xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 426c6cbc)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "sfp.h"
22 #include "swphy.h"
23 
24 enum {
25 	GPIO_MODDEF0,
26 	GPIO_LOS,
27 	GPIO_TX_FAULT,
28 	GPIO_TX_DISABLE,
29 	GPIO_RATE_SELECT,
30 	GPIO_MAX,
31 
32 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 	SFP_F_LOS = BIT(GPIO_LOS),
34 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37 
38 	SFP_E_INSERT = 0,
39 	SFP_E_REMOVE,
40 	SFP_E_DEV_ATTACH,
41 	SFP_E_DEV_DETACH,
42 	SFP_E_DEV_DOWN,
43 	SFP_E_DEV_UP,
44 	SFP_E_TX_FAULT,
45 	SFP_E_TX_CLEAR,
46 	SFP_E_LOS_HIGH,
47 	SFP_E_LOS_LOW,
48 	SFP_E_TIMEOUT,
49 
50 	SFP_MOD_EMPTY = 0,
51 	SFP_MOD_ERROR,
52 	SFP_MOD_PROBE,
53 	SFP_MOD_WAITDEV,
54 	SFP_MOD_HPOWER,
55 	SFP_MOD_WAITPWR,
56 	SFP_MOD_PRESENT,
57 
58 	SFP_DEV_DETACHED = 0,
59 	SFP_DEV_DOWN,
60 	SFP_DEV_UP,
61 
62 	SFP_S_DOWN = 0,
63 	SFP_S_FAIL,
64 	SFP_S_WAIT,
65 	SFP_S_INIT,
66 	SFP_S_INIT_PHY,
67 	SFP_S_INIT_TX_FAULT,
68 	SFP_S_WAIT_LOS,
69 	SFP_S_LINK_UP,
70 	SFP_S_TX_FAULT,
71 	SFP_S_REINIT,
72 	SFP_S_TX_DISABLE,
73 };
74 
75 static const char  * const mod_state_strings[] = {
76 	[SFP_MOD_EMPTY] = "empty",
77 	[SFP_MOD_ERROR] = "error",
78 	[SFP_MOD_PROBE] = "probe",
79 	[SFP_MOD_WAITDEV] = "waitdev",
80 	[SFP_MOD_HPOWER] = "hpower",
81 	[SFP_MOD_WAITPWR] = "waitpwr",
82 	[SFP_MOD_PRESENT] = "present",
83 };
84 
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 		return "Unknown module state";
89 	return mod_state_strings[mod_state];
90 }
91 
92 static const char * const dev_state_strings[] = {
93 	[SFP_DEV_DETACHED] = "detached",
94 	[SFP_DEV_DOWN] = "down",
95 	[SFP_DEV_UP] = "up",
96 };
97 
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 		return "Unknown device state";
102 	return dev_state_strings[dev_state];
103 }
104 
105 static const char * const event_strings[] = {
106 	[SFP_E_INSERT] = "insert",
107 	[SFP_E_REMOVE] = "remove",
108 	[SFP_E_DEV_ATTACH] = "dev_attach",
109 	[SFP_E_DEV_DETACH] = "dev_detach",
110 	[SFP_E_DEV_DOWN] = "dev_down",
111 	[SFP_E_DEV_UP] = "dev_up",
112 	[SFP_E_TX_FAULT] = "tx_fault",
113 	[SFP_E_TX_CLEAR] = "tx_clear",
114 	[SFP_E_LOS_HIGH] = "los_high",
115 	[SFP_E_LOS_LOW] = "los_low",
116 	[SFP_E_TIMEOUT] = "timeout",
117 };
118 
119 static const char *event_to_str(unsigned short event)
120 {
121 	if (event >= ARRAY_SIZE(event_strings))
122 		return "Unknown event";
123 	return event_strings[event];
124 }
125 
126 static const char * const sm_state_strings[] = {
127 	[SFP_S_DOWN] = "down",
128 	[SFP_S_FAIL] = "fail",
129 	[SFP_S_WAIT] = "wait",
130 	[SFP_S_INIT] = "init",
131 	[SFP_S_INIT_PHY] = "init_phy",
132 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 	[SFP_S_WAIT_LOS] = "wait_los",
134 	[SFP_S_LINK_UP] = "link_up",
135 	[SFP_S_TX_FAULT] = "tx_fault",
136 	[SFP_S_REINIT] = "reinit",
137 	[SFP_S_TX_DISABLE] = "rx_disable",
138 };
139 
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 		return "Unknown state";
144 	return sm_state_strings[sm_state];
145 }
146 
147 static const char *gpio_of_names[] = {
148 	"mod-def0",
149 	"los",
150 	"tx-fault",
151 	"tx-disable",
152 	"rate-select0",
153 };
154 
155 static const enum gpiod_flags gpio_flags[] = {
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_IN,
159 	GPIOD_ASIS,
160 	GPIOD_ASIS,
161 };
162 
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT			msecs_to_jiffies(50)
169 #define T_START_UP		msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
171 
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US		10
176 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
177 
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT		5
184 #define N_FAULT			5
185 
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY		msecs_to_jiffies(50)
190 #define R_PHY_RETRY		12
191 
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL		msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT	10
203 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW	12
205 
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR	22
210 
211 struct sff_data {
212 	unsigned int gpios;
213 	bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215 
216 struct sfp {
217 	struct device *dev;
218 	struct i2c_adapter *i2c;
219 	struct mii_bus *i2c_mii;
220 	struct sfp_bus *sfp_bus;
221 	struct phy_device *mod_phy;
222 	const struct sff_data *type;
223 	size_t i2c_block_size;
224 	u32 max_power_mW;
225 
226 	unsigned int (*get_state)(struct sfp *);
227 	void (*set_state)(struct sfp *, unsigned int);
228 	int (*read)(struct sfp *, bool, u8, void *, size_t);
229 	int (*write)(struct sfp *, bool, u8, void *, size_t);
230 
231 	struct gpio_desc *gpio[GPIO_MAX];
232 	int gpio_irq[GPIO_MAX];
233 
234 	bool need_poll;
235 
236 	struct mutex st_mutex;			/* Protects state */
237 	unsigned int state_soft_mask;
238 	unsigned int state;
239 	struct delayed_work poll;
240 	struct delayed_work timeout;
241 	struct mutex sm_mutex;			/* Protects state machine */
242 	unsigned char sm_mod_state;
243 	unsigned char sm_mod_tries_init;
244 	unsigned char sm_mod_tries;
245 	unsigned char sm_dev_state;
246 	unsigned short sm_state;
247 	unsigned char sm_fault_retries;
248 	unsigned char sm_phy_retries;
249 
250 	struct sfp_eeprom_id id;
251 	unsigned int module_power_mW;
252 	unsigned int module_t_start_up;
253 
254 #if IS_ENABLED(CONFIG_HWMON)
255 	struct sfp_diag diag;
256 	struct delayed_work hwmon_probe;
257 	unsigned int hwmon_tries;
258 	struct device *hwmon_dev;
259 	char *hwmon_name;
260 #endif
261 
262 #if IS_ENABLED(CONFIG_DEBUG_FS)
263 	struct dentry *debugfs_dir;
264 #endif
265 };
266 
267 static bool sff_module_supported(const struct sfp_eeprom_id *id)
268 {
269 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271 }
272 
273 static const struct sff_data sff_data = {
274 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275 	.module_supported = sff_module_supported,
276 };
277 
278 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279 {
280 	return id->base.phys_id == SFF8024_ID_SFP &&
281 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
282 }
283 
284 static const struct sff_data sfp_data = {
285 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
286 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
287 	.module_supported = sfp_module_supported,
288 };
289 
290 static const struct of_device_id sfp_of_match[] = {
291 	{ .compatible = "sff,sff", .data = &sff_data, },
292 	{ .compatible = "sff,sfp", .data = &sfp_data, },
293 	{ },
294 };
295 MODULE_DEVICE_TABLE(of, sfp_of_match);
296 
297 static unsigned long poll_jiffies;
298 
299 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
300 {
301 	unsigned int i, state, v;
302 
303 	for (i = state = 0; i < GPIO_MAX; i++) {
304 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
305 			continue;
306 
307 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
308 		if (v)
309 			state |= BIT(i);
310 	}
311 
312 	return state;
313 }
314 
315 static unsigned int sff_gpio_get_state(struct sfp *sfp)
316 {
317 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
318 }
319 
320 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
321 {
322 	if (state & SFP_F_PRESENT) {
323 		/* If the module is present, drive the signals */
324 		if (sfp->gpio[GPIO_TX_DISABLE])
325 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
326 					       state & SFP_F_TX_DISABLE);
327 		if (state & SFP_F_RATE_SELECT)
