xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 6279eb3d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_DOWN,
40 	SFP_E_DEV_UP,
41 	SFP_E_TX_FAULT,
42 	SFP_E_TX_CLEAR,
43 	SFP_E_LOS_HIGH,
44 	SFP_E_LOS_LOW,
45 	SFP_E_TIMEOUT,
46 
47 	SFP_MOD_EMPTY = 0,
48 	SFP_MOD_PROBE,
49 	SFP_MOD_HPOWER,
50 	SFP_MOD_PRESENT,
51 	SFP_MOD_ERROR,
52 
53 	SFP_DEV_DOWN = 0,
54 	SFP_DEV_UP,
55 
56 	SFP_S_DOWN = 0,
57 	SFP_S_INIT,
58 	SFP_S_WAIT_LOS,
59 	SFP_S_LINK_UP,
60 	SFP_S_TX_FAULT,
61 	SFP_S_REINIT,
62 	SFP_S_TX_DISABLE,
63 };
64 
65 static const char  * const mod_state_strings[] = {
66 	[SFP_MOD_EMPTY] = "empty",
67 	[SFP_MOD_PROBE] = "probe",
68 	[SFP_MOD_HPOWER] = "hpower",
69 	[SFP_MOD_PRESENT] = "present",
70 	[SFP_MOD_ERROR] = "error",
71 };
72 
73 static const char *mod_state_to_str(unsigned short mod_state)
74 {
75 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 		return "Unknown module state";
77 	return mod_state_strings[mod_state];
78 }
79 
80 static const char * const dev_state_strings[] = {
81 	[SFP_DEV_DOWN] = "down",
82 	[SFP_DEV_UP] = "up",
83 };
84 
85 static const char *dev_state_to_str(unsigned short dev_state)
86 {
87 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 		return "Unknown device state";
89 	return dev_state_strings[dev_state];
90 }
91 
92 static const char * const event_strings[] = {
93 	[SFP_E_INSERT] = "insert",
94 	[SFP_E_REMOVE] = "remove",
95 	[SFP_E_DEV_DOWN] = "dev_down",
96 	[SFP_E_DEV_UP] = "dev_up",
97 	[SFP_E_TX_FAULT] = "tx_fault",
98 	[SFP_E_TX_CLEAR] = "tx_clear",
99 	[SFP_E_LOS_HIGH] = "los_high",
100 	[SFP_E_LOS_LOW] = "los_low",
101 	[SFP_E_TIMEOUT] = "timeout",
102 };
103 
104 static const char *event_to_str(unsigned short event)
105 {
106 	if (event >= ARRAY_SIZE(event_strings))
107 		return "Unknown event";
108 	return event_strings[event];
109 }
110 
111 static const char * const sm_state_strings[] = {
112 	[SFP_S_DOWN] = "down",
113 	[SFP_S_INIT] = "init",
114 	[SFP_S_WAIT_LOS] = "wait_los",
115 	[SFP_S_LINK_UP] = "link_up",
116 	[SFP_S_TX_FAULT] = "tx_fault",
117 	[SFP_S_REINIT] = "reinit",
118 	[SFP_S_TX_DISABLE] = "rx_disable",
119 };
120 
121 static const char *sm_state_to_str(unsigned short sm_state)
122 {
123 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 		return "Unknown state";
125 	return sm_state_strings[sm_state];
126 }
127 
128 static const char *gpio_of_names[] = {
129 	"mod-def0",
130 	"los",
131 	"tx-fault",
132 	"tx-disable",
133 	"rate-select0",
134 };
135 
136 static const enum gpiod_flags gpio_flags[] = {
137 	GPIOD_IN,
138 	GPIOD_IN,
139 	GPIOD_IN,
140 	GPIOD_ASIS,
141 	GPIOD_ASIS,
142 };
143 
144 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
145 #define T_RESET_US	10
146 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
147 
148 /* SFP module presence detection is poor: the three MOD DEF signals are
149  * the same length on the PCB, which means it's possible for MOD DEF 0 to
150  * connect before the I2C bus on MOD DEF 1/2.
151  *
152  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
153  * be deasserted) but makes no mention of the earliest time before we can
154  * access the I2C EEPROM.  However, Avago modules require 300ms.
155  */
156 #define T_PROBE_INIT	msecs_to_jiffies(300)
157 #define T_HPOWER_LEVEL	msecs_to_jiffies(300)
158 #define T_PROBE_RETRY	msecs_to_jiffies(100)
159 
160 /* SFP modules appear to always have their PHY configured for bus address
161  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
162  */
163 #define SFP_PHY_ADDR	22
164 
165 /* Give this long for the PHY to reset. */
166 #define T_PHY_RESET_MS	50
167 
168 struct sff_data {
169 	unsigned int gpios;
170 	bool (*module_supported)(const struct sfp_eeprom_id *id);
171 };
172 
173 struct sfp {
174 	struct device *dev;
175 	struct i2c_adapter *i2c;
176 	struct mii_bus *i2c_mii;
177 	struct sfp_bus *sfp_bus;
178 	struct phy_device *mod_phy;
179 	const struct sff_data *type;
180 	u32 max_power_mW;
181 
182 	unsigned int (*get_state)(struct sfp *);
183 	void (*set_state)(struct sfp *, unsigned int);
184 	int (*read)(struct sfp *, bool, u8, void *, size_t);
185 	int (*write)(struct sfp *, bool, u8, void *, size_t);
186 
187 	struct gpio_desc *gpio[GPIO_MAX];
188 	int gpio_irq[GPIO_MAX];
189 
190 	bool attached;
191 	struct mutex st_mutex;			/* Protects state */
192 	unsigned int state;
193 	struct delayed_work poll;
194 	struct delayed_work timeout;
195 	struct mutex sm_mutex;			/* Protects state machine */
196 	unsigned char sm_mod_state;
197 	unsigned char sm_dev_state;
198 	unsigned short sm_state;
199 	unsigned int sm_retries;
200 
201 	struct sfp_eeprom_id id;
202 #if IS_ENABLED(CONFIG_HWMON)
203 	struct sfp_diag diag;
204 	struct device *hwmon_dev;
205 	char *hwmon_name;
206 #endif
207 
208 };
209 
210 static bool sff_module_supported(const struct sfp_eeprom_id *id)
211 {
212 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
213 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
214 }
215 
216 static const struct sff_data sff_data = {
217 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
218 	.module_supported = sff_module_supported,
219 };
220 
221 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
222 {
223 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
224 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
225 }
226 
227 static const struct sff_data sfp_data = {
228 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
229 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
230 	.module_supported = sfp_module_supported,
231 };
232 
233 static const struct of_device_id sfp_of_match[] = {
234 	{ .compatible = "sff,sff", .data = &sff_data, },
235 	{ .compatible = "sff,sfp", .data = &sfp_data, },
236 	{ },
237 };
238 MODULE_DEVICE_TABLE(of, sfp_of_match);
239 
240 static unsigned long poll_jiffies;
241 
242 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
243 {
244 	unsigned int i, state, v;
245 
