xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 50e96acb)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RATE_SELECT,
28 	GPIO_MAX,
29 
30 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
31 	SFP_F_LOS = BIT(GPIO_LOS),
32 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
33 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
34 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
35 
36 	SFP_E_INSERT = 0,
37 	SFP_E_REMOVE,
38 	SFP_E_DEV_ATTACH,
39 	SFP_E_DEV_DETACH,
40 	SFP_E_DEV_DOWN,
41 	SFP_E_DEV_UP,
42 	SFP_E_TX_FAULT,
43 	SFP_E_TX_CLEAR,
44 	SFP_E_LOS_HIGH,
45 	SFP_E_LOS_LOW,
46 	SFP_E_TIMEOUT,
47 
48 	SFP_MOD_EMPTY = 0,
49 	SFP_MOD_ERROR,
50 	SFP_MOD_PROBE,
51 	SFP_MOD_WAITDEV,
52 	SFP_MOD_HPOWER,
53 	SFP_MOD_WAITPWR,
54 	SFP_MOD_PRESENT,
55 
56 	SFP_DEV_DETACHED = 0,
57 	SFP_DEV_DOWN,
58 	SFP_DEV_UP,
59 
60 	SFP_S_DOWN = 0,
61 	SFP_S_FAIL,
62 	SFP_S_WAIT,
63 	SFP_S_INIT,
64 	SFP_S_INIT_PHY,
65 	SFP_S_INIT_TX_FAULT,
66 	SFP_S_WAIT_LOS,
67 	SFP_S_LINK_UP,
68 	SFP_S_TX_FAULT,
69 	SFP_S_REINIT,
70 	SFP_S_TX_DISABLE,
71 };
72 
73 static const char  * const mod_state_strings[] = {
74 	[SFP_MOD_EMPTY] = "empty",
75 	[SFP_MOD_ERROR] = "error",
76 	[SFP_MOD_PROBE] = "probe",
77 	[SFP_MOD_WAITDEV] = "waitdev",
78 	[SFP_MOD_HPOWER] = "hpower",
79 	[SFP_MOD_WAITPWR] = "waitpwr",
80 	[SFP_MOD_PRESENT] = "present",
81 };
82 
83 static const char *mod_state_to_str(unsigned short mod_state)
84 {
85 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
86 		return "Unknown module state";
87 	return mod_state_strings[mod_state];
88 }
89 
90 static const char * const dev_state_strings[] = {
91 	[SFP_DEV_DETACHED] = "detached",
92 	[SFP_DEV_DOWN] = "down",
93 	[SFP_DEV_UP] = "up",
94 };
95 
96 static const char *dev_state_to_str(unsigned short dev_state)
97 {
98 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
99 		return "Unknown device state";
100 	return dev_state_strings[dev_state];
101 }
102 
103 static const char * const event_strings[] = {
104 	[SFP_E_INSERT] = "insert",
105 	[SFP_E_REMOVE] = "remove",
106 	[SFP_E_DEV_ATTACH] = "dev_attach",
107 	[SFP_E_DEV_DETACH] = "dev_detach",
108 	[SFP_E_DEV_DOWN] = "dev_down",
109 	[SFP_E_DEV_UP] = "dev_up",
110 	[SFP_E_TX_FAULT] = "tx_fault",
111 	[SFP_E_TX_CLEAR] = "tx_clear",
112 	[SFP_E_LOS_HIGH] = "los_high",
113 	[SFP_E_LOS_LOW] = "los_low",
114 	[SFP_E_TIMEOUT] = "timeout",
115 };
116 
117 static const char *event_to_str(unsigned short event)
118 {
119 	if (event >= ARRAY_SIZE(event_strings))
120 		return "Unknown event";
121 	return event_strings[event];
122 }
123 
124 static const char * const sm_state_strings[] = {
125 	[SFP_S_DOWN] = "down",
126 	[SFP_S_FAIL] = "fail",
127 	[SFP_S_WAIT] = "wait",
128 	[SFP_S_INIT] = "init",
129 	[SFP_S_INIT_PHY] = "init_phy",
130 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
131 	[SFP_S_WAIT_LOS] = "wait_los",
132 	[SFP_S_LINK_UP] = "link_up",
133 	[SFP_S_TX_FAULT] = "tx_fault",
134 	[SFP_S_REINIT] = "reinit",
135 	[SFP_S_TX_DISABLE] = "tx_disable",
136 };
137 
138 static const char *sm_state_to_str(unsigned short sm_state)
139 {
140 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
141 		return "Unknown state";
142 	return sm_state_strings[sm_state];
143 }
144 
145 static const char *gpio_names[] = {
146 	"mod-def0",
147 	"los",
148 	"tx-fault",
149 	"tx-disable",
150 	"rate-select0",
151 };
152 
153 static const enum gpiod_flags gpio_flags[] = {
154 	GPIOD_IN,
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_ASIS,
158 	GPIOD_ASIS,
159 };
160 
161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
162  * non-cooled module to initialise its laser safety circuitry. We wait
163  * an initial T_WAIT period before we check the tx fault to give any PHY
164  * on board (for a copper SFP) time to initialise.
165  */
166 #define T_WAIT			msecs_to_jiffies(50)
167 #define T_WAIT_ROLLBALL		msecs_to_jiffies(25000)
168 #define T_START_UP		msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170 
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US		10
175 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176 
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT		5
183 #define N_FAULT			5
184 
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY		msecs_to_jiffies(50)
189 #define R_PHY_RETRY		12
190 
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL		msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT	10
202 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW	12
204 
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
208  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
209  */
210 #define SFP_PHY_ADDR		22
211 #define SFP_PHY_ADDR_ROLLBALL	17
212 
213 struct sff_data {
214 	unsigned int gpios;
215 	bool (*module_supported)(const struct sfp_eeprom_id *id);
216 };
217 
218 struct sfp {
219 	struct device *dev;
220 	struct i2c_adapter *i2c;
221 	struct mii_bus *i2c_mii;
222 	struct sfp_bus *sfp_bus;
223 	enum mdio_i2c_proto mdio_protocol;
224 	struct phy_device *mod_phy;
225 	const struct sff_data *type;
226 	size_t i2c_block_size;
227 	u32 max_power_mW;
228 
229 	unsigned int (*get_state)(struct sfp *);
230 	void (*set_state)(struct sfp *, unsigned int);
231 	int (*read)(struct sfp *, bool, u8, void *, size_t);
232 	int (*write)(struct sfp *, bool, u8, void *, size_t);
233 
234 	struct gpio_desc *gpio[GPIO_MAX];
235 	int gpio_irq[GPIO_MAX];
236 
237 	bool need_poll;
238 
239 	struct mutex st_mutex;			/* Protects state */
240 	unsigned int state_hw_mask;
241 	unsigned int state_soft_mask;
242 	unsigned int state;
243 	struct delayed_work poll;
244 	struct delayed_work timeout;
245 	struct mutex sm_mutex;			/* Protects state machine */
246 	unsigned char sm_mod_state;
247 	unsigned char sm_mod_tries_init;
248 	unsigned char sm_mod_tries;
249 	unsigned char sm_dev_state;
250 	unsigned short sm_state;
251 	unsigned char sm_fault_retries;
252 	unsigned char sm_phy_retries;
253 
254 	struct sfp_eeprom_id id;
255 	unsigned int module_power_mW;
256 	unsigned int module_t_start_up;
257 	unsigned int module_t_wait;
258 
259 	bool have_a2;
260 	bool tx_fault_ignore;
261 
262 	const struct sfp_quirk *quirk;
263 
264 #if IS_ENABLED(CONFIG_HWMON)
265 	struct sfp_diag diag;
266 	struct delayed_work hwmon_probe;
267 	unsigned int hwmon_tries;
268 	struct device *hwmon_dev;
269 	char *hwmon_name;
270 #endif
271 
272 #if IS_ENABLED(CONFIG_DEBUG_FS)
273 	struct dentry *debugfs_dir;
274 #endif
275 };
276 
277 static bool sff_module_supported(const struct sfp_eeprom_id *id)
278 {
279 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
280 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
281 }
282 
283 static const struct sff_data sff_data = {
284 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
285 	.module_supported = sff_module_supported,
286 };
287 
288 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
289 {
290 	if (id->base.phys_id == SFF8024_ID_SFP &&
291 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
292 		return true;
293 
294 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
295 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
296 	 * as supported based on vendor name and pn match.
297 	 */
298 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
299 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
300 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
301 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
302 		return true;
303 
304 	return false;
305 }
306 
307 static const struct sff_data sfp_data = {
308 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
309 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
310 	.module_supported = sfp_module_supported,
311 };
312 
313 static const struct of_device_id sfp_of_match[] = {
314 	{ .compatible = "sff,sff", .data = &sff_data, },
315 	{ .compatible = "sff,sfp", .data = &sfp_data, },
316 	{ },
317 };
318 MODULE_DEVICE_TABLE(of, sfp_of_match);
319 
320 static void sfp_fixup_long_startup(struct sfp *sfp)
321 {
322 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
323 }
324 
325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
326 {
327 	sfp->tx_fault_ignore = true;
328 }
329 
330 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
331 {
332 	/* Ignore the TX_FAULT and LOS signals on this module.
333 	 * these are possibly used for other purposes on this
334 	 * module, e.g. a serial port.
335 	 */
336 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
337 }
338 
339 static void sfp_fixup_rollball(struct sfp *sfp)
340 {
341 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
342 	sfp->module_t_wait = T_WAIT_ROLLBALL;
343 }
344 
345 static void sfp_fixup_rollball_cc(struct sfp *sfp)
346 {
347 	sfp_fixup_rollball(sfp);
348 
349 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
350 	 * burned in EEPROM. For PHY probing we need the correct one.
