpio[GPIO_MAX]; 188 int gpio_irq[GPIO_MAX]; 189 190 bool attached; 191 struct mutex st_mutex; /* Protects state */ 192 unsigned int state; 193 struct delayed_work poll; 194 struct delayed_work timeout; 195 struct mutex sm_mutex; /* Protects state machine */ 196 unsigned char sm_mod_state; 197 unsigned char sm_dev_state; 198 unsigned short sm_state; 199 unsigned int sm_retries; 200 201 struct sfp_eeprom_id id; 202 #if IS_ENABLED(CONFIG_HWMON) 203 struct sfp_diag diag; 204 struct device *hwmon_dev; 205 char *hwmon_name; 206 #endif 207 208 }; 209 210 static bool sff_module_supported(const struct sfp_eeprom_id *id) 211 { 212 return id->base.phys_id == SFP_PHYS_ID_SFF && 213 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 214 } 215 216 static const struct sff_data sff_data = { 217 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 218 .module_supported = sff_module_supported, 219 }; 220 221 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 222 { 223 return id->base.phys_id == SFP_PHYS_ID_SFP && 224 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 225 } 226 227 static const struct sff_data sfp_data = { 228 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 229 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 230 .module_supported = sfp_module_supported, 231 }; 232 233 static const struct of_device_id sfp_of_match[] = { 234 { .compatible = "sff,sff", .data = &sff_data, }, 235 { .compatible = "sff,sfp", .data = &sfp_data, }, 236 { }, 237 }; 238 MODULE_DEVICE_TABLE(of, sfp_of_match); 239 240 static unsigned long poll_jiffies; 241 242 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 243 { 244 unsigned int i, state, v; 245 246 for (i = state = 0; i < GPIO_MAX; i++) { 247 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 248 continue; 249 250 v = gpiod_get_value_cansleep(sfp->gpio[i]); 251 if (v) 252 state |= BIT(i); 253 } 254 255 return state; 256 } 257 258 static unsigned int sff_gpio_get_state(struct sfp *sfp) 259 { 260 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 261 } 262 263 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 264 { 265 if (state & SFP_F_PRESENT) { 266 /* If the module is present, drive the signals */ 267 if (sfp->gpio[GPIO_TX_DISABLE]) 268 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 269 state & SFP_F_TX_DISABLE); 270 if (state & SFP_F_RATE_SELECT) 271 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 272 state & SFP_F_RATE_SELECT); 273 } else { 274 /* Otherwise, let them float to the pull-ups */ 275 if (sfp->gpio[GPIO_TX_DISABLE]) 276 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 277 if (state & SFP_F_RATE_SELECT) 278 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 279 } 280 } 281 282 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 283 size_t len) 284 { 285 struct i2c_msg msgs[2]; 286 u8 bus_addr = a2 ? 0x51 : 0x50; 287 size_t this_len; 288 int ret; 289 290 msgs[0].addr = bus_addr; 291 msgs[0].flags = 0; 292 msgs[0].len = 1; 293 msgs[0].buf = &dev_addr; 294 msgs[1].addr = bus_addr; 295 msgs[1].flags = I2C_M_RD; 296 msgs[1].len = len; 297 msgs[1].buf = buf; 298 299 while (len) { 300 this_len = len; 301 if (this_len > 16) 302 this_len = 16; 303 304 msgs[1].len = this_len; 305 306 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 307 if (ret < 0) 308 return ret; 309 310 if (ret != ARRAY_SIZE(msgs)) 311 break; 312 313 msgs[1].buf += this_len; 314 dev_addr += this_len; 315 len -= this_len; 316 } 317 318 return msgs[1].buf - (u8 *)buf; 319 } 320 321 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 322 size_t len) 323 { 324 struct i2c_msg msgs[1]; 325 u8 bus_addr = a2 ? 0x51 : 0x50; 326 int ret; 327 328 msgs[0].addr = bus_addr; 329 msgs[0].flags = 0; 330 msgs[0].len = 1 + len; 331 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 332 if (!msgs[0].buf) 333 return -ENOMEM; 334 335 msgs[0].buf[0] = dev_addr; 336 memcpy(&msgs[0].buf[1], buf, len); 337 338 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 339 340 kfree(msgs[0].buf); 341 342 if (ret < 0) 343 return ret; 344 345 return ret == ARRAY_SIZE(msgs) ? len : 0; 346 } 347 348 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 349 { 350 struct mii_bus *i2c_mii; 351 int ret; 352 353 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 354 return -EINVAL; 355 356 sfp->i2c = i2c; 357 sfp->read = sfp_i2c_read; 358 sfp->write = sfp_i2c_write; 359 360 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 361 if (IS_ERR(i2c_mii)) 362 return PTR_ERR(i2c_mii); 363 364 i2c_mii->name = "SFP I2C Bus"; 365 i2c_mii->phy_mask = ~0; 366 367 ret = mdiobus_register(i2c_mii); 368 if (ret < 0) { 369 mdiobus_free(i2c_mii); 370 return ret; 371 } 372 373 sfp->i2c_mii = i2c_mii; 374 375 return 0; 376 } 377 378 /* Interface */ 379 static unsigned int sfp_get_state(struct sfp *sfp) 380 { 381 return sfp->get_state(sfp); 382 } 383 384 static void sfp_set_state(struct sfp *sfp, unsigned int state) 385 { 386 sfp->set_state(sfp, state); 387 } 388 389 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 390 { 391 return sfp->read(sfp, a2, addr, buf, len); 392 } 393 394 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 395 { 396 return sfp->write(sfp, a2, addr, buf, len); 397 } 398 399 static unsigned int sfp_check(void *buf, size_t len) 400 { 401 u8 *p, check; 402 403 for (p = buf, check = 0; len; p++, len--) 404 check += *p; 405 406 return check; 407 } 408 409 /* hwmon */ 410 #if IS_ENABLED(CONFIG_HWMON) 411 static umode_t sfp_hwmon_is_visible(const void *data, 412 enum hwmon_sensor_types type, 413 u32 attr, int channel) 414 { 415 const struct sfp *sfp = data; 416 417 switch (type) { 418 case hwmon_temp: 419 switch (attr) { 420 case hwmon_temp_min_alarm: 421 case hwmon_temp_max_alarm: 422 case hwmon_temp_lcrit_alarm: 423 case hwmon_temp_crit_alarm: 424 case hwmon_temp_min: 425 case hwmon_temp_max: 426 case hwmon_temp_lcrit: 427 case hwmon_temp_crit: 428 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 429 return 0; 430 /* fall through */ 431 case hwmon_temp_input: 432 case hwmon_temp_label: 433 return 