246 	for (i = state = 0; i < GPIO_MAX; i++) {
247 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
248 			continue;
249 
250 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
251 		if (v)
252 			state |= BIT(i);
253 	}
254 
255 	return state;
256 }
257 
258 static unsigned int sff_gpio_get_state(struct sfp *sfp)
259 {
260 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
261 }
262 
263 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
264 {
265 	if (state & SFP_F_PRESENT) {
266 		/* If the module is present, drive the signals */
267 		if (sfp->gpio[GPIO_TX_DISABLE])
268 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
269 					       state & SFP_F_TX_DISABLE);
270 		if (state & SFP_F_RATE_SELECT)
271 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
272 					       state & SFP_F_RATE_SELECT);
273 	} else {
274 		/* Otherwise, let them float to the pull-ups */
275 		if (sfp->gpio[GPIO_TX_DISABLE])
276 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
277 		if (state & SFP_F_RATE_SELECT)
278 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
279 	}
280 }
281 
282 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
283 			size_t len)
284 {
285 	struct i2c_msg msgs[2];
286 	u8 bus_addr = a2 ? 0x51 : 0x50;
287 	size_t this_len;
288 	int ret;
289 
290 	msgs[0].addr = bus_addr;
291 	msgs[0].flags = 0;
292 	msgs[0].len = 1;
293 	msgs[0].buf = &dev_addr;
294 	msgs[1].addr = bus_addr;
295 	msgs[1].flags = I2C_M_RD;
296 	msgs[1].len = len;
297 	msgs[1].buf = buf;
298 
299 	while (len) {
300 		this_len = len;
301 		if (this_len > 16)
302 			this_len = 16;
303 
304 		msgs[1].len = this_len;
305 
306 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
307 		if (ret < 0)
308 			return ret;
309 
310 		if (ret != ARRAY_SIZE(msgs))
311 			break;
312 
313 		msgs[1].buf += this_len;
314 		dev_addr += this_len;
315 		len -= this_len;
316 	}
317 
318 	return msgs[1].buf - (u8 *)buf;
319 }
320 
321 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
322 	size_t len)
323 {
324 	struct i2c_msg msgs[1];
325 	u8 bus_addr = a2 ? 0x51 : 0x50;
326 	int ret;
327 
328 	msgs[0].addr = bus_addr;
329 	msgs[0].flags = 0;
330 	msgs[0].len = 1 + len;
331 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
332 	if (!msgs[0].buf)
333 		return -ENOMEM;
334 
335 	msgs[0].buf[0] = dev_addr;
336 	memcpy(&msgs[0].buf[1], buf, len);
337 
338 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
339 
340 	kfree(msgs[0].buf);
341 
342 	if (ret < 0)
343 		return ret;
344 
345 	return ret == ARRAY_SIZE(msgs) ? len : 0;
346 }
347 
348 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
349 {
350 	struct mii_bus *i2c_mii;
351 	int ret;
352 
353 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
354 		return -EINVAL;
355 
356 	sfp->i2c = i2c;
357 	sfp->read = sfp_i2c_read;
358 	sfp->write = sfp_i2c_write;
359 
360 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
361 	if (IS_ERR(i2c_mii))
362 		return PTR_ERR(i2c_mii);
363 
364 	i2c_mii->name = "SFP I2C Bus";
365 	i2c_mii->phy_mask = ~0;
366 
367 	ret = mdiobus_register(i2c_mii);
368 	if (ret < 0) {
369 		mdiobus_free(i2c_mii);
370 		return ret;
371 	}
372 
373 	sfp->i2c_mii = i2c_mii;
374 
375 	return 0;
376 }
377 
378 /* Interface */
379 static unsigned int sfp_get_state(struct sfp *sfp)
380 {
381 	return sfp->get_state(sfp);
382 }
383 
384 static void sfp_set_state(struct sfp *sfp, unsigned int state)
385 {
386 	sfp->set_state(sfp, state);
387 }
388 
389 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
390 {
391 	return sfp->read(sfp, a2, addr, buf, len);
392 }
393 
394 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
395 {
396 	return sfp->write(sfp, a2, addr, buf, len);
397 }
398 
399 static unsigned int sfp_check(void *buf, size_t len)
400 {
401 	u8 *p, check;
402 
403 	for (p = buf, check = 0; len; p++, len--)
404 		check += *p;
405 
406 	return check;
407 }
408 
409 /* hwmon */
410 #if IS_ENABLED(CONFIG_HWMON)
411 static umode_t sfp_hwmon_is_visible(const void *data,
412 				    enum hwmon_sensor_types type,
413 				    u32 attr, int channel)
414 {
415 	const struct sfp *sfp = data;
416 
417 	switch (type) {
418 	case hwmon_temp:
419 		switch (attr) {
420 		case hwmon_temp_min_alarm:
421 		case hwmon_temp_max_alarm:
422 		case hwmon_temp_lcrit_alarm:
423 		case hwmon_temp_crit_alarm:
424 		case hwmon_temp_min:
425 		case hwmon_temp_max:
426 		case hwmon_temp_lcrit:
427 		case hwmon_temp_crit:
428 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
429 				return 0;
430 			/* fall through */
431 		case hwmon_temp_input:
432 		case hwmon_temp_label:
433 			return 0444;
434 		default:
435 			return 0;
436 		}
437 	case hwmon_in:
438 		switch (attr) {
439 		case hwmon_in_min_alarm:
440 		case hwmon_in_max_alarm:
441 		case hwmon_in_lcrit_alarm:
442 		case hwmon_in_crit_alarm:
443 		case hwmon_in_min:
444 		case hwmon_in_max:
445 		case hwmon_in_lcrit:
446 		case hwmon_in_crit:
447 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
448 				return 0;
449 			/* fall through */
450 		case hwmon_in_input:
451 		case hwmon_in_label:
452 			return 0444;
453 		default:
454 			return 0;
455 		}
456 	case hwmon_curr:
457 		switch (attr) {
458 		case hwmon_curr_min_alarm:
459 		case hwmon_curr_max_alarm:
460 		case hwmon_curr_lcrit_alarm:
461 		case hwmon_curr_crit_alarm:
462 		case hwmon_curr_min:
463 		case hwmon_curr_max:
464 		case hwmon_curr_lcrit:
465 		case hwmon_curr_crit:
466 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
467 				return 0;
468 			/* fall through */
469 		case hwmon_curr_input:
470 		case hwmon_curr_label:
471 			return 0444;
472 		default:
473 			return 0;
474 		}
475 	case hwmon_power:
476 		/* External calibration of receive power requires
477 		 * floating point arithmetic. Doing that in the kernel
478 		 * is not easy, so just skip it. If the module does
479 		 * not require external calibration, we can however
480 		 * show receiver power, since FP is then not needed.