328 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
329 					       state & SFP_F_RATE_SELECT);
330 	} else {
331 		/* Otherwise, let them float to the pull-ups */
332 		if (sfp->gpio[GPIO_TX_DISABLE])
333 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
334 		if (state & SFP_F_RATE_SELECT)
335 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
336 	}
337 }
338 
339 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
340 			size_t len)
341 {
342 	struct i2c_msg msgs[2];
343 	u8 bus_addr = a2 ? 0x51 : 0x50;
344 	size_t block_size = sfp->i2c_block_size;
345 	size_t this_len;
346 	int ret;
347 
348 	msgs[0].addr = bus_addr;
349 	msgs[0].flags = 0;
350 	msgs[0].len = 1;
351 	msgs[0].buf = &dev_addr;
352 	msgs[1].addr = bus_addr;
353 	msgs[1].flags = I2C_M_RD;
354 	msgs[1].len = len;
355 	msgs[1].buf = buf;
356 
357 	while (len) {
358 		this_len = len;
359 		if (this_len > block_size)
360 			this_len = block_size;
361 
362 		msgs[1].len = this_len;
363 
364 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
365 		if (ret < 0)
366 			return ret;
367 
368 		if (ret != ARRAY_SIZE(msgs))
369 			break;
370 
371 		msgs[1].buf += this_len;
372 		dev_addr += this_len;
373 		len -= this_len;
374 	}
375 
376 	return msgs[1].buf - (u8 *)buf;
377 }
378 
379 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
380 	size_t len)
381 {
382 	struct i2c_msg msgs[1];
383 	u8 bus_addr = a2 ? 0x51 : 0x50;
384 	int ret;
385 
386 	msgs[0].addr = bus_addr;
387 	msgs[0].flags = 0;
388 	msgs[0].len = 1 + len;
389 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
390 	if (!msgs[0].buf)
391 		return -ENOMEM;
392 
393 	msgs[0].buf[0] = dev_addr;
394 	memcpy(&msgs[0].buf[1], buf, len);
395 
396 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
397 
398 	kfree(msgs[0].buf);
399 
400 	if (ret < 0)
401 		return ret;
402 
403 	return ret == ARRAY_SIZE(msgs) ? len : 0;
404 }
405 
406 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
407 {
408 	struct mii_bus *i2c_mii;
409 	int ret;
410 
411 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
412 		return -EINVAL;
413 
414 	sfp->i2c = i2c;
415 	sfp->read = sfp_i2c_read;
416 	sfp->write = sfp_i2c_write;
417 
418 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
419 	if (IS_ERR(i2c_mii))
420 		return PTR_ERR(i2c_mii);
421 
422 	i2c_mii->name = "SFP I2C Bus";
423 	i2c_mii->phy_mask = ~0;
424 
425 	ret = mdiobus_register(i2c_mii);
426 	if (ret < 0) {
427 		mdiobus_free(i2c_mii);
428 		return ret;
429 	}
430 
431 	sfp->i2c_mii = i2c_mii;
432 
433 	return 0;
434 }
435 
436 /* Interface */
437 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
438 {
439 	return sfp->read(sfp, a2, addr, buf, len);
440 }
441 
442 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
443 {
444 	return sfp->write(sfp, a2, addr, buf, len);
445 }
446 
447 static unsigned int sfp_soft_get_state(struct sfp *sfp)
448 {
449 	unsigned int state = 0;
450 	u8 status;
451 	int ret;
452 
453 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
454 	if (ret == sizeof(status)) {
455 		if (status & SFP_STATUS_RX_LOS)
456 			state |= SFP_F_LOS;
457 		if (status & SFP_STATUS_TX_FAULT)
458 			state |= SFP_F_TX_FAULT;
459 	} else {
460 		dev_err_ratelimited(sfp->dev,
461 				    "failed to read SFP soft status: %d\n",
462 				    ret);
463 		/* Preserve the current state */
464 		state = sfp->state;
465 	}
466 
467 	return state & sfp->state_soft_mask;
468 }
469 
470 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
471 {
472 	u8 status;
473 
474 	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
475 		     sizeof(status)) {
476 		if (state & SFP_F_TX_DISABLE)
477 			status |= SFP_STATUS_TX_DISABLE_FORCE;
478 		else
479 			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
480 
481 		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
482 	}
483 }
484 
485 static void sfp_soft_start_poll(struct sfp *sfp)
486 {
487 	const struct sfp_eeprom_id *id = &sfp->id;
488 
489 	sfp->state_soft_mask = 0;
490 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
491 	    !sfp->gpio[GPIO_TX_DISABLE])
492 		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
493 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
494 	    !sfp->gpio[GPIO_TX_FAULT])
495 		sfp->state_soft_mask |= SFP_F_TX_FAULT;
496 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
497 	    !sfp->gpio[GPIO_LOS])
498 		sfp->state_soft_mask |= SFP_F_LOS;
499 
500 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
501 	    !sfp->need_poll)
502 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
503 }
504 
505 static void sfp_soft_stop_poll(struct sfp *sfp)
506 {
507 	sfp->state_soft_mask = 0;
508 }
509 
510 static unsigned int sfp_get_state(struct sfp *sfp)
511 {
512 	unsigned int state = sfp->get_state(sfp);
513 
514 	if (state & SFP_F_PRESENT &&
515 	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
516 		state |= sfp_soft_get_state(sfp);
517 
518 	return state;
519 }
520 
521 static void sfp_set_state(struct sfp *sfp, unsigned int state)
522 {
523 	sfp->set_state(sfp, state);
524 
525 	if (state & SFP_F_PRESENT &&
526 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
527 		sfp_soft_set_state(sfp, state);
528 }
529 
530 static unsigned int sfp_check(void *buf, size_t len)
531 {
532 	u8 *p, check;
533 
534 	for (p = buf, check = 0; len; p++, len--)
535 		check += *p;
536 
537 	return check;
538 }
539 
540 /* hwmon */
541 #if IS_ENABLED(CONFIG_HWMON)
542 static umode_t sfp_hwmon_is_visible(const void *data,
543 				    enum hwmon_sensor_types type,
544 				    u32 attr, int channel)
545 {
546 	const struct sfp *sfp = data;
547 
548 	switch (type) {
549 	case hwmon_temp:
550 		switch (attr) {
551 		case hwmon_temp_min_alarm:
552 		case hwmon_temp_max_alarm:
553 		case hwmon_temp_lcrit_alarm:
554 		case hwmon_temp_crit_alarm:
555 		case hwmon_temp_min:
556 		case hwmon_temp_max:
557 		case hwmon_temp_lcrit:
558 		case hwmon_temp_crit:
559 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
560 				return 0;
561 			fallthrough;
562 		case hwmon_temp_input:
563 		case hwmon_temp_label:
564 			return 0444;
565 		default:
566 			return 0;
567 		}
568 	case hwmon_in:
569 		switch (attr) {
570 		case hwmon_in_min_alarm:
571 		case hwmon_in_max_alarm:
572 		case hwmon_in_lcrit_alarm:
573 		case hwmon_in_crit_alarm:
574 		case hwmon_in_min:
575 		case hwmon_in_max:
576 		case hwmon_in_lcrit:
577 		case hwmon_in_crit:
578 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
579 				return 0;
580 			fallthrough;
581 		case hwmon_in_input:
582 		case hwmon_in_label:
583 			return 0444;
584 		default:
585 			return 0;
586 		}
587 	case hwmon_curr:
588 		switch (attr) {
589 		case hwmon_curr_min_alarm:
590 		case hwmon_curr_max_alarm:
591 		case hwmon_curr_lcrit_alarm:
592 		case hwmon_curr_crit_alarm:
593 		case hwmon_curr_min:
594 		case hwmon_curr_max:
595 		case hwmon_curr_lcrit:
596 		case hwmon_curr_crit:
597 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
598 				return 0;
599 			fallthrough;
600 		case hwmon_curr_input:
601 		case hwmon_curr_label:
602 			return 0444;
603 		default:
604 			return 0;
605 		}
606 	case hwmon_power:
607 		/* External calibration of receive power requires
608 		 * floating point arithmetic. Doing that in the kernel
609 		 * is not easy, so just skip it. If the module does
610 		 * not require external calibration, we can however
611 		 * show receiver power, since FP is then not needed.