0444; 434 default: 435 return 0; 436 } 437 case hwmon_in: 438 switch (attr) { 439 case hwmon_in_min_alarm: 440 case hwmon_in_max_alarm: 441 case hwmon_in_lcrit_alarm: 442 case hwmon_in_crit_alarm: 443 case hwmon_in_min: 444 case hwmon_in_max: 445 case hwmon_in_lcrit: 446 case hwmon_in_crit: 447 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 448 return 0; 449 /* fall through */ 450 case hwmon_in_input: 451 case hwmon_in_label: 452 return 0444; 453 default: 454 return 0; 455 } 456 case hwmon_curr: 457 switch (attr) { 458 case hwmon_curr_min_alarm: 459 case hwmon_curr_max_alarm: 460 case hwmon_curr_lcrit_alarm: 461 case hwmon_curr_crit_alarm: 462 case hwmon_curr_min: 463 case hwmon_curr_max: 464 case hwmon_curr_lcrit: 465 case hwmon_curr_crit: 466 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 467 return 0; 468 /* fall through */ 469 case hwmon_curr_input: 470 case hwmon_curr_label: 471 return 0444; 472 default: 473 return 0; 474 } 475 case hwmon_power: 476 /* External calibration of receive power requires 477 * floating point arithmetic. Doing that in the kernel 478 * is not easy, so just skip it. If the module does 479 * not require external calibration, we can however 480 * show receiver power, since FP is then not needed. 481 */ 482 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 483 channel == 1) 484 return 0; 485 switch (attr) { 486 case hwmon_power_min_alarm: 487 case hwmon_power_max_alarm: 488 case hwmon_power_lcrit_alarm: 489 case hwmon_power_crit_alarm: 490 case hwmon_power_min: 491 case hwmon_power_max: 492 case hwmon_power_lcrit: 493 case hwmon_power_crit: 494 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 495 return 0; 496 /* fall through */ 497 case hwmon_power_input: 498 case hwmon_power_label: 499 return 0444; 500 default: 501 return 0; 502 } 503 default: 504 return 0; 505 } 506 } 507 508 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 509 { 510 __be16 val; 511 int err; 512 513 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 514 if (err < 0) 515 return err; 516 517 *value = be16_to_cpu(val); 518 519 return 0; 520 } 521 522 static void sfp_hwmon_to_rx_power(long *value) 523 { 524 *value = DIV_ROUND_CLOSEST(*value, 10); 525 } 526 527 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 528 long *value) 529 { 530 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 531 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 532 } 533 534 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 535 { 536 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 537 be16_to_cpu(sfp->diag.cal_t_offset), value); 538 539 if (*value >= 0x8000) 540 *value -= 0x10000; 541 542 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 543 } 544 545 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 546 { 547 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 548 be16_to_cpu(sfp->diag.cal_v_offset), value); 549 550 *value = DIV_ROUND_CLOSEST(*value, 10); 551 } 552 553 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 554 { 555 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 556 be16_to_cpu(sfp->diag.cal_txi_offset), value); 557 558 *value = DIV_ROUND_CLOSEST(*value, 500); 559 } 560 561 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 562 { 563 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 564 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 565 566 *value = DIV_ROUND_CLOSEST(*value, 10); 567 } 568 569 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 570 { 571 int err; 572 573 err = sfp_hwmon_read_sensor(sfp, reg, value); 574 if (err < 0) 575 return err; 576 577 sfp_hwmon_calibrate_temp(sfp, value); 578 579 return 0; 580 } 581 582 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 583 { 584 int err; 585 586 err = sfp_hwmon_read_sensor(sfp, reg, value); 587 if (err < 0) 588 return err; 589 590 sfp_hwmon_calibrate_vcc(sfp, value); 591 592 return 0; 593 } 594 595 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 596 { 597 int err; 598 599 err = sfp_hwmon_read_sensor(sfp, reg, value); 600 if (err < 0) 601 return err; 602 603 sfp_hwmon_calibrate_bias(sfp, value); 604 605 return 0; 606 } 607 608 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 609 { 610 int err; 611 612 err = sfp_hwmon_read_sensor(sfp, reg, value); 613 if (err < 0) 614 return err; 615 616 sfp_hwmon_calibrate_tx_power(sfp, value); 617 618 return 0; 619 } 620 621 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 622 { 623 int err; 624 625 err = sfp_hwmon_read_sensor(sfp, reg, value); 626 if (err < 0) 627 return err; 628 629 sfp_hwmon_to_rx_power(value); 630 631 return 0; 632 } 633 634 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 635 { 636 u8 status; 637 int err; 638 639 switch (attr) { 640 case hwmon_temp_input: 641 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 642 643 case hwmon_temp_lcrit: 644 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 645 sfp_hwmon_calibrate_temp(sfp, value); 646 return 0; 647 648 case hwmon_temp_min: 649 *value = be16_to_cpu(sfp->diag.temp_low_warn); 650 sfp_hwmon_calibrate_temp(sfp, value); 651 return 0; 652 case hwmon_temp_max: 653 *value = be16_to_cpu(sfp->diag.temp_high_warn); 654 sfp_hwmon_calibrate_temp(sfp, value); 655 return 0; 656 657 case hwmon_temp_crit: 658 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 659 sfp_hwmon_calibrate_temp(sfp, value); 660 return 0; 661 662 case hwmon_temp_lcrit_alarm: 663 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 664 if (err < 0) 665 return err; 666 667 *value = !!(status & SFP_ALARM0_TEMP_LOW); 668 return 0; 669 670 case hwmon_temp_min_alarm: 671 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 672 if (err < 0) 673 return err; 674 675 *value = !!(status & SFP_WARN0_TEMP_LOW); 676 return 0; 677 678 case hwmon_temp_max_alarm: 679 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 680 if (err < 0) 681 return err; 682 683 *value = !!