351 	 */
352 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
353 }
354 
355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
356 				unsigned long *modes,
357 				unsigned long *interfaces)
358 {
359 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
360 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
361 }
362 
363 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
364 				      unsigned long *modes,
365 				      unsigned long *interfaces)
366 {
367 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
368 }
369 
370 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
371 			       unsigned long *modes,
372 			       unsigned long *interfaces)
373 {
374 	/* Copper 2.5G SFP */
375 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
376 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
377 	sfp_quirk_disable_autoneg(id, modes, interfaces);
378 }
379 
380 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
381 				      unsigned long *modes,
382 				      unsigned long *interfaces)
383 {
384 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
385 	 * types including 10G Ethernet which is not truth. So clear all claimed
386 	 * modes and set only one mode which module supports: 1000baseX_Full.
387 	 */
388 	linkmode_zero(modes);
389 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
390 }
391 
392 #define SFP_QUIRK(_v, _p, _m, _f) \
393 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
394 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
395 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
396 
397 static const struct sfp_quirk sfp_quirks[] = {
398 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
399 	// report 2500MBd NRZ in their EEPROM
400 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
401 
402 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
403 	// NRZ in their EEPROM
404 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
405 		  sfp_fixup_long_startup),
406 
407 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
408 
409 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
410 	// their EEPROM
411 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
412 		  sfp_fixup_ignore_tx_fault),
413 
414 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
415 	// 2500MBd NRZ in their EEPROM
416 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
417 
418 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
419 
420 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
421 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
422 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
423 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
424 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
425 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
426 };
427 
428 static size_t sfp_strlen(const char *str, size_t maxlen)
429 {
430 	size_t size, i;
431 
432 	/* Trailing characters should be filled with space chars, but
433 	 * some manufacturers can't read SFF-8472 and use NUL.
434 	 */
435 	for (i = 0, size = 0; i < maxlen; i++)
436 		if (str[i] != ' ' && str[i] != '\0')
437 			size = i + 1;
438 
439 	return size;
440 }
441 
442 static bool sfp_match(const char *qs, const char *str, size_t len)
443 {
444 	if (!qs)
445 		return true;
446 	if (strlen(qs) != len)
447 		return false;
448 	return !strncmp(qs, str, len);
449 }
450 
451 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
452 {
453 	const struct sfp_quirk *q;
454 	unsigned int i;
455 	size_t vs, ps;
456 
457 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
458 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
459 
460 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
461 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
462 		    sfp_match(q->part, id->base.vendor_pn, ps))
463 			return q;
464 
465 	return NULL;
466 }
467 
468 static unsigned long poll_jiffies;
469 
470 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
471 {
472 	unsigned int i, state, v;
473 
474 	for (i = state = 0; i < GPIO_MAX; i++) {
475 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
476 			continue;
477 
478 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
479 		if (v)
480 			state |= BIT(i);
481 	}
482 
483 	return state;
484 }
485 
486 static unsigned int sff_gpio_get_state(struct sfp *sfp)
487 {
488 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
489 }
490 
491 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
492 {
493 	if (state & SFP_F_PRESENT) {
494 		/* If the module is present, drive the signals */
495 		if (sfp->gpio[GPIO_TX_DISABLE])
496 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
497 					       state & SFP_F_TX_DISABLE);
498 		if (state & SFP_F_RATE_SELECT)
499 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
500 					       state & SFP_F_RATE_SELECT);
501 	} else {
502 		/* Otherwise, let them float to the pull-ups */
503 		if (sfp->gpio[GPIO_TX_DISABLE])
504 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
505 		if (state & SFP_F_RATE_SELECT)
506 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
507 	}
508 }
509 
510 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
511 			size_t len)
512 {
513 	struct i2c_msg msgs[2];
514 	u8 bus_addr = a2 ? 0x51 : 0x50;
515 	size_t block_size = sfp->i2c_block_size;
516 	size_t this_len;
517 	int ret;
518 
519 	msgs[0].addr = bus_addr;
520 	msgs[0].flags = 0;
521 	msgs[0].len = 1;
522 	msgs[0].buf = &dev_addr;
523 	msgs[1].addr = bus_addr;
524 	msgs[1].flags = I2C_M_RD;
525 	msgs[1].len = len;
526 	msgs[1].buf = buf;
527 
528 	while (len) {
529 		this_len = len;
530 		if (this_len > block_size)
531 			this_len = block_size;
532 
533 		msgs[1].len = this_len;
534 
535 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
536 		if (ret < 0)
537 			return ret;
538 
539 		if (ret != ARRAY_SIZE(msgs))
540 			break;
541 
542 		msgs[1].buf += this_len;
543 		dev_addr += this_len;
544 		len -= this_len;
545 	}
546 
547 	return msgs[1].buf - (u8 *)buf;
548 }
549 
550 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
551 	size_t len)
552 {
553 	struct i2c_msg msgs[1];
554 	u8 bus_addr = a2 ? 0x51 : 0x50;
555 	int ret;
556 
557 	msgs[0].addr = bus_addr;
558 	msgs[0].flags = 0;
559 	msgs[0].len = 1 + len;
560 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
561 	if (!msgs[0].buf)
562 		return -ENOMEM;
563 
564 	msgs[0].buf[0] = dev_addr;
565 	memcpy(&msgs[0].buf[1], buf, len);
566 
567 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
568 
569 	kfree(msgs[0].buf);
570 
571 	if (ret < 0)
572 		return ret;
573 
574 	return ret == ARRAY_SIZE(msgs) ? len : 0;
575 }
576 
577 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
578 {
579 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
580 		return -EINVAL;
581 
582 	sfp->i2c = i2c;
583 	sfp->read = sfp_i2c_read;
584 	sfp->write = sfp_i2c_write;
585 
586 	return 0;
587 }
588 
589 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
590 {
591 	struct mii_bus *i2c_mii;
592 	int ret;
593 
594 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
595 	if (IS_ERR(i2c_mii))
596 		return PTR_ERR(i2c_mii);
597 
598 	i2c_mii->name = "SFP I2C Bus";
599 	i2c_mii->phy_mask = ~0;
600 
601 	ret = mdiobus_register(i2c_mii);
602 	if (ret < 0) {
603 		mdiobus_free(i2c_mii);
604 		return ret;
605 	}
606 
607 	sfp->i2c_mii = i2c_mii;
608 
609 	return 0;
610 }
611 
612 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
613 {
614 	mdiobus_unregister(sfp->i2c_mii);
615 	sfp->i2c_mii = NULL;
616 }
617 
618 /* Interface */
619 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
620 {
621 	return sfp->read(sfp, a2, addr, buf, len);
622 }
623 
624 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
625 {
626 	return sfp->write(sfp, a2, addr, buf, len);
627 }
628 
629 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
630 {
631 	int ret;
632 	u8 old, v;
633 
634 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
635 	if (ret != sizeof(old))
636 		return ret;
637 
638 	v = (old & ~mask) | (val & mask);
639 	if (v == old)
640 		return sizeof(v);
641 
642 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
643 }
644 
645 static unsigned int sfp_soft_get_state(struct sfp *sfp)
646 {
647 	unsigned int state = 0;
648 	u8 status;
649 	int ret;
650 
651 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
652 	if (ret == sizeof(status)) {
653 		if (status & SFP_STATUS_RX_LOS)
654 			state |= SFP_F_LOS;
655 		if (status & SFP_STATUS_TX_FAULT)
656 			state |= SFP_F_TX_FAULT;
657 	} else {
658 		dev_err_ratelimited(sfp->dev,
659 				    "failed to read SFP soft status: %pe\n",
660 				    ERR_PTR(ret));
661 		/* Preserve the current state */
662 		state = sfp->state;
663 	}
664 
665 	return state & sfp->state_soft_mask;
666 }
667 
668 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
669 {
670 	u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
671 	u8 val = 0;
672 
673 	if (state & SFP_F_TX_DISABLE)
674 		val |= SFP_STATUS_TX_DISABLE_FORCE;
675 
676 
677 	sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
678 }
679 
680 static void sfp_soft_start_poll(struct sfp *sfp)
681 {
682 	const struct sfp_eeprom_id *id = &sfp->id;
683 	unsigned int mask = 0;
684 
685 	sfp->state_soft_mask = 0;
686 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
687 		mask |= SFP_F_TX_DISABLE;
688 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
689 		mask |= SFP_F_TX_FAULT;
690 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
691 		mask |= SFP_F_LOS;
692 
693 	// Poll the soft state for hardware pins we want to ignore
694 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
695 
696 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
697 	    !sfp->need_poll)
698 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
699 }
700 
701 static void sfp_soft_stop_poll(struct sfp *sfp)
702 {
703 	sfp->state_soft_mask = 0;
704 }
705 
706 static unsigned int sfp_get_state(struct sfp *sfp)
707 {
708 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
709 	unsigned int state;
710 
711 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
712 	if (state & SFP_F_PRESENT && soft)
713 		state |= sfp_soft_get_state(sfp);
714 
715 	return state;
716 }
717 
718 static void sfp_set_state(struct sfp *sfp, unsigned int state)
719 {
720 	sfp->set_state(sfp, state);
721 
722 	if (state & SFP_F_PRESENT &&
723 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
724 		sfp_soft_set_state(sfp, state);
725 }
726 
727 static unsigned int sfp_check(void *buf, size_t len)
728 {
729 	u8 *p, check;
730 
731 	for (p = buf, check = 0; len; p++, len--)
732 		check += *p;
733 
734 	return check;
735 }
736 
737 /* hwmon */
738 #if IS_ENABLED(CONFIG_HWMON)
739 static umode_t sfp_hwmon_is_visible(const void *data,
740 				    enum hwmon_sensor_types type,
741 				    u32 attr, int channel)
742 {
743 	const struct sfp *sfp = data;
744 
745 	switch (type) {
746 	case hwmon_temp:
747 		switch (attr) {
748 		case hwmon_temp_min_alarm:
749 		case hwmon_temp_max_alarm:
750 		case hwmon_temp_lcrit_alarm:
751 		case hwmon_temp_crit_alarm:
752 		case hwmon_temp_min:
753 		case hwmon_temp_max:
754 		case hwmon_temp_lcrit:
755 		case hwmon_temp_crit:
756 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
757 				return 0;
758 			fallthrough;
759 		case hwmon_temp_input:
760 		case hwmon_temp_label:
761 			return 0444;
762 		default:
763 			return 0;
764 		}
765 	case hwmon_in:
766 		switch (attr) {
767 		case hwmon_in_min_alarm:
768 		case hwmon_in_max_alarm:
769 		case hwmon_in_lcrit_alarm:
770 		case hwmon_in_crit_alarm:
771 		case hwmon_in_min:
772 		case hwmon_in_max:
773 		case hwmon_in_lcrit:
774 		case hwmon_in_crit:
775 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
776 				return 0;
777 			fallthrough;
778 		case hwmon_in_input:
779 		case hwmon_in_label:
780 			return 0444;
781 		default:
782 			return 0;
783 		}
784 	case hwmon_curr:
785 		switch (attr) {
786 		case hwmon_curr_min_alarm:
787 		case hwmon_curr_max_alarm:
788 		case hwmon_curr_lcrit_alarm:
789 		case hwmon_curr_crit_alarm:
790 		case hwmon_curr_min:
791 		case hwmon_curr_max:
792 		case hwmon_curr_lcrit:
793 		case hwmon_curr_crit:
794 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
795 				return 0;
796 			fallthrough;
797 		case hwmon_curr_input:
798 		case hwmon_curr_label:
799 			return 0444;
800 		default:
801 			return 0;
802 		}
803 	case hwmon_power:
804 		/* External calibration of receive power requires
805 		 * floating point arithmetic. Doing that in the kernel
806 		 * is not easy, so just skip it. If the module does
807 		 * not require external calibration, we can however
808 		 * show receiver power, since FP is then not needed.