481 		 */
482 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
483 		    channel == 1)
484 			return 0;
485 		switch (attr) {
486 		case hwmon_power_min_alarm:
487 		case hwmon_power_max_alarm:
488 		case hwmon_power_lcrit_alarm:
489 		case hwmon_power_crit_alarm:
490 		case hwmon_power_min:
491 		case hwmon_power_max:
492 		case hwmon_power_lcrit:
493 		case hwmon_power_crit:
494 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
495 				return 0;
496 			/* fall through */
497 		case hwmon_power_input:
498 		case hwmon_power_label:
499 			return 0444;
500 		default:
501 			return 0;
502 		}
503 	default:
504 		return 0;
505 	}
506 }
507 
508 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
509 {
510 	__be16 val;
511 	int err;
512 
513 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
514 	if (err < 0)
515 		return err;
516 
517 	*value = be16_to_cpu(val);
518 
519 	return 0;
520 }
521 
522 static void sfp_hwmon_to_rx_power(long *value)
523 {
524 	*value = DIV_ROUND_CLOSEST(*value, 10);
525 }
526 
527 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
528 				long *value)
529 {
530 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
531 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
532 }
533 
534 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
535 {
536 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
537 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
538 
539 	if (*value >= 0x8000)
540 		*value -= 0x10000;
541 
542 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
543 }
544 
545 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
546 {
547 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
548 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
549 
550 	*value = DIV_ROUND_CLOSEST(*value, 10);
551 }
552 
553 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
554 {
555 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
556 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
557 
558 	*value = DIV_ROUND_CLOSEST(*value, 500);
559 }
560 
561 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
562 {
563 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
564 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
565 
566 	*value = DIV_ROUND_CLOSEST(*value, 10);
567 }
568 
569 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
570 {
571 	int err;
572 
573 	err = sfp_hwmon_read_sensor(sfp, reg, value);
574 	if (err < 0)
575 		return err;
576 
577 	sfp_hwmon_calibrate_temp(sfp, value);
578 
579 	return 0;
580 }
581 
582 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
583 {
584 	int err;
585 
586 	err = sfp_hwmon_read_sensor(sfp, reg, value);
587 	if (err < 0)
588 		return err;
589 
590 	sfp_hwmon_calibrate_vcc(sfp, value);
591 
592 	return 0;
593 }
594 
595 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
596 {
597 	int err;
598 
599 	err = sfp_hwmon_read_sensor(sfp, reg, value);
600 	if (err < 0)
601 		return err;
602 
603 	sfp_hwmon_calibrate_bias(sfp, value);
604 
605 	return 0;
606 }
607 
608 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
609 {
610 	int err;
611 
612 	err = sfp_hwmon_read_sensor(sfp, reg, value);
613 	if (err < 0)
614 		return err;
615 
616 	sfp_hwmon_calibrate_tx_power(sfp, value);
617 
618 	return 0;
619 }
620 
621 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
622 {
623 	int err;
624 
625 	err = sfp_hwmon_read_sensor(sfp, reg, value);
626 	if (err < 0)
627 		return err;
628 
629 	sfp_hwmon_to_rx_power(value);
630 
631 	return 0;
632 }
633 
634 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
635 {
636 	u8 status;
637 	int err;
638 
639 	switch (attr) {
640 	case hwmon_temp_input:
641 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
642 
643 	case hwmon_temp_lcrit:
644 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
645 		sfp_hwmon_calibrate_temp(sfp, value);
646 		return 0;
647 
648 	case hwmon_temp_min:
649 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
650 		sfp_hwmon_calibrate_temp(sfp, value);
651 		return 0;
652 	case hwmon_temp_max:
653 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
654 		sfp_hwmon_calibrate_temp(sfp, value);
655 		return 0;
656 
657 	case hwmon_temp_crit:
658 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
659 		sfp_hwmon_calibrate_temp(sfp, value);
660 		return 0;
661 
662 	case hwmon_temp_lcrit_alarm:
663 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664 		if (err < 0)
665 			return err;
666 
667 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
668 		return 0;
669 
670 	case hwmon_temp_min_alarm:
671 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
672 		if (err < 0)
673 			return err;
674 
675 		*value = !!(status & SFP_WARN0_TEMP_LOW);
676 		return 0;
677 
678 	case hwmon_temp_max_alarm:
679 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
680 		if (err < 0)
681 			return err;
682 
683 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
684 		return 0;
685 
686 	case hwmon_temp_crit_alarm:
687 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
688 		if (err < 0)
689 			return err;
690 
691 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
692 		return 0;
693 	default:
694 		return -EOPNOTSUPP;
695 	}
696 
697 	return -EOPNOTSUPP;
698 }
699 
700 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
701 {
702 	u8 status;
703 	int err;
704 
705 	switch (attr) {
706 	case hwmon_in_input:
707 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
708 
709 	case hwmon_in_lcrit:
710 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
711 		sfp_hwmon_calibrate_vcc(sfp, value);
712 		return 0;
713 
714 	case hwmon_in_min:
715 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
716 		sfp_hwmon_calibrate_vcc(sfp, value);
717 		return 0;
718 
719 	case hwmon_in_max:
720 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
721 		sfp_hwmon_calibrate_vcc(sfp, value);
722 		return 0;
723 
724 	case hwmon_in_crit:
725 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
726 		sfp_hwmon_calibrate_vcc(sfp, value);
727 		return 0;
728 
729 	case hwmon_in_lcrit_alarm:
730 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731 		if (err < 0)
732 			return err;
733 
734 		*value = !!(status & SFP_ALARM0_VCC_LOW);
735 		return 0;
736 
737 	case hwmon_in_min_alarm:
738 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
739 		if (err < 0)
740 			return err;
741 
742 		*value = !!(status & SFP_WARN0_VCC_LOW);
743 		return 0;
744 
745 	case hwmon_in_max_alarm:
746 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
747 		if (err < 0)
748 			return err;
749 
750 		*value = !!(status & SFP_WARN0_VCC_HIGH);
751 		return 0;
752 
753 	case hwmon_in_crit_alarm:
754 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
755 		if (err < 0)
756 			return err;
757 
758 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
759 		return 0;
760 	default:
761 		return -EOPNOTSUPP;
762 	}
763 
764 	return -EOPNOTSUPP;
765 }
766 
767 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
768 {
769 	u8 status;
770 	int err;
771 
772 	switch (attr) {
773 	case hwmon_curr_input:
774 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
775 
776 	case hwmon_curr_lcrit:
777 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
778 		sfp_hwmon_calibrate_bias(sfp, value);
779 		return 0;
780 
781 	case hwmon_curr_min:
782 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
783 		sfp_hwmon_calibrate_bias(sfp, value);
784 		return 0;
785 
786 	case hwmon_curr_max:
787 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
788 		sfp_hwmon_calibrate_bias(sfp, value);
789 		return 0;
790 
791 	case hwmon_curr_crit:
792 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
793 		sfp_hwmon_calibrate_bias(sfp, value);
794 		return 0;
795 
796 	case hwmon_curr_lcrit_alarm:
797 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798 		if (err < 0)
799 			return err;
800 
801 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
802 		return 0;
803 
804 	case hwmon_curr_min_alarm:
805 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
806 		if (err < 0)
807 			return err;
808 
809 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
810 		return 0;
811 
812 	case hwmon_curr_max_alarm:
813 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
814 		if (err < 0)
815 			return err;
816 
817 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
818 		return 0;
819 
820 	case hwmon_curr_crit_alarm:
821 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
822 		if (err < 0)
823 			return err;
824 
825 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