(status & SFP_WARN0_TEMP_HIGH); 684 return 0; 685 686 case hwmon_temp_crit_alarm: 687 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 688 if (err < 0) 689 return err; 690 691 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 692 return 0; 693 default: 694 return -EOPNOTSUPP; 695 } 696 697 return -EOPNOTSUPP; 698 } 699 700 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 701 { 702 u8 status; 703 int err; 704 705 switch (attr) { 706 case hwmon_in_input: 707 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 708 709 case hwmon_in_lcrit: 710 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 711 sfp_hwmon_calibrate_vcc(sfp, value); 712 return 0; 713 714 case hwmon_in_min: 715 *value = be16_to_cpu(sfp->diag.volt_low_warn); 716 sfp_hwmon_calibrate_vcc(sfp, value); 717 return 0; 718 719 case hwmon_in_max: 720 *value = be16_to_cpu(sfp->diag.volt_high_warn); 721 sfp_hwmon_calibrate_vcc(sfp, value); 722 return 0; 723 724 case hwmon_in_crit: 725 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 726 sfp_hwmon_calibrate_vcc(sfp, value); 727 return 0; 728 729 case hwmon_in_lcrit_alarm: 730 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 731 if (err < 0) 732 return err; 733 734 *value = !!(status & SFP_ALARM0_VCC_LOW); 735 return 0; 736 737 case hwmon_in_min_alarm: 738 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 739 if (err < 0) 740 return err; 741 742 *value = !!(status & SFP_WARN0_VCC_LOW); 743 return 0; 744 745 case hwmon_in_max_alarm: 746 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 747 if (err < 0) 748 return err; 749 750 *value = !!(status & SFP_WARN0_VCC_HIGH); 751 return 0; 752 753 case hwmon_in_crit_alarm: 754 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 755 if (err < 0) 756 return err; 757 758 *value = !!(status & SFP_ALARM0_VCC_HIGH); 759 return 0; 760 default: 761 return -EOPNOTSUPP; 762 } 763 764 return -EOPNOTSUPP; 765 } 766 767 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 768 { 769 u8 status; 770 int err; 771 772 switch (attr) { 773 case hwmon_curr_input: 774 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 775 776 case hwmon_curr_lcrit: 777 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 778 sfp_hwmon_calibrate_bias(sfp, value); 779 return 0; 780 781 case hwmon_curr_min: 782 *value = be16_to_cpu(sfp->diag.bias_low_warn); 783 sfp_hwmon_calibrate_bias(sfp, value); 784 return 0; 785 786 case hwmon_curr_max: 787 *value = be16_to_cpu(sfp->diag.bias_high_warn); 788 sfp_hwmon_calibrate_bias(sfp, value); 789 return 0; 790 791 case hwmon_curr_crit: 792 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 793 sfp_hwmon_calibrate_bias(sfp, value); 794 return 0; 795 796 case hwmon_curr_lcrit_alarm: 797 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 798 if (err < 0) 799 return err; 800 801 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 802 return 0; 803 804 case hwmon_curr_min_alarm: 805 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 806 if (err < 0) 807 return err; 808 809 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 810 return 0; 811 812 case hwmon_curr_max_alarm: 813 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 814 if (err < 0) 815 return err; 816 817 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 818 return 0; 819 820 case hwmon_curr_crit_alarm: 821 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 822 if (err < 0) 823 return err; 824 825 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 826 return 0; 827 default: 828 return -EOPNOTSUPP; 829 } 830 831 return -EOPNOTSUPP; 832 } 833 834 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 835 { 836 u8 status; 837 int err; 838 839 switch (attr) { 840 case hwmon_power_input: 841 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 842 843 case hwmon_power_lcrit: 844 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 845 sfp_hwmon_calibrate_tx_power(sfp, value); 846 return 0; 847 848 case hwmon_power_min: 849 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 850 sfp_hwmon_calibrate_tx_power(sfp, value); 851 return 0; 852 853 case hwmon_power_max: 854 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 855 sfp_hwmon_calibrate_tx_power(sfp, value); 856 return 0; 857 858 case hwmon_power_crit: 859 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 860 sfp_hwmon_calibrate_tx_power(sfp, value); 861 return 0; 862 863 case hwmon_power_lcrit_alarm: 864 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 865 if (err < 0) 866 return err; 867 868 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 869 return 0; 870 871 case hwmon_power_min_alarm: 872 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 873 if (err < 0) 874 return err; 875 876 *value = !!(status & SFP_WARN0_TXPWR_LOW); 877 return 0; 878 879 case hwmon_power_max_alarm: 880 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 881 if (err < 0) 882 return err; 883 884 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 885 return 0; 886 887 case hwmon_power_crit_alarm: 888 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 889 if (err < 0) 890 return err; 891 892 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 893 return 0; 894 default: 895 return -EOPNOTSUPP; 896 } 897 898 return -EOPNOTSUPP; 899 } 900 901 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 902 { 903 u8 status; 904 int err; 905 906 switch (attr) { 907 case hwmon_power_input: 908 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 909 910 case hwmon_power_lcrit: 911 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 912 sfp_hwmon_to_rx_power(value); 913 return 0; 914 915 case hwmon_power_min: 916 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 917 sfp_hwmon_to_rx_power(value); 918 return 0; 919 920 case hwmon_power_max: 921 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 922 sfp_hwmon_to_rx_power(value); 923 return 0; 924 925 case hwmon_power_crit: 926 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 927 sfp_hwmon_to_rx_power(value); 928 return 0; 929 930 case hwmon_power_lcrit_alarm: 931 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 932 if (err < 0) 933 return err; 934 935 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 936 return 0; 937 938 case hwmon_power_min_alarm: 939 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 940 if (err < 0) 941 return err; 942 943 *value = !!