612 		 */
613 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
614 		    channel == 1)
615 			return 0;
616 		switch (attr) {
617 		case hwmon_power_min_alarm:
618 		case hwmon_power_max_alarm:
619 		case hwmon_power_lcrit_alarm:
620 		case hwmon_power_crit_alarm:
621 		case hwmon_power_min:
622 		case hwmon_power_max:
623 		case hwmon_power_lcrit:
624 		case hwmon_power_crit:
625 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
626 				return 0;
627 			fallthrough;
628 		case hwmon_power_input:
629 		case hwmon_power_label:
630 			return 0444;
631 		default:
632 			return 0;
633 		}
634 	default:
635 		return 0;
636 	}
637 }
638 
639 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
640 {
641 	__be16 val;
642 	int err;
643 
644 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
645 	if (err < 0)
646 		return err;
647 
648 	*value = be16_to_cpu(val);
649 
650 	return 0;
651 }
652 
653 static void sfp_hwmon_to_rx_power(long *value)
654 {
655 	*value = DIV_ROUND_CLOSEST(*value, 10);
656 }
657 
658 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
659 				long *value)
660 {
661 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
662 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
663 }
664 
665 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
666 {
667 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
668 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
669 
670 	if (*value >= 0x8000)
671 		*value -= 0x10000;
672 
673 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
674 }
675 
676 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
677 {
678 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
679 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
680 
681 	*value = DIV_ROUND_CLOSEST(*value, 10);
682 }
683 
684 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
685 {
686 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
687 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
688 
689 	*value = DIV_ROUND_CLOSEST(*value, 500);
690 }
691 
692 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
693 {
694 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
695 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
696 
697 	*value = DIV_ROUND_CLOSEST(*value, 10);
698 }
699 
700 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
701 {
702 	int err;
703 
704 	err = sfp_hwmon_read_sensor(sfp, reg, value);
705 	if (err < 0)
706 		return err;
707 
708 	sfp_hwmon_calibrate_temp(sfp, value);
709 
710 	return 0;
711 }
712 
713 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
714 {
715 	int err;
716 
717 	err = sfp_hwmon_read_sensor(sfp, reg, value);
718 	if (err < 0)
719 		return err;
720 
721 	sfp_hwmon_calibrate_vcc(sfp, value);
722 
723 	return 0;
724 }
725 
726 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
727 {
728 	int err;
729 
730 	err = sfp_hwmon_read_sensor(sfp, reg, value);
731 	if (err < 0)
732 		return err;
733 
734 	sfp_hwmon_calibrate_bias(sfp, value);
735 
736 	return 0;
737 }
738 
739 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
740 {
741 	int err;
742 
743 	err = sfp_hwmon_read_sensor(sfp, reg, value);
744 	if (err < 0)
745 		return err;
746 
747 	sfp_hwmon_calibrate_tx_power(sfp, value);
748 
749 	return 0;
750 }
751 
752 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
753 {
754 	int err;
755 
756 	err = sfp_hwmon_read_sensor(sfp, reg, value);
757 	if (err < 0)
758 		return err;
759 
760 	sfp_hwmon_to_rx_power(value);
761 
762 	return 0;
763 }
764 
765 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
766 {
767 	u8 status;
768 	int err;
769 
770 	switch (attr) {
771 	case hwmon_temp_input:
772 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
773 
774 	case hwmon_temp_lcrit:
775 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
776 		sfp_hwmon_calibrate_temp(sfp, value);
777 		return 0;
778 
779 	case hwmon_temp_min:
780 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
781 		sfp_hwmon_calibrate_temp(sfp, value);
782 		return 0;
783 	case hwmon_temp_max:
784 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
785 		sfp_hwmon_calibrate_temp(sfp, value);
786 		return 0;
787 
788 	case hwmon_temp_crit:
789 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
790 		sfp_hwmon_calibrate_temp(sfp, value);
791 		return 0;
792 
793 	case hwmon_temp_lcrit_alarm:
794 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
795 		if (err < 0)
796 			return err;
797 
798 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
799 		return 0;
800 
801 	case hwmon_temp_min_alarm:
802 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
803 		if (err < 0)
804 			return err;
805 
806 		*value = !!(status & SFP_WARN0_TEMP_LOW);
807 		return 0;
808 
809 	case hwmon_temp_max_alarm:
810 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
811 		if (err < 0)
812 			return err;
813 
814 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
815 		return 0;
816 
817 	case hwmon_temp_crit_alarm:
818 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
819 		if (err < 0)
820 			return err;
821 
822 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
823 		return 0;
824 	default:
825 		return -EOPNOTSUPP;
826 	}
827 
828 	return -EOPNOTSUPP;
829 }
830 
831 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
832 {
833 	u8 status;
834 	int err;
835 
836 	switch (attr) {
837 	case hwmon_in_input:
838 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
839 
840 	case hwmon_in_lcrit:
841 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
842 		sfp_hwmon_calibrate_vcc(sfp, value);
843 		return 0;
844 
845 	case hwmon_in_min:
846 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
847 		sfp_hwmon_calibrate_vcc(sfp, value);
848 		return 0;
849 
850 	case hwmon_in_max:
851 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
852 		sfp_hwmon_calibrate_vcc(sfp, value);
853 		return 0;
854 
855 	case hwmon_in_crit:
856 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
857 		sfp_hwmon_calibrate_vcc(sfp, value);
858 		return 0;
859 
860 	case hwmon_in_lcrit_alarm:
861 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
862 		if (err < 0)
863 			return err;
864 
865 		*value = !!(status & SFP_ALARM0_VCC_LOW);
866 		return 0;
867 
868 	case hwmon_in_min_alarm:
869 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
870 		if (err < 0)
871 			return err;
872 
873 		*value = !!(status & SFP_WARN0_VCC_LOW);
874 		return 0;
875 
876 	case hwmon_in_max_alarm:
877 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
878 		if (err < 0)
879 			return err;
880 
881 		*value = !!(status & SFP_WARN0_VCC_HIGH);
882 		return 0;
883 
884 	case hwmon_in_crit_alarm:
885 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
886 		if (err < 0)
887 			return err;
888 
889 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
890 		return 0;
891 	default:
892 		return -EOPNOTSUPP;
893 	}
894 
895 	return -EOPNOTSUPP;
896 }
897 
898 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
899 {
900 	u8 status;
901 	int err;
902 
903 	switch (attr) {
904 	case hwmon_curr_input:
905 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
906 
907 	case hwmon_curr_lcrit:
908 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
909 		sfp_hwmon_calibrate_bias(sfp, value);
910 		return 0;
911 
912 	case hwmon_curr_min:
913 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
914 		sfp_hwmon_calibrate_bias(sfp, value);
915 		return 0;
916 
917 	case hwmon_curr_max:
918 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
919 		sfp_hwmon_calibrate_bias(sfp, value);
920 		return 0;
921 
922 	case hwmon_curr_crit:
923 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
924 		sfp_hwmon_calibrate_bias(sfp, value);
925 		return 0;
926 
927 	case hwmon_curr_lcrit_alarm:
928 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
929 		if (err < 0)
930 			return err;
931 
932 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
933 		return 0;
934 
935 	case hwmon_curr_min_alarm:
936 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
937 		if (err < 0)
938 			return err;
939 
940 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
941 		return 0;
942 
943 	case hwmon_curr_max_alarm:
944 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
945 		if (err < 0)
946 			return err;
947 
948 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
949 		return 0;
950 
951 	case hwmon_curr_crit_alarm:
952 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
953 		if (err < 0)
954 			return err;
955 
956 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
957 		return 0;
958 	default:
959 		return -EOPNOTSUPP;
960 	}
961 
962 	return -EOPNOTSUPP;
963 }
964 
965 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
966 {
967 	u8 status;
968 	int err;
969 
970 	switch (attr) {
971 	case hwmon_power_input:
972 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
973 
974 	case hwmon_power_lcrit:
975 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
976 		sfp_hwmon_calibrate_tx_power(sfp, value);
977 		return 0;
978 
979 	case hwmon_power_min:
980 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
981 		sfp_hwmon_calibrate_tx_power(sfp, value);
982 		return 0;
983 
984 	case hwmon_power_max:
985 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
986 		sfp_hwmon_calibrate_tx_power(sfp, value);
987 		return 0;
988 
989 	case hwmon_power_crit:
990 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