826 		return 0;
827 	default:
828 		return -EOPNOTSUPP;
829 	}
830 
831 	return -EOPNOTSUPP;
832 }
833 
834 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
835 {
836 	u8 status;
837 	int err;
838 
839 	switch (attr) {
840 	case hwmon_power_input:
841 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
842 
843 	case hwmon_power_lcrit:
844 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
845 		sfp_hwmon_calibrate_tx_power(sfp, value);
846 		return 0;
847 
848 	case hwmon_power_min:
849 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
850 		sfp_hwmon_calibrate_tx_power(sfp, value);
851 		return 0;
852 
853 	case hwmon_power_max:
854 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
855 		sfp_hwmon_calibrate_tx_power(sfp, value);
856 		return 0;
857 
858 	case hwmon_power_crit:
859 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
860 		sfp_hwmon_calibrate_tx_power(sfp, value);
861 		return 0;
862 
863 	case hwmon_power_lcrit_alarm:
864 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865 		if (err < 0)
866 			return err;
867 
868 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
869 		return 0;
870 
871 	case hwmon_power_min_alarm:
872 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
873 		if (err < 0)
874 			return err;
875 
876 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
877 		return 0;
878 
879 	case hwmon_power_max_alarm:
880 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
881 		if (err < 0)
882 			return err;
883 
884 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
885 		return 0;
886 
887 	case hwmon_power_crit_alarm:
888 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
889 		if (err < 0)
890 			return err;
891 
892 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
893 		return 0;
894 	default:
895 		return -EOPNOTSUPP;
896 	}
897 
898 	return -EOPNOTSUPP;
899 }
900 
901 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
902 {
903 	u8 status;
904 	int err;
905 
906 	switch (attr) {
907 	case hwmon_power_input:
908 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
909 
910 	case hwmon_power_lcrit:
911 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
912 		sfp_hwmon_to_rx_power(value);
913 		return 0;
914 
915 	case hwmon_power_min:
916 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
917 		sfp_hwmon_to_rx_power(value);
918 		return 0;
919 
920 	case hwmon_power_max:
921 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
922 		sfp_hwmon_to_rx_power(value);
923 		return 0;
924 
925 	case hwmon_power_crit:
926 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
927 		sfp_hwmon_to_rx_power(value);
928 		return 0;
929 
930 	case hwmon_power_lcrit_alarm:
931 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932 		if (err < 0)
933 			return err;
934 
935 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
936 		return 0;
937 
938 	case hwmon_power_min_alarm:
939 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
940 		if (err < 0)
941 			return err;
942 
943 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
944 		return 0;
945 
946 	case hwmon_power_max_alarm:
947 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
948 		if (err < 0)
949 			return err;
950 
951 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
952 		return 0;
953 
954 	case hwmon_power_crit_alarm:
955 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
956 		if (err < 0)
957 			return err;
958 
959 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
960 		return 0;
961 	default:
962 		return -EOPNOTSUPP;
963 	}
964 
965 	return -EOPNOTSUPP;
966 }
967 
968 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
969 			  u32 attr, int channel, long *value)
970 {
971 	struct sfp *sfp = dev_get_drvdata(dev);
972 
973 	switch (type) {
974 	case hwmon_temp:
975 		return sfp_hwmon_temp(sfp, attr, value);
976 	case hwmon_in:
977 		return sfp_hwmon_vcc(sfp, attr, value);
978 	case hwmon_curr:
979 		return sfp_hwmon_bias(sfp, attr, value);
980 	case hwmon_power:
981 		switch (channel) {
982 		case 0:
983 			return sfp_hwmon_tx_power(sfp, attr, value);
984 		case 1:
985 			return sfp_hwmon_rx_power(sfp, attr, value);
986 		default:
987 			return -EOPNOTSUPP;
988 		}
989 	default:
990 		return -EOPNOTSUPP;
991 	}
992 }
993 
994 static const char *const sfp_hwmon_power_labels[] = {
995 	"TX_power",
996 	"RX_power",
997 };
998 
999 static int sfp_hwmon_read_string(struct device *dev,
1000 				 enum hwmon_sensor_types type,
1001 				 u32 attr, int channel, const char **str)
1002 {
1003 	switch (type) {
1004 	case hwmon_curr:
1005 		switch (attr) {
1006 		case hwmon_curr_label:
1007 			*str = "bias";
1008 			return 0;
1009 		default:
1010 			return -EOPNOTSUPP;
1011 		}
1012 		break;
1013 	case hwmon_temp:
1014 		switch (attr) {
1015 		case hwmon_temp_label:
1016 			*str = "temperature";
1017 			return 0;
1018 		default:
1019 			return -EOPNOTSUPP;
1020 		}
1021 		break;
1022 	case hwmon_in:
1023 		switch (attr) {
1024 		case hwmon_in_label:
1025 			*str = "VCC";
1026 			return 0;
1027 		default:
1028 			return -EOPNOTSUPP;
1029 		}
1030 		break;
1031 	case hwmon_power:
1032 		switch (attr) {
1033 		case hwmon_power_label:
1034 			*str = sfp_hwmon_power_labels[channel];
1035 			return 0;
1036 		default:
1037 			return -EOPNOTSUPP;
1038 		}
1039 		break;
1040 	default:
1041 		return -EOPNOTSUPP;
1042 	}
1043 
1044 	return -EOPNOTSUPP;
1045 }
1046 
1047 static const struct hwmon_ops sfp_hwmon_ops = {
1048 	.is_visible = sfp_hwmon_is_visible,
1049 	.read = sfp_hwmon_read,
1050 	.read_string = sfp_hwmon_read_string,
1051 };
1052 
1053 static u32 sfp_hwmon_chip_config[] = {
1054 	HWMON_C_REGISTER_TZ,
1055 	0,
1056 };
1057 
1058 static const struct hwmon_channel_info sfp_hwmon_chip = {
1059 	.type = hwmon_chip,
1060 	.config = sfp_hwmon_chip_config,
1061 };
1062 
1063 static u32 sfp_hwmon_temp_config[] = {
1064 	HWMON_T_INPUT |
1065 	HWMON_T_MAX | HWMON_T_MIN |
1066 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067 	HWMON_T_CRIT | HWMON_T_LCRIT |
1068 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069 	HWMON_T_LABEL,
1070 	0,
1071 };
1072 
1073 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074 	.type = hwmon_temp,
1075 	.config = sfp_hwmon_temp_config,
1076 };
1077 
1078 static u32 sfp_hwmon_vcc_config[] = {
1079 	HWMON_I_INPUT |
1080 	HWMON_I_MAX | HWMON_I_MIN |
1081 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082 	HWMON_I_CRIT | HWMON_I_LCRIT |
1083 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084 	HWMON_I_LABEL,
1085 	0,
1086 };
1087 
1088 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089 	.type = hwmon_in,
1090 	.config = sfp_hwmon_vcc_config,
1091 };
1092 
1093 static u32 sfp_hwmon_bias_config[] = {
1094 	HWMON_C_INPUT |
1095 	HWMON_C_MAX | HWMON_C_MIN |
1096 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097 	HWMON_C_CRIT | HWMON_C_LCRIT |
1098 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099 	HWMON_C_LABEL,
1100 	0,
1101 };
1102 
1103 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104 	.type = hwmon_curr,
1105 	.config = sfp_hwmon_bias_config,
1106 };
1107 
1108 static u32 sfp_hwmon_power_config[] = {
1109 	/* Transmit power */
1110 	HWMON_P_INPUT |
1111 	HWMON_P_MAX | HWMON_P_MIN |
1112 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113 	HWMON_P_CRIT | HWMON_P_LCRIT |
1114 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115 	HWMON_P_LABEL,
1116 	/* Receive power */
1117 	HWMON_P_INPUT |
1118 	HWMON_P_MAX | HWMON_P_MIN |
1119 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120 	HWMON_P_CRIT | HWMON_P_LCRIT |
1121 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122 	HWMON_P_LABEL,
1123 	0,
1124 };
1125 
1126 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127 	.type = hwmon_power,
1128 	.config = sfp_hwmon_power_config,
1129 };
1130 
1131 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132 	&sfp_hwmon_chip,
1133 	&sfp_hwmon_vcc_channel_info,
1134 	&sfp_hwmon_temp_channel_info,
1135 	&sfp_hwmon_bias_channel_info,
1136 	&sfp_hwmon_power_channel_info,
1137 	NULL,
1138 };
1139 
1140 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141 	.ops = &sfp_hwmon_ops,
1142 	.info = sfp_hwmon_info,
1143 };
1144 
1145 static int sfp_hwmon_insert(struct sfp *sfp)
1146 {
1147 	int err, i;
1148 
1149 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150 		return 0;
1151 
1152 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153 		return 0;
1154 
1155 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156 		/* This driver in general does not support address
1157 		 * change.