809 		 */
810 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
811 		    channel == 1)
812 			return 0;
813 		switch (attr) {
814 		case hwmon_power_min_alarm:
815 		case hwmon_power_max_alarm:
816 		case hwmon_power_lcrit_alarm:
817 		case hwmon_power_crit_alarm:
818 		case hwmon_power_min:
819 		case hwmon_power_max:
820 		case hwmon_power_lcrit:
821 		case hwmon_power_crit:
822 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
823 				return 0;
824 			fallthrough;
825 		case hwmon_power_input:
826 		case hwmon_power_label:
827 			return 0444;
828 		default:
829 			return 0;
830 		}
831 	default:
832 		return 0;
833 	}
834 }
835 
836 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
837 {
838 	__be16 val;
839 	int err;
840 
841 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
842 	if (err < 0)
843 		return err;
844 
845 	*value = be16_to_cpu(val);
846 
847 	return 0;
848 }
849 
850 static void sfp_hwmon_to_rx_power(long *value)
851 {
852 	*value = DIV_ROUND_CLOSEST(*value, 10);
853 }
854 
855 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
856 				long *value)
857 {
858 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
859 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
860 }
861 
862 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
863 {
864 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
865 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
866 
867 	if (*value >= 0x8000)
868 		*value -= 0x10000;
869 
870 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
871 }
872 
873 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
874 {
875 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
876 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
877 
878 	*value = DIV_ROUND_CLOSEST(*value, 10);
879 }
880 
881 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
882 {
883 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
884 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
885 
886 	*value = DIV_ROUND_CLOSEST(*value, 500);
887 }
888 
889 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
890 {
891 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
892 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
893 
894 	*value = DIV_ROUND_CLOSEST(*value, 10);
895 }
896 
897 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
898 {
899 	int err;
900 
901 	err = sfp_hwmon_read_sensor(sfp, reg, value);
902 	if (err < 0)
903 		return err;
904 
905 	sfp_hwmon_calibrate_temp(sfp, value);
906 
907 	return 0;
908 }
909 
910 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
911 {
912 	int err;
913 
914 	err = sfp_hwmon_read_sensor(sfp, reg, value);
915 	if (err < 0)
916 		return err;
917 
918 	sfp_hwmon_calibrate_vcc(sfp, value);
919 
920 	return 0;
921 }
922 
923 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
924 {
925 	int err;
926 
927 	err = sfp_hwmon_read_sensor(sfp, reg, value);
928 	if (err < 0)
929 		return err;
930 
931 	sfp_hwmon_calibrate_bias(sfp, value);
932 
933 	return 0;
934 }
935 
936 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
937 {
938 	int err;
939 
940 	err = sfp_hwmon_read_sensor(sfp, reg, value);
941 	if (err < 0)
942 		return err;
943 
944 	sfp_hwmon_calibrate_tx_power(sfp, value);
945 
946 	return 0;
947 }
948 
949 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
950 {
951 	int err;
952 
953 	err = sfp_hwmon_read_sensor(sfp, reg, value);
954 	if (err < 0)
955 		return err;
956 
957 	sfp_hwmon_to_rx_power(value);
958 
959 	return 0;
960 }
961 
962 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
963 {
964 	u8 status;
965 	int err;
966 
967 	switch (attr) {
968 	case hwmon_temp_input:
969 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
970 
971 	case hwmon_temp_lcrit:
972 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
973 		sfp_hwmon_calibrate_temp(sfp, value);
974 		return 0;
975 
976 	case hwmon_temp_min:
977 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
978 		sfp_hwmon_calibrate_temp(sfp, value);
979 		return 0;
980 	case hwmon_temp_max:
981 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
982 		sfp_hwmon_calibrate_temp(sfp, value);
983 		return 0;
984 
985 	case hwmon_temp_crit:
986 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
987 		sfp_hwmon_calibrate_temp(sfp, value);
988 		return 0;
989 
990 	case hwmon_temp_lcrit_alarm:
991 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
992 		if (err < 0)
993 			return err;
994 
995 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
996 		return 0;
997 
998 	case hwmon_temp_min_alarm:
999 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1000 		if (err < 0)
1001 			return err;
1002 
1003 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1004 		return 0;
1005 
1006 	case hwmon_temp_max_alarm:
1007 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1008 		if (err < 0)
1009 			return err;
1010 
1011 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1012 		return 0;
1013 
1014 	case hwmon_temp_crit_alarm:
1015 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1016 		if (err < 0)
1017 			return err;
1018 
1019 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1020 		return 0;
1021 	default:
1022 		return -EOPNOTSUPP;
1023 	}
1024 
1025 	return -EOPNOTSUPP;
1026 }
1027 
1028 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1029 {
1030 	u8 status;
1031 	int err;
1032 
1033 	switch (attr) {
1034 	case hwmon_in_input:
1035 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1036 
1037 	case hwmon_in_lcrit:
1038 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1039 		sfp_hwmon_calibrate_vcc(sfp, value);
1040 		return 0;
1041 
1042 	case hwmon_in_min:
1043 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1044 		sfp_hwmon_calibrate_vcc(sfp, value);
1045 		return 0;
1046 
1047 	case hwmon_in_max:
1048 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1049 		sfp_hwmon_calibrate_vcc(sfp, value);
1050 		return 0;
1051 
1052 	case hwmon_in_crit:
1053 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1054 		sfp_hwmon_calibrate_vcc(sfp, value);
1055 		return 0;
1056 
1057 	case hwmon_in_lcrit_alarm:
1058 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1059 		if (err < 0)
1060 			return err;
1061 
1062 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1063 		return 0;
1064 
1065 	case hwmon_in_min_alarm:
1066 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1067 		if (err < 0)
1068 			return err;
1069 
1070 		*value = !!(status & SFP_WARN0_VCC_LOW);
1071 		return 0;
1072 
1073 	case hwmon_in_max_alarm:
1074 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1075 		if (err < 0)
1076 			return err;
1077 
1078 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1079 		return 0;
1080 
1081 	case hwmon_in_crit_alarm:
1082 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1083 		if (err < 0)
1084 			return err;
1085 
1086 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1087 		return 0;
1088 	default:
1089 		return -EOPNOTSUPP;
1090 	}
1091 
1092 	return -EOPNOTSUPP;
1093 }
1094 
1095 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1096 {
1097 	u8 status;
1098 	int err;
1099 
1100 	switch (attr) {
1101 	case hwmon_curr_input:
1102 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1103 
1104 	case hwmon_curr_lcrit:
1105 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1106 		sfp_hwmon_calibrate_bias(sfp, value);
1107 		return 0;
1108 
1109 	case hwmon_curr_min:
1110 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1111 		sfp_hwmon_calibrate_bias(sfp, value);
1112 		return 0;
1113 
1114 	case hwmon_curr_max:
1115 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1116 		sfp_hwmon_calibrate_bias(sfp, value);
1117 		return 0;
1118 
1119 	case hwmon_curr_crit:
1120 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1121 		sfp_hwmon_calibrate_bias(sfp, value);
1122 		return 0;
1123 
1124 	case hwmon_curr_lcrit_alarm:
1125 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1126 		if (err < 0)
1127 			return err;
1128 
1129 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1130 		return 0;
1131 
1132 	case hwmon_curr_min_alarm:
1133 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1134 		if (err < 0)
1135 			return err;
1136 
1137 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1138 		return 0;
1139 
1140 	case hwmon_curr_max_alarm:
1141 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1142 		if (err < 0)
1143 			return err;
1144 
1145 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1146 		return 0;
1147 
1148 	case hwmon_curr_crit_alarm:
1149 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1150 		if (err < 0)
1151 			return err;
1152 
1153 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1154 		return 0;
1155 	default:
1156 		return -EOPNOTSUPP;
1157 	}
1158 
1159 	return -EOPNOTSUPP;
1160 }
1161 
1162 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1163 {
1164 	u8 status;
1165 	int err;
1166 
1167 	switch (attr) {
1168 	case hwmon_power_input:
1169 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1170 
1171 	case hwmon_power_lcrit:
1172 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1173 		sfp_hwmon_calibrate_tx_power(sfp, value);
1174 		return 0;
1175 
1176 	case hwmon_power_min:
1177 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1178 		sfp_hwmon_calibrate_tx_power(sfp, value);
1179 		return 0;
1180 
1181 	case hwmon_power_max:
1182 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1183 		sfp_hwmon_calibrate_tx_power(sfp, value);
1184 		return 0;
1185 
1186 	case hwmon_power_crit:
1187 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1188 		sfp_hwmon_calibrate_tx_power(sfp, value);
1189 		return 0;
1190 
1191 	case hwmon_power_lcrit_alarm:
1192 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1193 		if (err < 0)
1194 			return err;
1195 
1196 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1197 		return 0;
1198 
1199 	case hwmon_power_min_alarm:
1200 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1201 		if (err < 0)
1202 			return err;
1203 
1204 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1205 		return 0;
1206 
1207 	case hwmon_power_max_alarm:
1208 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1209 		if (err < 0)
1210 			return err;
1211 
1212 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1213 		return 0;
1214 
1215 	case hwmon_power_crit_alarm:
1216 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1217 		if (err < 0)
1218 			return err;
1219 
1220 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1221 		return 0;
1222 	default:
1223 		return -EOPNOTSUPP;
1224 	}
1225 
1226 	return -EOPNOTSUPP;
1227 }
1228 
1229 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1230 {
1231 	u8 status;
1232 	int err;
1233 
1234 	switch (attr) {
1235 	case hwmon_power_input:
1236 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1237 
1238 	case hwmon_power_lcrit:
1239 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1240 		sfp_hwmon_to_rx_power(value);
1241 		return 0;
1242 
1243 	case hwmon_power_min:
1244 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1245 		sfp_hwmon_to_rx_power(value);
1246 		return 0;
1247 
1248 	case hwmon_power_max:
1249 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1250 		sfp_hwmon_to_rx_power(value);
1251 		return 0;
1252 
1253 	case hwmon_power_crit:
1254 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1255 		sfp_hwmon_to_rx_power(value);
1256 		return 0;
1257 
1258 	case hwmon_power_lcrit_alarm:
1259 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1260 		if (err < 0)
1261 			return err;
1262 
1263 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1264 		return 0;
1265 
1266 	case hwmon_power_min_alarm:
1267 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1268 		if (err < 0)
1269 			return err;
1270 
1271 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1272 		return 0;
1273 
1274 	case hwmon_power_max_alarm:
1275 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1276 		if (err < 0)
1277 			return err;
1278 
1279 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1280 		return 0;
1281 
1282 	case hwmon_power_crit_alarm:
1283 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1284 		if (err < 0)
1285 			return err;
1286 
1287 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1288 		return 0;
1289 	default:
1290 		return -EOPNOTSUPP;
1291 	}
1292 
1293 	return -EOPNOTSUPP;
1294 }
1295 
1296 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1297 			  u32 attr, int channel, long *value)
1298 {
1299 	struct sfp *sfp = dev_get_drvdata(dev);
1300 
1301 	switch (type) {
1302 	case hwmon_temp:
1303 		return sfp_hwmon_temp(sfp, attr, value);
1304 	case hwmon_in:
1305 		return sfp_hwmon_vcc(sfp, attr, value);
1306 	case hwmon_curr:
1307 		return sfp_hwmon_bias(sfp, attr, value);
1308 	case hwmon_power:
1309 		switch (channel) {
1310 		case 0:
1311 			return sfp_hwmon_tx_power(sfp, attr, value);
1312 		case 1:
1313 			return sfp_hwmon_rx_power(sfp, attr, value);
1314 		default:
1315 			return -EOPNOTSUPP;
1316 		}
1317 	default:
1318 		return -EOPNOTSUPP;
1319 	}
1320 }
1321 
1322 static const char *const sfp_hwmon_power_labels[] = {
1323 	"TX_power",
1324 	"RX_power",
1325 };
1326 
1327 static int sfp_hwmon_read_string(struct device *dev,
1328 				 enum hwmon_sensor_types type,
1329 				 u32 attr, int channel, const char **str)
1330 {
1331 	switch (type) {
1332 	case hwmon_curr:
1333 		switch (attr) {
1334 		case hwmon_curr_label:
1335 			*str = "bias";
1336 			return 0;
1337 		default:
1338 			return -EOPNOTSUPP;
1339 		}
1340 		break;
1341 	case hwmon_temp:
1342 		switch (attr) {
1343 		case hwmon_temp_label:
1344 			*str = "temperature";
1345 			return 0;
1346 		default:
1347 			return -EOPNOTSUPP;
1348 		}
1349 		break;
1350 	case hwmon_in:
1351 		switch (attr) {
1352 		case hwmon_in_label:
1353 			*str = "VCC";
1354 			return 0;
1355 		default:
1356 			return -EOPNOTSUPP;
1357 		}
1358 		break;
1359 	case hwmon_power:
1360 		switch (attr) {
1361 		case hwmon_power_label:
1362 			*str = sfp_hwmon_power_labels[channel];
1363 			return 0;
1364 		default:
1365 			return -EOPNOTSUPP;
1366 		}
1367 		break;
1368 	default:
1369 		return -EOPNOTSUPP;
1370 	}
1371 
1372 	return -EOPNOTSUPP;
1373 }
1374 
1375 static const struct hwmon_ops sfp_hwmon_ops = {
1376 	.is_visible = sfp_hwmon_is_visible,
1377 	.read = sfp_hwmon_read,
1378 	.read_string = sfp_hwmon_read_string,
1379 };
1380 
1381 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1382 	HWMON_CHANNEL_INFO(chip,
1383 			   HWMON_C_REGISTER_TZ),
1384 	HWMON_CHANNEL_INFO(in,
1385 			   HWMON_I_INPUT |
1386 			   HWMON_I_MAX | HWMON_I_MIN |
1387 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1388 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1389 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1390 			   HWMON_I_LABEL),
1391 	HWMON_CHANNEL_INFO(temp,
1392 			   HWMON_T_INPUT |
1393 			   HWMON_T_MAX | HWMON_T_MIN |
1394 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1395 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1396 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1397 			   HWMON_T_LABEL),
1398 	HWMON_CHANNEL_INFO(curr,
1399 			   HWMON_C_INPUT |
1400 			   HWMON_C_MAX | HWMON_C_MIN |
1401 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1402 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1403 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1404 			   HWMON_C_LABEL),
1405 	HWMON_CHANNEL_INFO(power,
1406 			   /* Transmit power */
1407 			   HWMON_P_INPUT |
1408 			   HWMON_P_MAX | HWMON_P_MIN |
1409 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1410 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1411 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1412 			   HWMON_P_LABEL,
1413 			   /* Receive power */
1414 			   HWMON_P_INPUT |
1415 			   HWMON_P_MAX | HWMON_P_MIN |
1416 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1417 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1418 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1419 			   HWMON_P_LABEL),
1420 	NULL,
1421 };
1422 
1423 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1424 	.ops = &sfp_hwmon_ops,
1425 	.info = sfp_hwmon_info,
1426 };
1427 
1428 static void sfp_hwmon_probe(struct work_struct *work)
1429 {
1430 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1431 	int err;
1432 
1433 	/* hwmon interface needs to access 16bit registers in atomic way to
1434 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1435 	 * possible to guarantee coherency because EEPROM is broken in such way
1436 	 * that does not support atomic 16bit read operation then we have to
1437 	 * skip registration of hwmon device.
