xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 5daed426)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RATE_SELECT,
28 	GPIO_MAX,
29 
30 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
31 	SFP_F_LOS = BIT(GPIO_LOS),
32 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
33 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
34 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
35 
36 	SFP_E_INSERT = 0,
37 	SFP_E_REMOVE,
38 	SFP_E_DEV_ATTACH,
39 	SFP_E_DEV_DETACH,
40 	SFP_E_DEV_DOWN,
41 	SFP_E_DEV_UP,
42 	SFP_E_TX_FAULT,
43 	SFP_E_TX_CLEAR,
44 	SFP_E_LOS_HIGH,
45 	SFP_E_LOS_LOW,
46 	SFP_E_TIMEOUT,
47 
48 	SFP_MOD_EMPTY = 0,
49 	SFP_MOD_ERROR,
50 	SFP_MOD_PROBE,
51 	SFP_MOD_WAITDEV,
52 	SFP_MOD_HPOWER,
53 	SFP_MOD_WAITPWR,
54 	SFP_MOD_PRESENT,
55 
56 	SFP_DEV_DETACHED = 0,
57 	SFP_DEV_DOWN,
58 	SFP_DEV_UP,
59 
60 	SFP_S_DOWN = 0,
61 	SFP_S_FAIL,
62 	SFP_S_WAIT,
63 	SFP_S_INIT,
64 	SFP_S_INIT_PHY,
65 	SFP_S_INIT_TX_FAULT,
66 	SFP_S_WAIT_LOS,
67 	SFP_S_LINK_UP,
68 	SFP_S_TX_FAULT,
69 	SFP_S_REINIT,
70 	SFP_S_TX_DISABLE,
71 };
72 
73 static const char  * const mod_state_strings[] = {
74 	[SFP_MOD_EMPTY] = "empty",
75 	[SFP_MOD_ERROR] = "error",
76 	[SFP_MOD_PROBE] = "probe",
77 	[SFP_MOD_WAITDEV] = "waitdev",
78 	[SFP_MOD_HPOWER] = "hpower",
79 	[SFP_MOD_WAITPWR] = "waitpwr",
80 	[SFP_MOD_PRESENT] = "present",
81 };
82 
83 static const char *mod_state_to_str(unsigned short mod_state)
84 {
85 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
86 		return "Unknown module state";
87 	return mod_state_strings[mod_state];
88 }
89 
90 static const char * const dev_state_strings[] = {
91 	[SFP_DEV_DETACHED] = "detached",
92 	[SFP_DEV_DOWN] = "down",
93 	[SFP_DEV_UP] = "up",
94 };
95 
96 static const char *dev_state_to_str(unsigned short dev_state)
97 {
98 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
99 		return "Unknown device state";
100 	return dev_state_strings[dev_state];
101 }
102 
103 static const char * const event_strings[] = {
104 	[SFP_E_INSERT] = "insert",
105 	[SFP_E_REMOVE] = "remove",
106 	[SFP_E_DEV_ATTACH] = "dev_attach",
107 	[SFP_E_DEV_DETACH] = "dev_detach",
108 	[SFP_E_DEV_DOWN] = "dev_down",
109 	[SFP_E_DEV_UP] = "dev_up",
110 	[SFP_E_TX_FAULT] = "tx_fault",
111 	[SFP_E_TX_CLEAR] = "tx_clear",
112 	[SFP_E_LOS_HIGH] = "los_high",
113 	[SFP_E_LOS_LOW] = "los_low",
114 	[SFP_E_TIMEOUT] = "timeout",
115 };
116 
117 static const char *event_to_str(unsigned short event)
118 {
119 	if (event >= ARRAY_SIZE(event_strings))
120 		return "Unknown event";
121 	return event_strings[event];
122 }
123 
124 static const char * const sm_state_strings[] = {
125 	[SFP_S_DOWN] = "down",
126 	[SFP_S_FAIL] = "fail",
127 	[SFP_S_WAIT] = "wait",
128 	[SFP_S_INIT] = "init",
129 	[SFP_S_INIT_PHY] = "init_phy",
130 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
131 	[SFP_S_WAIT_LOS] = "wait_los",
132 	[SFP_S_LINK_UP] = "link_up",
133 	[SFP_S_TX_FAULT] = "tx_fault",
134 	[SFP_S_REINIT] = "reinit",
135 	[SFP_S_TX_DISABLE] = "tx_disable",
136 };
137 
138 static const char *sm_state_to_str(unsigned short sm_state)
139 {
140 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
141 		return "Unknown state";
142 	return sm_state_strings[sm_state];
143 }
144 
145 static const char *gpio_names[] = {
146 	"mod-def0",
147 	"los",
148 	"tx-fault",
149 	"tx-disable",
150 	"rate-select0",
151 };
152 
153 static const enum gpiod_flags gpio_flags[] = {
154 	GPIOD_IN,
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_ASIS,
158 	GPIOD_ASIS,
159 };
160 
161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
162  * non-cooled module to initialise its laser safety circuitry. We wait
163  * an initial T_WAIT period before we check the tx fault to give any PHY
164  * on board (for a copper SFP) time to initialise.
165  */
166 #define T_WAIT			msecs_to_jiffies(50)
167 #define T_WAIT_ROLLBALL		msecs_to_jiffies(25000)
168 #define T_START_UP		msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170 
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US		10
175 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176 
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT		5
183 #define N_FAULT			5
184 
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY		msecs_to_jiffies(50)
189 #define R_PHY_RETRY		12
190 
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL		msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT	10
202 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW	12
204 
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
208  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
209  */
210 #define SFP_PHY_ADDR		22
211 #define SFP_PHY_ADDR_ROLLBALL	17
212 
213 struct sff_data {
214 	unsigned int gpios;
215 	bool (*module_supported)(const struct sfp_eeprom_id *id);
216 };
217 
218 struct sfp {
219 	struct device *dev;
220 	struct i2c_adapter *i2c;
221 	struct mii_bus *i2c_mii;
222 	struct sfp_bus *sfp_bus;
223 	enum mdio_i2c_proto mdio_protocol;
224 	struct phy_device *mod_phy;
225 	const struct sff_data *type;
226 	size_t i2c_block_size;
227 	u32 max_power_mW;
228 
229 	unsigned int (*get_state)(struct sfp *);
230 	void (*set_state)(struct sfp *, unsigned int);
231 	int (*read)(struct sfp *, bool, u8, void *, size_t);
232 	int (*write)(struct sfp *, bool, u8, void *, size_t);
233 
234 	struct gpio_desc *gpio[GPIO_MAX];
235 	int gpio_irq[GPIO_MAX];
236 
237 	bool need_poll;
238 
239 	struct mutex st_mutex;			/* Protects state */
240 	unsigned int state_hw_mask;
241 	unsigned int state_soft_mask;
242 	unsigned int state;
243 	struct delayed_work poll;
244 	struct delayed_work timeout;
245 	struct mutex sm_mutex;			/* Protects state machine */
246 	unsigned char sm_mod_state;
247 	unsigned char sm_mod_tries_init;
248 	unsigned char sm_mod_tries;
249 	unsigned char sm_dev_state;
250 	unsigned short sm_state;
251 	unsigned char sm_fault_retries;
252 	unsigned char sm_phy_retries;
253 
254 	struct sfp_eeprom_id id;
255 	unsigned int module_power_mW;
256 	unsigned int module_t_start_up;
257 	unsigned int module_t_wait;
258 
259 	bool have_a2;
260 	bool tx_fault_ignore;
261 
262 	const struct sfp_quirk *quirk;
263 
264 #if IS_ENABLED(CONFIG_HWMON)
265 	struct sfp_diag diag;
266 	struct delayed_work hwmon_probe;
267 	unsigned int hwmon_tries;
268 	struct device *hwmon_dev;
269 	char *hwmon_name;
270 #endif
271 
272 #if IS_ENABLED(CONFIG_DEBUG_FS)
273 	struct dentry *debugfs_dir;
274 #endif
275 };
276 
277 static bool sff_module_supported(const struct sfp_eeprom_id *id)
278 {
279 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
280 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
281 }
282 
283 static const struct sff_data sff_data = {
284 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
285 	.module_supported = sff_module_supported,
286 };
287 
288 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
289 {
290 	if (id->base.phys_id == SFF8024_ID_SFP &&
291 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
292 		return true;
293 
294 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
295 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
296 	 * as supported based on vendor name and pn match.
297 	 */
298 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
299 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
300 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
301 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
302 		return true;
303 
304 	return false;
305 }
306 
307 static const struct sff_data sfp_data = {
308 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
309 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
310 	.module_supported = sfp_module_supported,
311 };
312 
313 static const struct of_device_id sfp_of_match[] = {
314 	{ .compatible = "sff,sff", .data = &sff_data, },
315 	{ .compatible = "sff,sfp", .data = &sfp_data, },
316 	{ },
317 };
318 MODULE_DEVICE_TABLE(of, sfp_of_match);
319 
320 static void sfp_fixup_long_startup(struct sfp *sfp)
321 {
322 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
323 }
324 
325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
326 {
327 	sfp->tx_fault_ignore = true;
328 }
329 
330 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
331 {
332 	/* Ignore the TX_FAULT and LOS signals on this module.
333 	 * these are possibly used for other purposes on this
334 	 * module, e.g. a serial port.
335 	 */
336 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
337 }
338 
339 static void sfp_fixup_rollball(struct sfp *sfp)
340 {
341 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
342 	sfp->module_t_wait = T_WAIT_ROLLBALL;
343 }
344 
345 static void sfp_fixup_rollball_cc(struct sfp *sfp)
346 {
347 	sfp_fixup_rollball(sfp);
348 
349 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
350 	 * burned in EEPROM. For PHY probing we need the correct one.