1158 		 */
1159 		return 0;
1160 
1161 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162 	if (err < 0)
1163 		return err;
1164 
1165 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166 	if (!sfp->hwmon_name)
1167 		return -ENODEV;
1168 
1169 	for (i = 0; sfp->hwmon_name[i]; i++)
1170 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171 			sfp->hwmon_name[i] = '_';
1172 
1173 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174 							 sfp->hwmon_name, sfp,
1175 							 &sfp_hwmon_chip_info,
1176 							 NULL);
1177 
1178 	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179 }
1180 
1181 static void sfp_hwmon_remove(struct sfp *sfp)
1182 {
1183 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184 		hwmon_device_unregister(sfp->hwmon_dev);
1185 		sfp->hwmon_dev = NULL;
1186 		kfree(sfp->hwmon_name);
1187 	}
1188 }
1189 #else
1190 static int sfp_hwmon_insert(struct sfp *sfp)
1191 {
1192 	return 0;
1193 }
1194 
1195 static void sfp_hwmon_remove(struct sfp *sfp)
1196 {
1197 }
1198 #endif
1199 
1200 /* Helpers */
1201 static void sfp_module_tx_disable(struct sfp *sfp)
1202 {
1203 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205 	sfp->state |= SFP_F_TX_DISABLE;
1206 	sfp_set_state(sfp, sfp->state);
1207 }
1208 
1209 static void sfp_module_tx_enable(struct sfp *sfp)
1210 {
1211 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213 	sfp->state &= ~SFP_F_TX_DISABLE;
1214 	sfp_set_state(sfp, sfp->state);
1215 }
1216 
1217 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218 {
1219 	unsigned int state = sfp->state;
1220 
1221 	if (state & SFP_F_TX_DISABLE)
1222 		return;
1223 
1224 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225 
1226 	udelay(T_RESET_US);
1227 
1228 	sfp_set_state(sfp, state);
1229 }
1230 
1231 /* SFP state machine */
1232 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233 {
1234 	if (timeout)
1235 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236 				 timeout);
1237 	else
1238 		cancel_delayed_work(&sfp->timeout);
1239 }
1240 
1241 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242 			unsigned int timeout)
1243 {
1244 	sfp->sm_state = state;
1245 	sfp_sm_set_timer(sfp, timeout);
1246 }
1247 
1248 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249 			    unsigned int timeout)
1250 {
1251 	sfp->sm_mod_state = state;
1252 	sfp_sm_set_timer(sfp, timeout);
1253 }
1254 
1255 static void sfp_sm_phy_detach(struct sfp *sfp)
1256 {
1257 	phy_stop(sfp->mod_phy);
1258 	sfp_remove_phy(sfp->sfp_bus);
1259 	phy_device_remove(sfp->mod_phy);
1260 	phy_device_free(sfp->mod_phy);
1261 	sfp->mod_phy = NULL;
1262 }
1263 
1264 static void sfp_sm_probe_phy(struct sfp *sfp)
1265 {
1266 	struct phy_device *phy;
1267 	int err;
1268 
1269 	msleep(T_PHY_RESET_MS);
1270 
1271 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272 	if (phy == ERR_PTR(-ENODEV)) {
1273 		dev_info(sfp->dev, "no PHY detected\n");
1274 		return;
1275 	}
1276 	if (IS_ERR(phy)) {
1277 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278 		return;
1279 	}
1280 
1281 	err = sfp_add_phy(sfp->sfp_bus, phy);
1282 	if (err) {
1283 		phy_device_remove(phy);
1284 		phy_device_free(phy);
1285 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286 		return;
1287 	}
1288 
1289 	sfp->mod_phy = phy;
1290 	phy_start(phy);
1291 }
1292 
1293 static void sfp_sm_link_up(struct sfp *sfp)
1294 {
1295 	sfp_link_up(sfp->sfp_bus);
1296 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297 }
1298 
1299 static void sfp_sm_link_down(struct sfp *sfp)
1300 {
1301 	sfp_link_down(sfp->sfp_bus);
1302 }
1303 
1304 static void sfp_sm_link_check_los(struct sfp *sfp)
1305 {
1306 	unsigned int los = sfp->state & SFP_F_LOS;
1307 
1308 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309 	 * are set, we assume that no LOS signal is available.
1310 	 */
1311 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312 		los ^= SFP_F_LOS;
1313 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314 		los = 0;
1315 
1316 	if (los)
1317 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318 	else
1319 		sfp_sm_link_up(sfp);
1320 }
1321 
1322 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323 {
1324 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325 		event == SFP_E_LOS_LOW) ||
1326 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327 		event == SFP_E_LOS_HIGH);
1328 }
1329 
1330 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331 {
1332 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333 		event == SFP_E_LOS_HIGH) ||
1334 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335 		event == SFP_E_LOS_LOW);
1336 }
1337 
1338 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339 {
1340 	if (sfp->sm_retries && !--sfp->sm_retries) {
1341 		dev_err(sfp->dev,
1342 			"module persistently indicates fault, disabling\n");
1343 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344 	} else {
1345 		if (warn)
1346 			dev_err(sfp->dev, "module transmit fault indicated\n");
1347 
1348 		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349 	}
1350 }
1351 
1352 static void sfp_sm_mod_init(struct sfp *sfp)
1353 {
1354 	sfp_module_tx_enable(sfp);
1355 
1356 	/* Wait t_init before indicating that the link is up, provided the
1357 	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1358 	 * this time, that's fine too.