1438 	 */
1439 	if (sfp->i2c_block_size < 2) {
1440 		dev_info(sfp->dev,
1441 			 "skipping hwmon device registration due to broken EEPROM\n");
1442 		dev_info(sfp->dev,
1443 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1444 		return;
1445 	}
1446 
1447 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1448 	if (err < 0) {
1449 		if (sfp->hwmon_tries--) {
1450 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1451 					 T_PROBE_RETRY_SLOW);
1452 		} else {
1453 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1454 				 ERR_PTR(err));
1455 		}
1456 		return;
1457 	}
1458 
1459 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1460 	if (IS_ERR(sfp->hwmon_name)) {
1461 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1462 		return;
1463 	}
1464 
1465 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1466 							 sfp->hwmon_name, sfp,
1467 							 &sfp_hwmon_chip_info,
1468 							 NULL);
1469 	if (IS_ERR(sfp->hwmon_dev))
1470 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1471 			PTR_ERR(sfp->hwmon_dev));
1472 }
1473 
1474 static int sfp_hwmon_insert(struct sfp *sfp)
1475 {
1476 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1477 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1478 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static void sfp_hwmon_remove(struct sfp *sfp)
1485 {
1486 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1487 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1488 		hwmon_device_unregister(sfp->hwmon_dev);
1489 		sfp->hwmon_dev = NULL;
1490 		kfree(sfp->hwmon_name);
1491 	}
1492 }
1493 
1494 static int sfp_hwmon_init(struct sfp *sfp)
1495 {
1496 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1497 
1498 	return 0;
1499 }
1500 
1501 static void sfp_hwmon_exit(struct sfp *sfp)
1502 {
1503 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1504 }
1505 #else
1506 static int sfp_hwmon_insert(struct sfp *sfp)
1507 {
1508 	return 0;
1509 }
1510 
1511 static void sfp_hwmon_remove(struct sfp *sfp)
1512 {
1513 }
1514 
1515 static int sfp_hwmon_init(struct sfp *sfp)
1516 {
1517 	return 0;
1518 }
1519 
1520 static void sfp_hwmon_exit(struct sfp *sfp)
1521 {
1522 }
1523 #endif
1524 
1525 /* Helpers */
1526 static void sfp_module_tx_disable(struct sfp *sfp)
1527 {
1528 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1529 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1530 	sfp->state |= SFP_F_TX_DISABLE;
1531 	sfp_set_state(sfp, sfp->state);
1532 }
1533 
1534 static void sfp_module_tx_enable(struct sfp *sfp)
1535 {
1536 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1537 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1538 	sfp->state &= ~SFP_F_TX_DISABLE;
1539 	sfp_set_state(sfp, sfp->state);
1540 }
1541 
1542 #if IS_ENABLED(CONFIG_DEBUG_FS)
1543 static int sfp_debug_state_show(struct seq_file *s, void *data)
1544 {
1545 	struct sfp *sfp = s->private;
1546 
1547 	seq_printf(s, "Module state: %s\n",
1548 		   mod_state_to_str(sfp->sm_mod_state));
1549 	seq_printf(s, "Module probe attempts: %d %d\n",
1550 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1551 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1552 	seq_printf(s, "Device state: %s\n",
1553 		   dev_state_to_str(sfp->sm_dev_state));
1554 	seq_printf(s, "Main state: %s\n",
1555 		   sm_state_to_str(sfp->sm_state));
1556 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1557 		   sfp->sm_fault_retries);
1558 	seq_printf(s, "PHY probe remaining retries: %d\n",
1559 		   sfp->sm_phy_retries);
1560 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1561 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1562 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1563 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1564 	return 0;
1565 }
1566 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1567 
1568 static void sfp_debugfs_init(struct sfp *sfp)
1569 {
1570 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1571 
1572 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1573 			    &sfp_debug_state_fops);
1574 }
1575 
1576 static void sfp_debugfs_exit(struct sfp *sfp)
1577 {
1578 	debugfs_remove_recursive(sfp->debugfs_dir);
1579 }
1580 #else
1581 static void sfp_debugfs_init(struct sfp *sfp)
1582 {
1583 }
1584 
1585 static void sfp_debugfs_exit(struct sfp *sfp)
1586 {
1587 }
1588 #endif
1589 
1590 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1591 {
1592 	unsigned int state = sfp->state;
1593 
1594 	if (state & SFP_F_TX_DISABLE)
1595 		return;
1596 
1597 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1598 
1599 	udelay(T_RESET_US);
1600 
1601 	sfp_set_state(sfp, state);
1602 }
1603 
1604 /* SFP state machine */
1605 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1606 {
1607 	if (timeout)
1608 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1609 				 timeout);
1610 	else
1611 		cancel_delayed_work(&sfp->timeout);
1612 }
1613 
1614 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1615 			unsigned int timeout)
1616 {
1617 	sfp->sm_state = state;
1618 	sfp_sm_set_timer(sfp, timeout);
1619 }
1620 
1621 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1622 			    unsigned int timeout)
1623 {
1624 	sfp->sm_mod_state = state;
1625 	sfp_sm_set_timer(sfp, timeout);
1626 }
1627 
1628 static void sfp_sm_phy_detach(struct sfp *sfp)
1629 {
1630 	sfp_remove_phy(sfp->sfp_bus);
1631 	phy_device_remove(sfp->mod_phy);
1632 	phy_device_free(sfp->mod_phy);
1633 	sfp->mod_phy = NULL;
1634 }
1635 
1636 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1637 {
1638 	struct phy_device *phy;
1639 	int err;
1640 
1641 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1642 	if (phy == ERR_PTR(-ENODEV))
1643 		return PTR_ERR(phy);
1644 	if (IS_ERR(phy)) {
1645 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1646 		return PTR_ERR(phy);
1647 	}
1648 
1649 	err = phy_device_register(phy);
1650 	if (err) {
1651 		phy_device_free(phy);
1652 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1653 			ERR_PTR(err));
1654 		return err;
1655 	}
1656 
1657 	err = sfp_add_phy(sfp->sfp_bus, phy);
1658 	if (err) {
1659 		phy_device_remove(phy);
1660 		phy_device_free(phy);
1661 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1662 		return err;
1663 	}
1664 
1665 	sfp->mod_phy = phy;
1666 
1667 	return 0;
1668 }
1669 
1670 static void sfp_sm_link_up(struct sfp *sfp)
1671 {
1672 	sfp_link_up(sfp->sfp_bus);
1673 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1674 }
1675 
1676 static void sfp_sm_link_down(struct sfp *sfp)
1677 {
1678 	sfp_link_down(sfp->sfp_bus);
1679 }
1680 
1681 static void sfp_sm_link_check_los(struct sfp *sfp)
1682 {
1683 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1684 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1685 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1686 	bool los = false;
1687 
1688 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1689 	 * are set, we assume that no LOS signal is available. If both are
1690 	 * set, we assume LOS is not implemented (and is meaningless.)
1691 	 */
1692 	if (los_options == los_inverted)
1693 		los = !(sfp->state & SFP_F_LOS);
1694 	else if (los_options == los_normal)
1695 		los = !!(sfp->state & SFP_F_LOS);
1696 
1697 	if (los)
1698 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1699 	else
1700 		sfp_sm_link_up(sfp);
1701 }
1702 
1703 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1704 {
1705 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1706 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1707 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1708 
1709 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1710 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1711 }
1712 
1713 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1714 {
1715 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1716 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1717 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1718 
1719 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1720 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1721 }
1722 
1723 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1724 {
1725 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1726 		dev_err(sfp->dev,
1727 			"module persistently indicates fault, disabling\n");
1728 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1729 	} else {
1730 		if (warn)
1731 			dev_err(sfp->dev, "module transmit fault indicated\n");
1732 
1733 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1734 	}
1735 }
1736 
1737 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1738 {
1739 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1740 		return sfp_i2c_mdiobus_create(sfp);
1741 
1742 	return 0;
1743 }
1744 
1745 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1746  * normally sits at I2C bus address 0x56, and may either be a clause 22
1747  * or clause 45 PHY.
1748  *
1749  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1750  * negotiation enabled, but some may be in 1000base-X - which is for the
1751  * PHY driver to determine.
1752  *
1753  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1754  * mode according to the negotiated line speed.
1755  */
1756 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1757 {
1758 	int err = 0;
1759 
1760 	switch (sfp->mdio_protocol) {
1761 	case MDIO_I2C_NONE:
1762 		break;
1763 
1764 	case MDIO_I2C_MARVELL_C22:
1765 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1766 		break;
1767 
1768 	case MDIO_I2C_C45:
1769 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1770 		break;
1771 
1772 	case MDIO_I2C_ROLLBALL:
1773 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1774 		break;
1775 	}
1776 
1777 	return err;
1778 }
1779 
1780 static int sfp_module_parse_power(struct sfp *sfp)
1781 {
1782 	u32 power_mW = 1000;
1783 	bool supports_a2;
1784 
1785 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1786 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1787 		power_mW = 1500;
1788 	/* Added in Rev 11.9, but there is no compliance code for this */
1789 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1790 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1791 		power_mW = 2000;
1792 
1793 	/* Power level 1 modules (max. 1W) are always supported. */
1794 	if (power_mW <= 1000) {
1795 		sfp->module_power_mW = power_mW;
1796 		return 0;
1797 	}
1798 
1799 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1800 				SFP_SFF8472_COMPLIANCE_NONE ||
1801 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1802 
1803 	if (power_mW > sfp->max_power_mW) {
1804 		/* Module power specification exceeds the allowed maximum. */
1805 		if (!supports_a2) {
1806 			/* The module appears not to implement bus address
1807 			 * 0xa2, so assume that the module powers up in the
1808 			 * indicated mode.
1809 			 */
1810 			dev_err(sfp->dev,
1811 				"Host does not support %u.%uW modules\n",
1812 				power_mW / 1000, (power_mW / 100) % 10);
1813 			return -EINVAL;
1814 		} else {
1815 			dev_warn(sfp->dev,
1816 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1817 				 power_mW / 1000, (power_mW / 100) % 10);
1818 			return 0;
1819 		}
1820 	}
1821 
1822 	if (!supports_a2) {
1823 		/* The module power level is below the host maximum and the
1824 		 * module appears not to implement bus address 0xa2, so assume
1825 		 * that the module powers up in the indicated mode.
1826 		 */
1827 		return 0;
1828 	}
1829 
1830 	/* If the module requires a higher power mode, but also requires
1831 	 * an address change sequence, warn the user that the module may
1832 	 * not be functional.
1833 	 */
1834 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1835 		dev_warn(sfp->dev,
1836 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1837 			 power_mW / 1000, (power_mW / 100) % 10);
1838 		return 0;
1839 	}
1840 
1841 	sfp->module_power_mW = power_mW;
1842 
1843 	return 0;
1844 }
1845 
1846 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1847 {
1848 	int err;
1849 
1850 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1851 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1852 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1853 	if (err != sizeof(u8)) {
1854 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1855 			enable ? "en" : "dis", ERR_PTR(err));
1856 		return -EAGAIN;
1857 	}
1858 
1859 	if (enable)
1860 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1861 			 sfp->module_power_mW / 1000,
1862 			 (sfp->module_power_mW / 100) % 10);
1863 
1864 	return 0;
1865 }
1866 
1867 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1868  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1869  * not support multibyte reads from the EEPROM. Each multi-byte read
1870  * operation returns just one byte of EEPROM followed by zeros. There is
1871  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1872  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1873  * name and vendor id into EEPROM, so there is even no way to detect if
1874  * module is V-SOL V2801F. Therefore check for those zeros in the read
1875  * data and then based on check switch to reading EEPROM to one byte
1876  * at a time.