(status & SFP_WARN1_RXPWR_LOW); 944 return 0; 945 946 case hwmon_power_max_alarm: 947 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 948 if (err < 0) 949 return err; 950 951 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 952 return 0; 953 954 case hwmon_power_crit_alarm: 955 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 956 if (err < 0) 957 return err; 958 959 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 960 return 0; 961 default: 962 return -EOPNOTSUPP; 963 } 964 965 return -EOPNOTSUPP; 966 } 967 968 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 969 u32 attr, int channel, long *value) 970 { 971 struct sfp *sfp = dev_get_drvdata(dev); 972 973 switch (type) { 974 case hwmon_temp: 975 return sfp_hwmon_temp(sfp, attr, value); 976 case hwmon_in: 977 return sfp_hwmon_vcc(sfp, attr, value); 978 case hwmon_curr: 979 return sfp_hwmon_bias(sfp, attr, value); 980 case hwmon_power: 981 switch (channel) { 982 case 0: 983 return sfp_hwmon_tx_power(sfp, attr, value); 984 case 1: 985 return sfp_hwmon_rx_power(sfp, attr, value); 986 default: 987 return -EOPNOTSUPP; 988 } 989 default: 990 return -EOPNOTSUPP; 991 } 992 } 993 994 static const char *const sfp_hwmon_power_labels[] = { 995 "TX_power", 996 "RX_power", 997 }; 998 999 static int sfp_hwmon_read_string(struct device *dev, 1000 enum hwmon_sensor_types type, 1001 u32 attr, int channel, const char **str) 1002 { 1003 switch (type) { 1004 case hwmon_curr: 1005 switch (attr) { 1006 case hwmon_curr_label: 1007 *str = "bias"; 1008 return 0; 1009 default: 1010 return -EOPNOTSUPP; 1011 } 1012 break; 1013 case hwmon_temp: 1014 switch (attr) { 1015 case hwmon_temp_label: 1016 *str = "temperature"; 1017 return 0; 1018 default: 1019 return -EOPNOTSUPP; 1020 } 1021 break; 1022 case hwmon_in: 1023 switch (attr) { 1024 case hwmon_in_label: 1025 *str = "VCC"; 1026 return 0; 1027 default: 1028 return -EOPNOTSUPP; 1029 } 1030 break; 1031 case hwmon_power: 1032 switch (attr) { 1033 case hwmon_power_label: 1034 *str = sfp_hwmon_power_labels[channel]; 1035 return 0; 1036 default: 1037 return -EOPNOTSUPP; 1038 } 1039 break; 1040 default: 1041 return -EOPNOTSUPP; 1042 } 1043 1044 return -EOPNOTSUPP; 1045 } 1046 1047 static const struct hwmon_ops sfp_hwmon_ops = { 1048 .is_visible = sfp_hwmon_is_visible, 1049 .read = sfp_hwmon_read, 1050 .read_string = sfp_hwmon_read_string, 1051 }; 1052 1053 static u32 sfp_hwmon_chip_config[] = { 1054 HWMON_C_REGISTER_TZ, 1055 0, 1056 }; 1057 1058 static const struct hwmon_channel_info sfp_hwmon_chip = { 1059 .type = hwmon_chip, 1060 .config = sfp_hwmon_chip_config, 1061 }; 1062 1063 static u32 sfp_hwmon_temp_config[] = { 1064 HWMON_T_INPUT | 1065 HWMON_T_MAX | HWMON_T_MIN | 1066 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1067 HWMON_T_CRIT | HWMON_T_LCRIT | 1068 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1069 HWMON_T_LABEL, 1070 0, 1071 }; 1072 1073 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1074 .type = hwmon_temp, 1075 .config = sfp_hwmon_temp_config, 1076 }; 1077 1078 static u32 sfp_hwmon_vcc_config[] = { 1079 HWMON_I_INPUT | 1080 HWMON_I_MAX | HWMON_I_MIN | 1081 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1082 HWMON_I_CRIT | HWMON_I_LCRIT | 1083 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1084 HWMON_I_LABEL, 1085 0, 1086 }; 1087 1088 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1089 .type = hwmon_in, 1090 .config = sfp_hwmon_vcc_config, 1091 }; 1092 1093 static u32 sfp_hwmon_bias_config[] = { 1094 HWMON_C_INPUT | 1095 HWMON_C_MAX | HWMON_C_MIN | 1096 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1097 HWMON_C_CRIT | HWMON_C_LCRIT | 1098 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1099 HWMON_C_LABEL, 1100 0, 1101 }; 1102 1103 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1104 .type = hwmon_curr, 1105 .config = sfp_hwmon_bias_config, 1106 }; 1107 1108 static u32 sfp_hwmon_power_config[] = { 1109 /* Transmit power */ 1110 HWMON_P_INPUT | 1111 HWMON_P_MAX | HWMON_P_MIN | 1112 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1113 HWMON_P_CRIT | HWMON_P_LCRIT | 1114 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1115 HWMON_P_LABEL, 1116 /* Receive power */ 1117 HWMON_P_INPUT | 1118 HWMON_P_MAX | HWMON_P_MIN | 1119 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1120 HWMON_P_CRIT | HWMON_P_LCRIT | 1121 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1122 HWMON_P_LABEL, 1123 0, 1124 }; 1125 1126 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1127 .type = hwmon_power, 1128 .config = sfp_hwmon_power_config, 1129 }; 1130 1131 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1132 &sfp_hwmon_chip, 1133 &sfp_hwmon_vcc_channel_info, 1134 &sfp_hwmon_temp_channel_info, 1135 &sfp_hwmon_bias_channel_info, 1136 &sfp_hwmon_power_channel_info, 1137 NULL, 1138 }; 1139 1140 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1141 .ops = &sfp_hwmon_ops, 1142 .info = sfp_hwmon_info, 1143 }; 1144 1145 static int sfp_hwmon_insert(struct sfp *sfp) 1146 { 1147 int err, i; 1148 1149 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1150 return 0; 1151 1152 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1153 return 0; 1154 1155 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1156 /* This driver in general does not support address 1157 * change. 