1359 	 */
1360 	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361 	sfp->sm_retries = 5;
1362 
1363 	/* Setting the serdes link mode is guesswork: there's no
1364 	 * field in the EEPROM which indicates what mode should
1365 	 * be used.
1366 	 *
1367 	 * If it's a gigabit-only fiber module, it probably does
1368 	 * not have a PHY, so switch to 802.3z negotiation mode.
1369 	 * Otherwise, switch to SGMII mode (which is required to
1370 	 * support non-gigabit speeds) and probe for a PHY.
1371 	 */
1372 	if (sfp->id.base.e1000_base_t ||
1373 	    sfp->id.base.e100_base_lx ||
1374 	    sfp->id.base.e100_base_fx)
1375 		sfp_sm_probe_phy(sfp);
1376 }
1377 
1378 static int sfp_sm_mod_hpower(struct sfp *sfp)
1379 {
1380 	u32 power;
1381 	u8 val;
1382 	int err;
1383 
1384 	power = 1000;
1385 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386 		power = 1500;
1387 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388 		power = 2000;
1389 
1390 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391 	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392 	    SFP_DIAGMON_DDM) {
1393 		/* The module appears not to implement bus address 0xa2,
1394 		 * or requires an address change sequence, so assume that
1395 		 * the module powers up in the indicated power mode.
1396 		 */
1397 		if (power > sfp->max_power_mW) {
1398 			dev_err(sfp->dev,
1399 				"Host does not support %u.%uW modules\n",
1400 				power / 1000, (power / 100) % 10);
1401 			return -EINVAL;
1402 		}
1403 		return 0;
1404 	}
1405 
1406 	if (power > sfp->max_power_mW) {
1407 		dev_warn(sfp->dev,
1408 			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1409 			 power / 1000, (power / 100) % 10);
1410 		return 0;
1411 	}
1412 
1413 	if (power <= 1000)
1414 		return 0;
1415 
1416 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417 	if (err != sizeof(val)) {
1418 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419 		err = -EAGAIN;
1420 		goto err;
1421 	}
1422 
1423 	val |= BIT(0);
1424 
1425 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426 	if (err != sizeof(val)) {
1427 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428 		err = -EAGAIN;
1429 		goto err;
1430 	}
1431 
1432 	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433 		 power / 1000, (power / 100) % 10);
1434 	return T_HPOWER_LEVEL;
1435 
1436 err:
1437 	return err;
1438 }
1439 
1440 static int sfp_sm_mod_probe(struct sfp *sfp)
1441 {
1442 	/* SFP module inserted - read I2C data */
1443 	struct sfp_eeprom_id id;
1444 	bool cotsworks;
1445 	u8 check;
1446 	int ret;
1447 
1448 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1449 	if (ret < 0) {
1450 		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1451 		return -EAGAIN;
1452 	}
1453 
1454 	if (ret != sizeof(id)) {
1455 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456 		return -EAGAIN;
1457 	}
1458 
1459 	/* Cotsworks do not seem to update the checksums when they
1460 	 * do the final programming with the final module part number,
1461 	 * serial number and date code.
1462 	 */
1463 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1464 
1465 	/* Validate the checksum over the base structure */
1466 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1467 	if (check != id.base.cc_base) {
1468 		if (cotsworks) {
1469 			dev_warn(sfp->dev,
1470 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471 				 check, id.base.cc_base);
1472 		} else {
1473 			dev_err(sfp->dev,
1474 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475 				check, id.base.cc_base);
1476 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477 				       16, 1, &id, sizeof(id), true);
1478 			return -EINVAL;
1479 		}
1480 	}
1481 
1482 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483 	if (check != id.ext.cc_ext) {
1484 		if (cotsworks) {
1485 			dev_warn(sfp->dev,
1486 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487 				 check, id.ext.cc_ext);
1488 		} else {
1489 			dev_err(sfp->dev,
1490 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491 				check, id.ext.cc_ext);
1492 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493 				       16, 1, &id, sizeof(id), true);
1494 			memset(&id.ext, 0, sizeof(id.ext));
1495 		}
1496 	}
1497 
1498 	sfp->id = id;
1499 
1500 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1506 
1507 	/* Check whether we support this module */
1508 	if (!sfp->type->module_supported(&sfp->id)) {
1509 		dev_err(sfp->dev,
1510 			"module is not supported - phys id 0x%02x 0x%02x\n",
1511 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512 		return -EINVAL;
1513 	}
1514 
1515 	/* If the module requires address swap mode, warn about it */
1516 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517 		dev_warn(sfp->dev,
1518 			 "module address swap to access page 0xA2 is not supported.\n");
1519 
1520 	ret = sfp_hwmon_insert(sfp);
1521 	if (ret < 0)
1522 		return ret;
1523 
1524 	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525 	if (ret < 0)
1526 		return ret;
1527 
1528 	return sfp_sm_mod_hpower(sfp);
1529 }
1530 
1531 static void sfp_sm_mod_remove(struct sfp *sfp)
1532 {
1533 	sfp_module_remove(sfp->sfp_bus);
1534 
1535 	sfp_hwmon_remove(sfp);
1536 
1537 	if (sfp->mod_phy)
1538 		sfp_sm_phy_detach(sfp);
1539 
1540 	sfp_module_tx_disable(sfp);
1541 
1542 	memset(&sfp->id, 0, sizeof(sfp->id));
1543 
1544 	dev_info(sfp->dev, "module removed\n");
1545 }
1546 
1547 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1548 {
1549 	mutex_lock(&sfp->sm_mutex);
1550 
1551 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552 		mod_state_to_str(sfp->sm_mod_state),
1553 		dev_state_to_str(sfp->sm_dev_state),
1554 		sm_state_to_str(sfp->sm_state),
1555 		event_to_str(event));
1556 
1557 	/* This state machine tracks the insert/remove state of
1558 	 * the module, and handles probing the on-board EEPROM.
1559 	 */
1560 	switch (sfp->sm_mod_state) {
1561 	default:
1562 		if (event == SFP_E_INSERT && sfp->attached) {
1563 			sfp_module_tx_disable(sfp);
1564 			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1565 		}
1566 		break;
1567 
1568 	case SFP_MOD_PROBE:
1569 		if (event == SFP_E_REMOVE) {
1570 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571 		} else if (event == SFP_E_TIMEOUT) {
1572 			int val = sfp_sm_mod_probe(sfp);
1573 
1574 			if (val == 0)
1575 				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576 			else if (val > 0)
1577 				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578 			else if (val != -EAGAIN)
1579 				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580 			else
1581 				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1582 		}
1583 		break;
1584 
1585 	case SFP_MOD_HPOWER:
1586 		if (event == SFP_E_TIMEOUT) {
1587 			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1588 			break;
1589 		}
1590 		/* fallthrough */
1591 	case SFP_MOD_PRESENT:
1592 	case SFP_MOD_ERROR:
1593 		if (event == SFP_E_REMOVE) {
1594 			sfp_sm_mod_remove(sfp);
1595 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1596 		}
1597 		break;
1598 	}
1599 
1600 	/* This state machine tracks the netdev up/down state */
1601 	switch (sfp->sm_dev_state) {
1602 	default:
1603 		if (event == SFP_E_DEV_UP)
1604 			sfp->sm_dev_state = SFP_DEV_UP;
1605 		break;
1606 
1607 	case SFP_DEV_UP:
1608 		if (event == SFP_E_DEV_DOWN) {
1609 			/* If the module has a PHY, avoid raising TX disable
1610 			 * as this resets the PHY. Otherwise, raise it to
1611 			 * turn the laser off.
