1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RATE_SELECT, 28 GPIO_MAX, 29 30 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 31 SFP_F_LOS = BIT(GPIO_LOS), 32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 35 36 SFP_E_INSERT = 0, 37 SFP_E_REMOVE, 38 SFP_E_DEV_ATTACH, 39 SFP_E_DEV_DETACH, 40 SFP_E_DEV_DOWN, 41 SFP_E_DEV_UP, 42 SFP_E_TX_FAULT, 43 SFP_E_TX_CLEAR, 44 SFP_E_LOS_HIGH, 45 SFP_E_LOS_LOW, 46 SFP_E_TIMEOUT, 47 48 SFP_MOD_EMPTY = 0, 49 SFP_MOD_ERROR, 50 SFP_MOD_PROBE, 51 SFP_MOD_WAITDEV, 52 SFP_MOD_HPOWER, 53 SFP_MOD_WAITPWR, 54 SFP_MOD_PRESENT, 55 56 SFP_DEV_DETACHED = 0, 57 SFP_DEV_DOWN, 58 SFP_DEV_UP, 59 60 SFP_S_DOWN = 0, 61 SFP_S_FAIL, 62 SFP_S_WAIT, 63 SFP_S_INIT, 64 SFP_S_INIT_PHY, 65 SFP_S_INIT_TX_FAULT, 66 SFP_S_WAIT_LOS, 67 SFP_S_LINK_UP, 68 SFP_S_TX_FAULT, 69 SFP_S_REINIT, 70 SFP_S_TX_DISABLE, 71 }; 72 73 static const char * const mod_state_strings[] = { 74 [SFP_MOD_EMPTY] = "empty", 75 [SFP_MOD_ERROR] = "error", 76 [SFP_MOD_PROBE] = "probe", 77 [SFP_MOD_WAITDEV] = "waitdev", 78 [SFP_MOD_HPOWER] = "hpower", 79 [SFP_MOD_WAITPWR] = "waitpwr", 80 [SFP_MOD_PRESENT] = "present", 81 }; 82 83 static const char *mod_state_to_str(unsigned short mod_state) 84 { 85 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 86 return "Unknown module state"; 87 return mod_state_strings[mod_state]; 88 } 89 90 static const char * const dev_state_strings[] = { 91 [SFP_DEV_DETACHED] = "detached", 92 [SFP_DEV_DOWN] = "down", 93 [SFP_DEV_UP] = "up", 94 }; 95 96 static const char *dev_state_to_str(unsigned short dev_state) 97 { 98 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 99 return "Unknown device state"; 100 return dev_state_strings[dev_state]; 101 } 102 103 static const char * const event_strings[] = { 104 [SFP_E_INSERT] = "insert", 105 [SFP_E_REMOVE] = "remove", 106 [SFP_E_DEV_ATTACH] = "dev_attach", 107 [SFP_E_DEV_DETACH] = "dev_detach", 108 [SFP_E_DEV_DOWN] = "dev_down", 109 [SFP_E_DEV_UP] = "dev_up", 110 [SFP_E_TX_FAULT] = "tx_fault", 111 [SFP_E_TX_CLEAR] = "tx_clear", 112 [SFP_E_LOS_HIGH] = "los_high", 113 [SFP_E_LOS_LOW] = "los_low", 114 [SFP_E_TIMEOUT] = "timeout", 115 }; 116 117 static const char *event_to_str(unsigned short event) 118 { 119 if (event >= ARRAY_SIZE(event_strings)) 120 return "Unknown event"; 121 return event_strings[event]; 122 } 123 124 static const char * const sm_state_strings[] = { 125 [SFP_S_DOWN] = "down", 126 [SFP_S_FAIL] = "fail", 127 [SFP_S_WAIT] = "wait", 128 [SFP_S_INIT] = "init", 129 [SFP_S_INIT_PHY] = "init_phy", 130 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 131 [SFP_S_WAIT_LOS] = "wait_los", 132 [SFP_S_LINK_UP] = "link_up", 133 [SFP_S_TX_FAULT] = "tx_fault", 134 [SFP_S_REINIT] = "reinit", 135 [SFP_S_TX_DISABLE] = "tx_disable", 136 }; 137 138 static const char *sm_state_to_str(unsigned short sm_state) 139 { 140 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 141 return "Unknown state"; 142 return sm_state_strings[sm_state]; 143 } 144 145 static const char *gpio_names[] = { 146 "mod-def0", 147 "los", 148 "tx-fault", 149 "tx-disable", 150 "rate-select0", 151 }; 152 153 static const enum gpiod_flags gpio_flags[] = { 154 GPIOD_IN, 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_ASIS, 158 GPIOD_ASIS, 159 }; 160 161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 162 * non-cooled module to initialise its laser safety circuitry. We wait 163 * an initial T_WAIT period before we check the tx fault to give any PHY 164 * on board (for a copper SFP) time to initialise. 165 */ 166 #define T_WAIT msecs_to_jiffies(50) 167 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 208 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 209 */ 210 #define SFP_PHY_ADDR 22 211 #define SFP_PHY_ADDR_ROLLBALL 17 212 213 struct sff_data { 214 unsigned int gpios; 215 bool (*module_supported)(const struct sfp_eeprom_id *id); 216 }; 217 218 struct sfp { 219 struct device *dev; 220 struct i2c_adapter *i2c; 221 struct mii_bus *i2c_mii; 222 struct sfp_bus *sfp_bus; 223 enum mdio_i2c_proto mdio_protocol; 224 struct phy_device *mod_phy; 225 const struct sff_data *type; 226 size_t i2c_block_size; 227 u32 max_power_mW; 228 229 unsigned int (*get_state)(struct sfp *); 230 void (*set_state)(struct sfp *, unsigned int); 231 int (*read)(struct sfp *, bool, u8, void *, size_t); 232 int (*write)(struct sfp *, bool, u8, void *, size_t); 233 234 struct gpio_desc *gpio[GPIO_MAX]; 235 int gpio_irq[GPIO_MAX]; 236 237 bool need_poll; 238 239 struct mutex st_mutex; /* Protects state */ 240 unsigned int state_hw_mask; 241 unsigned int state_soft_mask; 242 unsigned int state; 243 struct delayed_work poll; 244 struct delayed_work timeout; 245 struct mutex sm_mutex; /* Protects state machine */ 246 unsigned char sm_mod_state; 247 unsigned char sm_mod_tries_init; 248 unsigned char sm_mod_tries; 249 unsigned char sm_dev_state; 250 unsigned short sm_state; 251 unsigned char sm_fault_retries; 252 unsigned char sm_phy_retries; 253 254 struct sfp_eeprom_id id; 255 unsigned int module_power_mW; 256 unsigned int module_t_start_up; 257 unsigned