991 		sfp_hwmon_calibrate_tx_power(sfp, value);
992 		return 0;
993 
994 	case hwmon_power_lcrit_alarm:
995 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
996 		if (err < 0)
997 			return err;
998 
999 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1000 		return 0;
1001 
1002 	case hwmon_power_min_alarm:
1003 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1004 		if (err < 0)
1005 			return err;
1006 
1007 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1008 		return 0;
1009 
1010 	case hwmon_power_max_alarm:
1011 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1012 		if (err < 0)
1013 			return err;
1014 
1015 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1016 		return 0;
1017 
1018 	case hwmon_power_crit_alarm:
1019 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1020 		if (err < 0)
1021 			return err;
1022 
1023 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1024 		return 0;
1025 	default:
1026 		return -EOPNOTSUPP;
1027 	}
1028 
1029 	return -EOPNOTSUPP;
1030 }
1031 
1032 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1033 {
1034 	u8 status;
1035 	int err;
1036 
1037 	switch (attr) {
1038 	case hwmon_power_input:
1039 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1040 
1041 	case hwmon_power_lcrit:
1042 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1043 		sfp_hwmon_to_rx_power(value);
1044 		return 0;
1045 
1046 	case hwmon_power_min:
1047 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1048 		sfp_hwmon_to_rx_power(value);
1049 		return 0;
1050 
1051 	case hwmon_power_max:
1052 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1053 		sfp_hwmon_to_rx_power(value);
1054 		return 0;
1055 
1056 	case hwmon_power_crit:
1057 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1058 		sfp_hwmon_to_rx_power(value);
1059 		return 0;
1060 
1061 	case hwmon_power_lcrit_alarm:
1062 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1063 		if (err < 0)
1064 			return err;
1065 
1066 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1067 		return 0;
1068 
1069 	case hwmon_power_min_alarm:
1070 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1071 		if (err < 0)
1072 			return err;
1073 
1074 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1075 		return 0;
1076 
1077 	case hwmon_power_max_alarm:
1078 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1079 		if (err < 0)
1080 			return err;
1081 
1082 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1083 		return 0;
1084 
1085 	case hwmon_power_crit_alarm:
1086 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1087 		if (err < 0)
1088 			return err;
1089 
1090 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1091 		return 0;
1092 	default:
1093 		return -EOPNOTSUPP;
1094 	}
1095 
1096 	return -EOPNOTSUPP;
1097 }
1098 
1099 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1100 			  u32 attr, int channel, long *value)
1101 {
1102 	struct sfp *sfp = dev_get_drvdata(dev);
1103 
1104 	switch (type) {
1105 	case hwmon_temp:
1106 		return sfp_hwmon_temp(sfp, attr, value);
1107 	case hwmon_in:
1108 		return sfp_hwmon_vcc(sfp, attr, value);
1109 	case hwmon_curr:
1110 		return sfp_hwmon_bias(sfp, attr, value);
1111 	case hwmon_power:
1112 		switch (channel) {
1113 		case 0:
1114 			return sfp_hwmon_tx_power(sfp, attr, value);
1115 		case 1:
1116 			return sfp_hwmon_rx_power(sfp, attr, value);
1117 		default:
1118 			return -EOPNOTSUPP;
1119 		}
1120 	default:
1121 		return -EOPNOTSUPP;
1122 	}
1123 }
1124 
1125 static const char *const sfp_hwmon_power_labels[] = {
1126 	"TX_power",
1127 	"RX_power",
1128 };
1129 
1130 static int sfp_hwmon_read_string(struct device *dev,
1131 				 enum hwmon_sensor_types type,
1132 				 u32 attr, int channel, const char **str)
1133 {
1134 	switch (type) {
1135 	case hwmon_curr:
1136 		switch (attr) {
1137 		case hwmon_curr_label:
1138 			*str = "bias";
1139 			return 0;
1140 		default:
1141 			return -EOPNOTSUPP;
1142 		}
1143 		break;
1144 	case hwmon_temp:
1145 		switch (attr) {
1146 		case hwmon_temp_label:
1147 			*str = "temperature";
1148 			return 0;
1149 		default:
1150 			return -EOPNOTSUPP;
1151 		}
1152 		break;
1153 	case hwmon_in:
1154 		switch (attr) {
1155 		case hwmon_in_label:
1156 			*str = "VCC";
1157 			return 0;
1158 		default:
1159 			return -EOPNOTSUPP;
1160 		}
1161 		break;
1162 	case hwmon_power:
1163 		switch (attr) {
1164 		case hwmon_power_label:
1165 			*str = sfp_hwmon_power_labels[channel];
1166 			return 0;
1167 		default:
1168 			return -EOPNOTSUPP;
1169 		}
1170 		break;
1171 	default:
1172 		return -EOPNOTSUPP;
1173 	}
1174 
1175 	return -EOPNOTSUPP;
1176 }
1177 
1178 static const struct hwmon_ops sfp_hwmon_ops = {
1179 	.is_visible = sfp_hwmon_is_visible,
1180 	.read = sfp_hwmon_read,
1181 	.read_string = sfp_hwmon_read_string,
1182 };
1183 
1184 static u32 sfp_hwmon_chip_config[] = {
1185 	HWMON_C_REGISTER_TZ,
1186 	0,
1187 };
1188 
1189 static const struct hwmon_channel_info sfp_hwmon_chip = {
1190 	.type = hwmon_chip,
1191 	.config = sfp_hwmon_chip_config,
1192 };
1193 
1194 static u32 sfp_hwmon_temp_config[] = {
1195 	HWMON_T_INPUT |
1196 	HWMON_T_MAX | HWMON_T_MIN |
1197 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1198 	HWMON_T_CRIT | HWMON_T_LCRIT |
1199 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1200 	HWMON_T_LABEL,
1201 	0,
1202 };
1203 
1204 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1205 	.type = hwmon_temp,
1206 	.config = sfp_hwmon_temp_config,
1207 };
1208 
1209 static u32 sfp_hwmon_vcc_config[] = {
1210 	HWMON_I_INPUT |
1211 	HWMON_I_MAX | HWMON_I_MIN |
1212 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1213 	HWMON_I_CRIT | HWMON_I_LCRIT |
1214 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1215 	HWMON_I_LABEL,
1216 	0,
1217 };
1218 
1219 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1220 	.type = hwmon_in,
1221 	.config = sfp_hwmon_vcc_config,
1222 };
1223 
1224 static u32 sfp_hwmon_bias_config[] = {
1225 	HWMON_C_INPUT |
1226 	HWMON_C_MAX | HWMON_C_MIN |
1227 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1228 	HWMON_C_CRIT | HWMON_C_LCRIT |
1229 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1230 	HWMON_C_LABEL,
1231 	0,
1232 };
1233 
1234 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1235 	.type = hwmon_curr,
1236 	.config = sfp_hwmon_bias_config,
1237 };
1238 
1239 static u32 sfp_hwmon_power_config[] = {
1240 	/* Transmit power */
1241 	HWMON_P_INPUT |
1242 	HWMON_P_MAX | HWMON_P_MIN |
1243 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1244 	HWMON_P_CRIT | HWMON_P_LCRIT |
1245 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1246 	HWMON_P_LABEL,
1247 	/* Receive power */
1248 	HWMON_P_INPUT |
1249 	HWMON_P_MAX | HWMON_P_MIN |
1250 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1251 	HWMON_P_CRIT | HWMON_P_LCRIT |
1252 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1253 	HWMON_P_LABEL,
1254 	0,
1255 };
1256 
1257 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1258 	.type = hwmon_power,
1259 	.config = sfp_hwmon_power_config,
1260 };
1261 
1262 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1263 	&sfp_hwmon_chip,
1264 	&sfp_hwmon_vcc_channel_info,
1265 	&sfp_hwmon_temp_channel_info,
1266 	&sfp_hwmon_bias_channel_info,
1267 	&sfp_hwmon_power_channel_info,
1268 	NULL,
1269 };
1270 
1271 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1272 	.ops = &sfp_hwmon_ops,
1273 	.info = sfp_hwmon_info,
1274 };
1275 
1276 static void sfp_hwmon_probe(struct work_struct *work)
1277 {
1278 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1279 	int err, i;
1280 
1281 	/* hwmon interface needs to access 16bit registers in atomic way to
1282 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1283 	 * possible to guarantee coherency because EEPROM is broken in such way
1284 	 * that does not support atomic 16bit read operation then we have to
1285 	 * skip registration of hwmon device.
1286 	 */
1287 	if (sfp->i2c_block_size < 2) {
1288 		dev_info(sfp->dev,
1289 			 "skipping hwmon device registration due to broken EEPROM\n");
1290 		dev_info(sfp->dev,
1291 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1292 		return;
1293 	}
1294 
1295 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1296 	if (err < 0) {
1297 		if (sfp->hwmon_tries--) {
1298 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1299 					 T_PROBE_RETRY_SLOW);
1300 		} else {
1301 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1302 		}
1303 		return;
1304 	}
1305 
1306 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1307 	if (!sfp->hwmon_name) {
1308 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1309 		return;
1310 	}
1311 
1312 	for (i = 0; sfp->hwmon_name[i]; i++)
1313 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1314 			sfp->hwmon_name[i] = '_';
1315 
1316 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1317 							 sfp->hwmon_name, sfp,
1318 							 &sfp_hwmon_chip_info,
1319 							 NULL);
1320 	if (IS_ERR(sfp->hwmon_dev))
1321 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1322 			PTR_ERR(sfp->hwmon_dev));
1323 }
1324 
1325 static int sfp_hwmon_insert(struct sfp *sfp)
1326 {
1327 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1328 		return 0;
1329 
1330 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1331 		return 0;
1332 
1333 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1334 		/* This driver in general does not support address
1335 		 * change.