1612 			 */
1613 			if (!sfp->mod_phy)
1614 				sfp_module_tx_disable(sfp);
1615 			sfp->sm_dev_state = SFP_DEV_DOWN;
1616 		}
1617 		break;
1618 	}
1619 
1620 	/* Some events are global */
1621 	if (sfp->sm_state != SFP_S_DOWN &&
1622 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1624 		if (sfp->sm_state == SFP_S_LINK_UP &&
1625 		    sfp->sm_dev_state == SFP_DEV_UP)
1626 			sfp_sm_link_down(sfp);
1627 		if (sfp->mod_phy)
1628 			sfp_sm_phy_detach(sfp);
1629 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630 		mutex_unlock(&sfp->sm_mutex);
1631 		return;
1632 	}
1633 
1634 	/* The main state machine */
1635 	switch (sfp->sm_state) {
1636 	case SFP_S_DOWN:
1637 		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638 		    sfp->sm_dev_state == SFP_DEV_UP)
1639 			sfp_sm_mod_init(sfp);
1640 		break;
1641 
1642 	case SFP_S_INIT:
1643 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644 			sfp_sm_fault(sfp, true);
1645 		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646 			sfp_sm_link_check_los(sfp);
1647 		break;
1648 
1649 	case SFP_S_WAIT_LOS:
1650 		if (event == SFP_E_TX_FAULT)
1651 			sfp_sm_fault(sfp, true);
1652 		else if (sfp_los_event_inactive(sfp, event))
1653 			sfp_sm_link_up(sfp);
1654 		break;
1655 
1656 	case SFP_S_LINK_UP:
1657 		if (event == SFP_E_TX_FAULT) {
1658 			sfp_sm_link_down(sfp);
1659 			sfp_sm_fault(sfp, true);
1660 		} else if (sfp_los_event_active(sfp, event)) {
1661 			sfp_sm_link_down(sfp);
1662 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663 		}
1664 		break;
1665 
1666 	case SFP_S_TX_FAULT:
1667 		if (event == SFP_E_TIMEOUT) {
1668 			sfp_module_tx_fault_reset(sfp);
1669 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670 		}
1671 		break;
1672 
1673 	case SFP_S_REINIT:
1674 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675 			sfp_sm_fault(sfp, false);
1676 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677 			dev_info(sfp->dev, "module transmit fault recovered\n");
1678 			sfp_sm_link_check_los(sfp);
1679 		}
1680 		break;
1681 
1682 	case SFP_S_TX_DISABLE:
1683 		break;
1684 	}
1685 
1686 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687 		mod_state_to_str(sfp->sm_mod_state),
1688 		dev_state_to_str(sfp->sm_dev_state),
1689 		sm_state_to_str(sfp->sm_state));
1690 
1691 	mutex_unlock(&sfp->sm_mutex);
1692 }
1693 
1694 static void sfp_attach(struct sfp *sfp)
1695 {
1696 	sfp->attached = true;
1697 	if (sfp->state & SFP_F_PRESENT)
1698 		sfp_sm_event(sfp, SFP_E_INSERT);
1699 }
1700 
1701 static void sfp_detach(struct sfp *sfp)
1702 {
1703 	sfp->attached = false;
1704 	sfp_sm_event(sfp, SFP_E_REMOVE);
1705 }
1706 
1707 static void sfp_start(struct sfp *sfp)
1708 {
1709 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1710 }
1711 
1712 static void sfp_stop(struct sfp *sfp)
1713 {
1714 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715 }
1716 
1717 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718 {
1719 	/* locking... and check module is present */
1720 
1721 	if (sfp->id.ext.sff8472_compliance &&
1722 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723 		modinfo->type = ETH_MODULE_SFF_8472;
1724 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725 	} else {
1726 		modinfo->type = ETH_MODULE_SFF_8079;
1727 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728 	}
1729 	return 0;
1730 }
1731 
1732 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733 			     u8 *data)
1734 {
1735 	unsigned int first, last, len;
1736 	int ret;
1737 
1738 	if (ee->len == 0)
1739 		return -EINVAL;
1740 
1741 	first = ee->offset;
1742 	last = ee->offset + ee->len;
1743 	if (first < ETH_MODULE_SFF_8079_LEN) {
1744 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745 		len -= first;
1746 
1747 		ret = sfp_read(sfp, false, first, data, len);
1748 		if (ret < 0)
1749 			return ret;
1750 
1751 		first += len;
1752 		data += len;
1753 	}
1754 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756 		len -= first;
1757 		first -= ETH_MODULE_SFF_8079_LEN;
1758 
1759 		ret = sfp_read(sfp, true, first, data, len);
1760 		if (ret < 0)
1761 			return ret;
1762 	}
1763 	return 0;
1764 }
1765 
1766 static const struct sfp_socket_ops sfp_module_ops = {
1767 	.attach = sfp_attach,
1768 	.detach = sfp_detach,
1769 	.start = sfp_start,
1770 	.stop = sfp_stop,
1771 	.module_info = sfp_module_info,
1772 	.module_eeprom = sfp_module_eeprom,
1773 };
1774 
1775 static void sfp_timeout(struct work_struct *work)
1776 {
1777 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778 
1779 	rtnl_lock();
1780 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781 	rtnl_unlock();
1782 }
1783 
1784 static void sfp_check_state(struct sfp *sfp)
1785 {
1786 	unsigned int state, i, changed;
1787 
1788 	mutex_lock(&sfp->st_mutex);
1789 	state = sfp_get_state(sfp);
1790 	changed = state ^ sfp->state;
1791 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792 
1793 	for (i = 0; i < GPIO_MAX; i++)
1794 		if (changed & BIT(i))
1795 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797 
1798 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799 	sfp->state = state;
1800 
1801 	rtnl_lock();
1802 	if (changed & SFP_F_PRESENT)
1803 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804 				SFP_E_INSERT : SFP_E_REMOVE);
1805 
1806 	if (changed & SFP_F_TX_FAULT)
1807 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809 
1810 	if (changed & SFP_F_LOS)
1811 		sfp_sm_event(sfp, state & SFP_F_LOS ?