1158 */ 1159 return 0; 1160 1161 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1162 if (err < 0) 1163 return err; 1164 1165 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1166 if (!sfp->hwmon_name) 1167 return -ENODEV; 1168 1169 for (i = 0; sfp->hwmon_name[i]; i++) 1170 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1171 sfp->hwmon_name[i] = '_'; 1172 1173 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1174 sfp->hwmon_name, sfp, 1175 &sfp_hwmon_chip_info, 1176 NULL); 1177 1178 return PTR_ERR_OR_ZERO(sfp->hwmon_dev); 1179 } 1180 1181 static void sfp_hwmon_remove(struct sfp *sfp) 1182 { 1183 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1184 hwmon_device_unregister(sfp->hwmon_dev); 1185 sfp->hwmon_dev = NULL; 1186 kfree(sfp->hwmon_name); 1187 } 1188 } 1189 #else 1190 static int sfp_hwmon_insert(struct sfp *sfp) 1191 { 1192 return 0; 1193 } 1194 1195 static void sfp_hwmon_remove(struct sfp *sfp) 1196 { 1197 } 1198 #endif 1199 1200 /* Helpers */ 1201 static void sfp_module_tx_disable(struct sfp *sfp) 1202 { 1203 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1204 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1205 sfp->state |= SFP_F_TX_DISABLE; 1206 sfp_set_state(sfp, sfp->state); 1207 } 1208 1209 static void sfp_module_tx_enable(struct sfp *sfp) 1210 { 1211 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1212 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1213 sfp->state &= ~SFP_F_TX_DISABLE; 1214 sfp_set_state(sfp, sfp->state); 1215 } 1216 1217 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1218 { 1219 unsigned int state = sfp->state; 1220 1221 if (state & SFP_F_TX_DISABLE) 1222 return; 1223 1224 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1225 1226 udelay(T_RESET_US); 1227 1228 sfp_set_state(sfp, state); 1229 } 1230 1231 /* SFP state machine */ 1232 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1233 { 1234 if (timeout) 1235 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1236 timeout); 1237 else 1238 cancel_delayed_work(&sfp->timeout); 1239 } 1240 1241 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1242 unsigned int timeout) 1243 { 1244 sfp->sm_state = state; 1245 sfp_sm_set_timer(sfp, timeout); 1246 } 1247 1248 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state, 1249 unsigned int timeout) 1250 { 1251 sfp->sm_mod_state = state; 1252 sfp_sm_set_timer(sfp, timeout); 1253 } 1254 1255 static void sfp_sm_phy_detach(struct sfp *sfp) 1256 { 1257 phy_stop(sfp->mod_phy); 1258 sfp_remove_phy(sfp->sfp_bus); 1259 phy_device_remove(sfp->mod_phy); 1260 phy_device_free(sfp->mod_phy); 1261 sfp->mod_phy = NULL; 1262 } 1263 1264 static void sfp_sm_probe_phy(struct sfp *sfp) 1265 { 1266 struct phy_device *phy; 1267 int err; 1268 1269 msleep(T_PHY_RESET_MS); 1270 1271 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR); 1272 if (phy == ERR_PTR(-ENODEV)) { 1273 dev_info(sfp->dev, "no PHY detected\n"); 1274 return; 1275 } 1276 if (IS_ERR(phy)) { 1277 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1278 return; 1279 } 1280 1281 err = sfp_add_phy(sfp->sfp_bus, phy); 1282 if (err) { 1283 phy_device_remove(phy); 1284 phy_device_free(phy); 1285 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1286 return; 1287 } 1288 1289 sfp->mod_phy = phy; 1290 phy_start(phy); 1291 } 1292 1293 static void sfp_sm_link_up(struct sfp *sfp) 1294 { 1295 sfp_link_up(sfp->sfp_bus); 1296 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1297 } 1298 1299 static void sfp_sm_link_down(struct sfp *sfp) 1300 { 1301 sfp_link_down(sfp->sfp_bus); 1302 } 1303 1304 static void sfp_sm_link_check_los(struct sfp *sfp) 1305 { 1306 unsigned int los = sfp->state & SFP_F_LOS; 1307 1308 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1309 * are set, we assume that no LOS signal is available. 1310 */ 1311 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) 1312 los ^= SFP_F_LOS; 1313 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) 1314 los = 0; 1315 1316 if (los) 1317 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1318 else 1319 sfp_sm_link_up(sfp); 1320 } 1321 1322 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1323 { 1324 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1325 event == SFP_E_LOS_LOW) || 1326 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1327 event == SFP_E_LOS_HIGH); 1328 } 1329 1330 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1331 { 1332 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1333 event == SFP_E_LOS_HIGH) || 1334 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1335 event == SFP_E_LOS_LOW); 1336 } 1337 1338 static void sfp_sm_fault(struct sfp *sfp, bool warn) 1339 { 1340 if (sfp->sm_retries && !--sfp->sm_retries) { 1341 dev_err(sfp->dev, 1342 "module persistently indicates fault, disabling\n"); 1343 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1344 } else { 1345 if (warn) 1346 dev_err(sfp->dev, "module transmit fault indicated\n"); 1347 1348 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER); 1349 } 1350 } 1351 1352 static void sfp_sm_mod_init(struct sfp *sfp) 1353 { 1354 sfp_module_tx_enable(sfp); 1355 1356 /* Wait t_init before indicating that the link is up, provided the 1357 * current state indicates no TX_FAULT. If TX_FAULT clears before 1358 * this time, that's fine too. 1359 */ 1360 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES); 1361 sfp->sm_retries = 5; 1362 1363 /* Setting the serdes link mode is guesswork: there's no 1364 * field in the EEPROM which indicates what mode should 1365 * be used. 1366 * 1367 * If it's a gigabit-only fiber module, it probably does 1368 * not have a PHY, so switch to 802.3z negotiation mode. 1369 * Otherwise, switch to SGMII mode (which is required to 1370 * support non-gigabit speeds) and probe for a PHY. 1371 */ 1372 if (sfp->id.base.e1000_base_t || 1373 sfp->id.base.e100_base_lx || 1374 sfp->id.base.e100_base_fx) 1375 sfp_sm_probe_phy(sfp); 1376 } 1377 1378 static int sfp_sm_mod_hpower(struct sfp *sfp) 1379 { 1380 u32 power; 1381 u8 val; 1382 int err; 1383 1384 power = 1000; 1385 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1386 power = 1500; 1387 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1388 power = 2000; 1389 1390 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE && 1391 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) != 1392 SFP_DIAGMON_DDM) { 1393 /* The module appears not to implement bus address 0xa2, 1394 * or requires an address change sequence, so assume that 1395 * the module powers up in the indicated power mode. 1396 */ 1397 if (power > sfp->max_power_mW) { 1398 dev_err(sfp->dev, 1399 "Host does not support %u.