1336 		 */
1337 		return 0;
1338 
1339 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1340 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1341 
1342 	return 0;
1343 }
1344 
1345 static void sfp_hwmon_remove(struct sfp *sfp)
1346 {
1347 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1348 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1349 		hwmon_device_unregister(sfp->hwmon_dev);
1350 		sfp->hwmon_dev = NULL;
1351 		kfree(sfp->hwmon_name);
1352 	}
1353 }
1354 
1355 static int sfp_hwmon_init(struct sfp *sfp)
1356 {
1357 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1358 
1359 	return 0;
1360 }
1361 
1362 static void sfp_hwmon_exit(struct sfp *sfp)
1363 {
1364 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1365 }
1366 #else
1367 static int sfp_hwmon_insert(struct sfp *sfp)
1368 {
1369 	return 0;
1370 }
1371 
1372 static void sfp_hwmon_remove(struct sfp *sfp)
1373 {
1374 }
1375 
1376 static int sfp_hwmon_init(struct sfp *sfp)
1377 {
1378 	return 0;
1379 }
1380 
1381 static void sfp_hwmon_exit(struct sfp *sfp)
1382 {
1383 }
1384 #endif
1385 
1386 /* Helpers */
1387 static void sfp_module_tx_disable(struct sfp *sfp)
1388 {
1389 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1390 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1391 	sfp->state |= SFP_F_TX_DISABLE;
1392 	sfp_set_state(sfp, sfp->state);
1393 }
1394 
1395 static void sfp_module_tx_enable(struct sfp *sfp)
1396 {
1397 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1398 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1399 	sfp->state &= ~SFP_F_TX_DISABLE;
1400 	sfp_set_state(sfp, sfp->state);
1401 }
1402 
1403 #if IS_ENABLED(CONFIG_DEBUG_FS)
1404 static int sfp_debug_state_show(struct seq_file *s, void *data)
1405 {
1406 	struct sfp *sfp = s->private;
1407 
1408 	seq_printf(s, "Module state: %s\n",
1409 		   mod_state_to_str(sfp->sm_mod_state));
1410 	seq_printf(s, "Module probe attempts: %d %d\n",
1411 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1412 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1413 	seq_printf(s, "Device state: %s\n",
1414 		   dev_state_to_str(sfp->sm_dev_state));
1415 	seq_printf(s, "Main state: %s\n",
1416 		   sm_state_to_str(sfp->sm_state));
1417 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1418 		   sfp->sm_fault_retries);
1419 	seq_printf(s, "PHY probe remaining retries: %d\n",
1420 		   sfp->sm_phy_retries);
1421 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1422 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1423 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1424 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1425 	return 0;
1426 }
1427 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1428 
1429 static void sfp_debugfs_init(struct sfp *sfp)
1430 {
1431 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1432 
1433 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1434 			    &sfp_debug_state_fops);
1435 }
1436 
1437 static void sfp_debugfs_exit(struct sfp *sfp)
1438 {
1439 	debugfs_remove_recursive(sfp->debugfs_dir);
1440 }
1441 #else
1442 static void sfp_debugfs_init(struct sfp *sfp)
1443 {
1444 }
1445 
1446 static void sfp_debugfs_exit(struct sfp *sfp)
1447 {
1448 }
1449 #endif
1450 
1451 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1452 {
1453 	unsigned int state = sfp->state;
1454 
1455 	if (state & SFP_F_TX_DISABLE)
1456 		return;
1457 
1458 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1459 
1460 	udelay(T_RESET_US);
1461 
1462 	sfp_set_state(sfp, state);
1463 }
1464 
1465 /* SFP state machine */
1466 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1467 {
1468 	if (timeout)
1469 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1470 				 timeout);
1471 	else
1472 		cancel_delayed_work(&sfp->timeout);
1473 }
1474 
1475 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1476 			unsigned int timeout)
1477 {
1478 	sfp->sm_state = state;
1479 	sfp_sm_set_timer(sfp, timeout);
1480 }
1481 
1482 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1483 			    unsigned int timeout)
1484 {
1485 	sfp->sm_mod_state = state;
1486 	sfp_sm_set_timer(sfp, timeout);
1487 }
1488 
1489 static void sfp_sm_phy_detach(struct sfp *sfp)
1490 {
1491 	sfp_remove_phy(sfp->sfp_bus);
1492 	phy_device_remove(sfp->mod_phy);
1493 	phy_device_free(sfp->mod_phy);
1494 	sfp->mod_phy = NULL;
1495 }
1496 
1497 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1498 {
1499 	struct phy_device *phy;
1500 	int err;
1501 
1502 	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1503 	if (phy == ERR_PTR(-ENODEV))
1504 		return PTR_ERR(phy);
1505 	if (IS_ERR(phy)) {
1506 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1507 		return PTR_ERR(phy);
1508 	}
1509 
1510 	err = phy_device_register(phy);
1511 	if (err) {
1512 		phy_device_free(phy);
1513 		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1514 		return err;
1515 	}
1516 
1517 	err = sfp_add_phy(sfp->sfp_bus, phy);
1518 	if (err) {
1519 		phy_device_remove(phy);
1520 		phy_device_free(phy);
1521 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1522 		return err;
1523 	}
1524 
1525 	sfp->mod_phy = phy;
1526 
1527 	return 0;
1528 }
1529 
1530 static void sfp_sm_link_up(struct sfp *sfp)
1531 {
1532 	sfp_link_up(sfp->sfp_bus);
1533 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1534 }
1535 
1536 static void sfp_sm_link_down(struct sfp *sfp)
1537 {
1538 	sfp_link_down(sfp->sfp_bus);
1539 }
1540 
1541 static void sfp_sm_link_check_los(struct sfp *sfp)
1542 {
1543 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1544 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1545 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1546 	bool los = false;
1547 
1548 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1549 	 * are set, we assume that no LOS signal is available. If both are
1550 	 * set, we assume LOS is not implemented (and is meaningless.)
1551 	 */
1552 	if (los_options == los_inverted)
1553 		los = !(sfp->state & SFP_F_LOS);
1554 	else if (los_options == los_normal)
1555 		los = !!(sfp->state & SFP_F_LOS);
1556 
1557 	if (los)
1558 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1559 	else
1560 		sfp_sm_link_up(sfp);
1561 }
1562 
1563 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1564 {
1565 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1566 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1567 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1568 
1569 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1570 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1571 }
1572 
1573 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1574 {
1575 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1576 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1577 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1578 
1579 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1580 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1581 }
1582 
1583 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1584 {
1585 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1586 		dev_err(sfp->dev,
1587 			"module persistently indicates fault, disabling\n");
1588 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1589 	} else {
1590 		if (warn)
1591 			dev_err(sfp->dev, "module transmit fault indicated\n");
1592 
1593 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1594 	}
1595 }
1596 
1597 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1598  * normally sits at I2C bus address 0x56, and may either be a clause 22
1599  * or clause 45 PHY.
1600  *
1601  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1602  * negotiation enabled, but some may be in 1000base-X - which is for the
1603  * PHY driver to determine.
1604  *
1605  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1606  * mode according to the negotiated line speed.
1607  */
1608 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1609 {
1610 	int err = 0;
1611 
1612 	switch (sfp->id.base.extended_cc) {
1613 	case SFF8024_ECC_10GBASE_T_SFI:
1614 	case SFF8024_ECC_10GBASE_T_SR:
1615 	case SFF8024_ECC_5GBASE_T:
1616 	case SFF8024_ECC_2_5GBASE_T:
1617 		err = sfp_sm_probe_phy(sfp, true);
1618 		break;
1619 
1620 	default:
1621 		if (sfp->id.base.e1000_base_t)
1622 			err = sfp_sm_probe_phy(sfp, false);
1623 		break;
1624 	}
1625 	return err;
1626 }
1627 
1628 static int sfp_module_parse_power(struct sfp *sfp)
1629 {
1630 	u32 power_mW = 1000;
1631 
1632 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1633 		power_mW = 1500;
1634 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1635 		power_mW = 2000;
1636 
1637 	if (power_mW > sfp->max_power_mW) {
1638 		/* Module power specification exceeds the allowed maximum. */
1639 		if (sfp->id.ext.sff8472_compliance ==
1640 			SFP_SFF8472_COMPLIANCE_NONE &&
1641 		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1642 			/* The module appears not to implement bus address
1643 			 * 0xa2, so assume that the module powers up in the
1644 			 * indicated mode.
1645 			 */
1646 			dev_err(sfp->dev,
1647 				"Host does not support %u.%uW modules\n",
1648 				power_mW / 1000, (power_mW / 100) % 10);
1649 			return -EINVAL;
1650 		} else {
1651 			dev_warn(sfp->dev,
1652 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1653 				 power_mW / 1000, (power_mW / 100) % 10);
1654 			return 0;
1655 		}
1656 	}
1657 
1658 	/* If the module requires a higher power mode, but also requires
1659 	 * an address change sequence, warn the user that the module may
1660 	 * not be functional.
1661 	 */
1662 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1663 		dev_warn(sfp->dev,
1664 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1665 			 power_mW / 1000, (power_mW / 100) % 10);
1666 		return 0;
1667 	}
1668 
1669 	sfp->module_power_mW = power_mW;
1670 
1671 	return 0;
1672 }
1673 
1674 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1675 {
1676 	u8 val;
1677 	int err;
1678 
1679 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1680 	if (err != sizeof(val)) {
1681 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1682 		return -EAGAIN;
1683 	}
1684 
1685 	/* DM7052 reports as a high power module, responds to reads (with
1686 	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1687 	 * if the bit is already set, we're already in high power mode.
1688 	 */
1689 	if (!!(val & BIT(0)) == enable)
1690 		return 0;
1691 
1692 	if (enable)
1693 		val |= BIT(0);
1694 	else
1695 		val &= ~BIT(0);
1696 
1697 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1698 	if (err != sizeof(val)) {
1699 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1700 		return -EAGAIN;
1701 	}
1702 
1703 	if (enable)
1704 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1705 			 sfp->module_power_mW / 1000,
1706 			 (sfp->module_power_mW / 100) % 10);
1707 
1708 	return 0;
1709 }
1710 
1711 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1712  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1713  * not support multibyte reads from the EEPROM. Each multi-byte read
1714  * operation returns just one byte of EEPROM followed by zeros. There is
1715  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1716  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1717  * name and vendor id into EEPROM, so there is even no way to detect if
1718  * module is V-SOL V2801F. Therefore check for those zeros in the read
1719  * data and then based on check switch to reading EEPROM to one byte
1720  * at a time.