351 	 */
352 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
353 }
354 
355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
356 				unsigned long *modes,
357 				unsigned long *interfaces)
358 {
359 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
360 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
361 }
362 
363 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
364 				      unsigned long *modes,
365 				      unsigned long *interfaces)
366 {
367 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
368 	 * types including 10G Ethernet which is not truth. So clear all claimed
369 	 * modes and set only one mode which module supports: 1000baseX_Full.
370 	 */
371 	linkmode_zero(modes);
372 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
373 }
374 
375 #define SFP_QUIRK(_v, _p, _m, _f) \
376 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
377 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
378 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
379 
380 static const struct sfp_quirk sfp_quirks[] = {
381 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
382 	// report 2500MBd NRZ in their EEPROM
383 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
384 
385 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
386 	// NRZ in their EEPROM
387 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
388 		  sfp_fixup_long_startup),
389 
390 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
391 
392 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
393 	// their EEPROM
394 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
395 		  sfp_fixup_ignore_tx_fault),
396 
397 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
398 	// 2500MBd NRZ in their EEPROM
399 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
400 
401 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
402 
403 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
404 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
405 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
406 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
407 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
408 };
409 
410 static size_t sfp_strlen(const char *str, size_t maxlen)
411 {
412 	size_t size, i;
413 
414 	/* Trailing characters should be filled with space chars, but
415 	 * some manufacturers can't read SFF-8472 and use NUL.
416 	 */
417 	for (i = 0, size = 0; i < maxlen; i++)
418 		if (str[i] != ' ' && str[i] != '\0')
419 			size = i + 1;
420 
421 	return size;
422 }
423 
424 static bool sfp_match(const char *qs, const char *str, size_t len)
425 {
426 	if (!qs)
427 		return true;
428 	if (strlen(qs) != len)
429 		return false;
430 	return !strncmp(qs, str, len);
431 }
432 
433 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
434 {
435 	const struct sfp_quirk *q;
436 	unsigned int i;
437 	size_t vs, ps;
438 
439 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
440 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
441 
442 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
443 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
444 		    sfp_match(q->part, id->base.vendor_pn, ps))
445 			return q;
446 
447 	return NULL;
448 }
449 
450 static unsigned long poll_jiffies;
451 
452 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
453 {
454 	unsigned int i, state, v;
455 
456 	for (i = state = 0; i < GPIO_MAX; i++) {
457 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
458 			continue;
459 
460 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
461 		if (v)
462 			state |= BIT(i);
463 	}
464 
465 	return state;
466 }
467 
468 static unsigned int sff_gpio_get_state(struct sfp *sfp)
469 {
470 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
471 }
472 
473 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
474 {
475 	if (state & SFP_F_PRESENT) {
476 		/* If the module is present, drive the signals */
477 		if (sfp->gpio[GPIO_TX_DISABLE])
478 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
479 					       state & SFP_F_TX_DISABLE);
480 		if (state & SFP_F_RATE_SELECT)
481 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
482 					       state & SFP_F_RATE_SELECT);
483 	} else {
484 		/* Otherwise, let them float to the pull-ups */
485 		if (sfp->gpio[GPIO_TX_DISABLE])
486 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
487 		if (state & SFP_F_RATE_SELECT)
488 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
489 	}
490 }
491 
492 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
493 			size_t len)
494 {
495 	struct i2c_msg msgs[2];
496 	u8 bus_addr = a2 ? 0x51 : 0x50;
497 	size_t block_size = sfp->i2c_block_size;
498 	size_t this_len;
499 	int ret;
500 
501 	msgs[0].addr = bus_addr;
502 	msgs[0].flags = 0;
503 	msgs[0].len = 1;
504 	msgs[0].buf = &dev_addr;
505 	msgs[1].addr = bus_addr;
506 	msgs[1].flags = I2C_M_RD;
507 	msgs[1].len = len;
508 	msgs[1].buf = buf;
509 
510 	while (len) {
511 		this_len = len;
512 		if (this_len > block_size)
513 			this_len = block_size;
514 
515 		msgs[1].len = this_len;
516 
517 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
518 		if (ret < 0)
519 			return ret;
520 
521 		if (ret != ARRAY_SIZE(msgs))
522 			break;
523 
524 		msgs[1].buf += this_len;
525 		dev_addr += this_len;
526 		len -= this_len;
527 	}
528 
529 	return msgs[1].buf - (u8 *)buf;
530 }
531 
532 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
533 	size_t len)
534 {
535 	struct i2c_msg msgs[1];
536 	u8 bus_addr = a2 ? 0x51 : 0x50;
537 	int ret;
538 
539 	msgs[0].addr = bus_addr;
540 	msgs[0].flags = 0;
541 	msgs[0].len = 1 + len;
542 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
543 	if (!msgs[0].buf)
544 		return -ENOMEM;
545 
546 	msgs[0].buf[0] = dev_addr;
547 	memcpy(&msgs[0].buf[1], buf, len);
548 
549 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
550 
551 	kfree(msgs[0].buf);
552 
553 	if (ret < 0)
554 		return ret;
555 
556 	return ret == ARRAY_SIZE(msgs) ? len : 0;
557 }
558 
559 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
560 {
561 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
562 		return -EINVAL;
563 
564 	sfp->i2c = i2c;
565 	sfp->read = sfp_i2c_read;
566 	sfp->write = sfp_i2c_write;
567 
568 	return 0;
569 }
570 
571 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
572 {
573 	struct mii_bus *i2c_mii;
574 	int ret;
575 
576 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
577 	if (IS_ERR(i2c_mii))
578 		return PTR_ERR(i2c_mii);
579 
580 	i2c_mii->name = "SFP I2C Bus";
581 	i2c_mii->phy_mask = ~0;
582 
583 	ret = mdiobus_register(i2c_mii);
584 	if (ret < 0) {
585 		mdiobus_free(i2c_mii);
586 		return ret;
587 	}
588 
589 	sfp->i2c_mii = i2c_mii;
590 
591 	return 0;
592 }
593 
594 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
595 {
596 	mdiobus_unregister(sfp->i2c_mii);
597 	sfp->i2c_mii = NULL;
598 }
599 
600 /* Interface */
601 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
602 {
603 	return sfp->read(sfp, a2, addr, buf, len);
604 }
605 
606 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
607 {
608 	return sfp->write(sfp, a2, addr, buf, len);
609 }
610 
611 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
612 {
613 	int ret;
614 	u8 old, v;
615 
616 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
617 	if (ret != sizeof(old))
618 		return ret;
619 
620 	v = (old & ~mask) | (val & mask);
621 	if (v == old)
622 		return sizeof(v);
623 
624 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
625 }
626 
627 static unsigned int sfp_soft_get_state(struct sfp *sfp)
628 {
629 	unsigned int state = 0;
630 	u8 status;
631 	int ret;
632 
633 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
634 	if (ret == sizeof(status)) {
635 		if (status & SFP_STATUS_RX_LOS)
636 			state |= SFP_F_LOS;
637 		if (status & SFP_STATUS_TX_FAULT)
638 			state |= SFP_F_TX_FAULT;
639 	} else {
640 		dev_err_ratelimited(sfp->dev,
641 				    "failed to read SFP soft status: %pe\n",
642 				    ERR_PTR(ret));
643 		/* Preserve the current state */
644 		state = sfp->state;
645 	}
646 
647 	return state & sfp->state_soft_mask;
648 }
649 
650 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
651 {
652 	u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
653 	u8 val = 0;
654 
655 	if (state & SFP_F_TX_DISABLE)
656 		val |= SFP_STATUS_TX_DISABLE_FORCE;
657 
658 
659 	sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
660 }
661 
662 static void sfp_soft_start_poll(struct sfp *sfp)
663 {
664 	const struct sfp_eeprom_id *id = &sfp->id;
665 	unsigned int mask = 0;
666 
667 	sfp->state_soft_mask = 0;
668 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
669 		mask |= SFP_F_TX_DISABLE;
670 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
671 		mask |= SFP_F_TX_FAULT;
672 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
673 		mask |= SFP_F_LOS;
674 
675 	// Poll the soft state for hardware pins we want to ignore
676 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
677 
678 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
679 	    !sfp->need_poll)
680 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
681 }
682 
683 static void sfp_soft_stop_poll(struct sfp *sfp)
684 {
685 	sfp->state_soft_mask = 0;
686 }
687 
688 static unsigned int sfp_get_state(struct sfp *sfp)
689 {
690 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
691 	unsigned int state;
692 
693 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
694 	if (state & SFP_F_PRESENT && soft)
695 		state |= sfp_soft_get_state(sfp);
696 
697 	return state;
698 }
699 
700 static void sfp_set_state(struct sfp *sfp, unsigned int state)
701 {
702 	sfp->set_state(sfp, state);
703 
704 	if (state & SFP_F_PRESENT &&
705 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
706 		sfp_soft_set_state(sfp, state);
707 }
708 
709 static unsigned int sfp_check(void *buf, size_t len)
710 {
711 	u8 *p, check;
712 
713 	for (p = buf, check = 0; len; p++, len--)
714 		check += *p;
715 
716 	return check;
717 }
718 
719 /* hwmon */
720 #if IS_ENABLED(CONFIG_HWMON)
721 static umode_t sfp_hwmon_is_visible(const void *data,
722 				    enum hwmon_sensor_types type,
723 				    u32 attr, int channel)
724 {
725 	const struct sfp *sfp = data;
726 
727 	switch (type) {
728 	case hwmon_temp:
729 		switch (attr) {
730 		case hwmon_temp_min_alarm:
731 		case hwmon_temp_max_alarm:
732 		case hwmon_temp_lcrit_alarm:
733 		case hwmon_temp_crit_alarm:
734 		case hwmon_temp_min:
735 		case hwmon_temp_max:
736 		case hwmon_temp_lcrit:
737 		case hwmon_temp_crit:
738 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
739 				return 0;
740 			fallthrough;
741 		case hwmon_temp_input:
742 		case hwmon_temp_label:
743 			return 0444;
744 		default:
745 			return 0;
746 		}
747 	case hwmon_in:
748 		switch (attr) {
749 		case hwmon_in_min_alarm:
750 		case hwmon_in_max_alarm:
751 		case hwmon_in_lcrit_alarm:
752 		case hwmon_in_crit_alarm:
753 		case hwmon_in_min:
754 		case hwmon_in_max:
755 		case hwmon_in_lcrit:
756 		case hwmon_in_crit:
757 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
758 				return 0;
759 			fallthrough;
760 		case hwmon_in_input:
761 		case hwmon_in_label:
762 			return 0444;
763 		default:
764 			return 0;
765 		}
766 	case hwmon_curr:
767 		switch (attr) {
768 		case hwmon_curr_min_alarm:
769 		case hwmon_curr_max_alarm:
770 		case hwmon_curr_lcrit_alarm:
771 		case hwmon_curr_crit_alarm:
772 		case hwmon_curr_min:
773 		case hwmon_curr_max:
774 		case hwmon_curr_lcrit:
775 		case hwmon_curr_crit:
776 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
777 				return 0;
778 			fallthrough;
779 		case hwmon_curr_input:
780 		case hwmon_curr_label:
781 			return 0444;
782 		default:
783 			return 0;
784 		}
785 	case hwmon_power:
786 		/* External calibration of receive power requires
787 		 * floating point arithmetic. Doing that in the kernel
788 		 * is not easy, so just skip it. If the module does
789 		 * not require external calibration, we can however
790 		 * show receiver power, since FP is then not needed.