%uW modules\n", 1400 power / 1000, (power / 100) % 10); 1401 return -EINVAL; 1402 } 1403 return 0; 1404 } 1405 1406 if (power > sfp->max_power_mW) { 1407 dev_warn(sfp->dev, 1408 "Host does not support %u.%uW modules, module left in power mode 1\n", 1409 power / 1000, (power / 100) % 10); 1410 return 0; 1411 } 1412 1413 if (power <= 1000) 1414 return 0; 1415 1416 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1417 if (err != sizeof(val)) { 1418 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1419 err = -EAGAIN; 1420 goto err; 1421 } 1422 1423 val |= BIT(0); 1424 1425 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1426 if (err != sizeof(val)) { 1427 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1428 err = -EAGAIN; 1429 goto err; 1430 } 1431 1432 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1433 power / 1000, (power / 100) % 10); 1434 return T_HPOWER_LEVEL; 1435 1436 err: 1437 return err; 1438 } 1439 1440 static int sfp_sm_mod_probe(struct sfp *sfp) 1441 { 1442 /* SFP module inserted - read I2C data */ 1443 struct sfp_eeprom_id id; 1444 bool cotsworks; 1445 u8 check; 1446 int ret; 1447 1448 ret = sfp_read(sfp, false, 0, &id, sizeof(id)); 1449 if (ret < 0) { 1450 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1451 return -EAGAIN; 1452 } 1453 1454 if (ret != sizeof(id)) { 1455 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1456 return -EAGAIN; 1457 } 1458 1459 /* Cotsworks do not seem to update the checksums when they 1460 * do the final programming with the final module part number, 1461 * serial number and date code. 1462 */ 1463 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1464 1465 /* Validate the checksum over the base structure */ 1466 check = sfp_check(&id.base, sizeof(id.base) - 1); 1467 if (check != id.base.cc_base) { 1468 if (cotsworks) { 1469 dev_warn(sfp->dev, 1470 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1471 check, id.base.cc_base); 1472 } else { 1473 dev_err(sfp->dev, 1474 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1475 check, id.base.cc_base); 1476 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1477 16, 1, &id, sizeof(id), true); 1478 return -EINVAL; 1479 } 1480 } 1481 1482 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1483 if (check != id.ext.cc_ext) { 1484 if (cotsworks) { 1485 dev_warn(sfp->dev, 1486 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1487 check, id.ext.cc_ext); 1488 } else { 1489 dev_err(sfp->dev, 1490 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1491 check, id.ext.cc_ext); 1492 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1493 16, 1, &id, sizeof(id), true); 1494 memset(&id.ext, 0, sizeof(id.ext)); 1495 } 1496 } 1497 1498 sfp->id = id; 1499 1500 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1501 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1502 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1503 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1504 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1505 (int)sizeof(id.ext.datecode), id.ext.datecode); 1506 1507 /* Check whether we support this module */ 1508 if (!sfp->type->module_supported(&sfp->id)) { 1509 dev_err(sfp->dev, 1510 "module is not supported - phys id 0x%02x 0x%02x\n", 1511 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1512 return -EINVAL; 1513 } 1514 1515 /* If the module requires address swap mode, warn about it */ 1516 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1517 dev_warn(sfp->dev, 1518 "module address swap to access page 0xA2 is not supported.\n"); 1519 1520 ret = sfp_hwmon_insert(sfp); 1521 if (ret < 0) 1522 return ret; 1523 1524 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1525 if (ret < 0) 1526 return ret; 1527 1528 return sfp_sm_mod_hpower(sfp); 1529 } 1530 1531 static void sfp_sm_mod_remove(struct sfp *sfp) 1532 { 1533 sfp_module_remove(sfp->sfp_bus); 1534 1535 sfp_hwmon_remove(sfp); 1536 1537 if (sfp->mod_phy) 1538 sfp_sm_phy_detach(sfp); 1539 1540 sfp_module_tx_disable(sfp); 1541 1542 memset(&sfp->id, 0, sizeof(sfp->id)); 1543 1544 dev_info(sfp->dev, "module removed\n"); 1545 } 1546 1547 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 1548 { 1549 mutex_lock(&sfp->sm_mutex); 1550 1551 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 1552 mod_state_to_str(sfp->sm_mod_state), 1553 dev_state_to_str(sfp->sm_dev_state), 1554 sm_state_to_str(sfp->sm_state), 1555 event_to_str(event)); 1556 1557 /* This state machine tracks the insert/remove state of 1558 * the module, and handles probing the on-board EEPROM. 1559 */ 1560 switch (sfp->sm_mod_state) { 1561 default: 1562 if (event == SFP_E_INSERT && sfp->attached) { 1563 sfp_module_tx_disable(sfp); 1564 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT); 1565 } 1566 break; 1567 1568 case SFP_MOD_PROBE: 1569 if (event == SFP_E_REMOVE) { 1570 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1571 } else if (event == SFP_E_TIMEOUT) { 1572 int val = sfp_sm_mod_probe(sfp); 1573 1574 if (val == 0) 1575 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1576 else if (val > 0) 1577 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val); 1578 else if (val != -EAGAIN) 1579 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0); 1580 else 1581 sfp_sm_set_timer(sfp, T_PROBE_RETRY); 1582 } 1583 break; 1584 1585 case SFP_MOD_HPOWER: 1586 if (event == SFP_E_TIMEOUT) { 1587 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1588 break; 1589 } 1590 /* fallthrough */ 1591 case SFP_MOD_PRESENT: 1592 case SFP_MOD_ERROR: 1593 if (event == SFP_E_REMOVE) { 1594 sfp_sm_mod_remove(sfp); 1595 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1596 } 1597 break; 1598 } 1599 1600 /* This state machine tracks the netdev up/down state */ 1601 switch (sfp->sm_dev_state) { 1602 default: 1603 if (event == SFP_E_DEV_UP) 1604 sfp->sm_dev_state = SFP_DEV_UP; 1605 break; 1606 1607 case SFP_DEV_UP: 1608 if (event == SFP_E_DEV_DOWN) { 1609 /* If the module has a PHY, avoid raising TX