1721  */
1722 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1723 {
1724 	size_t i, block_size = sfp->i2c_block_size;
1725 
1726 	/* Already using byte IO */
1727 	if (block_size == 1)
1728 		return false;
1729 
1730 	for (i = 1; i < len; i += block_size) {
1731 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1732 			return false;
1733 	}
1734 	return true;
1735 }
1736 
1737 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1738 {
1739 	u8 check;
1740 	int err;
1741 
1742 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1743 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1744 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1745 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1746 		id->base.phys_id = SFF8024_ID_SFF_8472;
1747 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1748 		id->base.connector = SFF8024_CONNECTOR_LC;
1749 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1750 		if (err != 3) {
1751 			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1752 			return err;
1753 		}
1754 
1755 		/* Cotsworks modules have been found to require a delay between write operations. */
1756 		mdelay(50);
1757 
1758 		/* Update base structure checksum */
1759 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1760 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1761 		if (err != 1) {
1762 			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1763 			return err;
1764 		}
1765 	}
1766 	return 0;
1767 }
1768 
1769 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1770 {
1771 	/* SFP module inserted - read I2C data */
1772 	struct sfp_eeprom_id id;
1773 	bool cotsworks_sfbg;
1774 	bool cotsworks;
1775 	u8 check;
1776 	int ret;
1777 
1778 	/* Some SFP modules and also some Linux I2C drivers do not like reads
1779 	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1780 	 * a time.
1781 	 */
1782 	sfp->i2c_block_size = 16;
1783 
1784 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1785 	if (ret < 0) {
1786 		if (report)
1787 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1788 		return -EAGAIN;
1789 	}
1790 
1791 	if (ret != sizeof(id.base)) {
1792 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1793 		return -EAGAIN;
1794 	}
1795 
1796 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1797 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1798 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1799 	 * fields, so do not switch to one byte reading at a time unless it
1800 	 * is really required and we have no other option.
1801 	 */
1802 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1803 		dev_info(sfp->dev,
1804 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1805 		dev_info(sfp->dev,
1806 			 "Switching to reading EEPROM to one byte at a time\n");
1807 		sfp->i2c_block_size = 1;
1808 
1809 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1810 		if (ret < 0) {
1811 			if (report)
1812 				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1813 					ret);
1814 			return -EAGAIN;
1815 		}
1816 
1817 		if (ret != sizeof(id.base)) {
1818 			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1819 			return -EAGAIN;
1820 		}
1821 	}
1822 
1823 	/* Cotsworks do not seem to update the checksums when they
1824 	 * do the final programming with the final module part number,
1825 	 * serial number and date code.
1826 	 */
1827 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1828 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1829 
1830 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1831 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1832 	 * Cotsworks PN matches and bytes are not correct.
1833 	 */
1834 	if (cotsworks && cotsworks_sfbg) {
1835 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1836 		if (ret < 0)
1837 			return ret;
1838 	}
1839 
1840 	/* Validate the checksum over the base structure */
1841 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1842 	if (check != id.base.cc_base) {
1843 		if (cotsworks) {
1844 			dev_warn(sfp->dev,
1845 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1846 				 check, id.base.cc_base);
1847 		} else {
1848 			dev_err(sfp->dev,
1849 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1850 				check, id.base.cc_base);
1851 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1852 				       16, 1, &id, sizeof(id), true);
1853 			return -EINVAL;
1854 		}
1855 	}
1856 
1857 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1858 	if (ret < 0) {
1859 		if (report)
1860 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1861 		return -EAGAIN;
1862 	}
1863 
1864 	if (ret != sizeof(id.ext)) {
1865 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1866 		return -EAGAIN;
1867 	}
1868 
1869 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1870 	if (check != id.ext.cc_ext) {
1871 		if (cotsworks) {
1872 			dev_warn(sfp->dev,
1873 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1874 				 check, id.ext.cc_ext);
1875 		} else {
1876 			dev_err(sfp->dev,
1877 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1878 				check, id.ext.cc_ext);
1879 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1880 				       16, 1, &id, sizeof(id), true);
1881 			memset(&id.ext, 0, sizeof(id.ext));
1882 		}
1883 	}
1884 
1885 	sfp->id = id;
1886 
1887 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1888 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1889 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1890 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1891 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1892 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1893 
1894 	/* Check whether we support this module */
1895 	if (!sfp->type->module_supported(&id)) {
1896 		dev_err(sfp->dev,
1897 			"module is not supported - phys id 0x%02x 0x%02x\n",
1898 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1899 		return -EINVAL;
1900 	}
1901 
1902 	/* If the module requires address swap mode, warn about it */
1903 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1904 		dev_warn(sfp->dev,
1905 			 "module address swap to access page 0xA2 is not supported.\n");
1906 
1907 	/* Parse the module power requirement */
1908 	ret = sfp_module_parse_power(sfp);
1909 	if (ret < 0)
1910 		return ret;
1911 
1912 	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1913 	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1914 		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1915 	else
1916 		sfp->module_t_start_up = T_START_UP;
1917 
1918 	return 0;
1919 }
1920 
1921 static void sfp_sm_mod_remove(struct sfp *sfp)
1922 {
1923 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1924 		sfp_module_remove(sfp->sfp_bus);
1925 
1926 	sfp_hwmon_remove(sfp);
1927 
1928 	memset(&sfp->id, 0, sizeof(sfp->id));
1929 	sfp->module_power_mW = 0;
1930 
1931 	dev_info(sfp->dev, "module removed\n");
1932 }
1933 
1934 /* This state machine tracks the upstream's state */
1935 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1936 {
1937 	switch (sfp->sm_dev_state) {
1938 	default:
1939 		if (event == SFP_E_DEV_ATTACH)
1940 			sfp->sm_dev_state = SFP_DEV_DOWN;
1941 		break;
1942 
1943 	case SFP_DEV_DOWN:
1944 		if (event == SFP_E_DEV_DETACH)
1945 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1946 		else if (event == SFP_E_DEV_UP)
1947 			sfp->sm_dev_state = SFP_DEV_UP;
1948 		break;
1949 
1950 	case SFP_DEV_UP:
1951 		if (event == SFP_E_DEV_DETACH)
1952 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1953 		else if (event == SFP_E_DEV_DOWN)
1954 			sfp->sm_dev_state = SFP_DEV_DOWN;
1955 		break;
1956 	}
1957 }
1958 
1959 /* This state machine tracks the insert/remove state of the module, probes
1960  * the on-board EEPROM, and sets up the power level.
1961  */
1962 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1963 {
1964 	int err;
1965 
1966 	/* Handle remove event globally, it resets this state machine */
1967 	if (event == SFP_E_REMOVE) {
1968 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1969 			sfp_sm_mod_remove(sfp);
1970 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1971 		return;
1972 	}
1973 
1974 	/* Handle device detach globally */
1975 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1976 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1977 		if (sfp->module_power_mW > 1000 &&
1978 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1979 			sfp_sm_mod_hpower(sfp, false);
1980 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1981 		return;
1982 	}
1983 
1984 	switch (sfp->sm_mod_state) {
1985 	default:
1986 		if (event == SFP_E_INSERT) {
1987 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1988 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1989 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1990 		}
1991 		break;
1992 
1993 	case SFP_MOD_PROBE:
1994 		/* Wait for T_PROBE_INIT to time out */
1995 		if (event != SFP_E_TIMEOUT)
1996 			break;
1997 
1998 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1999 		if (err == -EAGAIN) {
2000 			if (sfp->sm_mod_tries_init &&
2001 			   --sfp->sm_mod_tries_init) {
2002 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2003 				break;
2004 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2005 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2006 					dev_warn(sfp->dev,
2007 						 "please wait, module slow to respond\n");
2008 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2009 				break;
2010 			}
2011 		}
2012 		if (err < 0) {
2013 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2014 			break;
2015 		}
2016 
2017 		err = sfp_hwmon_insert(sfp);
2018 		if (err)
2019 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2020 
2021 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2022 		fallthrough;
2023 	case SFP_MOD_WAITDEV:
2024 		/* Ensure that the device is attached before proceeding */
2025 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2026 			break;
2027 
2028 		/* Report the module insertion to the upstream device */
2029 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2030 		if (err < 0) {
2031 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2032 			break;
2033 		}
2034 
2035 		/* If this is a power level 1 module, we are done */
2036 		if (sfp->module_power_mW <= 1000)
2037 			goto insert;
2038 
2039 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2040 		fallthrough;
2041 	case SFP_MOD_HPOWER:
2042 		/* Enable high power mode */
2043 		err = sfp_sm_mod_hpower(sfp, true);
2044 		if (err < 0) {
2045 			if (err != -EAGAIN) {
2046 				sfp_module_remove(sfp->sfp_bus);
2047 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2048 			} else {
2049 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2050 			}
2051 			break;
2052 		}
2053 
2054 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2055 		break;
2056 
2057 	case SFP_MOD_WAITPWR:
2058 		/* Wait for T_HPOWER_LEVEL to time out */
2059 		if (event != SFP_E_TIMEOUT)
2060 			break;
2061 
2062 	insert:
2063 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2064 		break;
2065 
2066 	case SFP_MOD_PRESENT:
2067 	case SFP_MOD_ERROR:
2068 		break;
2069 	}
2070 }
2071 
2072 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2073 {
2074 	unsigned long timeout;
2075 	int ret;
2076 
2077 	/* Some events are global */
2078 	if (sfp->sm_state != SFP_S_DOWN &&
2079 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2080 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2081 		if (sfp->sm_state == SFP_S_LINK_UP &&
2082 		    sfp->sm_dev_state == SFP_DEV_UP)
2083 			sfp_sm_link_down(sfp);
2084 		if (sfp->sm_state > SFP_S_INIT)
2085 			sfp_module_stop(sfp->sfp_bus);
2086 		if (sfp->mod_phy)
2087 			sfp_sm_phy_detach(sfp);
2088 		sfp_module_tx_disable(sfp);
2089 		sfp_soft_stop_poll(sfp);
2090 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2091 		return;
2092 	}
2093 
2094 	/* The main state machine */
2095 	switch (sfp->sm_state) {
2096 	case SFP_S_DOWN:
2097 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2098 		    sfp->sm_dev_state != SFP_DEV_UP)
2099 			break;
2100 
2101 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2102 			sfp_soft_start_poll(sfp);
2103 
2104 		sfp_module_tx_enable(sfp);
2105 
2106 		/* Initialise the fault clearance retries */
2107 		sfp->sm_fault_retries = N_FAULT_INIT;
2108 
2109 		/* We need to check the TX_FAULT state, which is not defined
2110 		 * while TX_DISABLE is asserted. The earliest we want to do
2111 		 * anything (such as probe for a PHY) is 50ms.