791 		 */
792 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
793 		    channel == 1)
794 			return 0;
795 		switch (attr) {
796 		case hwmon_power_min_alarm:
797 		case hwmon_power_max_alarm:
798 		case hwmon_power_lcrit_alarm:
799 		case hwmon_power_crit_alarm:
800 		case hwmon_power_min:
801 		case hwmon_power_max:
802 		case hwmon_power_lcrit:
803 		case hwmon_power_crit:
804 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
805 				return 0;
806 			fallthrough;
807 		case hwmon_power_input:
808 		case hwmon_power_label:
809 			return 0444;
810 		default:
811 			return 0;
812 		}
813 	default:
814 		return 0;
815 	}
816 }
817 
818 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
819 {
820 	__be16 val;
821 	int err;
822 
823 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
824 	if (err < 0)
825 		return err;
826 
827 	*value = be16_to_cpu(val);
828 
829 	return 0;
830 }
831 
832 static void sfp_hwmon_to_rx_power(long *value)
833 {
834 	*value = DIV_ROUND_CLOSEST(*value, 10);
835 }
836 
837 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
838 				long *value)
839 {
840 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
841 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
842 }
843 
844 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
845 {
846 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
847 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
848 
849 	if (*value >= 0x8000)
850 		*value -= 0x10000;
851 
852 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
853 }
854 
855 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
856 {
857 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
858 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
859 
860 	*value = DIV_ROUND_CLOSEST(*value, 10);
861 }
862 
863 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
864 {
865 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
866 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
867 
868 	*value = DIV_ROUND_CLOSEST(*value, 500);
869 }
870 
871 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
872 {
873 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
874 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
875 
876 	*value = DIV_ROUND_CLOSEST(*value, 10);
877 }
878 
879 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
880 {
881 	int err;
882 
883 	err = sfp_hwmon_read_sensor(sfp, reg, value);
884 	if (err < 0)
885 		return err;
886 
887 	sfp_hwmon_calibrate_temp(sfp, value);
888 
889 	return 0;
890 }
891 
892 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
893 {
894 	int err;
895 
896 	err = sfp_hwmon_read_sensor(sfp, reg, value);
897 	if (err < 0)
898 		return err;
899 
900 	sfp_hwmon_calibrate_vcc(sfp, value);
901 
902 	return 0;
903 }
904 
905 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
906 {
907 	int err;
908 
909 	err = sfp_hwmon_read_sensor(sfp, reg, value);
910 	if (err < 0)
911 		return err;
912 
913 	sfp_hwmon_calibrate_bias(sfp, value);
914 
915 	return 0;
916 }
917 
918 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
919 {
920 	int err;
921 
922 	err = sfp_hwmon_read_sensor(sfp, reg, value);
923 	if (err < 0)
924 		return err;
925 
926 	sfp_hwmon_calibrate_tx_power(sfp, value);
927 
928 	return 0;
929 }
930 
931 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
932 {
933 	int err;
934 
935 	err = sfp_hwmon_read_sensor(sfp, reg, value);
936 	if (err < 0)
937 		return err;
938 
939 	sfp_hwmon_to_rx_power(value);
940 
941 	return 0;
942 }
943 
944 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
945 {
946 	u8 status;
947 	int err;
948 
949 	switch (attr) {
950 	case hwmon_temp_input:
951 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
952 
953 	case hwmon_temp_lcrit:
954 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
955 		sfp_hwmon_calibrate_temp(sfp, value);
956 		return 0;
957 
958 	case hwmon_temp_min:
959 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
960 		sfp_hwmon_calibrate_temp(sfp, value);
961 		return 0;
962 	case hwmon_temp_max:
963 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
964 		sfp_hwmon_calibrate_temp(sfp, value);
965 		return 0;
966 
967 	case hwmon_temp_crit:
968 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
969 		sfp_hwmon_calibrate_temp(sfp, value);
970 		return 0;
971 
972 	case hwmon_temp_lcrit_alarm:
973 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
974 		if (err < 0)
975 			return err;
976 
977 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
978 		return 0;
979 
980 	case hwmon_temp_min_alarm:
981 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
982 		if (err < 0)
983 			return err;
984 
985 		*value = !!(status & SFP_WARN0_TEMP_LOW);
986 		return 0;
987 
988 	case hwmon_temp_max_alarm:
989 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
990 		if (err < 0)
991 			return err;
992 
993 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
994 		return 0;
995 
996 	case hwmon_temp_crit_alarm:
997 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
998 		if (err < 0)
999 			return err;
1000 
1001 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1002 		return 0;
1003 	default:
1004 		return -EOPNOTSUPP;
1005 	}
1006 
1007 	return -EOPNOTSUPP;
1008 }
1009 
1010 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1011 {
1012 	u8 status;
1013 	int err;
1014 
1015 	switch (attr) {
1016 	case hwmon_in_input:
1017 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1018 
1019 	case hwmon_in_lcrit:
1020 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1021 		sfp_hwmon_calibrate_vcc(sfp, value);
1022 		return 0;
1023 
1024 	case hwmon_in_min:
1025 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1026 		sfp_hwmon_calibrate_vcc(sfp, value);
1027 		return 0;
1028 
1029 	case hwmon_in_max:
1030 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1031 		sfp_hwmon_calibrate_vcc(sfp, value);
1032 		return 0;
1033 
1034 	case hwmon_in_crit:
1035 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1036 		sfp_hwmon_calibrate_vcc(sfp, value);
1037 		return 0;
1038 
1039 	case hwmon_in_lcrit_alarm:
1040 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1041 		if (err < 0)
1042 			return err;
1043 
1044 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1045 		return 0;
1046 
1047 	case hwmon_in_min_alarm:
1048 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1049 		if (err < 0)
1050 			return err;
1051 
1052 		*value = !!(status & SFP_WARN0_VCC_LOW);
1053 		return 0;
1054 
1055 	case hwmon_in_max_alarm:
1056 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1057 		if (err < 0)
1058 			return err;
1059 
1060 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1061 		return 0;
1062 
1063 	case hwmon_in_crit_alarm:
1064 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1065 		if (err < 0)
1066 			return err;
1067 
1068 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1069 		return 0;
1070 	default:
1071 		return -EOPNOTSUPP;
1072 	}
1073 
1074 	return -EOPNOTSUPP;
1075 }
1076 
1077 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1078 {
1079 	u8 status;
1080 	int err;
1081 
1082 	switch (attr) {
1083 	case hwmon_curr_input:
1084 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1085 
1086 	case hwmon_curr_lcrit:
1087 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1088 		sfp_hwmon_calibrate_bias(sfp, value);
1089 		return 0;
1090 
1091 	case hwmon_curr_min:
1092 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1093 		sfp_hwmon_calibrate_bias(sfp, value);
1094 		return 0;
1095 
1096 	case hwmon_curr_max:
1097 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1098 		sfp_hwmon_calibrate_bias(sfp, value);
1099 		return 0;
1100 
1101 	case hwmon_curr_crit:
1102 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1103 		sfp_hwmon_calibrate_bias(sfp, value);
1104 		return 0;
1105 
1106 	case hwmon_curr_lcrit_alarm:
1107 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1108 		if (err < 0)
1109 			return err;
1110 
1111 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1112 		return 0;
1113 
1114 	case hwmon_curr_min_alarm:
1115 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1116 		if (err < 0)
1117 			return err;
1118 
1119 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1120 		return 0;
1121 
1122 	case hwmon_curr_max_alarm:
1123 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124 		if (err < 0)
1125 			return err;
1126 
1127 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1128 		return 0;
1129 
1130 	case hwmon_curr_crit_alarm:
1131 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1132 		if (err < 0)
1133 			return err;
1134 
1135 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1136 		return 0;
1137 	default:
1138 		return -EOPNOTSUPP;
1139 	}
1140 
1141 	return -EOPNOTSUPP;
1142 }
1143 
1144 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1145 {
1146 	u8 status;
1147 	int err;
1148 
1149 	switch (attr) {
1150 	case hwmon_power_input:
1151 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1152 
1153 	case hwmon_power_lcrit:
1154 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1155 		sfp_hwmon_calibrate_tx_power(sfp, value);
1156 		return 0;
1157 
1158 	case hwmon_power_min:
1159 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1160 		sfp_hwmon_calibrate_tx_power(sfp, value);
1161 		return 0;
1162 
1163 	case hwmon_power_max:
1164 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1165 		sfp_hwmon_calibrate_tx_power(sfp, value);
1166 		return 0;
1167 
1168 	case hwmon_power_crit:
1169 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1170 		sfp_hwmon_calibrate_tx_power(sfp, value);
1171 		return 0;
1172 
1173 	case hwmon_power_lcrit_alarm:
1174 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1175 		if (err < 0)
1176 			return err;
1177 
1178 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1179 		return 0;
1180 
1181 	case hwmon_power_min_alarm:
1182 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1183 		if (err < 0)
1184 			return err;
1185 
1186 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1187 		return 0;
1188 
1189 	case hwmon_power_max_alarm:
1190 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191 		if (err < 0)
1192 			return err;
1193 
1194 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1195 		return 0;
1196 
1197 	case hwmon_power_crit_alarm:
1198 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1199 		if (err < 0)
1200 			return err;
1201 
1202 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1203 		return 0;
1204 	default:
1205 		return -EOPNOTSUPP;
1206 	}
1207 
1208 	return -EOPNOTSUPP;
1209 }
1210 
1211 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1212 {
1213 	u8 status;
1214 	int err;
1215 
1216 	switch (attr) {
1217 	case hwmon_power_input:
1218 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1219 
1220 	case hwmon_power_lcrit:
1221 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1222 		sfp_hwmon_to_rx_power(value);
1223 		return 0;
1224 
1225 	case hwmon_power_min:
1226 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1227 		sfp_hwmon_to_rx_power(value);
1228 		return 0;
1229 
1230 	case hwmon_power_max:
1231 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1232 		sfp_hwmon_to_rx_power(value);
1233 		return 0;
1234 
1235 	case hwmon_power_crit:
1236 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1237 		sfp_hwmon_to_rx_power(value);
1238 		return 0;
1239 
1240 	case hwmon_power_lcrit_alarm:
1241 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1242 		if (err < 0)
1243 			return err;
1244 
1245 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1246 		return 0;
1247 
1248 	case hwmon_power_min_alarm:
1249 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1250 		if (err < 0)
1251 			return err;
1252 
1253 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1254 		return 0;
1255 
1256 	case hwmon_power_max_alarm:
1257 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1258 		if (err < 0)
1259 			return err;
1260 
1261 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1262 		return 0;
1263 
1264 	case hwmon_power_crit_alarm:
1265 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1266 		if (err < 0)
1267 			return err;
1268 
1269 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1270 		return 0;
1271 	default:
1272 		return -EOPNOTSUPP;
1273 	}
1274 
1275 	return -EOPNOTSUPP;
1276 }
1277 
1278 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1279 			  u32 attr, int channel, long *value)
1280 {
1281 	struct sfp *sfp = dev_get_drvdata(dev);
1282 
1283 	switch (type) {
1284 	case hwmon_temp:
1285 		return sfp_hwmon_temp(sfp, attr, value);
1286 	case hwmon_in:
1287 		return sfp_hwmon_vcc(sfp, attr, value);
1288 	case hwmon_curr:
1289 		return sfp_hwmon_bias(sfp, attr, value);
1290 	case hwmon_power:
1291 		switch (channel) {
1292 		case 0:
1293 			return sfp_hwmon_tx_power(sfp, attr, value);
1294 		case 1:
1295 			return sfp_hwmon_rx_power(sfp, attr, value);
1296 		default:
1297 			return -EOPNOTSUPP;
1298 		}
1299 	default:
1300 		return -EOPNOTSUPP;
1301 	}
1302 }
1303 
1304 static const char *const sfp_hwmon_power_labels[] = {
1305 	"TX_power",
1306 	"RX_power",
1307 };
1308 
1309 static int sfp_hwmon_read_string(struct device *dev,
1310 				 enum hwmon_sensor_types type,
1311 				 u32 attr, int channel, const char **str)
1312 {
1313 	switch (type) {
1314 	case hwmon_curr:
1315 		switch (attr) {
1316 		case hwmon_curr_label:
1317 			*str = "bias";
1318 			return 0;
1319 		default:
1320 			return -EOPNOTSUPP;
1321 		}
1322 		break;
1323 	case hwmon_temp:
1324 		switch (attr) {
1325 		case hwmon_temp_label:
1326 			*str = "temperature";
1327 			return 0;
1328 		default:
1329 			return -EOPNOTSUPP;
1330 		}
1331 		break;
1332 	case hwmon_in:
1333 		switch (attr) {
1334 		case hwmon_in_label:
1335 			*str = "VCC";
1336 			return 0;
1337 		default:
1338 			return -EOPNOTSUPP;
1339 		}
1340 		break;
1341 	case hwmon_power:
1342 		switch (attr) {
1343 		case hwmon_power_label:
1344 			*str = sfp_hwmon_power_labels[channel];
1345 			return 0;
1346 		default:
1347 			return -EOPNOTSUPP;
1348 		}
1349 		break;
1350 	default:
1351 		return -EOPNOTSUPP;
1352 	}
1353 
1354 	return -EOPNOTSUPP;
1355 }
1356 
1357 static const struct hwmon_ops sfp_hwmon_ops = {
1358 	.is_visible = sfp_hwmon_is_visible,
1359 	.read = sfp_hwmon_read,
1360 	.read_string = sfp_hwmon_read_string,
1361 };
1362 
1363 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1364 	HWMON_CHANNEL_INFO(chip,
1365 			   HWMON_C_REGISTER_TZ),
1366 	HWMON_CHANNEL_INFO(in,
1367 			   HWMON_I_INPUT |
1368 			   HWMON_I_MAX | HWMON_I_MIN |
1369 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1370 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1371 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1372 			   HWMON_I_LABEL),
1373 	HWMON_CHANNEL_INFO(temp,
1374 			   HWMON_T_INPUT |
1375 			   HWMON_T_MAX | HWMON_T_MIN |
1376 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1377 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1378 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1379 			   HWMON_T_LABEL),
1380 	HWMON_CHANNEL_INFO(curr,
1381 			   HWMON_C_INPUT |
1382 			   HWMON_C_MAX | HWMON_C_MIN |
1383 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1384 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1385 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1386 			   HWMON_C_LABEL),
1387 	HWMON_CHANNEL_INFO(power,
1388 			   /* Transmit power */
1389 			   HWMON_P_INPUT |
1390 			   HWMON_P_MAX | HWMON_P_MIN |
1391 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1392 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1393 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1394 			   HWMON_P_LABEL,
1395 			   /* Receive power */
1396 			   HWMON_P_INPUT |
1397 			   HWMON_P_MAX | HWMON_P_MIN |
1398 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1399 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1400 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1401 			   HWMON_P_LABEL),
1402 	NULL,
1403 };
1404 
1405 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1406 	.ops = &sfp_hwmon_ops,
1407 	.info = sfp_hwmon_info,
1408 };
1409 
1410 static void sfp_hwmon_probe(struct work_struct *work)
1411 {
1412 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1413 	int err;
1414 
1415 	/* hwmon interface needs to access 16bit registers in atomic way to
1416 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1417 	 * possible to guarantee coherency because EEPROM is broken in such way
1418 	 * that does not support atomic 16bit read operation then we have to
1419 	 * skip registration of hwmon device.