1812 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813 	rtnl_unlock();
1814 	mutex_unlock(&sfp->st_mutex);
1815 }
1816 
1817 static irqreturn_t sfp_irq(int irq, void *data)
1818 {
1819 	struct sfp *sfp = data;
1820 
1821 	sfp_check_state(sfp);
1822 
1823 	return IRQ_HANDLED;
1824 }
1825 
1826 static void sfp_poll(struct work_struct *work)
1827 {
1828 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829 
1830 	sfp_check_state(sfp);
1831 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1832 }
1833 
1834 static struct sfp *sfp_alloc(struct device *dev)
1835 {
1836 	struct sfp *sfp;
1837 
1838 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839 	if (!sfp)
1840 		return ERR_PTR(-ENOMEM);
1841 
1842 	sfp->dev = dev;
1843 
1844 	mutex_init(&sfp->sm_mutex);
1845 	mutex_init(&sfp->st_mutex);
1846 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848 
1849 	return sfp;
1850 }
1851 
1852 static void sfp_cleanup(void *data)
1853 {
1854 	struct sfp *sfp = data;
1855 
1856 	cancel_delayed_work_sync(&sfp->poll);
1857 	cancel_delayed_work_sync(&sfp->timeout);
1858 	if (sfp->i2c_mii) {
1859 		mdiobus_unregister(sfp->i2c_mii);
1860 		mdiobus_free(sfp->i2c_mii);
1861 	}
1862 	if (sfp->i2c)
1863 		i2c_put_adapter(sfp->i2c);
1864 	kfree(sfp);
1865 }
1866 
1867 static int sfp_probe(struct platform_device *pdev)
1868 {
1869 	const struct sff_data *sff;
1870 	struct i2c_adapter *i2c;
1871 	struct sfp *sfp;
1872 	bool poll = false;
1873 	int err, i;
1874 
1875 	sfp = sfp_alloc(&pdev->dev);
1876 	if (IS_ERR(sfp))
1877 		return PTR_ERR(sfp);
1878 
1879 	platform_set_drvdata(pdev, sfp);
1880 
1881 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882 	if (err < 0)
1883 		return err;
1884 
1885 	sff = sfp->type = &sfp_data;
1886 
1887 	if (pdev->dev.of_node) {
1888 		struct device_node *node = pdev->dev.of_node;
1889 		const struct of_device_id *id;
1890 		struct device_node *np;
1891 
1892 		id = of_match_node(sfp_of_match, node);
1893 		if (WARN_ON(!id))
1894 			return -EINVAL;
1895 
1896 		sff = sfp->type = id->data;
1897 
1898 		np = of_parse_phandle(node, "i2c-bus", 0);
1899 		if (!np) {
1900 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901 			return -ENODEV;
1902 		}
1903 
1904 		i2c = of_find_i2c_adapter_by_node(np);
1905 		of_node_put(np);
1906 	} else if (has_acpi_companion(&pdev->dev)) {
1907 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909 		struct fwnode_reference_args args;
1910 		struct acpi_handle *acpi_handle;
1911 		int ret;
1912 
1913 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914 		if (ret || !is_acpi_device_node(args.fwnode)) {
1915 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916 			return -ENODEV;
1917 		}
1918 
1919 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921 	} else {
1922 		return -EINVAL;
1923 	}
1924 
1925 	if (!i2c)
1926 		return -EPROBE_DEFER;
1927 
1928 	err = sfp_i2c_configure(sfp, i2c);
1929 	if (err < 0) {
1930 		i2c_put_adapter(i2c);
1931 		return err;
1932 	}
1933 
1934 	for (i = 0; i < GPIO_MAX; i++)
1935 		if (sff->gpios & BIT(i)) {
1936 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937 					   gpio_of_names[i], gpio_flags[i]);
1938 			if (IS_ERR(sfp->gpio[i]))
1939 				return PTR_ERR(sfp->gpio[i]);
1940 		}
1941 
1942 	sfp->get_state = sfp_gpio_get_state;
1943 	sfp->set_state = sfp_gpio_set_state;
1944 
1945 	/* Modules that have no detect signal are always present */
1946 	if (!(sfp->gpio[GPIO_MODDEF0]))
1947 		sfp->get_state = sff_gpio_get_state;
1948 
1949 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950 				 &sfp->max_power_mW);
1951 	if (!sfp->max_power_mW)
1952 		sfp->max_power_mW = 1000;
1953 
1954 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956 
1957 	/* Get the initial state, and always signal TX disable,
1958 	 * since the network interface will not be up.
1959 	 */
1960 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961 
1962 	if (sfp->gpio[GPIO_RATE_SELECT] &&
1963 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964 		sfp->state |= SFP_F_RATE_SELECT;
1965 	sfp_set_state(sfp, sfp->state);
1966 	sfp_module_tx_disable(sfp);
1967 
1968 	for (i = 0; i < GPIO_MAX; i++) {
1969 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970 			continue;
1971 
1972 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973 		if (!sfp->gpio_irq[i]) {
1974 			poll = true;
1975 			continue;
1976 		}
1977 
1978 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979 						NULL, sfp_irq,
1980 						IRQF_ONESHOT |
1981 						IRQF_TRIGGER_RISING |
1982 						IRQF_TRIGGER_FALLING,
1983 						dev_name(sfp->dev), sfp);
1984 		if (err) {
1985 			sfp->gpio_irq[i] = 0;
1986 			poll = true;
1987 		}
1988 	}
1989 
1990 	if (poll)
1991 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992 
1993 	/* We could have an issue in cases no Tx disable pin is available or
1994 	 * wired as modules using a laser as their light source will continue to
1995 	 * be active when the fiber is removed. This could be a safety issue and
1996 	 * we should at least warn the user about that.
1997 	 */
1998 	if (!sfp->gpio[GPIO_TX_DISABLE])
1999 		dev_warn(sfp->dev,
2000 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2001 
2002 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003 	if (!sfp->sfp_bus)
2004 		return -ENOMEM;
2005 
2006 	return 0;
2007 }
2008 
2009 static int sfp_remove(struct platform_device *pdev)
2010 {
2011 	struct sfp *sfp = platform_get_drvdata(pdev);
2012 
2013 	sfp_unregister_socket(sfp->sfp_bus);
2014 
2015 	return 0;
2016 }
2017 
2018 static void sfp_shutdown(struct platform_device *pdev)
2019 {
2020 	struct sfp *sfp = platform_get_drvdata(pdev);
2021 	int i;
2022 
2023 	for (i = 0; i < GPIO_MAX; i++) {
2024 		if (!sfp->gpio_irq[i])
2025 			continue;
2026 
2027 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028 	}
2029 
2030 	cancel_delayed_work_sync(&sfp->poll);
2031 	cancel_delayed_work_sync(&sfp->timeout);
2032 }
2033 
2034 static struct platform_driver sfp_driver = {
2035 	.probe = sfp_probe,
2036 	.remove = sfp_remove,
2037 	.shutdown = sfp_shutdown,
2038 	.driver = {
2039 		.name = "sfp",
2040 		.of_match_table = sfp_of_match,
2041 	},
2042 };
2043 
2044 static int sfp_init(void)
2045 {
2046 	poll_jiffies = msecs_to_jiffies(100);
2047 
2048 	return platform_driver_register(&sfp_driver);
2049 }
2050 module_init(sfp_init);
2051 
2052 static void sfp_exit(void)
2053 {
2054 	platform_driver_unregister(&sfp_driver);
2055 }
2056 module_exit(sfp_exit);
2057 
2058 MODULE_ALIAS("platform:sfp");
2059 MODULE_AUTHOR("Russell King");
2060 MODULE_LICENSE("GPL v2");
2061