1877  */
1878 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1879 {
1880 	size_t i, block_size = sfp->i2c_block_size;
1881 
1882 	/* Already using byte IO */
1883 	if (block_size == 1)
1884 		return false;
1885 
1886 	for (i = 1; i < len; i += block_size) {
1887 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1888 			return false;
1889 	}
1890 	return true;
1891 }
1892 
1893 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1894 {
1895 	u8 check;
1896 	int err;
1897 
1898 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1899 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1900 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1901 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1902 		id->base.phys_id = SFF8024_ID_SFF_8472;
1903 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1904 		id->base.connector = SFF8024_CONNECTOR_LC;
1905 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1906 		if (err != 3) {
1907 			dev_err(sfp->dev,
1908 				"Failed to rewrite module EEPROM: %pe\n",
1909 				ERR_PTR(err));
1910 			return err;
1911 		}
1912 
1913 		/* Cotsworks modules have been found to require a delay between write operations. */
1914 		mdelay(50);
1915 
1916 		/* Update base structure checksum */
1917 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1918 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1919 		if (err != 1) {
1920 			dev_err(sfp->dev,
1921 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1922 				ERR_PTR(err));
1923 			return err;
1924 		}
1925 	}
1926 	return 0;
1927 }
1928 
1929 static int sfp_module_parse_sff8472(struct sfp *sfp)
1930 {
1931 	/* If the module requires address swap mode, warn about it */
1932 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1933 		dev_warn(sfp->dev,
1934 			 "module address swap to access page 0xA2 is not supported.\n");
1935 	else
1936 		sfp->have_a2 = true;
1937 
1938 	return 0;
1939 }
1940 
1941 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1942 {
1943 	/* SFP module inserted - read I2C data */
1944 	struct sfp_eeprom_id id;
1945 	bool cotsworks_sfbg;
1946 	bool cotsworks;
1947 	u8 check;
1948 	int ret;
1949 
1950 	/* Some SFP modules and also some Linux I2C drivers do not like reads
1951 	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1952 	 * a time.
1953 	 */
1954 	sfp->i2c_block_size = 16;
1955 
1956 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1957 	if (ret < 0) {
1958 		if (report)
1959 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1960 				ERR_PTR(ret));
1961 		return -EAGAIN;
1962 	}
1963 
1964 	if (ret != sizeof(id.base)) {
1965 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1966 		return -EAGAIN;
1967 	}
1968 
1969 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1970 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1971 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1972 	 * fields, so do not switch to one byte reading at a time unless it
1973 	 * is really required and we have no other option.
1974 	 */
1975 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1976 		dev_info(sfp->dev,
1977 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1978 		dev_info(sfp->dev,
1979 			 "Switching to reading EEPROM to one byte at a time\n");
1980 		sfp->i2c_block_size = 1;
1981 
1982 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1983 		if (ret < 0) {
1984 			if (report)
1985 				dev_err(sfp->dev,
1986 					"failed to read EEPROM: %pe\n",
1987 					ERR_PTR(ret));
1988 			return -EAGAIN;
1989 		}
1990 
1991 		if (ret != sizeof(id.base)) {
1992 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
1993 				ERR_PTR(ret));
1994 			return -EAGAIN;
1995 		}
1996 	}
1997 
1998 	/* Cotsworks do not seem to update the checksums when they
1999 	 * do the final programming with the final module part number,
2000 	 * serial number and date code.
2001 	 */
2002 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2003 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2004 
2005 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2006 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2007 	 * Cotsworks PN matches and bytes are not correct.
2008 	 */
2009 	if (cotsworks && cotsworks_sfbg) {
2010 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2011 		if (ret < 0)
2012 			return ret;
2013 	}
2014 
2015 	/* Validate the checksum over the base structure */
2016 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2017 	if (check != id.base.cc_base) {
2018 		if (cotsworks) {
2019 			dev_warn(sfp->dev,
2020 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2021 				 check, id.base.cc_base);
2022 		} else {
2023 			dev_err(sfp->dev,
2024 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2025 				check, id.base.cc_base);
2026 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2027 				       16, 1, &id, sizeof(id), true);
2028 			return -EINVAL;
2029 		}
2030 	}
2031 
2032 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2033 	if (ret < 0) {
2034 		if (report)
2035 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2036 				ERR_PTR(ret));
2037 		return -EAGAIN;
2038 	}
2039 
2040 	if (ret != sizeof(id.ext)) {
2041 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2042 		return -EAGAIN;
2043 	}
2044 
2045 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2046 	if (check != id.ext.cc_ext) {
2047 		if (cotsworks) {
2048 			dev_warn(sfp->dev,
2049 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2050 				 check, id.ext.cc_ext);
2051 		} else {
2052 			dev_err(sfp->dev,
2053 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2054 				check, id.ext.cc_ext);
2055 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2056 				       16, 1, &id, sizeof(id), true);
2057 			memset(&id.ext, 0, sizeof(id.ext));
2058 		}
2059 	}
2060 
2061 	sfp->id = id;
2062 
2063 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2064 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2065 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2066 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2067 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2068 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2069 
2070 	/* Check whether we support this module */
2071 	if (!sfp->type->module_supported(&id)) {
2072 		dev_err(sfp->dev,
2073 			"module is not supported - phys id 0x%02x 0x%02x\n",
2074 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2075 		return -EINVAL;
2076 	}
2077 
2078 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2079 		ret = sfp_module_parse_sff8472(sfp);
2080 		if (ret < 0)
2081 			return ret;
2082 	}
2083 
2084 	/* Parse the module power requirement */
2085 	ret = sfp_module_parse_power(sfp);
2086 	if (ret < 0)
2087 		return ret;
2088 
2089 	/* Initialise state bits to use from hardware */
2090 	sfp->state_hw_mask = SFP_F_PRESENT;
2091 	if (sfp->gpio[GPIO_TX_DISABLE])
2092 		sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2093 	if (sfp->gpio[GPIO_TX_FAULT])
2094 		sfp->state_hw_mask |= SFP_F_TX_FAULT;
2095 	if (sfp->gpio[GPIO_LOS])
2096 		sfp->state_hw_mask |= SFP_F_LOS;
2097 
2098 	sfp->module_t_start_up = T_START_UP;
2099 	sfp->module_t_wait = T_WAIT;
2100 
2101 	sfp->tx_fault_ignore = false;
2102 
2103 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2104 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2105 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2106 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2107 		sfp->mdio_protocol = MDIO_I2C_C45;
2108 	else if (sfp->id.base.e1000_base_t)
2109 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2110 	else
2111 		sfp->mdio_protocol = MDIO_I2C_NONE;
2112 
2113 	sfp->quirk = sfp_lookup_quirk(&id);
2114 	if (sfp->quirk && sfp->quirk->fixup)
2115 		sfp->quirk->fixup(sfp);
2116 
2117 	return 0;
2118 }
2119 
2120 static void sfp_sm_mod_remove(struct sfp *sfp)
2121 {
2122 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2123 		sfp_module_remove(sfp->sfp_bus);
2124 
2125 	sfp_hwmon_remove(sfp);
2126 
2127 	memset(&sfp->id, 0, sizeof(sfp->id));
2128 	sfp->module_power_mW = 0;
2129 	sfp->have_a2 = false;
2130 
2131 	dev_info(sfp->dev, "module removed\n");
2132 }
2133 
2134 /* This state machine tracks the upstream's state */
2135 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2136 {
2137 	switch (sfp->sm_dev_state) {
2138 	default:
2139 		if (event == SFP_E_DEV_ATTACH)
2140 			sfp->sm_dev_state = SFP_DEV_DOWN;
2141 		break;
2142 
2143 	case SFP_DEV_DOWN:
2144 		if (event == SFP_E_DEV_DETACH)
2145 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2146 		else if (event == SFP_E_DEV_UP)
2147 			sfp->sm_dev_state = SFP_DEV_UP;
2148 		break;
2149 
2150 	case SFP_DEV_UP:
2151 		if (event == SFP_E_DEV_DETACH)
2152 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2153 		else if (event == SFP_E_DEV_DOWN)
2154 			sfp->sm_dev_state = SFP_DEV_DOWN;
2155 		break;
2156 	}
2157 }
2158 
2159 /* This state machine tracks the insert/remove state of the module, probes
2160  * the on-board EEPROM, and sets up the power level.