1420 	 */
1421 	if (sfp->i2c_block_size < 2) {
1422 		dev_info(sfp->dev,
1423 			 "skipping hwmon device registration due to broken EEPROM\n");
1424 		dev_info(sfp->dev,
1425 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1426 		return;
1427 	}
1428 
1429 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1430 	if (err < 0) {
1431 		if (sfp->hwmon_tries--) {
1432 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1433 					 T_PROBE_RETRY_SLOW);
1434 		} else {
1435 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1436 				 ERR_PTR(err));
1437 		}
1438 		return;
1439 	}
1440 
1441 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1442 	if (IS_ERR(sfp->hwmon_name)) {
1443 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1444 		return;
1445 	}
1446 
1447 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1448 							 sfp->hwmon_name, sfp,
1449 							 &sfp_hwmon_chip_info,
1450 							 NULL);
1451 	if (IS_ERR(sfp->hwmon_dev))
1452 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1453 			PTR_ERR(sfp->hwmon_dev));
1454 }
1455 
1456 static int sfp_hwmon_insert(struct sfp *sfp)
1457 {
1458 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1459 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1460 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static void sfp_hwmon_remove(struct sfp *sfp)
1467 {
1468 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1469 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1470 		hwmon_device_unregister(sfp->hwmon_dev);
1471 		sfp->hwmon_dev = NULL;
1472 		kfree(sfp->hwmon_name);
1473 	}
1474 }
1475 
1476 static int sfp_hwmon_init(struct sfp *sfp)
1477 {
1478 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1479 
1480 	return 0;
1481 }
1482 
1483 static void sfp_hwmon_exit(struct sfp *sfp)
1484 {
1485 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1486 }
1487 #else
1488 static int sfp_hwmon_insert(struct sfp *sfp)
1489 {
1490 	return 0;
1491 }
1492 
1493 static void sfp_hwmon_remove(struct sfp *sfp)
1494 {
1495 }
1496 
1497 static int sfp_hwmon_init(struct sfp *sfp)
1498 {
1499 	return 0;
1500 }
1501 
1502 static void sfp_hwmon_exit(struct sfp *sfp)
1503 {
1504 }
1505 #endif
1506 
1507 /* Helpers */
1508 static void sfp_module_tx_disable(struct sfp *sfp)
1509 {
1510 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1511 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1512 	sfp->state |= SFP_F_TX_DISABLE;
1513 	sfp_set_state(sfp, sfp->state);
1514 }
1515 
1516 static void sfp_module_tx_enable(struct sfp *sfp)
1517 {
1518 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1519 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1520 	sfp->state &= ~SFP_F_TX_DISABLE;
1521 	sfp_set_state(sfp, sfp->state);
1522 }
1523 
1524 #if IS_ENABLED(CONFIG_DEBUG_FS)
1525 static int sfp_debug_state_show(struct seq_file *s, void *data)
1526 {
1527 	struct sfp *sfp = s->private;
1528 
1529 	seq_printf(s, "Module state: %s\n",
1530 		   mod_state_to_str(sfp->sm_mod_state));
1531 	seq_printf(s, "Module probe attempts: %d %d\n",
1532 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1533 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1534 	seq_printf(s, "Device state: %s\n",
1535 		   dev_state_to_str(sfp->sm_dev_state));
1536 	seq_printf(s, "Main state: %s\n",
1537 		   sm_state_to_str(sfp->sm_state));
1538 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1539 		   sfp->sm_fault_retries);
1540 	seq_printf(s, "PHY probe remaining retries: %d\n",
1541 		   sfp->sm_phy_retries);
1542 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1543 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1544 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1545 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1546 	return 0;
1547 }
1548 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1549 
1550 static void sfp_debugfs_init(struct sfp *sfp)
1551 {
1552 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1553 
1554 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1555 			    &sfp_debug_state_fops);
1556 }
1557 
1558 static void sfp_debugfs_exit(struct sfp *sfp)
1559 {
1560 	debugfs_remove_recursive(sfp->debugfs_dir);
1561 }
1562 #else
1563 static void sfp_debugfs_init(struct sfp *sfp)
1564 {
1565 }
1566 
1567 static void sfp_debugfs_exit(struct sfp *sfp)
1568 {
1569 }
1570 #endif
1571 
1572 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1573 {
1574 	unsigned int state = sfp->state;
1575 
1576 	if (state & SFP_F_TX_DISABLE)
1577 		return;
1578 
1579 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1580 
1581 	udelay(T_RESET_US);
1582 
1583 	sfp_set_state(sfp, state);
1584 }
1585 
1586 /* SFP state machine */
1587 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1588 {
1589 	if (timeout)
1590 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1591 				 timeout);
1592 	else
1593 		cancel_delayed_work(&sfp->timeout);
1594 }
1595 
1596 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1597 			unsigned int timeout)
1598 {
1599 	sfp->sm_state = state;
1600 	sfp_sm_set_timer(sfp, timeout);
1601 }
1602 
1603 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1604 			    unsigned int timeout)
1605 {
1606 	sfp->sm_mod_state = state;
1607 	sfp_sm_set_timer(sfp, timeout);
1608 }
1609 
1610 static void sfp_sm_phy_detach(struct sfp *sfp)
1611 {
1612 	sfp_remove_phy(sfp->sfp_bus);
1613 	phy_device_remove(sfp->mod_phy);
1614 	phy_device_free(sfp->mod_phy);
1615 	sfp->mod_phy = NULL;
1616 }
1617 
1618 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1619 {
1620 	struct phy_device *phy;
1621 	int err;
1622 
1623 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1624 	if (phy == ERR_PTR(-ENODEV))
1625 		return PTR_ERR(phy);
1626 	if (IS_ERR(phy)) {
1627 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1628 		return PTR_ERR(phy);
1629 	}
1630 
1631 	err = phy_device_register(phy);
1632 	if (err) {
1633 		phy_device_free(phy);
1634 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1635 			ERR_PTR(err));
1636 		return err;
1637 	}
1638 
1639 	err = sfp_add_phy(sfp->sfp_bus, phy);
1640 	if (err) {
1641 		phy_device_remove(phy);
1642 		phy_device_free(phy);
1643 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1644 		return err;
1645 	}
1646 
1647 	sfp->mod_phy = phy;
1648 
1649 	return 0;
1650 }
1651 
1652 static void sfp_sm_link_up(struct sfp *sfp)
1653 {
1654 	sfp_link_up(sfp->sfp_bus);
1655 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1656 }
1657 
1658 static void sfp_sm_link_down(struct sfp *sfp)
1659 {
1660 	sfp_link_down(sfp->sfp_bus);
1661 }
1662 
1663 static void sfp_sm_link_check_los(struct sfp *sfp)
1664 {
1665 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1666 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1667 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1668 	bool los = false;
1669 
1670 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1671 	 * are set, we assume that no LOS signal is available. If both are
1672 	 * set, we assume LOS is not implemented (and is meaningless.)
1673 	 */
1674 	if (los_options == los_inverted)
1675 		los = !(sfp->state & SFP_F_LOS);
1676 	else if (los_options == los_normal)
1677 		los = !!(sfp->state & SFP_F_LOS);
1678 
1679 	if (los)
1680 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1681 	else
1682 		sfp_sm_link_up(sfp);
1683 }
1684 
1685 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1686 {
1687 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1688 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1689 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1690 
1691 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1692 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1693 }
1694 
1695 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1696 {
1697 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1698 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1699 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1700 
1701 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1702 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1703 }
1704 
1705 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1706 {
1707 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1708 		dev_err(sfp->dev,
1709 			"module persistently indicates fault, disabling\n");
1710 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1711 	} else {
1712 		if (warn)
1713 			dev_err(sfp->dev, "module transmit fault indicated\n");
1714 
1715 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1716 	}
1717 }
1718 
1719 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1720 {
1721 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1722 		return sfp_i2c_mdiobus_create(sfp);
1723 
1724 	return 0;
1725 }
1726 
1727 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1728  * normally sits at I2C bus address 0x56, and may either be a clause 22
1729  * or clause 45 PHY.
1730  *
1731  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1732  * negotiation enabled, but some may be in 1000base-X - which is for the
1733  * PHY driver to determine.
1734  *
1735  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1736  * mode according to the negotiated line speed.
1737  */
1738 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1739 {
1740 	int err = 0;
1741 
1742 	switch (sfp->mdio_protocol) {
1743 	case MDIO_I2C_NONE:
1744 		break;
1745 
1746 	case MDIO_I2C_MARVELL_C22:
1747 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1748 		break;
1749 
1750 	case MDIO_I2C_C45:
1751 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1752 		break;
1753 
1754 	case MDIO_I2C_ROLLBALL:
1755 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1756 		break;
1757 	}
1758 
1759 	return err;
1760 }
1761 
1762 static int sfp_module_parse_power(struct sfp *sfp)
1763 {
1764 	u32 power_mW = 1000;
1765 	bool supports_a2;
1766 
1767 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1768 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1769 		power_mW = 1500;
1770 	/* Added in Rev 11.9, but there is no compliance code for this */
1771 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1772 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1773 		power_mW = 2000;
1774 
1775 	/* Power level 1 modules (max. 1W) are always supported. */
1776 	if (power_mW <= 1000) {
1777 		sfp->module_power_mW = power_mW;
1778 		return 0;
1779 	}
1780 
1781 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1782 				SFP_SFF8472_COMPLIANCE_NONE ||
1783 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1784 
1785 	if (power_mW > sfp->max_power_mW) {
1786 		/* Module power specification exceeds the allowed maximum. */
1787 		if (!supports_a2) {
1788 			/* The module appears not to implement bus address
1789 			 * 0xa2, so assume that the module powers up in the
1790 			 * indicated mode.
1791 			 */
1792 			dev_err(sfp->dev,
1793 				"Host does not support %u.%uW modules\n",
1794 				power_mW / 1000, (power_mW / 100) % 10);
1795 			return -EINVAL;
1796 		} else {
1797 			dev_warn(sfp->dev,
1798 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1799 				 power_mW / 1000, (power_mW / 100) % 10);
1800 			return 0;
1801 		}
1802 	}
1803 
1804 	if (!supports_a2) {
1805 		/* The module power level is below the host maximum and the
1806 		 * module appears not to implement bus address 0xa2, so assume
1807 		 * that the module powers up in the indicated mode.
1808 		 */
1809 		return 0;
1810 	}
1811 
1812 	/* If the module requires a higher power mode, but also requires
1813 	 * an address change sequence, warn the user that the module may
1814 	 * not be functional.
1815 	 */
1816 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1817 		dev_warn(sfp->dev,
1818 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1819 			 power_mW / 1000, (power_mW / 100) % 10);
1820 		return 0;
1821 	}
1822 
1823 	sfp->module_power_mW = power_mW;
1824 
1825 	return 0;
1826 }
1827 
1828 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1829 {
1830 	int err;
1831 
1832 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1833 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1834 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1835 	if (err != sizeof(u8)) {
1836 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1837 			enable ? "en" : "dis", ERR_PTR(err));
1838 		return -EAGAIN;
1839 	}
1840 
1841 	if (enable)
1842 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1843 			 sfp->module_power_mW / 1000,
1844 			 (sfp->module_power_mW / 100) % 10);
1845 
1846 	return 0;
1847 }
1848 
1849 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1850  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1851  * not support multibyte reads from the EEPROM. Each multi-byte read
1852  * operation returns just one byte of EEPROM followed by zeros. There is
1853  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1854  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1855  * name and vendor id into EEPROM, so there is even no way to detect if
1856  * module is V-SOL V2801F. Therefore check for those zeros in the read
1857  * data and then based on check switch to reading EEPROM to one byte
1858  * at a time.