int module_t_wait; 258 bool tx_fault_ignore; 259 260 const struct sfp_quirk *quirk; 261 262 #if IS_ENABLED(CONFIG_HWMON) 263 struct sfp_diag diag; 264 struct delayed_work hwmon_probe; 265 unsigned int hwmon_tries; 266 struct device *hwmon_dev; 267 char *hwmon_name; 268 #endif 269 270 #if IS_ENABLED(CONFIG_DEBUG_FS) 271 struct dentry *debugfs_dir; 272 #endif 273 }; 274 275 static bool sff_module_supported(const struct sfp_eeprom_id *id) 276 { 277 return id->base.phys_id == SFF8024_ID_SFF_8472 && 278 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 279 } 280 281 static const struct sff_data sff_data = { 282 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 283 .module_supported = sff_module_supported, 284 }; 285 286 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 287 { 288 if (id->base.phys_id == SFF8024_ID_SFP && 289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 290 return true; 291 292 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 293 * phys id SFF instead of SFP. Therefore mark this module explicitly 294 * as supported based on vendor name and pn match. 295 */ 296 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 297 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 298 !memcmp(id->base.vendor_name, "UBNT ", 16) && 299 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 300 return true; 301 302 return false; 303 } 304 305 static const struct sff_data sfp_data = { 306 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 307 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 308 .module_supported = sfp_module_supported, 309 }; 310 311 static const struct of_device_id sfp_of_match[] = { 312 { .compatible = "sff,sff", .data = &sff_data, }, 313 { .compatible = "sff,sfp", .data = &sfp_data, }, 314 { }, 315 }; 316 MODULE_DEVICE_TABLE(of, sfp_of_match); 317 318 static void sfp_fixup_long_startup(struct sfp *sfp) 319 { 320 sfp->module_t_start_up = T_START_UP_BAD_GPON; 321 } 322 323 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 324 { 325 sfp->tx_fault_ignore = true; 326 } 327 328 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 329 { 330 /* Ignore the TX_FAULT and LOS signals on this module. 331 * these are possibly used for other purposes on this 332 * module, e.g. a serial port. 333 */ 334 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 335 } 336 337 static void sfp_fixup_rollball(struct sfp *sfp) 338 { 339 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 340 sfp->module_t_wait = T_WAIT_ROLLBALL; 341 } 342 343 static void sfp_fixup_rollball_cc(struct sfp *sfp) 344 { 345 sfp_fixup_rollball(sfp); 346 347 /* Some RollBall SFPs may have wrong (zero) extended compliance code 348 * burned in EEPROM. For PHY probing we need the correct one. 349 */ 350 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 351 } 352 353 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 354 unsigned long *modes, 355 unsigned long *interfaces) 356 { 357 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 358 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 359 } 360 361 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 362 unsigned long *modes, 363 unsigned long *interfaces) 364 { 365 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 366 * types including 10G Ethernet which is not truth. So clear all claimed 367 * modes and set only one mode which module supports: 1000baseX_Full. 368 */ 369 linkmode_zero(modes); 370 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 371 } 372 373 #define SFP_QUIRK(_v, _p, _m, _f) \ 374 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 375 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 376 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 377 378 static const struct sfp_quirk sfp_quirks[] = { 379 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 380 // report 2500MBd NRZ in their EEPROM 381 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 382 383 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 384 // NRZ in their EEPROM 385 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 386 sfp_fixup_long_startup), 387 388 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 389 390 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 391 // 2600MBd in their EERPOM 392 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 393 394 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 395 // their EEPROM 396 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 397 sfp_fixup_ignore_tx_fault), 398 399 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 400 // 2500MBd NRZ in their EEPROM 401 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 402 403 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 404 405 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 406 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 407 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 408 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 409 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 410 }; 411 412 static size_t sfp_strlen(const char *str, size_t maxlen) 