2161  */
2162 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2163 {
2164 	int err;
2165 
2166 	/* Handle remove event globally, it resets this state machine */
2167 	if (event == SFP_E_REMOVE) {
2168 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2169 			sfp_sm_mod_remove(sfp);
2170 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2171 		return;
2172 	}
2173 
2174 	/* Handle device detach globally */
2175 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2176 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2177 		if (sfp->module_power_mW > 1000 &&
2178 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2179 			sfp_sm_mod_hpower(sfp, false);
2180 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2181 		return;
2182 	}
2183 
2184 	switch (sfp->sm_mod_state) {
2185 	default:
2186 		if (event == SFP_E_INSERT) {
2187 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2188 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2189 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2190 		}
2191 		break;
2192 
2193 	case SFP_MOD_PROBE:
2194 		/* Wait for T_PROBE_INIT to time out */
2195 		if (event != SFP_E_TIMEOUT)
2196 			break;
2197 
2198 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2199 		if (err == -EAGAIN) {
2200 			if (sfp->sm_mod_tries_init &&
2201 			   --sfp->sm_mod_tries_init) {
2202 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2203 				break;
2204 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2205 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2206 					dev_warn(sfp->dev,
2207 						 "please wait, module slow to respond\n");
2208 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2209 				break;
2210 			}
2211 		}
2212 		if (err < 0) {
2213 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2214 			break;
2215 		}
2216 
2217 		err = sfp_hwmon_insert(sfp);
2218 		if (err)
2219 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2220 				 ERR_PTR(err));
2221 
2222 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2223 		fallthrough;
2224 	case SFP_MOD_WAITDEV:
2225 		/* Ensure that the device is attached before proceeding */
2226 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2227 			break;
2228 
2229 		/* Report the module insertion to the upstream device */
2230 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2231 					sfp->quirk);
2232 		if (err < 0) {
2233 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2234 			break;
2235 		}
2236 
2237 		/* If this is a power level 1 module, we are done */
2238 		if (sfp->module_power_mW <= 1000)
2239 			goto insert;
2240 
2241 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2242 		fallthrough;
2243 	case SFP_MOD_HPOWER:
2244 		/* Enable high power mode */
2245 		err = sfp_sm_mod_hpower(sfp, true);
2246 		if (err < 0) {
2247 			if (err != -EAGAIN) {
2248 				sfp_module_remove(sfp->sfp_bus);
2249 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2250 			} else {
2251 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2252 			}
2253 			break;
2254 		}
2255 
2256 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2257 		break;
2258 
2259 	case SFP_MOD_WAITPWR:
2260 		/* Wait for T_HPOWER_LEVEL to time out */
2261 		if (event != SFP_E_TIMEOUT)
2262 			break;
2263 
2264 	insert:
2265 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2266 		break;
2267 
2268 	case SFP_MOD_PRESENT:
2269 	case SFP_MOD_ERROR:
2270 		break;
2271 	}
2272 }
2273 
2274 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2275 {
2276 	unsigned long timeout;
2277 	int ret;
2278 
2279 	/* Some events are global */
2280 	if (sfp->sm_state != SFP_S_DOWN &&
2281 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2282 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2283 		if (sfp->sm_state == SFP_S_LINK_UP &&
2284 		    sfp->sm_dev_state == SFP_DEV_UP)
2285 			sfp_sm_link_down(sfp);
2286 		if (sfp->sm_state > SFP_S_INIT)
2287 			sfp_module_stop(sfp->sfp_bus);
2288 		if (sfp->mod_phy)
2289 			sfp_sm_phy_detach(sfp);
2290 		if (sfp->i2c_mii)
2291 			sfp_i2c_mdiobus_destroy(sfp);
2292 		sfp_module_tx_disable(sfp);
2293 		sfp_soft_stop_poll(sfp);
2294 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2295 		return;
2296 	}
2297 
2298 	/* The main state machine */
2299 	switch (sfp->sm_state) {
2300 	case SFP_S_DOWN:
2301 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2302 		    sfp->sm_dev_state != SFP_DEV_UP)
2303 			break;
2304 
2305 		/* Only use the soft state bits if we have access to the A2h
2306 		 * memory, which implies that we have some level of SFF-8472
2307 		 * compliance.
2308 		 */
2309 		if (sfp->have_a2)
2310 			sfp_soft_start_poll(sfp);
2311 
2312 		sfp_module_tx_enable(sfp);
2313 
2314 		/* Initialise the fault clearance retries */
2315 		sfp->sm_fault_retries = N_FAULT_INIT;
2316 
2317 		/* We need to check the TX_FAULT state, which is not defined
2318 		 * while TX_DISABLE is asserted. The earliest we want to do
2319 		 * anything (such as probe for a PHY) is 50ms (or more on
2320 		 * specific modules).
2321 		 */
2322 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2323 		break;
2324 
2325 	case SFP_S_WAIT:
2326 		if (event != SFP_E_TIMEOUT)
2327 			break;
2328 
2329 		if (sfp->state & SFP_F_TX_FAULT) {
2330 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2331 			 * from the TX_DISABLE deassertion for the module to
2332 			 * initialise, which is indicated by TX_FAULT
2333 			 * deasserting.
2334 			 */
2335 			timeout = sfp->module_t_start_up;
2336 			if (timeout > sfp->module_t_wait)
2337 				timeout -= sfp->module_t_wait;
2338 			else
2339 				timeout = 1;
2340 
2341 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2342 		} else {
2343 			/* TX_FAULT is not asserted, assume the module has
2344 			 * finished initialising.
2345 			 */
2346 			goto init_done;
2347 		}
2348 		break;
2349 
2350 	case SFP_S_INIT:
2351 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2352 			/* TX_FAULT is still asserted after t_init
2353 			 * or t_start_up, so assume there is a fault.
2354 			 */
2355 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2356 				     sfp->sm_fault_retries == N_FAULT_INIT);
2357 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2358 	init_done:
2359 			/* Create mdiobus and start trying for PHY */
2360 			ret = sfp_sm_add_mdio_bus(sfp);
2361 			if (ret < 0) {
2362 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2363 				break;
2364 			}
2365 			sfp->sm_phy_retries = R_PHY_RETRY;
2366 			goto phy_probe;
2367 		}
2368 		break;
2369 
2370 	case SFP_S_INIT_PHY:
2371 		if (event != SFP_E_TIMEOUT)
2372 			break;
2373 	phy_probe:
2374 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2375 		 * clear.  Probe for the PHY and check the LOS state.
2376 		 */
2377 		ret = sfp_sm_probe_for_phy(sfp);
2378 		if (ret == -ENODEV) {
2379 			if (--sfp->sm_phy_retries) {
2380 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2381 				break;
2382 			} else {
2383 				dev_info(sfp->dev, "no PHY detected\n");
2384 			}
2385 		} else if (ret) {
2386 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2387 			break;
2388 		}
2389 		if (sfp_module_start(sfp->sfp_bus)) {
2390 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2391 			break;
2392 		}
2393 		sfp_sm_link_check_los(sfp);
2394 
2395 		/* Reset the fault retry count */
2396 		sfp->sm_fault_retries = N_FAULT;
2397 		break;
2398 
2399 	case SFP_S_INIT_TX_FAULT:
2400 		if (event == SFP_E_TIMEOUT) {
2401 			sfp_module_tx_fault_reset(sfp);
2402 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2403 		}
2404 		break;
2405 
2406 	case SFP_S_WAIT_LOS:
2407 		if (event == SFP_E_TX_FAULT)
2408 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2409 		else if (sfp_los_event_inactive(sfp, event))
2410 			sfp_sm_link_up(sfp);
2411 		break;
2412 
2413 	case SFP_S_LINK_UP:
2414 		if (event == SFP_E_TX_FAULT) {
2415 			sfp_sm_link_down(sfp);
2416 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2417 		} else if (sfp_los_event_active(sfp, event)) {
2418 			sfp_sm_link_down(sfp);
2419 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2420 		}
2421 		break;
2422 
2423 	case SFP_S_TX_FAULT:
2424 		if (event == SFP_E_TIMEOUT) {
2425 			sfp_module_tx_fault_reset(sfp);
2426 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2427 		}
2428 		break;
2429 
2430 	case SFP_S_REINIT:
2431 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2432 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2433 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2434 			dev_info(sfp->dev, "module transmit fault recovered\n");
2435 			sfp_sm_link_check_los(sfp);
2436 		}
2437 		break;
2438 
2439 	case SFP_S_TX_DISABLE:
2440 		break;
2441 	}
2442 }
2443 
2444 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2445 {
2446 	mutex_lock(&sfp->sm_mutex);
2447 
2448 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2449 		mod_state_to_str(sfp->sm_mod_state),
2450 		dev_state_to_str(sfp->sm_dev_state),
2451 		sm_state_to_str(sfp->sm_state),
2452 		event_to_str(event));
2453 
2454 	sfp_sm_device(sfp, event);
2455 	sfp_sm_module(sfp, event);
2456 	sfp_sm_main(sfp, event);
2457 
2458 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2459 		mod_state_to_str(sfp->sm_mod_state),
2460 		dev_state_to_str(sfp->sm_dev_state),
2461 		sm_state_to_str(sfp->sm_state));
2462 
2463 	mutex_unlock(&sfp->sm_mutex);
2464 }
2465 
2466 static void sfp_attach(struct sfp *sfp)
2467 {
2468 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2469 }
2470 
2471 static void sfp_detach(struct sfp *sfp)
2472 {
2473 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2474 }
2475 
2476 static void sfp_start(struct sfp *sfp)
2477 {
2478 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2479 }
2480 
2481 static void sfp_stop(struct sfp *sfp)
2482 {
2483 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2484 }
2485 
2486 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2487 {
2488 	/* locking... and check module is present */
2489 
2490 	if (sfp->id.ext.sff8472_compliance &&
2491 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2492 		modinfo->type = ETH_MODULE_SFF_8472;
2493 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2494 	} else {
2495 		modinfo->type = ETH_MODULE_SFF_8079;
2496 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2497 	}