1859  */
1860 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1861 {
1862 	size_t i, block_size = sfp->i2c_block_size;
1863 
1864 	/* Already using byte IO */
1865 	if (block_size == 1)
1866 		return false;
1867 
1868 	for (i = 1; i < len; i += block_size) {
1869 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1870 			return false;
1871 	}
1872 	return true;
1873 }
1874 
1875 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1876 {
1877 	u8 check;
1878 	int err;
1879 
1880 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1881 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1882 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1883 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1884 		id->base.phys_id = SFF8024_ID_SFF_8472;
1885 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1886 		id->base.connector = SFF8024_CONNECTOR_LC;
1887 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1888 		if (err != 3) {
1889 			dev_err(sfp->dev,
1890 				"Failed to rewrite module EEPROM: %pe\n",
1891 				ERR_PTR(err));
1892 			return err;
1893 		}
1894 
1895 		/* Cotsworks modules have been found to require a delay between write operations. */
1896 		mdelay(50);
1897 
1898 		/* Update base structure checksum */
1899 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1900 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1901 		if (err != 1) {
1902 			dev_err(sfp->dev,
1903 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1904 				ERR_PTR(err));
1905 			return err;
1906 		}
1907 	}
1908 	return 0;
1909 }
1910 
1911 static int sfp_module_parse_sff8472(struct sfp *sfp)
1912 {
1913 	/* If the module requires address swap mode, warn about it */
1914 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1915 		dev_warn(sfp->dev,
1916 			 "module address swap to access page 0xA2 is not supported.\n");
1917 	else
1918 		sfp->have_a2 = true;
1919 
1920 	return 0;
1921 }
1922 
1923 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1924 {
1925 	/* SFP module inserted - read I2C data */
1926 	struct sfp_eeprom_id id;
1927 	bool cotsworks_sfbg;
1928 	bool cotsworks;
1929 	u8 check;
1930 	int ret;
1931 
1932 	/* Some SFP modules and also some Linux I2C drivers do not like reads
1933 	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1934 	 * a time.
1935 	 */
1936 	sfp->i2c_block_size = 16;
1937 
1938 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1939 	if (ret < 0) {
1940 		if (report)
1941 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1942 				ERR_PTR(ret));
1943 		return -EAGAIN;
1944 	}
1945 
1946 	if (ret != sizeof(id.base)) {
1947 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1948 		return -EAGAIN;
1949 	}
1950 
1951 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1952 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1953 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1954 	 * fields, so do not switch to one byte reading at a time unless it
1955 	 * is really required and we have no other option.
1956 	 */
1957 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1958 		dev_info(sfp->dev,
1959 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1960 		dev_info(sfp->dev,
1961 			 "Switching to reading EEPROM to one byte at a time\n");
1962 		sfp->i2c_block_size = 1;
1963 
1964 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1965 		if (ret < 0) {
1966 			if (report)
1967 				dev_err(sfp->dev,
1968 					"failed to read EEPROM: %pe\n",
1969 					ERR_PTR(ret));
1970 			return -EAGAIN;
1971 		}
1972 
1973 		if (ret != sizeof(id.base)) {
1974 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
1975 				ERR_PTR(ret));
1976 			return -EAGAIN;
1977 		}
1978 	}
1979 
1980 	/* Cotsworks do not seem to update the checksums when they
1981 	 * do the final programming with the final module part number,
1982 	 * serial number and date code.
1983 	 */
1984 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1985 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1986 
1987 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1988 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1989 	 * Cotsworks PN matches and bytes are not correct.
1990 	 */
1991 	if (cotsworks && cotsworks_sfbg) {
1992 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1993 		if (ret < 0)
1994 			return ret;
1995 	}
1996 
1997 	/* Validate the checksum over the base structure */
1998 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1999 	if (check != id.base.cc_base) {
2000 		if (cotsworks) {
2001 			dev_warn(sfp->dev,
2002 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2003 				 check, id.base.cc_base);
2004 		} else {
2005 			dev_err(sfp->dev,
2006 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2007 				check, id.base.cc_base);
2008 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2009 				       16, 1, &id, sizeof(id), true);
2010 			return -EINVAL;
2011 		}
2012 	}
2013 
2014 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2015 	if (ret < 0) {
2016 		if (report)
2017 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2018 				ERR_PTR(ret));
2019 		return -EAGAIN;
2020 	}
2021 
2022 	if (ret != sizeof(id.ext)) {
2023 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2024 		return -EAGAIN;
2025 	}
2026 
2027 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2028 	if (check != id.ext.cc_ext) {
2029 		if (cotsworks) {
2030 			dev_warn(sfp->dev,
2031 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2032 				 check, id.ext.cc_ext);
2033 		} else {
2034 			dev_err(sfp->dev,
2035 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2036 				check, id.ext.cc_ext);
2037 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2038 				       16, 1, &id, sizeof(id), true);
2039 			memset(&id.ext, 0, sizeof(id.ext));
2040 		}
2041 	}
2042 
2043 	sfp->id = id;
2044 
2045 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2046 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2047 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2048 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2049 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2050 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2051 
2052 	/* Check whether we support this module */
2053 	if (!sfp->type->module_supported(&id)) {
2054 		dev_err(sfp->dev,
2055 			"module is not supported - phys id 0x%02x 0x%02x\n",
2056 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2057 		return -EINVAL;
2058 	}
2059 
2060 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2061 		ret = sfp_module_parse_sff8472(sfp);
2062 		if (ret < 0)
2063 			return ret;
2064 	}
2065 
2066 	/* Parse the module power requirement */
2067 	ret = sfp_module_parse_power(sfp);
2068 	if (ret < 0)
2069 		return ret;
2070 
2071 	/* Initialise state bits to use from hardware */
2072 	sfp->state_hw_mask = SFP_F_PRESENT;
2073 	if (sfp->gpio[GPIO_TX_DISABLE])
2074 		sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2075 	if (sfp->gpio[GPIO_TX_FAULT])
2076 		sfp->state_hw_mask |= SFP_F_TX_FAULT;
2077 	if (sfp->gpio[GPIO_LOS])
2078 		sfp->state_hw_mask |= SFP_F_LOS;
2079 
2080 	sfp->module_t_start_up = T_START_UP;
2081 	sfp->module_t_wait = T_WAIT;
2082 
2083 	sfp->tx_fault_ignore = false;
2084 
2085 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2086 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2087 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2088 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2089 		sfp->mdio_protocol = MDIO_I2C_C45;
2090 	else if (sfp->id.base.e1000_base_t)
2091 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2092 	else
2093 		sfp->mdio_protocol = MDIO_I2C_NONE;
2094 
2095 	sfp->quirk = sfp_lookup_quirk(&id);
2096 	if (sfp->quirk && sfp->quirk->fixup)
2097 		sfp->quirk->fixup(sfp);
2098 
2099 	return 0;
2100 }
2101 
2102 static void sfp_sm_mod_remove(struct sfp *sfp)
2103 {
2104 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2105 		sfp_module_remove(sfp->sfp_bus);
2106 
2107 	sfp_hwmon_remove(sfp);
2108 
2109 	memset(&sfp->id, 0, sizeof(sfp->id));
2110 	sfp->module_power_mW = 0;
2111 	sfp->have_a2 = false;
2112 
2113 	dev_info(sfp->dev, "module removed\n");
2114 }
2115 
2116 /* This state machine tracks the upstream's state */
2117 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2118 {
2119 	switch (sfp->sm_dev_state) {
2120 	default:
2121 		if (event == SFP_E_DEV_ATTACH)
2122 			sfp->sm_dev_state = SFP_DEV_DOWN;
2123 		break;
2124 
2125 	case SFP_DEV_DOWN:
2126 		if (event == SFP_E_DEV_DETACH)
2127 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2128 		else if (event == SFP_E_DEV_UP)
2129 			sfp->sm_dev_state = SFP_DEV_UP;
2130 		break;
2131 
2132 	case SFP_DEV_UP:
2133 		if (event == SFP_E_DEV_DETACH)
2134 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2135 		else if (event == SFP_E_DEV_DOWN)
2136 			sfp->sm_dev_state = SFP_DEV_DOWN;
2137 		break;
2138 	}
2139 }
2140 
2141 /* This state machine tracks the insert/remove state of the module, probes
2142  * the on-board EEPROM, and sets up the power level.