2112 		 */
2113 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2114 		break;
2115 
2116 	case SFP_S_WAIT:
2117 		if (event != SFP_E_TIMEOUT)
2118 			break;
2119 
2120 		if (sfp->state & SFP_F_TX_FAULT) {
2121 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2122 			 * from the TX_DISABLE deassertion for the module to
2123 			 * initialise, which is indicated by TX_FAULT
2124 			 * deasserting.
2125 			 */
2126 			timeout = sfp->module_t_start_up;
2127 			if (timeout > T_WAIT)
2128 				timeout -= T_WAIT;
2129 			else
2130 				timeout = 1;
2131 
2132 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2133 		} else {
2134 			/* TX_FAULT is not asserted, assume the module has
2135 			 * finished initialising.
2136 			 */
2137 			goto init_done;
2138 		}
2139 		break;
2140 
2141 	case SFP_S_INIT:
2142 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2143 			/* TX_FAULT is still asserted after t_init or
2144 			 * or t_start_up, so assume there is a fault.
2145 			 */
2146 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2147 				     sfp->sm_fault_retries == N_FAULT_INIT);
2148 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2149 	init_done:
2150 			sfp->sm_phy_retries = R_PHY_RETRY;
2151 			goto phy_probe;
2152 		}
2153 		break;
2154 
2155 	case SFP_S_INIT_PHY:
2156 		if (event != SFP_E_TIMEOUT)
2157 			break;
2158 	phy_probe:
2159 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2160 		 * clear.  Probe for the PHY and check the LOS state.
2161 		 */
2162 		ret = sfp_sm_probe_for_phy(sfp);
2163 		if (ret == -ENODEV) {
2164 			if (--sfp->sm_phy_retries) {
2165 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2166 				break;
2167 			} else {
2168 				dev_info(sfp->dev, "no PHY detected\n");
2169 			}
2170 		} else if (ret) {
2171 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2172 			break;
2173 		}
2174 		if (sfp_module_start(sfp->sfp_bus)) {
2175 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2176 			break;
2177 		}
2178 		sfp_sm_link_check_los(sfp);
2179 
2180 		/* Reset the fault retry count */
2181 		sfp->sm_fault_retries = N_FAULT;
2182 		break;
2183 
2184 	case SFP_S_INIT_TX_FAULT:
2185 		if (event == SFP_E_TIMEOUT) {
2186 			sfp_module_tx_fault_reset(sfp);
2187 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2188 		}
2189 		break;
2190 
2191 	case SFP_S_WAIT_LOS:
2192 		if (event == SFP_E_TX_FAULT)
2193 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2194 		else if (sfp_los_event_inactive(sfp, event))
2195 			sfp_sm_link_up(sfp);
2196 		break;
2197 
2198 	case SFP_S_LINK_UP:
2199 		if (event == SFP_E_TX_FAULT) {
2200 			sfp_sm_link_down(sfp);
2201 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2202 		} else if (sfp_los_event_active(sfp, event)) {
2203 			sfp_sm_link_down(sfp);
2204 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2205 		}
2206 		break;
2207 
2208 	case SFP_S_TX_FAULT:
2209 		if (event == SFP_E_TIMEOUT) {
2210 			sfp_module_tx_fault_reset(sfp);
2211 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2212 		}
2213 		break;
2214 
2215 	case SFP_S_REINIT:
2216 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2217 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2218 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2219 			dev_info(sfp->dev, "module transmit fault recovered\n");
2220 			sfp_sm_link_check_los(sfp);
2221 		}
2222 		break;
2223 
2224 	case SFP_S_TX_DISABLE:
2225 		break;
2226 	}
2227 }
2228 
2229 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2230 {
2231 	mutex_lock(&sfp->sm_mutex);
2232 
2233 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2234 		mod_state_to_str(sfp->sm_mod_state),
2235 		dev_state_to_str(sfp->sm_dev_state),
2236 		sm_state_to_str(sfp->sm_state),
2237 		event_to_str(event));
2238 
2239 	sfp_sm_device(sfp, event);
2240 	sfp_sm_module(sfp, event);
2241 	sfp_sm_main(sfp, event);
2242 
2243 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2244 		mod_state_to_str(sfp->sm_mod_state),
2245 		dev_state_to_str(sfp->sm_dev_state),
2246 		sm_state_to_str(sfp->sm_state));
2247 
2248 	mutex_unlock(&sfp->sm_mutex);
2249 }
2250 
2251 static void sfp_attach(struct sfp *sfp)
2252 {
2253 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2254 }
2255 
2256 static void sfp_detach(struct sfp *sfp)
2257 {
2258 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2259 }
2260 
2261 static void sfp_start(struct sfp *sfp)
2262 {
2263 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2264 }
2265 
2266 static void sfp_stop(struct sfp *sfp)
2267 {
2268 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2269 }
2270 
2271 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2272 {
2273 	/* locking... and check module is present */
2274 
2275 	if (sfp->id.ext.sff8472_compliance &&
2276 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2277 		modinfo->type = ETH_MODULE_SFF_8472;
2278 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2279 	} else {
2280 		modinfo->type = ETH_MODULE_SFF_8079;
2281 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2282 	}
2283 	return 0;
2284 }
2285 
2286 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2287 			     u8 *data)
2288 {
2289 	unsigned int first, last, len;
2290 	int ret;
2291 
2292 	if (ee->len == 0)
2293 		return -EINVAL;
2294 
2295 	first = ee->offset;
2296 	last = ee->offset + ee->len;
2297 	if (first < ETH_MODULE_SFF_8079_LEN) {
2298 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2299 		len -= first;
2300 
2301 		ret = sfp_read(sfp, false, first, data, len);
2302 		if (ret < 0)
2303 			return ret;
2304 
2305 		first += len;
2306 		data += len;
2307 	}
2308 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2309 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2310 		len -= first;
2311 		first -= ETH_MODULE_SFF_8079_LEN;
2312 
2313 		ret = sfp_read(sfp, true, first, data, len);
2314 		if (ret < 0)
2315 			return ret;
2316 	}
2317 	return 0;
2318 }
2319 
2320 static const struct sfp_socket_ops sfp_module_ops = {
2321 	.attach = sfp_attach,
2322 	.detach = sfp_detach,
2323 	.start = sfp_start,
2324 	.stop = sfp_stop,
2325 	.module_info = sfp_module_info,
2326 	.module_eeprom = sfp_module_eeprom,
2327 };
2328 
2329 static void sfp_timeout(struct work_struct *work)
2330 {
2331 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2332 
2333 	rtnl_lock();
2334 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2335 	rtnl_unlock();
2336 }
2337 
2338 static void sfp_check_state(struct sfp *sfp)
2339 {
2340 	unsigned int state, i, changed;
2341 
2342 	mutex_lock(&sfp->st_mutex);
2343 	state = sfp_get_state(sfp);
2344 	changed = state ^ sfp->state;
2345 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2346 
2347 	for (i = 0; i < GPIO_MAX; i++)
2348 		if (changed & BIT(i))
2349 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2350 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2351 
2352 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2353 	sfp->state = state;
2354 
2355 	rtnl_lock();
2356 	if (changed & SFP_F_PRESENT)
2357 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2358 				SFP_E_INSERT : SFP_E_REMOVE);
2359 
2360 	if (changed & SFP_F_TX_FAULT)
2361 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2362 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2363 
2364 	if (changed & SFP_F_LOS)
2365 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2366 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2367 	rtnl_unlock();