413 { 414 size_t size, i; 415 416 /* Trailing characters should be filled with space chars, but 417 * some manufacturers can't read SFF-8472 and use NUL. 418 */ 419 for (i = 0, size = 0; i < maxlen; i++) 420 if (str[i] != ' ' && str[i] != '\0') 421 size = i + 1; 422 423 return size; 424 } 425 426 static bool sfp_match(const char *qs, const char *str, size_t len) 427 { 428 if (!qs) 429 return true; 430 if (strlen(qs) != len) 431 return false; 432 return !strncmp(qs, str, len); 433 } 434 435 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 436 { 437 const struct sfp_quirk *q; 438 unsigned int i; 439 size_t vs, ps; 440 441 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 442 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 443 444 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 445 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 446 sfp_match(q->part, id->base.vendor_pn, ps)) 447 return q; 448 449 return NULL; 450 } 451 452 static unsigned long poll_jiffies; 453 454 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 455 { 456 unsigned int i, state, v; 457 458 for (i = state = 0; i < GPIO_MAX; i++) { 459 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 460 continue; 461 462 v = gpiod_get_value_cansleep(sfp->gpio[i]); 463 if (v) 464 state |= BIT(i); 465 } 466 467 return state; 468 } 469 470 static unsigned int sff_gpio_get_state(struct sfp *sfp) 471 { 472 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 473 } 474 475 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 476 { 477 if (state & SFP_F_PRESENT) { 478 /* If the module is present, drive the signals */ 479 if (sfp->gpio[GPIO_TX_DISABLE]) 480 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 481 state & SFP_F_TX_DISABLE); 482 if (state & SFP_F_RATE_SELECT) 483 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 484 state & SFP_F_RATE_SELECT); 485 } else { 486 /* Otherwise, let them float to the pull-ups */ 487 if (sfp->gpio[GPIO_TX_DISABLE]) 488 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 489 if (state & SFP_F_RATE_SELECT) 490 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 491 } 492 } 493 494 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 495 size_t len) 496 { 497 struct i2c_msg msgs[2]; 498 u8 bus_addr = a2 ? 0x51 : 0x50; 499 size_t block_size = sfp->i2c_block_size; 500 size_t this_len; 501 int ret; 502 503 msgs[0].addr = bus_addr; 504 msgs[0].flags = 0; 505 msgs[0].len = 1; 506 msgs[0].buf = &dev_addr; 507 msgs[1].addr = bus_addr; 508 msgs[1].flags = I2C_M_RD; 509 msgs[1].len = len; 510 msgs[1].buf = buf; 511 512 while (len) { 513 this_len = len; 514 if (this_len > block_size) 515 this_len = block_size; 516 517 msgs[1].len = this_len; 518 519 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 520 if (ret < 0) 521 return ret; 522 523 if (ret != ARRAY_SIZE(msgs)) 524 break; 525 526 msgs[1].buf += this_len; 527 dev_addr += this_len; 528 len -= this_len; 529 } 530 531 return msgs[1].buf - (u8 *)buf; 532 } 533 534 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 535 size_t len) 536 { 537 struct i2c_msg msgs[1]; 538 u8 bus_addr = a2 ? 0x51 : 0x50; 539 int ret; 540 541 msgs[0].addr = bus_addr; 542 msgs[0].flags = 0; 543 msgs[0].len = 1 + len; 544 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 545 if (!msgs[0].buf) 546 return -ENOMEM; 547 548 msgs[0].buf[0] = dev_addr; 549 memcpy(&msgs[0].buf[1], buf, len); 550 551 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 552 553 kfree(msgs[0].buf); 554 555 if (ret < 0) 556 return ret; 557 558 return ret == ARRAY_SIZE(msgs) ? len : 0; 559 } 560 561 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 562 { 563 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 564 return -EINVAL; 565 566 sfp->i2c = i2c; 567 sfp->read = sfp_i2c_read; 568 sfp->write = sfp_i2c_write; 569 570 return 0; 571 } 572 573 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 574 { 575 struct mii_bus *i2c_mii; 576 int ret; 577 578 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 579 if (IS_ERR(i2c_mii)) 580 return PTR_ERR(i2c_mii); 581 582 i2c_mii->name = "SFP I2C Bus"; 583 i2c_mii->phy_mask = ~0; 584 585 ret = mdiobus_register(i2c_mii); 586 if (ret < 0) { 587 mdiobus_free(i2c_mii); 588 return ret; 589 } 590 591 sfp->i2c_mii = i2c_mii; 592 593 return 0; 594 } 595 596 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 597 { 598 mdiobus_unregister(sfp->i2c_mii); 599 sfp->i2c_mii = NULL; 600 } 601 602 /* Interface */ 603 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 604 { 605 return sfp->read(sfp, a2, addr, buf, len); 606 } 607 608 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 609 { 610 return sfp->write(sfp, a2, addr, buf, len); 611 } 612 613 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 614 { 615 int ret; 616 u8 old, v; 617 618 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 619 if (ret != sizeof(old)) 620 return ret; 621 622 v = (old & ~mask) | (val & mask); 623 if (v == old) 624 return sizeof(v); 625 626 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 627 } 628 629 static unsigned