2143  */
2144 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2145 {
2146 	int err;
2147 
2148 	/* Handle remove event globally, it resets this state machine */
2149 	if (event == SFP_E_REMOVE) {
2150 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2151 			sfp_sm_mod_remove(sfp);
2152 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2153 		return;
2154 	}
2155 
2156 	/* Handle device detach globally */
2157 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2158 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2159 		if (sfp->module_power_mW > 1000 &&
2160 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2161 			sfp_sm_mod_hpower(sfp, false);
2162 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2163 		return;
2164 	}
2165 
2166 	switch (sfp->sm_mod_state) {
2167 	default:
2168 		if (event == SFP_E_INSERT) {
2169 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2170 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2171 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2172 		}
2173 		break;
2174 
2175 	case SFP_MOD_PROBE:
2176 		/* Wait for T_PROBE_INIT to time out */
2177 		if (event != SFP_E_TIMEOUT)
2178 			break;
2179 
2180 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2181 		if (err == -EAGAIN) {
2182 			if (sfp->sm_mod_tries_init &&
2183 			   --sfp->sm_mod_tries_init) {
2184 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2185 				break;
2186 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2187 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2188 					dev_warn(sfp->dev,
2189 						 "please wait, module slow to respond\n");
2190 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2191 				break;
2192 			}
2193 		}
2194 		if (err < 0) {
2195 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2196 			break;
2197 		}
2198 
2199 		err = sfp_hwmon_insert(sfp);
2200 		if (err)
2201 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2202 				 ERR_PTR(err));
2203 
2204 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2205 		fallthrough;
2206 	case SFP_MOD_WAITDEV:
2207 		/* Ensure that the device is attached before proceeding */
2208 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2209 			break;
2210 
2211 		/* Report the module insertion to the upstream device */
2212 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2213 					sfp->quirk);
2214 		if (err < 0) {
2215 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2216 			break;
2217 		}
2218 
2219 		/* If this is a power level 1 module, we are done */
2220 		if (sfp->module_power_mW <= 1000)
2221 			goto insert;
2222 
2223 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2224 		fallthrough;
2225 	case SFP_MOD_HPOWER:
2226 		/* Enable high power mode */
2227 		err = sfp_sm_mod_hpower(sfp, true);
2228 		if (err < 0) {
2229 			if (err != -EAGAIN) {
2230 				sfp_module_remove(sfp->sfp_bus);
2231 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2232 			} else {
2233 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2234 			}
2235 			break;
2236 		}
2237 
2238 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2239 		break;
2240 
2241 	case SFP_MOD_WAITPWR:
2242 		/* Wait for T_HPOWER_LEVEL to time out */
2243 		if (event != SFP_E_TIMEOUT)
2244 			break;
2245 
2246 	insert:
2247 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2248 		break;
2249 
2250 	case SFP_MOD_PRESENT:
2251 	case SFP_MOD_ERROR:
2252 		break;
2253 	}
2254 }
2255 
2256 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2257 {
2258 	unsigned long timeout;
2259 	int ret;
2260 
2261 	/* Some events are global */
2262 	if (sfp->sm_state != SFP_S_DOWN &&
2263 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2264 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2265 		if (sfp->sm_state == SFP_S_LINK_UP &&
2266 		    sfp->sm_dev_state == SFP_DEV_UP)
2267 			sfp_sm_link_down(sfp);
2268 		if (sfp->sm_state > SFP_S_INIT)
2269 			sfp_module_stop(sfp->sfp_bus);
2270 		if (sfp->mod_phy)
2271 			sfp_sm_phy_detach(sfp);
2272 		if (sfp->i2c_mii)
2273 			sfp_i2c_mdiobus_destroy(sfp);
2274 		sfp_module_tx_disable(sfp);
2275 		sfp_soft_stop_poll(sfp);
2276 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2277 		return;
2278 	}
2279 
2280 	/* The main state machine */
2281 	switch (sfp->sm_state) {
2282 	case SFP_S_DOWN:
2283 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2284 		    sfp->sm_dev_state != SFP_DEV_UP)
2285 			break;
2286 
2287 		/* Only use the soft state bits if we have access to the A2h
2288 		 * memory, which implies that we have some level of SFF-8472
2289 		 * compliance.
2290 		 */
2291 		if (sfp->have_a2)
2292 			sfp_soft_start_poll(sfp);
2293 
2294 		sfp_module_tx_enable(sfp);
2295 
2296 		/* Initialise the fault clearance retries */
2297 		sfp->sm_fault_retries = N_FAULT_INIT;
2298 
2299 		/* We need to check the TX_FAULT state, which is not defined
2300 		 * while TX_DISABLE is asserted. The earliest we want to do
2301 		 * anything (such as probe for a PHY) is 50ms (or more on
2302 		 * specific modules).
2303 		 */
2304 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2305 		break;
2306 
2307 	case SFP_S_WAIT:
2308 		if (event != SFP_E_TIMEOUT)
2309 			break;
2310 
2311 		if (sfp->state & SFP_F_TX_FAULT) {
2312 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2313 			 * from the TX_DISABLE deassertion for the module to
2314 			 * initialise, which is indicated by TX_FAULT
2315 			 * deasserting.
2316 			 */
2317 			timeout = sfp->module_t_start_up;
2318 			if (timeout > sfp->module_t_wait)
2319 				timeout -= sfp->module_t_wait;
2320 			else
2321 				timeout = 1;
2322 
2323 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2324 		} else {
2325 			/* TX_FAULT is not asserted, assume the module has
2326 			 * finished initialising.
2327 			 */
2328 			goto init_done;
2329 		}
2330 		break;
2331 
2332 	case SFP_S_INIT:
2333 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2334 			/* TX_FAULT is still asserted after t_init
2335 			 * or t_start_up, so assume there is a fault.
2336 			 */
2337 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2338 				     sfp->sm_fault_retries == N_FAULT_INIT);
2339 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2340 	init_done:
2341 			/* Create mdiobus and start trying for PHY */
2342 			ret = sfp_sm_add_mdio_bus(sfp);
2343 			if (ret < 0) {
2344 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2345 				break;
2346 			}
2347 			sfp->sm_phy_retries = R_PHY_RETRY;
2348 			goto phy_probe;
2349 		}
2350 		break;
2351 
2352 	case SFP_S_INIT_PHY:
2353 		if (event != SFP_E_TIMEOUT)
2354 			break;
2355 	phy_probe:
2356 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2357 		 * clear.  Probe for the PHY and check the LOS state.
2358 		 */
2359 		ret = sfp_sm_probe_for_phy(sfp);
2360 		if (ret == -ENODEV) {
2361 			if (--sfp->sm_phy_retries) {
2362 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2363 				break;
2364 			} else {
2365 				dev_info(sfp->dev, "no PHY detected\n");
2366 			}
2367 		} else if (ret) {
2368 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2369 			break;
2370 		}
2371 		if (sfp_module_start(sfp->sfp_bus)) {
2372 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2373 			break;
2374 		}
2375 		sfp_sm_link_check_los(sfp);
2376 
2377 		/* Reset the fault retry count */
2378 		sfp->sm_fault_retries = N_FAULT;
2379 		break;
2380 
2381 	case SFP_S_INIT_TX_FAULT:
2382 		if (event == SFP_E_TIMEOUT) {
2383 			sfp_module_tx_fault_reset(sfp);
2384 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2385 		}
2386 		break;
2387 
2388 	case SFP_S_WAIT_LOS:
2389 		if (event == SFP_E_TX_FAULT)
2390 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2391 		else if (sfp_los_event_inactive(sfp, event))
2392 			sfp_sm_link_up(sfp);
2393 		break;
2394 
2395 	case SFP_S_LINK_UP:
2396 		if (event == SFP_E_TX_FAULT) {
2397 			sfp_sm_link_down(sfp);
2398 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2399 		} else if (sfp_los_event_active(sfp, event)) {
2400 			sfp_sm_link_down(sfp);
2401 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2402 		}
2403 		break;
2404 
2405 	case SFP_S_TX_FAULT:
2406 		if (event == SFP_E_TIMEOUT) {
2407 			sfp_module_tx_fault_reset(sfp);
2408 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2409 		}
2410 		break;
2411 
2412 	case SFP_S_REINIT:
2413 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2414 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2415 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2416 			dev_info(sfp->dev, "module transmit fault recovered\n");
2417 			sfp_sm_link_check_los(sfp);
2418 		}
2419 		break;
2420 
2421 	case SFP_S_TX_DISABLE:
2422 		break;
2423 	}
2424 }
2425 
2426 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2427 {
2428 	mutex_lock(&sfp->sm_mutex);
2429 
2430 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2431 		mod_state_to_str(sfp->sm_mod_state),
2432 		dev_state_to_str(sfp->sm_dev_state),
2433 		sm_state_to_str(sfp->sm_state),
2434 		event_to_str(event));
2435 
2436 	sfp_sm_device(sfp, event);
2437 	sfp_sm_module(sfp, event);
2438 	sfp_sm_main(sfp, event);
2439 
2440 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2441 		mod_state_to_str(sfp->sm_mod_state),
2442 		dev_state_to_str(sfp->sm_dev_state),
2443 		sm_state_to_str(sfp->sm_state));
2444 
2445 	mutex_unlock(&sfp->sm_mutex);
2446 }
2447 
2448 static void sfp_attach(struct sfp *sfp)
2449 {
2450 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2451 }
2452 
2453 static void sfp_detach(struct sfp *sfp)
2454 {
2455 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2456 }
2457 
2458 static void sfp_start(struct sfp *sfp)
2459 {
2460 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2461 }
2462 
2463 static void sfp_stop(struct sfp *sfp)
2464 {
2465 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2466 }
2467 
2468 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2469 {
2470 	/* locking... and check module is present */
2471 
2472 	if (sfp->id.ext.sff8472_compliance &&
2473 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2474 		modinfo->type = ETH_MODULE_SFF_8472;
2475 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2476 	} else {
2477 		modinfo->type = ETH_MODULE_SFF_8079;
2478 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2479 	}