2498 	return 0;
2499 }
2500 
2501 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2502 			     u8 *data)
2503 {
2504 	unsigned int first, last, len;
2505 	int ret;
2506 
2507 	if (ee->len == 0)
2508 		return -EINVAL;
2509 
2510 	first = ee->offset;
2511 	last = ee->offset + ee->len;
2512 	if (first < ETH_MODULE_SFF_8079_LEN) {
2513 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2514 		len -= first;
2515 
2516 		ret = sfp_read(sfp, false, first, data, len);
2517 		if (ret < 0)
2518 			return ret;
2519 
2520 		first += len;
2521 		data += len;
2522 	}
2523 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2524 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2525 		len -= first;
2526 		first -= ETH_MODULE_SFF_8079_LEN;
2527 
2528 		ret = sfp_read(sfp, true, first, data, len);
2529 		if (ret < 0)
2530 			return ret;
2531 	}
2532 	return 0;
2533 }
2534 
2535 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2536 				     const struct ethtool_module_eeprom *page,
2537 				     struct netlink_ext_ack *extack)
2538 {
2539 	if (page->bank) {
2540 		NL_SET_ERR_MSG(extack, "Banks not supported");
2541 		return -EOPNOTSUPP;
2542 	}
2543 
2544 	if (page->page) {
2545 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2546 		return -EOPNOTSUPP;
2547 	}
2548 
2549 	if (page->i2c_address != 0x50 &&
2550 	    page->i2c_address != 0x51) {
2551 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2552 		return -EOPNOTSUPP;
2553 	}
2554 
2555 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2556 			page->data, page->length);
2557 };
2558 
2559 static const struct sfp_socket_ops sfp_module_ops = {
2560 	.attach = sfp_attach,
2561 	.detach = sfp_detach,
2562 	.start = sfp_start,
2563 	.stop = sfp_stop,
2564 	.module_info = sfp_module_info,
2565 	.module_eeprom = sfp_module_eeprom,
2566 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2567 };
2568 
2569 static void sfp_timeout(struct work_struct *work)
2570 {
2571 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2572 
2573 	rtnl_lock();
2574 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2575 	rtnl_unlock();
2576 }
2577 
2578 static void sfp_check_state(struct sfp *sfp)
2579 {
2580 	unsigned int state, i, changed;
2581 
2582 	mutex_lock(&sfp->st_mutex);
2583 	state = sfp_get_state(sfp);
2584 	changed = state ^ sfp->state;
2585 	if (sfp->tx_fault_ignore)
2586 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2587 	else
2588 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2589 
2590 	for (i = 0; i < GPIO_MAX; i++)
2591 		if (changed & BIT(i))
2592 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2593 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2594 
2595 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2596 	sfp->state = state;
2597 
2598 	rtnl_lock();
2599 	if (changed & SFP_F_PRESENT)
2600 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2601 				SFP_E_INSERT : SFP_E_REMOVE);
2602 
2603 	if (changed & SFP_F_TX_FAULT)
2604 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2605 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2606 
2607 	if (changed & SFP_F_LOS)
2608 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2609 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2610 	rtnl_unlock();
2611 	mutex_unlock(&sfp->st_mutex);
2612 }
2613 
2614 static irqreturn_t sfp_irq(int irq, void *data)
2615 {
2616 	struct sfp *sfp = data;
2617 
2618 	sfp_check_state(sfp);
2619 
2620 	return IRQ_HANDLED;
2621 }
2622 
2623 static void sfp_poll(struct work_struct *work)
2624 {
2625 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2626 
2627 	sfp_check_state(sfp);
2628 
2629 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2630 	    sfp->need_poll)
2631 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2632 }
2633 
2634 static struct sfp *sfp_alloc(struct device *dev)
2635 {
2636 	struct sfp *sfp;
2637 
2638 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2639 	if (!sfp)
2640 		return ERR_PTR(-ENOMEM);
2641 
2642 	sfp->dev = dev;
2643 
2644 	mutex_init(&sfp->sm_mutex);
2645 	mutex_init(&sfp->st_mutex);
2646 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2647 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2648 
2649 	sfp_hwmon_init(sfp);
2650 
2651 	return sfp;
2652 }
2653 
2654 static void sfp_cleanup(void *data)
2655 {
2656 	struct sfp *sfp = data;
2657 
2658 	sfp_hwmon_exit(sfp);
2659 
2660 	cancel_delayed_work_sync(&sfp->poll);
2661 	cancel_delayed_work_sync(&sfp->timeout);
2662 	if (sfp->i2c_mii) {
2663 		mdiobus_unregister(sfp->i2c_mii);
2664 		mdiobus_free(sfp->i2c_mii);
2665 	}
2666 	if (sfp->i2c)
2667 		i2c_put_adapter(sfp->i2c);
2668 	kfree(sfp);
2669 }
2670 
2671 static int sfp_i2c_get(struct sfp *sfp)
2672 {
2673 	struct fwnode_handle *h;
2674 	struct i2c_adapter *i2c;
2675 	int err;
2676 
2677 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2678 	if (IS_ERR(h)) {
2679 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2680 		return -ENODEV;
2681 	}
2682 
2683 	i2c = i2c_get_adapter_by_fwnode(h);
2684 	if (!i2c) {
2685 		err = -EPROBE_DEFER;
2686 		goto put;
2687 	}
2688 
2689 	err = sfp_i2c_configure(sfp, i2c);
2690 	if (err)
2691 		i2c_put_adapter(i2c);
2692 put:
2693 	fwnode_handle_put(h);
2694 	return err;
2695 }
2696 
2697 static int sfp_probe(struct platform_device *pdev)
2698 {
2699 	const struct sff_data *sff;
2700 	char *sfp_irq_name;
2701 	struct sfp *sfp;
2702 	int err, i;
2703 
2704 	sfp = sfp_alloc(&pdev->dev);
2705 	if (IS_ERR(sfp))
2706 		return PTR_ERR(sfp);
2707 
2708 	platform_set_drvdata(pdev, sfp);
2709 
2710 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2711 	if (err < 0)
2712 		return err;
2713 
2714 	sff = device_get_match_data(sfp->dev);
2715 	if (!sff)
2716 		sff = &sfp_data;
2717 
2718 	sfp->type = sff;
2719 
2720 	err = sfp_i2c_get(sfp);
2721 	if (err)
2722 		return err;
2723 
2724 	for (i = 0; i < GPIO_MAX; i++)
2725 		if (sff->gpios & BIT(i)) {
2726 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2727 					   gpio_names[i], gpio_flags[i]);
2728 			if (IS_ERR(sfp->gpio[i]))
2729 				return PTR_ERR(sfp->gpio[i]);
2730 		}
2731 
2732 	sfp->state_hw_mask = SFP_F_PRESENT;
2733 
2734 	sfp->get_state = sfp_gpio_get_state;
2735 	sfp->set_state = sfp_gpio_set_state;
2736 
2737 	/* Modules that have no detect signal are always present */
2738 	if (!(sfp->gpio[GPIO_MODDEF0]))
2739 		sfp->get_state = sff_gpio_get_state;
2740 
2741 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2742 				 &sfp->max_power_mW);
2743 	if (sfp->max_power_mW < 1000) {
2744 		if (sfp->max_power_mW)
2745 			dev_warn(sfp->dev,
2746 				 "Firmware bug: host maximum power should be at least 1W\n");
2747 		sfp->max_power_mW = 1000;
2748 	}
2749 
2750 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2751 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2752 
2753 	/* Get the initial state, and always signal TX disable,
2754 	 * since the network interface will not be up.
2755 	 */
2756 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2757 
2758 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2759 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2760 		sfp->state |= SFP_F_RATE_SELECT;
2761 	sfp_set_state(sfp, sfp->state);
2762 	sfp_module_tx_disable(sfp);
2763 	if (sfp->state & SFP_F_PRESENT) {
2764 		rtnl_lock();
2765 		sfp_sm_event(sfp, SFP_E_INSERT);
2766 		rtnl_unlock();
2767 	}
2768 
2769 	for (i = 0; i < GPIO_MAX; i++) {
2770 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2771 			continue;
2772 
2773 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2774 		if (sfp->gpio_irq[i] < 0) {
2775 			sfp->gpio_irq[i] = 0;
2776 			sfp->need_poll = true;
2777 			continue;
2778 		}
2779 
2780 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2781 					      "%s-%s", dev_name(sfp->dev),
2782 					      gpio_names[i]);
2783 
2784 		if (!sfp_irq_name)
2785 			return -ENOMEM;
2786 
2787 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2788 						NULL, sfp_irq,
2789 						IRQF_ONESHOT |
2790 						IRQF_TRIGGER_RISING |
2791 						IRQF_TRIGGER_FALLING,
2792 						sfp_irq_name, sfp);
2793 		if (err) {
2794 			sfp->gpio_irq[i] = 0;
2795 			sfp->need_poll = true;
2796 		}
2797 	}
2798 
2799 	if (sfp->need_poll)
2800 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2801 
2802 	/* We could have an issue in cases no Tx disable pin is available or
2803 	 * wired as modules using a laser as their light source will continue to
2804 	 * be active when the fiber is removed. This could be a safety issue and
2805 	 * we should at least warn the user about that.
2806 	 */
2807 	if (!sfp->gpio[GPIO_TX_DISABLE])
2808 		dev_warn(sfp->dev,
2809 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2810 
2811 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2812 	if (!sfp->sfp_bus)
2813 		return -ENOMEM;
2814 
2815 	sfp_debugfs_init(sfp);
2816 
2817 	return 0;
2818 }
2819 
2820 static int sfp_remove(struct platform_device *pdev)
2821 {
2822 	struct sfp *sfp = platform_get_drvdata(pdev);
2823 
2824 	sfp_debugfs_exit(sfp);
2825 	sfp_unregister_socket(sfp->sfp_bus);
2826 
2827 	rtnl_lock();
2828 	sfp_sm_event(sfp, SFP_E_REMOVE);
2829 	rtnl_unlock();
2830 
2831 	return 0;
2832 }
2833 
2834 static void sfp_shutdown(struct platform_device *pdev)
2835 {
2836 	struct sfp *sfp = platform_get_drvdata(pdev);
2837 	int i;
2838 
2839 	for (i = 0; i < GPIO_MAX; i++) {
2840 		if (!sfp->gpio_irq[i])
2841 			continue;
2842 
2843 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2844 	}
2845 
2846 	cancel_delayed_work_sync(&sfp->poll);
2847 	cancel_delayed_work_sync(&sfp->timeout);
2848 }
2849 
2850 static struct platform_driver sfp_driver = {
2851 	.probe = sfp_probe,
2852 	.remove = sfp_remove,
2853 	.shutdown = sfp_shutdown,
2854 	.driver = {
2855 		.name = "sfp",
2856 		.of_match_table = sfp_of_match,
2857 	},
2858 };
2859 
2860 static int sfp_init(void)
2861 {
2862 	poll_jiffies = msecs_to_jiffies(100);
2863 
2864 	return platform_driver_register(&sfp_driver);
2865 }
2866 module_init(sfp_init);
2867 
2868 static void sfp_exit(void)
2869 {
2870 	platform_driver_unregister(&sfp_driver);
2871 }
2872 module_exit(sfp_exit);
2873 
2874 MODULE_ALIAS("platform:sfp");
2875 MODULE_AUTHOR("Russell King");
2876 MODULE_LICENSE("GPL v2");
2877