int sfp_soft_get_state(struct sfp *sfp) 630 { 631 unsigned int state = 0; 632 u8 status; 633 int ret; 634 635 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 636 if (ret == sizeof(status)) { 637 if (status & SFP_STATUS_RX_LOS) 638 state |= SFP_F_LOS; 639 if (status & SFP_STATUS_TX_FAULT) 640 state |= SFP_F_TX_FAULT; 641 } else { 642 dev_err_ratelimited(sfp->dev, 643 "failed to read SFP soft status: %pe\n", 644 ERR_PTR(ret)); 645 /* Preserve the current state */ 646 state = sfp->state; 647 } 648 649 return state & sfp->state_soft_mask; 650 } 651 652 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 653 { 654 u8 mask = SFP_STATUS_TX_DISABLE_FORCE; 655 u8 val = 0; 656 657 if (state & SFP_F_TX_DISABLE) 658 val |= SFP_STATUS_TX_DISABLE_FORCE; 659 660 661 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 662 } 663 664 static void sfp_soft_start_poll(struct sfp *sfp) 665 { 666 const struct sfp_eeprom_id *id = &sfp->id; 667 unsigned int mask = 0; 668 669 sfp->state_soft_mask = 0; 670 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 671 mask |= SFP_F_TX_DISABLE; 672 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 673 mask |= SFP_F_TX_FAULT; 674 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 675 mask |= SFP_F_LOS; 676 677 // Poll the soft state for hardware pins we want to ignore 678 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 679 680 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 681 !sfp->need_poll) 682 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 683 } 684 685 static void sfp_soft_stop_poll(struct sfp *sfp) 686 { 687 sfp->state_soft_mask = 0; 688 } 689 690 static unsigned int sfp_get_state(struct sfp *sfp) 691 { 692 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 693 unsigned int state; 694 695 state = sfp->get_state(sfp) & sfp->state_hw_mask; 696 if (state & SFP_F_PRESENT && soft) 697 state |= sfp_soft_get_state(sfp); 698 699 return state; 700 } 701 702 static void sfp_set_state(struct sfp *sfp, unsigned int state) 703 { 704 sfp->set_state(sfp, state); 705 706 if (state & SFP_F_PRESENT && 707 sfp->state_soft_mask & SFP_F_TX_DISABLE) 708 sfp_soft_set_state(sfp, state); 709 } 710 711 static unsigned int sfp_check(void *buf, size_t len) 712 { 713 u8 *p, check; 714 715 for (p = buf, check = 0; len; p++, len--) 716 check += *p; 717 718 return check; 719 } 720 721 /* hwmon */ 722 #if IS_ENABLED(CONFIG_HWMON) 723 static umode_t sfp_hwmon_is_visible(const void *data, 724 enum hwmon_sensor_types type, 725 u32 attr, int channel) 726 { 727 const struct sfp *sfp = data; 728 729 switch (type) { 730 case hwmon_temp: 731 switch (attr) { 732 case hwmon_temp_min_alarm: 733 case hwmon_temp_max_alarm: 734 case hwmon_temp_lcrit_alarm: 735 case hwmon_temp_crit_alarm: 736 case hwmon_temp_min: 737 case hwmon_temp_max: 738 case hwmon_temp_lcrit: 739 case hwmon_temp_crit: 740 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 741 return 0; 742 fallthrough; 743 case hwmon_temp_input: 744 case hwmon_temp_label: 745 return 0444; 746 default: 747 return 0; 748 } 749 case hwmon_in: 750 switch (attr) { 751 case hwmon_in_min_alarm: 752 case hwmon_in_max_alarm: 753 case hwmon_in_lcrit_alarm: 754 case hwmon_in_crit_alarm: 755 case hwmon_in_min: 756 case hwmon_in_max: 757 case hwmon_in_lcrit: 758 case hwmon_in_crit: 759 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 760 return 0; 761 fallthrough; 762 case hwmon_in_input: 763 case hwmon_in_label: 764 return 0444; 765 default: 766 return 0; 767 } 768 case hwmon_curr: 769 switch (attr) { 770 case hwmon_curr_min_alarm: 771 case hwmon_curr_max_alarm: 772 case hwmon_curr_lcrit_alarm: 773 case hwmon_curr_crit_alarm: 774 case hwmon_curr_min: 775 case hwmon_curr_max: 776 case hwmon_curr_lcrit: 777 case hwmon_curr_crit: 778 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 779 return 0; 780 fallthrough; 781 case hwmon_curr_input: 782 case hwmon_curr_label: 783 return 0444; 784 default: 785 return 0; 786 } 787 case hwmon_power: 788 /* External calibration of receive power requires 789 * floating point arithmetic. Doing that in the kernel 790 * is not easy, so just skip it. If the module does 791 * not require external calibration, we can however 792 * show receiver power, since FP is then not needed. 793 */ 794 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 795 channel == 1) 796 return 0; 797 switch (attr) { 798 case hwmon_power_min_alarm: 799 case hwmon_power_max_alarm: 800 case hwmon_power_lcrit_alarm: 801 case hwmon_power_crit_alarm: 802 case hwmon_power_min: 803 case hwmon_power_max: 804 case hwmon_power_lcrit: 805 case hwmon_power_crit: 806 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 807 return 0; 808 fallthrough; 809 case hwmon_power_input: 810 case hwmon_power_label: 811 return 0444; 812 default: 813 return 0; 814 } 815 default: 816 return 0; 817 } 818 } 819 820 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 821 { 822 __be16 val; 823 int err; 824 825 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 826 if (err < 0) 827 return err; 828 829 *value = be16_to_cpu(val); 