2368 	mutex_unlock(&sfp->st_mutex);
2369 }
2370 
2371 static irqreturn_t sfp_irq(int irq, void *data)
2372 {
2373 	struct sfp *sfp = data;
2374 
2375 	sfp_check_state(sfp);
2376 
2377 	return IRQ_HANDLED;
2378 }
2379 
2380 static void sfp_poll(struct work_struct *work)
2381 {
2382 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2383 
2384 	sfp_check_state(sfp);
2385 
2386 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2387 	    sfp->need_poll)
2388 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2389 }
2390 
2391 static struct sfp *sfp_alloc(struct device *dev)
2392 {
2393 	struct sfp *sfp;
2394 
2395 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2396 	if (!sfp)
2397 		return ERR_PTR(-ENOMEM);
2398 
2399 	sfp->dev = dev;
2400 
2401 	mutex_init(&sfp->sm_mutex);
2402 	mutex_init(&sfp->st_mutex);
2403 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2404 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2405 
2406 	sfp_hwmon_init(sfp);
2407 
2408 	return sfp;
2409 }
2410 
2411 static void sfp_cleanup(void *data)
2412 {
2413 	struct sfp *sfp = data;
2414 
2415 	sfp_hwmon_exit(sfp);
2416 
2417 	cancel_delayed_work_sync(&sfp->poll);
2418 	cancel_delayed_work_sync(&sfp->timeout);
2419 	if (sfp->i2c_mii) {
2420 		mdiobus_unregister(sfp->i2c_mii);
2421 		mdiobus_free(sfp->i2c_mii);
2422 	}
2423 	if (sfp->i2c)
2424 		i2c_put_adapter(sfp->i2c);
2425 	kfree(sfp);
2426 }
2427 
2428 static int sfp_probe(struct platform_device *pdev)
2429 {
2430 	const struct sff_data *sff;
2431 	struct i2c_adapter *i2c;
2432 	char *sfp_irq_name;
2433 	struct sfp *sfp;
2434 	int err, i;
2435 
2436 	sfp = sfp_alloc(&pdev->dev);
2437 	if (IS_ERR(sfp))
2438 		return PTR_ERR(sfp);
2439 
2440 	platform_set_drvdata(pdev, sfp);
2441 
2442 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2443 	if (err < 0)
2444 		return err;
2445 
2446 	sff = sfp->type = &sfp_data;
2447 
2448 	if (pdev->dev.of_node) {
2449 		struct device_node *node = pdev->dev.of_node;
2450 		const struct of_device_id *id;
2451 		struct device_node *np;
2452 
2453 		id = of_match_node(sfp_of_match, node);
2454 		if (WARN_ON(!id))
2455 			return -EINVAL;
2456 
2457 		sff = sfp->type = id->data;
2458 
2459 		np = of_parse_phandle(node, "i2c-bus", 0);
2460 		if (!np) {
2461 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2462 			return -ENODEV;
2463 		}
2464 
2465 		i2c = of_find_i2c_adapter_by_node(np);
2466 		of_node_put(np);
2467 	} else if (has_acpi_companion(&pdev->dev)) {
2468 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2469 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2470 		struct fwnode_reference_args args;
2471 		struct acpi_handle *acpi_handle;
2472 		int ret;
2473 
2474 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2475 		if (ret || !is_acpi_device_node(args.fwnode)) {
2476 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2477 			return -ENODEV;
2478 		}
2479 
2480 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2481 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2482 	} else {
2483 		return -EINVAL;
2484 	}
2485 
2486 	if (!i2c)
2487 		return -EPROBE_DEFER;
2488 
2489 	err = sfp_i2c_configure(sfp, i2c);
2490 	if (err < 0) {
2491 		i2c_put_adapter(i2c);
2492 		return err;
2493 	}
2494 
2495 	for (i = 0; i < GPIO_MAX; i++)
2496 		if (sff->gpios & BIT(i)) {
2497 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2498 					   gpio_of_names[i], gpio_flags[i]);
2499 			if (IS_ERR(sfp->gpio[i]))
2500 				return PTR_ERR(sfp->gpio[i]);
2501 		}
2502 
2503 	sfp->get_state = sfp_gpio_get_state;
2504 	sfp->set_state = sfp_gpio_set_state;
2505 
2506 	/* Modules that have no detect signal are always present */
2507 	if (!(sfp->gpio[GPIO_MODDEF0]))
2508 		sfp->get_state = sff_gpio_get_state;
2509 
2510 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2511 				 &sfp->max_power_mW);
2512 	if (!sfp->max_power_mW)
2513 		sfp->max_power_mW = 1000;
2514 
2515 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2516 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2517 
2518 	/* Get the initial state, and always signal TX disable,
2519 	 * since the network interface will not be up.
2520 	 */
2521 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2522 
2523 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2524 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2525 		sfp->state |= SFP_F_RATE_SELECT;
2526 	sfp_set_state(sfp, sfp->state);
2527 	sfp_module_tx_disable(sfp);
2528 	if (sfp->state & SFP_F_PRESENT) {
2529 		rtnl_lock();
2530 		sfp_sm_event(sfp, SFP_E_INSERT);
2531 		rtnl_unlock();
2532 	}
2533 
2534 	for (i = 0; i < GPIO_MAX; i++) {
2535 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2536 			continue;
2537 
2538 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2539 		if (sfp->gpio_irq[i] < 0) {
2540 			sfp->gpio_irq[i] = 0;
2541 			sfp->need_poll = true;
2542 			continue;
2543 		}
2544 
2545 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2546 					      "%s-%s", dev_name(sfp->dev),
2547 					      gpio_of_names[i]);
2548 
2549 		if (!sfp_irq_name)
2550 			return -ENOMEM;
2551 
2552 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2553 						NULL, sfp_irq,
2554 						IRQF_ONESHOT |
2555 						IRQF_TRIGGER_RISING |
2556 						IRQF_TRIGGER_FALLING,
2557 						sfp_irq_name, sfp);
2558 		if (err) {
2559 			sfp->gpio_irq[i] = 0;
2560 			sfp->need_poll = true;
2561 		}
2562 	}
2563 
2564 	if (sfp->need_poll)
2565 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2566 
2567 	/* We could have an issue in cases no Tx disable pin is available or
2568 	 * wired as modules using a laser as their light source will continue to
2569 	 * be active when the fiber is removed. This could be a safety issue and
2570 	 * we should at least warn the user about that.
2571 	 */
2572 	if (!sfp->gpio[GPIO_TX_DISABLE])
2573 		dev_warn(sfp->dev,
2574 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2575 
2576 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2577 	if (!sfp->sfp_bus)
2578 		return -ENOMEM;
2579 
2580 	sfp_debugfs_init(sfp);
2581 
2582 	return 0;
2583 }
2584 
2585 static int sfp_remove(struct platform_device *pdev)
2586 {
2587 	struct sfp *sfp = platform_get_drvdata(pdev);
2588 
2589 	sfp_debugfs_exit(sfp);
2590 	sfp_unregister_socket(sfp->sfp_bus);
2591 
2592 	rtnl_lock();
2593 	sfp_sm_event(sfp, SFP_E_REMOVE);
2594 	rtnl_unlock();
2595 
2596 	return 0;
2597 }
2598 
2599 static void sfp_shutdown(struct platform_device *pdev)
2600 {
2601 	struct sfp *sfp = platform_get_drvdata(pdev);
2602 	int i;
2603 
2604 	for (i = 0; i < GPIO_MAX; i++) {
2605 		if (!sfp->gpio_irq[i])
2606 			continue;
2607 
2608 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2609 	}
2610 
2611 	cancel_delayed_work_sync(&sfp->poll);
2612 	cancel_delayed_work_sync(&sfp->timeout);
2613 }
2614 
2615 static struct platform_driver sfp_driver = {
2616 	.probe = sfp_probe,
2617 	.remove = sfp_remove,
2618 	.shutdown = sfp_shutdown,
2619 	.driver = {
2620 		.name = "sfp",
2621 		.of_match_table = sfp_of_match,
2622 	},
2623 };
2624 
2625 static int sfp_init(void)
2626 {
2627 	poll_jiffies = msecs_to_jiffies(100);
2628 
2629 	return platform_driver_register(&sfp_driver);
2630 }
2631 module_init(sfp_init);
2632 
2633 static void sfp_exit(void)
2634 {
2635 	platform_driver_unregister(&sfp_driver);
2636 }
2637 module_exit(sfp_exit);
2638 
2639 MODULE_ALIAS("platform:sfp");
2640 MODULE_AUTHOR("Russell King");
2641 MODULE_LICENSE("GPL v2");
2642