2480 	return 0;
2481 }
2482 
2483 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2484 			     u8 *data)
2485 {
2486 	unsigned int first, last, len;
2487 	int ret;
2488 
2489 	if (ee->len == 0)
2490 		return -EINVAL;
2491 
2492 	first = ee->offset;
2493 	last = ee->offset + ee->len;
2494 	if (first < ETH_MODULE_SFF_8079_LEN) {
2495 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2496 		len -= first;
2497 
2498 		ret = sfp_read(sfp, false, first, data, len);
2499 		if (ret < 0)
2500 			return ret;
2501 
2502 		first += len;
2503 		data += len;
2504 	}
2505 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2506 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2507 		len -= first;
2508 		first -= ETH_MODULE_SFF_8079_LEN;
2509 
2510 		ret = sfp_read(sfp, true, first, data, len);
2511 		if (ret < 0)
2512 			return ret;
2513 	}
2514 	return 0;
2515 }
2516 
2517 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2518 				     const struct ethtool_module_eeprom *page,
2519 				     struct netlink_ext_ack *extack)
2520 {
2521 	if (page->bank) {
2522 		NL_SET_ERR_MSG(extack, "Banks not supported");
2523 		return -EOPNOTSUPP;
2524 	}
2525 
2526 	if (page->page) {
2527 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2528 		return -EOPNOTSUPP;
2529 	}
2530 
2531 	if (page->i2c_address != 0x50 &&
2532 	    page->i2c_address != 0x51) {
2533 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2534 		return -EOPNOTSUPP;
2535 	}
2536 
2537 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2538 			page->data, page->length);
2539 };
2540 
2541 static const struct sfp_socket_ops sfp_module_ops = {
2542 	.attach = sfp_attach,
2543 	.detach = sfp_detach,
2544 	.start = sfp_start,
2545 	.stop = sfp_stop,
2546 	.module_info = sfp_module_info,
2547 	.module_eeprom = sfp_module_eeprom,
2548 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2549 };
2550 
2551 static void sfp_timeout(struct work_struct *work)
2552 {
2553 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2554 
2555 	rtnl_lock();
2556 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2557 	rtnl_unlock();
2558 }
2559 
2560 static void sfp_check_state(struct sfp *sfp)
2561 {
2562 	unsigned int state, i, changed;
2563 
2564 	mutex_lock(&sfp->st_mutex);
2565 	state = sfp_get_state(sfp);
2566 	changed = state ^ sfp->state;
2567 	if (sfp->tx_fault_ignore)
2568 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2569 	else
2570 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2571 
2572 	for (i = 0; i < GPIO_MAX; i++)
2573 		if (changed & BIT(i))
2574 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2575 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2576 
2577 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2578 	sfp->state = state;
2579 
2580 	rtnl_lock();
2581 	if (changed & SFP_F_PRESENT)
2582 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2583 				SFP_E_INSERT : SFP_E_REMOVE);
2584 
2585 	if (changed & SFP_F_TX_FAULT)
2586 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2587 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2588 
2589 	if (changed & SFP_F_LOS)
2590 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2591 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2592 	rtnl_unlock();
2593 	mutex_unlock(&sfp->st_mutex);
2594 }
2595 
2596 static irqreturn_t sfp_irq(int irq, void *data)
2597 {
2598 	struct sfp *sfp = data;
2599 
2600 	sfp_check_state(sfp);
2601 
2602 	return IRQ_HANDLED;
2603 }
2604 
2605 static void sfp_poll(struct work_struct *work)
2606 {
2607 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2608 
2609 	sfp_check_state(sfp);
2610 
2611 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2612 	    sfp->need_poll)
2613 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2614 }
2615 
2616 static struct sfp *sfp_alloc(struct device *dev)
2617 {
2618 	struct sfp *sfp;
2619 
2620 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2621 	if (!sfp)
2622 		return ERR_PTR(-ENOMEM);
2623 
2624 	sfp->dev = dev;
2625 
2626 	mutex_init(&sfp->sm_mutex);
2627 	mutex_init(&sfp->st_mutex);
2628 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2629 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2630 
2631 	sfp_hwmon_init(sfp);
2632 
2633 	return sfp;
2634 }
2635 
2636 static void sfp_cleanup(void *data)
2637 {
2638 	struct sfp *sfp = data;
2639 
2640 	sfp_hwmon_exit(sfp);
2641 
2642 	cancel_delayed_work_sync(&sfp->poll);
2643 	cancel_delayed_work_sync(&sfp->timeout);
2644 	if (sfp->i2c_mii) {
2645 		mdiobus_unregister(sfp->i2c_mii);
2646 		mdiobus_free(sfp->i2c_mii);
2647 	}
2648 	if (sfp->i2c)
2649 		i2c_put_adapter(sfp->i2c);
2650 	kfree(sfp);
2651 }
2652 
2653 static int sfp_i2c_get(struct sfp *sfp)
2654 {
2655 	struct fwnode_handle *h;
2656 	struct i2c_adapter *i2c;
2657 	int err;
2658 
2659 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2660 	if (IS_ERR(h)) {
2661 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2662 		return -ENODEV;
2663 	}
2664 
2665 	i2c = i2c_get_adapter_by_fwnode(h);
2666 	if (!i2c) {
2667 		err = -EPROBE_DEFER;
2668 		goto put;
2669 	}
2670 
2671 	err = sfp_i2c_configure(sfp, i2c);
2672 	if (err)
2673 		i2c_put_adapter(i2c);
2674 put:
2675 	fwnode_handle_put(h);
2676 	return err;
2677 }
2678 
2679 static int sfp_probe(struct platform_device *pdev)
2680 {
2681 	const struct sff_data *sff;
2682 	char *sfp_irq_name;
2683 	struct sfp *sfp;
2684 	int err, i;
2685 
2686 	sfp = sfp_alloc(&pdev->dev);
2687 	if (IS_ERR(sfp))
2688 		return PTR_ERR(sfp);
2689 
2690 	platform_set_drvdata(pdev, sfp);
2691 
2692 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2693 	if (err < 0)
2694 		return err;
2695 
2696 	sff = device_get_match_data(sfp->dev);
2697 	if (!sff)
2698 		sff = &sfp_data;
2699 
2700 	sfp->type = sff;
2701 
2702 	err = sfp_i2c_get(sfp);
2703 	if (err)
2704 		return err;
2705 
2706 	for (i = 0; i < GPIO_MAX; i++)
2707 		if (sff->gpios & BIT(i)) {
2708 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2709 					   gpio_names[i], gpio_flags[i]);
2710 			if (IS_ERR(sfp->gpio[i]))
2711 				return PTR_ERR(sfp->gpio[i]);
2712 		}
2713 
2714 	sfp->state_hw_mask = SFP_F_PRESENT;
2715 
2716 	sfp->get_state = sfp_gpio_get_state;
2717 	sfp->set_state = sfp_gpio_set_state;
2718 
2719 	/* Modules that have no detect signal are always present */
2720 	if (!(sfp->gpio[GPIO_MODDEF0]))
2721 		sfp->get_state = sff_gpio_get_state;
2722 
2723 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2724 				 &sfp->max_power_mW);
2725 	if (sfp->max_power_mW < 1000) {
2726 		if (sfp->max_power_mW)
2727 			dev_warn(sfp->dev,
2728 				 "Firmware bug: host maximum power should be at least 1W\n");
2729 		sfp->max_power_mW = 1000;
2730 	}
2731 
2732 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2733 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2734 
2735 	/* Get the initial state, and always signal TX disable,
2736 	 * since the network interface will not be up.
2737 	 */
2738 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2739 
2740 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2741 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2742 		sfp->state |= SFP_F_RATE_SELECT;
2743 	sfp_set_state(sfp, sfp->state);
2744 	sfp_module_tx_disable(sfp);
2745 	if (sfp->state & SFP_F_PRESENT) {
2746 		rtnl_lock();
2747 		sfp_sm_event(sfp, SFP_E_INSERT);
2748 		rtnl_unlock();
2749 	}
2750 
2751 	for (i = 0; i < GPIO_MAX; i++) {
2752 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2753 			continue;
2754 
2755 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2756 		if (sfp->gpio_irq[i] < 0) {
2757 			sfp->gpio_irq[i] = 0;
2758 			sfp->need_poll = true;
2759 			continue;
2760 		}
2761 
2762 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2763 					      "%s-%s", dev_name(sfp->dev),
2764 					      gpio_names[i]);
2765 
2766 		if (!sfp_irq_name)
2767 			return -ENOMEM;
2768 
2769 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2770 						NULL, sfp_irq,
2771 						IRQF_ONESHOT |
2772 						IRQF_TRIGGER_RISING |
2773 						IRQF_TRIGGER_FALLING,
2774 						sfp_irq_name, sfp);
2775 		if (err) {
2776 			sfp->gpio_irq[i] = 0;
2777 			sfp->need_poll = true;
2778 		}
2779 	}
2780 
2781 	if (sfp->need_poll)
2782 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2783 
2784 	/* We could have an issue in cases no Tx disable pin is available or
2785 	 * wired as modules using a laser as their light source will continue to
2786 	 * be active when the fiber is removed. This could be a safety issue and
2787 	 * we should at least warn the user about that.
2788 	 */
2789 	if (!sfp->gpio[GPIO_TX_DISABLE])
2790 		dev_warn(sfp->dev,
2791 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2792 
2793 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2794 	if (!sfp->sfp_bus)
2795 		return -ENOMEM;
2796 
2797 	sfp_debugfs_init(sfp);
2798 
2799 	return 0;
2800 }
2801 
2802 static int sfp_remove(struct platform_device *pdev)
2803 {
2804 	struct sfp *sfp = platform_get_drvdata(pdev);
2805 
2806 	sfp_debugfs_exit(sfp);
2807 	sfp_unregister_socket(sfp->sfp_bus);
2808 
2809 	rtnl_lock();
2810 	sfp_sm_event(sfp, SFP_E_REMOVE);
2811 	rtnl_unlock();
2812 
2813 	return 0;
2814 }
2815 
2816 static void sfp_shutdown(struct platform_device *pdev)
2817 {
2818 	struct sfp *sfp = platform_get_drvdata(pdev);
2819 	int i;
2820 
2821 	for (i = 0; i < GPIO_MAX; i++) {
2822 		if (!sfp->gpio_irq[i])
2823 			continue;
2824 
2825 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2826 	}
2827 
2828 	cancel_delayed_work_sync(&sfp->poll);
2829 	cancel_delayed_work_sync(&sfp->timeout);
2830 }
2831 
2832 static struct platform_driver sfp_driver = {
2833 	.probe = sfp_probe,
2834 	.remove = sfp_remove,
2835 	.shutdown = sfp_shutdown,
2836 	.driver = {
2837 		.name = "sfp",
2838 		.of_match_table = sfp_of_match,
2839 	},
2840 };
2841 
2842 static int sfp_init(void)
2843 {
2844 	poll_jiffies = msecs_to_jiffies(100);
2845 
2846 	return platform_driver_register(&sfp_driver);
2847 }
2848 module_init(sfp_init);
2849 
2850 static void sfp_exit(void)
2851 {
2852 	platform_driver_unregister(&sfp_driver);
2853 }
2854 module_exit(sfp_exit);
2855 
2856 MODULE_ALIAS("platform:sfp");
2857 MODULE_AUTHOR("Russell King");
2858 MODULE_LICENSE("GPL v2");
2859