830 831 return 0; 832 } 833 834 static void sfp_hwmon_to_rx_power(long *value) 835 { 836 *value = DIV_ROUND_CLOSEST(*value, 10); 837 } 838 839 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 840 long *value) 841 { 842 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 843 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 844 } 845 846 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 847 { 848 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 849 be16_to_cpu(sfp->diag.cal_t_offset), value); 850 851 if (*value >= 0x8000) 852 *value -= 0x10000; 853 854 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 855 } 856 857 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 858 { 859 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 860 be16_to_cpu(sfp->diag.cal_v_offset), value); 861 862 *value = DIV_ROUND_CLOSEST(*value, 10); 863 } 864 865 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 866 { 867 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 868 be16_to_cpu(sfp->diag.cal_txi_offset), value); 869 870 *value = DIV_ROUND_CLOSEST(*value, 500); 871 } 872 873 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 874 { 875 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 876 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 877 878 *value = DIV_ROUND_CLOSEST(*value, 10); 879 } 880 881 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 882 { 883 int err; 884 885 err = sfp_hwmon_read_sensor(sfp, reg, value); 886 if (err < 0) 887 return err; 888 889 sfp_hwmon_calibrate_temp(sfp, value); 890 891 return 0; 892 } 893 894 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 895 { 896 int err; 897 898 err = sfp_hwmon_read_sensor(sfp, reg, value); 899 if (err < 0) 900 return err; 901 902 sfp_hwmon_calibrate_vcc(sfp, value); 903 904 return 0; 905 } 906 907 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 908 { 909 int err; 910 911 err = sfp_hwmon_read_sensor(sfp, reg, value); 912 if (err < 0) 913 return err; 914 915 sfp_hwmon_calibrate_bias(sfp, value); 916 917 return 0; 918 } 919 920 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 921 { 922 int err; 923 924 err = sfp_hwmon_read_sensor(sfp, reg, value); 925 if (err < 0) 926 return err; 927 928 sfp_hwmon_calibrate_tx_power(sfp, value); 929 930 return 0; 931 } 932 933 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 934 { 935 int err; 936 937 err = sfp_hwmon_read_sensor(sfp, reg, value); 938 if (err < 0) 939 return err; 940 941 sfp_hwmon_to_rx_power(value); 942 943 return 0; 944 } 945 946 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 947 { 948 u8 status; 949 int err; 950 951 switch (attr) { 952 case hwmon_temp_input: 953 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 954 955 case hwmon_temp_lcrit: 956 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 957 sfp_hwmon_calibrate_temp(sfp, value); 958 return 0; 959 960 case hwmon_temp_min: 961 *value = be16_to_cpu(sfp->diag.temp_low_warn); 962 sfp_hwmon_calibrate_temp(sfp, value); 963 return 0; 964 case hwmon_temp_max: 965 *value = be16_to_cpu(sfp->diag.temp_high_warn); 966 sfp_hwmon_calibrate_temp(sfp, value); 967 return 0; 968 969 case hwmon_temp_crit: 970 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 971 sfp_hwmon_calibrate_temp(sfp, value); 972 return 0; 973 974 case hwmon_temp_lcrit_alarm: 975 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 976 if (err < 0) 977 return err; 978 979 *value = !!(status & SFP_ALARM0_TEMP_LOW); 980 return 0; 981 982 case hwmon_temp_min_alarm: 983 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 984 if (err < 0) 985 return err; 986 987 *value = !!(status & SFP_WARN0_TEMP_LOW); 988 return 0; 989 990 case hwmon_temp_max_alarm: 991 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 992 if (err < 0) 993 return err; 994 995 *value = !!(status & SFP_WARN0_TEMP_HIGH); 996 return 0; 997 998 case hwmon_temp_crit_alarm: 999 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1000 if (err < 0) 1001 return err; 1002 1003 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1004 return 0; 1005 default: 1006 return -EOPNOTSUPP; 1007 } 1008 1009 return -EOPNOTSUPP; 1010 } 1011 1012 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1013 { 1014 u8 status; 1015 int err; 1016 1017 switch (attr) { 1018 case hwmon_in_input: 1019 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1020 1021 case hwmon_in_lcrit: 1022 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1023 sfp_hwmon_calibrate_vcc(sfp, value); 1024 return 0; 1025 1026 case hwmon_in_min: 1027 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1028 sfp_hwmon_calibrate_vcc(sfp, value); 1029 return 0; 1030 1031 case hwmon_in_max: 1032 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1033 sfp_hwmon_calibrate_vcc(sfp, value); 1034 return 0; 1035 1036 case hwmon_in_crit: 1037 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1038 sfp_hwmon_calibrate_vcc(sfp, value); 1039 return 0; 1040 1041 case hwmon_in_lcrit_alarm: 1042 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1043 if (err < 0) 1044 return err; 1045 1046 *value = !!