disable 1610 * as this resets the PHY. Otherwise, raise it to 1611 * turn the laser off. 1612 */ 1613 if (!sfp->mod_phy) 1614 sfp_module_tx_disable(sfp); 1615 sfp->sm_dev_state = SFP_DEV_DOWN; 1616 } 1617 break; 1618 } 1619 1620 /* Some events are global */ 1621 if (sfp->sm_state != SFP_S_DOWN && 1622 (sfp->sm_mod_state != SFP_MOD_PRESENT || 1623 sfp->sm_dev_state != SFP_DEV_UP)) { 1624 if (sfp->sm_state == SFP_S_LINK_UP && 1625 sfp->sm_dev_state == SFP_DEV_UP) 1626 sfp_sm_link_down(sfp); 1627 if (sfp->mod_phy) 1628 sfp_sm_phy_detach(sfp); 1629 sfp_sm_next(sfp, SFP_S_DOWN, 0); 1630 mutex_unlock(&sfp->sm_mutex); 1631 return; 1632 } 1633 1634 /* The main state machine */ 1635 switch (sfp->sm_state) { 1636 case SFP_S_DOWN: 1637 if (sfp->sm_mod_state == SFP_MOD_PRESENT && 1638 sfp->sm_dev_state == SFP_DEV_UP) 1639 sfp_sm_mod_init(sfp); 1640 break; 1641 1642 case SFP_S_INIT: 1643 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) 1644 sfp_sm_fault(sfp, true); 1645 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) 1646 sfp_sm_link_check_los(sfp); 1647 break; 1648 1649 case SFP_S_WAIT_LOS: 1650 if (event == SFP_E_TX_FAULT) 1651 sfp_sm_fault(sfp, true); 1652 else if (sfp_los_event_inactive(sfp, event)) 1653 sfp_sm_link_up(sfp); 1654 break; 1655 1656 case SFP_S_LINK_UP: 1657 if (event == SFP_E_TX_FAULT) { 1658 sfp_sm_link_down(sfp); 1659 sfp_sm_fault(sfp, true); 1660 } else if (sfp_los_event_active(sfp, event)) { 1661 sfp_sm_link_down(sfp); 1662 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1663 } 1664 break; 1665 1666 case SFP_S_TX_FAULT: 1667 if (event == SFP_E_TIMEOUT) { 1668 sfp_module_tx_fault_reset(sfp); 1669 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES); 1670 } 1671 break; 1672 1673 case SFP_S_REINIT: 1674 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 1675 sfp_sm_fault(sfp, false); 1676 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 1677 dev_info(sfp->dev, "module transmit fault recovered\n"); 1678 sfp_sm_link_check_los(sfp); 1679 } 1680 break; 1681 1682 case SFP_S_TX_DISABLE: 1683 break; 1684 } 1685 1686 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 1687 mod_state_to_str(sfp->sm_mod_state), 1688 dev_state_to_str(sfp->sm_dev_state), 1689 sm_state_to_str(sfp->sm_state)); 1690 1691 mutex_unlock(&sfp->sm_mutex); 1692 } 1693 1694 static void sfp_attach(struct sfp *sfp) 1695 { 1696 sfp->attached = true; 1697 if (sfp->state & SFP_F_PRESENT) 1698 sfp_sm_event(sfp, SFP_E_INSERT); 1699 } 1700 1701 static void sfp_detach(struct sfp *sfp) 1702 { 1703 sfp->attached = false; 1704 sfp_sm_event(sfp, SFP_E_REMOVE); 1705 } 1706 1707 static void sfp_start(struct sfp *sfp) 1708 { 1709 sfp_sm_event(sfp, SFP_E_DEV_UP); 1710 } 1711 1712 static void sfp_stop(struct sfp *sfp) 1713 { 1714 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 1715 } 1716 1717 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 1718 { 1719 /* locking... and check module is present */ 1720 1721 if (sfp->id.ext.sff8472_compliance && 1722 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 1723 modinfo->type = ETH_MODULE_SFF_8472; 1724 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 1725 } else { 1726 modinfo->type = ETH_MODULE_SFF_8079; 1727 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 1728 } 1729 return 0; 1730 } 1731 1732 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 1733 u8 *data) 1734 { 1735 unsigned int first, last, len; 1736 int ret; 1737 1738 if (ee->len == 0) 1739 return -EINVAL; 1740 1741 first = ee->offset; 1742 last = ee->offset + ee->len; 1743 if (first < ETH_MODULE_SFF_8079_LEN) { 1744 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 1745 len -= first; 1746 1747 ret = sfp_read(sfp, false, first, data, len); 1748 if (ret < 0) 1749 return ret; 1750 1751 first += len; 1752 data += len; 1753 } 1754 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 1755 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 1756 len -= first; 1757 first -= ETH_MODULE_SFF_8079_LEN; 1758 1759 ret = sfp_read(sfp, true, first, data, len); 1760 if (ret < 0) 1761 return ret; 1762 } 1763 return 0; 1764 } 1765 1766 static const struct sfp_socket_ops sfp_module_ops = { 1767 .attach = sfp_attach, 1768 .detach = sfp_detach, 1769 .start = sfp_start, 1770 .stop = sfp_stop, 1771 .module_info = sfp_module_info, 1772 .module_eeprom = sfp_module_eeprom, 1773 }; 1774 1775 static void sfp_timeout(struct work_struct *work) 1776 { 1777 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 1778 1779 rtnl_lock(); 1780 sfp_sm_event(sfp, SFP_E_TIMEOUT); 1781 rtnl_unlock(); 1782 } 1783 1784 static void sfp_check_state(struct sfp *sfp) 1785 { 1786 unsigned int state, i, changed; 1787 1788 mutex_lock(&sfp->st_mutex); 1789 state = sfp_get_state(sfp); 1790 changed = state ^ sfp->state; 1791 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 1792 1793 for (i = 0; i < GPIO_MAX; i++) 1794 if (changed & BIT(i)) 1795 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 1796 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 1797 1798 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 1799 sfp->state = state; 1800 1801 rtnl_lock(); 1802 if (changed & SFP_F_PRESENT) 1803 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 1804 SFP_E_INSERT : SFP_E_REMOVE); 1805 1806 if (changed & SFP_F_TX_FAULT) 1807 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 1808 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 1809 1810 if (changed & SFP_F_LOS) 1811 sfp_sm_event(sfp, state & SFP_F_LOS ? 1812 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 1813 rtnl_unlock(); 1814 mutex_unlock(&sfp->st_mutex); 1815 } 1816 1817 static irqreturn_t sfp_irq(int irq, void *data) 1818 { 1819 struct sfp *sfp = data; 1820 1821 sfp_check_state(sfp); 1822 1823 return IRQ_HANDLED; 1824 } 1825 1826 static void sfp_poll(struct work_struct *work) 1827 { 1828 struct sfp *sfp = container_of(work, struct sfp, poll.work); 1829 1830 sfp_check_state(sfp); 1831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1832 } 1833 1834 static struct sfp *sfp_alloc(struct device *dev) 1835 { 1836 struct sfp *sfp; 1837 1838 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 1839 if (!sfp) 1840 return ERR_PTR(-ENOMEM); 1841 1842 sfp->dev = dev; 1843 1844 mutex_init(&sfp->sm_mutex); 1845 mutex_init(&sfp->st_mutex); 1846 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 1847 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 1848 1849 return sfp; 1850 } 1851 1852 static void sfp_cleanup(void *data) 1853 { 1854 struct sfp *sfp = data; 1855 1856 cancel_delayed_work_sync(&sfp->poll); 1857 cancel_delayed_work_sync(&sfp->timeout); 1858 if (sfp->i2c_mii) { 1859 mdiobus_unregister(sfp->i2c_mii); 1860 mdiobus_free(sfp->i2c_mii); 1861 } 1862 if (sfp->i2c) 1863 i2c_put_adapter(sfp->i2c); 1864 kfree(sfp); 1865 } 1866 1867 static int sfp_probe(struct platform_device *pdev) 1868 { 1869 const struct sff_data *sff; 1870 struct i2c_adapter *i2c; 1871 struct sfp *sfp; 1872 bool poll = false; 1873 int err, i; 1874 1875 sfp = sfp_alloc(&pdev->dev); 1876 if (IS_ERR(sfp)) 1877 return PTR_ERR(sfp); 1878 1879 platform_set_drvdata(pdev, sfp); 1880 1881 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 1882 if (err < 0) 1883 return err; 1884 1885 sff = sfp->type = &sfp_data; 1886 1887 if (pdev->dev.of_node) { 1888 struct device_node *node = pdev->dev.of_node; 1889 const struct of_device_id *id; 1890 struct device_node *np; 1891 1892 id = of_match_node(sfp_of_match, node); 1893 if (WARN_ON(!id)) 1894 return -EINVAL; 1895 1896 sff = sfp->type = id->data; 1897 1898 np = of_parse_phandle(node, "i2c-bus", 0); 1899 if (!np) { 1900 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 1901 return -ENODEV; 1902 } 1903 1904 i2c = of_find_i2c_adapter_by_node(np); 1905 of_node_put(np); 1906 } else if (has_acpi_companion(&pdev->dev)) { 1907 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 1908 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 1909 struct fwnode_reference_args args; 1910 struct acpi_handle *acpi_handle; 1911 int ret; 1912 1913 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 1914 if (ret || !is_acpi_device_node(args.fwnode)) { 1915 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 1916 return -ENODEV; 1917 } 1918 1919 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 1920 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 1921 } else { 1922 return -EINVAL; 1923 } 1924 1925 if (!i2c) 1926 return -EPROBE_DEFER; 1927 1928 err = sfp_i2c_configure(sfp, i2c); 1929 if (err < 0) { 1930 i2c_put_adapter(i2c); 1931 return err; 1932 } 1933 1934 for (i = 0; i < GPIO_MAX; i++) 1935 if (sff->gpios & BIT(i)) { 1936 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 1937 gpio_of_names[i], gpio_flags[i]); 1938 if (IS_ERR(sfp->gpio[i])) 1939 return PTR_ERR(sfp->gpio[i]); 1940 } 1941 1942 sfp->get_state = sfp_gpio_get_state; 1943 sfp->set_state = sfp_gpio_set_state; 1944 1945 /* Modules that have no detect signal are always present */ 1946 if (!(sfp->gpio[GPIO_MODDEF0])) 1947 sfp->get_state = sff_gpio_get_state; 1948 1949 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 1950 &sfp->max_power_mW); 1951 if (!sfp->max_power_mW) 1952 sfp->max_power_mW = 1000; 1953 1954 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 1955 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 1956 1957 /* Get the initial state, and always signal TX disable, 1958 * since the network interface will not be up. 1959 */ 1960 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 1961 1962 if (sfp->gpio[GPIO_RATE_SELECT] && 1963 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 1964 sfp->state |= SFP_F_RATE_SELECT; 1965 sfp_set_state(sfp, sfp->state); 1966 sfp_module_tx_disable(sfp); 1967 1968 for (i = 0; i < GPIO_MAX; i++) { 1969 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 1970 continue; 1971 1972 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 1973 if (!sfp->gpio_irq[i]) { 1974 poll = true; 1975 continue; 1976 } 1977 1978 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 1979 NULL, sfp_irq, 1980 IRQF_ONESHOT | 1981 IRQF_TRIGGER_RISING | 1982 IRQF_TRIGGER_FALLING, 1983 dev_name(sfp->dev), sfp); 1984 if (err) { 1985 sfp->gpio_irq[i] = 0; 1986 poll = true; 1987 } 1988 } 1989 1990 if (poll) 1991 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1992 1993 /* We could have an issue in cases no Tx disable pin is available or 1994 * wired as modules using a laser as their light source will continue to 1995 * be active when the fiber is removed. This could be a safety issue and 1996 * we should at least warn the user about that. 1997 */ 1998 if (!sfp->gpio[GPIO_TX_DISABLE]) 1999 dev_warn(sfp->dev, 2000 "No tx_disable pin: SFP modules will always be emitting.\n"); 2001 2002 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2003 if (!sfp->sfp_bus) 2004 return -ENOMEM; 2005 2006 return 0; 2007 } 2008 2009 static int sfp_remove(struct platform_device *pdev) 2010 { 2011 struct sfp *sfp = platform_get_drvdata(pdev); 2012 2013 sfp_unregister_socket(sfp->sfp_bus); 2014 2015 return 0; 2016 } 2017 2018 static void sfp_shutdown(struct platform_device *pdev) 2019 { 2020 struct sfp *sfp = platform_get_drvdata(pdev); 2021 int i; 2022 2023 for (i = 0; i < GPIO_MAX; i++) { 2024 if (!sfp->gpio_irq[i]) 2025 continue; 2026 2027 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2028 } 2029 2030 cancel_delayed_work_sync(&sfp->poll); 2031 cancel_delayed_work_sync(&sfp->timeout); 2032 } 2033 2034 static struct platform_driver sfp_driver = { 2035 .probe = sfp_probe, 2036 .remove = sfp_remove, 2037 .shutdown = sfp_shutdown, 2038 .driver = { 2039 .name = "sfp", 2040 .of_match_table = sfp_of_match, 2041 }, 2042 }; 2043 2044 static int sfp_init(void) 2045 { 2046 poll_jiffies = msecs_to_jiffies(100); 2047 2048 return platform_driver_register(&sfp_driver); 2049 } 2050 module_init(sfp_init); 2051 2052 static void sfp_exit(void) 2053 { 2054 platform_driver_unregister(&sfp_driver); 2055 } 2056 module_exit(sfp_exit); 2057 2058 MODULE_ALIAS("platform:sfp"); 2059 MODULE_AUTHOR("Russell King"); 2060 MODULE_LICENSE("GPL v2"); 2061