(status & SFP_ALARM0_VCC_LOW); 1047 return 0; 1048 1049 case hwmon_in_min_alarm: 1050 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1051 if (err < 0) 1052 return err; 1053 1054 *value = !!(status & SFP_WARN0_VCC_LOW); 1055 return 0; 1056 1057 case hwmon_in_max_alarm: 1058 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1059 if (err < 0) 1060 return err; 1061 1062 *value = !!(status & SFP_WARN0_VCC_HIGH); 1063 return 0; 1064 1065 case hwmon_in_crit_alarm: 1066 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1067 if (err < 0) 1068 return err; 1069 1070 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1071 return 0; 1072 default: 1073 return -EOPNOTSUPP; 1074 } 1075 1076 return -EOPNOTSUPP; 1077 } 1078 1079 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1080 { 1081 u8 status; 1082 int err; 1083 1084 switch (attr) { 1085 case hwmon_curr_input: 1086 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1087 1088 case hwmon_curr_lcrit: 1089 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1090 sfp_hwmon_calibrate_bias(sfp, value); 1091 return 0; 1092 1093 case hwmon_curr_min: 1094 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1095 sfp_hwmon_calibrate_bias(sfp, value); 1096 return 0; 1097 1098 case hwmon_curr_max: 1099 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1100 sfp_hwmon_calibrate_bias(sfp, value); 1101 return 0; 1102 1103 case hwmon_curr_crit: 1104 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1105 sfp_hwmon_calibrate_bias(sfp, value); 1106 return 0; 1107 1108 case hwmon_curr_lcrit_alarm: 1109 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1110 if (err < 0) 1111 return err; 1112 1113 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1114 return 0; 1115 1116 case hwmon_curr_min_alarm: 1117 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1118 if (err < 0) 1119 return err; 1120 1121 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1122 return 0; 1123 1124 case hwmon_curr_max_alarm: 1125 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1126 if (err < 0) 1127 return err; 1128 1129 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1130 return 0; 1131 1132 case hwmon_curr_crit_alarm: 1133 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1134 if (err < 0) 1135 return err; 1136 1137 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1138 return 0; 1139 default: 1140 return -EOPNOTSUPP; 1141 } 1142 1143 return -EOPNOTSUPP; 1144 } 1145 1146 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1147 { 1148 u8 status; 1149 int err; 1150 1151 switch (attr) { 1152 case hwmon_power_input: 1153 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1154 1155 case hwmon_power_lcrit: 1156 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1157 sfp_hwmon_calibrate_tx_power(sfp, value); 1158 return 0; 1159 1160 case hwmon_power_min: 1161 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1162 sfp_hwmon_calibrate_tx_power(sfp, value); 1163 return 0; 1164 1165 case hwmon_power_max: 1166 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1167 sfp_hwmon_calibrate_tx_power(sfp, value); 1168 return 0; 1169 1170 case hwmon_power_crit: 1171 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1172 sfp_hwmon_calibrate_tx_power(sfp, value); 1173 return 0; 1174 1175 case hwmon_power_lcrit_alarm: 1176 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1177 if (err < 0) 1178 return err; 1179 1180 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1181 return 0; 1182 1183 case hwmon_power_min_alarm: 1184 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1185 if (err < 0) 1186 return err; 1187 1188 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1189 return 0; 1190 1191 case hwmon_power_max_alarm: 1192 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1193 if (err < 0) 1194 return err; 1195 1196 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1197 return 0; 1198 1199 case hwmon_power_crit_alarm: 1200 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1201 if (err < 0) 1202 return err; 1203 1204 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1205 return 0; 1206 default: 1207 return -EOPNOTSUPP; 1208 } 1209 1210 return -EOPNOTSUPP; 1211 } 1212 1213 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1214 { 1215 u8 status; 1216 int err; 1217 1218 switch (attr) { 1219 case hwmon_power_input: 1220 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1221 1222 case hwmon_power_lcrit: 1223 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1224 sfp_hwmon_to_rx_power(value); 1225 return 0; 1226 1227 case hwmon_power_min: 1228 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1229 sfp_hwmon_to_rx_power(value); 1230 return 0; 1231 1232 case hwmon_power_max: 1233 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1234 sfp_hwmon_to_rx_power(value); 1235 return 0; 1236 1237 case hwmon_power_crit: 1238 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1239 sfp_hwmon_to_rx_power(value); 1240 return 0; 1241 1242 case hwmon_power_lcrit_alarm: 1243 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1244 if (err < 0) 1245 return err; 1246 1247 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1248 return 0; 1249 1250 case hwmon_power_min_alarm: 1251 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1252 if (err < 0) 1253 return err; 1254 1255 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1256 return 0; 1257 1258 case hwmon_power_max_alarm: 1259 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1260 if (err < 0) 1261 return err; 1262 1263 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1264 return 0; 1265 1266 case hwmon_power_crit_alarm: 1267 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1268 if (err < 0) 1269 return err; 1270 1271 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1272 return 0; 1273 default: 1274 return -EOPNOTSUPP; 1275 } 1276 1277 return -EOPNOTSUPP; 1278 } 1279 1280 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1281 u32 attr, int channel, long *value) 1282 { 1283 struct sfp *sfp = dev_get_drvdata(dev); 1284 1285 switch (type) { 1286 case hwmon_temp: 1287 return sfp_hwmon_temp(sfp, attr, value); 1288 case hwmon_in: 1289 return sfp_hwmon_vcc(sfp, attr, value); 1290 case hwmon_curr: 1291 return sfp_hwmon_bias(sfp, attr, value); 1292 case hwmon_power: 1293 switch (channel) { 1294 case 0: 1295 return sfp_hwmon_tx_power(sfp, attr, value); 1296 case 1: 1297 return sfp_hwmon_rx_power(sfp, attr, value); 1298 default: 1299 return -EOPNOTSUPP; 1300 } 1301 default: 1302 return -EOPNOTSUPP; 1303 } 1304 } 1305 1306 static const char *const sfp_hwmon_power_labels[] = { 1307 "TX_power", 1308 "RX_power", 1309 }; 1310 1311 static int sfp_hwmon_read_string(struct device *dev, 1312 enum hwmon_sensor_types type, 1313 u32 attr, int channel, const char **str) 1314 { 1315 switch (type) { 1316 case hwmon_curr: 1317 switch (attr) { 1318 case hwmon_curr_label: 1319 *str = "bias"; 1320 return 0; 1321 default: 1322 return -EOPNOTSUPP; 1323 } 1324 break; 1325 case hwmon_temp: 1326 switch (attr) { 1327 case hwmon_temp_label: 1328 *str = "temperature"; 1329 return 0; 1330 default: 1331 return -EOPNOTSUPP; 1332 } 1333 break; 1334 case hwmon_in: 1335 switch (attr) { 1336 case hwmon_in_label: 1337 *str = "VCC"; 1338 return 0; 1339 default: 1340 return -EOPNOTSUPP; 1341 } 1342 break; 1343 case hwmon_power: 1344 switch (attr) { 1345 case hwmon_power_label: 1346 *str = sfp_hwmon_power_labels[channel]; 1347 return 0; 1348 default: 1349 return -EOPNOTSUPP; 1350 } 1351 break; 1352 default: 1353 return -EOPNOTSUPP; 1354 } 1355 1356 return -EOPNOTSUPP; 1357 } 1358 1359 static const struct hwmon_ops sfp_hwmon_ops = { 1360 .is_visible = sfp_hwmon_is_visible, 1361 .read = sfp_hwmon_read, 1362 .read_string = sfp_hwmon_read_string, 1363 }; 1364 1365 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1366 HWMON_CHANNEL_INFO(chip, 1367 HWMON_C_REGISTER_TZ), 1368 HWMON_CHANNEL_INFO(in, 1369 HWMON_I_INPUT | 1370 HWMON_I_MAX | HWMON_I_MIN | 1371 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1372 HWMON_I_CRIT | HWMON_I_LCRIT | 1373 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1374 HWMON_I_LABEL), 1375 HWMON_CHANNEL_INFO(temp, 1376 HWMON_T_INPUT | 1377 HWMON_T_MAX | HWMON_T_MIN | 1378 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1379 HWMON_T_CRIT | HWMON_T_LCRIT | 1380 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1381 HWMON_T_LABEL), 1382 HWMON_CHANNEL_INFO(curr, 1383 HWMON_C_INPUT | 1384 HWMON_C_MAX | HWMON_C_MIN | 1385 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1386 HWMON_C_CRIT | HWMON_C_LCRIT | 1387 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1388 HWMON_C_LABEL), 1389 HWMON_CHANNEL_INFO(power, 1390 /* Transmit power */ 1391 HWMON_P_INPUT | 1392 HWMON_P_MAX | HWMON_P_MIN | 1393 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1394 HWMON_P_CRIT | HWMON_P_LCRIT | 1395 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1396 HWMON_P_LABEL, 1397 /* Receive power */ 1398 HWMON_P_INPUT | 1399 HWMON_P_MAX | HWMON_P_MIN | 1400 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1401 HWMON_P_CRIT | HWMON_P_LCRIT | 1402 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1403 HWMON_P_LABEL), 1404 NULL, 1405 }; 1406 1407 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1408 .ops = &sfp_hwmon_ops, 1409 .info = sfp_hwmon_info, 1410 }; 1411 1412 static void sfp_hwmon_probe(struct work_struct *work) 1413 { 1414 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1415 int err; 1416 1417 /* hwmon interface needs to access 16bit registers in atomic way to 1418 * guarantee coherency of the diagnostic monitoring data. If it is not 1419 * possible to guarantee coherency because EEPROM is broken in such way 1420 * that does not support atomic 16bit read operation then we have to 1421 * skip registration of hwmon device. 1422 */ 1423 if (sfp->i2c_block_size < 2) { 1424 dev_info(sfp->dev, 1425 "skipping hwmon device registration due to broken EEPROM\n"); 1426 dev_info(sfp->dev, 1427 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1428 return; 1429 } 1430 1431 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1432 if (err < 0) { 1433 if (sfp->hwmon_tries--) { 1434 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1435 T_PROBE_RETRY_SLOW); 1436 } else { 1437 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1438 ERR_PTR(err)); 1439 } 1440 return; 1441 } 1442 1443 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1444 if (IS_ERR(sfp->hwmon_name)) { 1445 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1446 return; 1447 } 1448 1449 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1450 sfp->hwmon_name, sfp, 1451 &sfp_hwmon_chip_info, 1452 NULL); 1453 if (IS_ERR(sfp->hwmon_dev)) 1454 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1455 PTR_ERR(sfp->hwmon_dev)); 1456 } 1457 1458 static int sfp_hwmon_insert(struct sfp *sfp) 1459 { 1460 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1461 return 0; 1462 1463 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1464 return 0; 1465 1466 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1467 /* This driver in general does not support address 1468 * change. 1469 */ 1470 return 0; 1471 1472 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1473 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1474 1475 return 0; 1476 } 1477 1478 static void sfp_hwmon_remove(struct sfp *sfp) 1479 { 1480 cancel_delayed_work_sync(&sfp->hwmon_probe); 1481 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1482 hwmon_device_unregister(sfp->hwmon_dev); 1483 sfp->hwmon_dev = NULL; 1484 kfree(sfp->hwmon_name); 1485 } 1486 } 1487 1488 static int sfp_hwmon_init(struct sfp *sfp) 1489 { 1490 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1491 1492 return 0; 1493 } 1494 1495 static void sfp_hwmon_exit(struct sfp *sfp) 1496 { 1497 cancel_delayed_work_sync(&sfp->hwmon_probe); 1498 } 1499 #else 1500 static int sfp_hwmon_insert(struct sfp *sfp) 1501 { 1502 return 0; 1503 } 1504 1505 static void sfp_hwmon_remove(struct sfp *sfp) 1506 { 1507 } 1508 1509 static int sfp_hwmon_init(struct sfp *sfp) 1510 { 1511 return 0; 1512 } 1513 1514 static void sfp_hwmon_exit(struct sfp *sfp) 1515 { 1516 } 1517 #endif 1518 1519 /* Helpers */ 1520 static void sfp_module_tx_disable(struct sfp *sfp) 1521 { 1522 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1523 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1524 sfp->state |= SFP_F_TX_DISABLE; 1525 sfp_set_state(sfp, sfp->state); 1526 } 1527 1528 static void sfp_module_tx_enable(struct sfp *sfp) 1529 { 1530 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1531 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1532 sfp->state &= ~SFP_F_TX_DISABLE; 1533 sfp_set_state(sfp, sfp->state); 1534 } 1535 1536 #if IS_ENABLED(CONFIG_DEBUG_FS) 1537 static int sfp_debug_state_show(struct seq_file *s, void *data) 1538 { 1539 struct sfp *sfp = s->private; 1540 1541 seq_printf(s, "Module state: %s\n", 1542 mod_state_to_str(sfp->sm_mod_state)); 1543 seq_printf(s, "Module probe attempts: %d %d\n", 1544 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1545 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1546 seq_printf(s, "Device state: %s\n", 1547 dev_state_to_str(sfp->sm_dev_state)); 1548 seq_printf(s, "Main state: %s\n", 1549 sm_state_to_str(sfp->sm_state)); 1550 seq_printf(s, "Fault recovery remaining retries: %d\n", 1551 sfp->sm_fault_retries); 1552 seq_printf(s, "PHY probe remaining retries: %d\n", 1553 sfp->sm_phy_retries); 1554 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1555 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1556 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1557 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1558 return 0; 1559 } 1560 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1561 1562 static void sfp_debugfs_init(struct sfp *sfp) 1563 { 1564 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1565 1566 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1567 &sfp_debug_state_fops); 1568 } 1569 1570 static void sfp_debugfs_exit(struct sfp *sfp) 1571 { 1572 debugfs_remove_recursive(sfp->debugfs_dir); 1573 } 1574 #else 1575 static void sfp_debugfs_init(struct sfp *sfp) 1576 { 1577 } 1578 1579 static void sfp_debugfs_exit(struct sfp *sfp) 1580 { 1581 } 1582 #endif 1583 1584 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1585 { 1586 unsigned int state = sfp->state; 1587 1588 if (state & SFP_F_TX_DISABLE) 1589 return; 1590 1591 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1592 1593 udelay(T_RESET_US); 1594 1595 sfp_set_state(sfp, state); 1596 } 1597 1598 /* SFP state machine */ 1599 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1600 { 1601 if (timeout) 1602 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1603 timeout); 1604 else 1605 cancel_delayed_work(&sfp->timeout); 1606 } 1607 1608 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1609 unsigned int timeout) 1610 { 1611 sfp->sm_state = state; 1612 sfp_sm_set_timer(sfp, timeout); 1613 } 1614 1615 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1616 unsigned int timeout) 1617 { 1618 sfp->sm_mod_state = state; 1619 sfp_sm_set_timer(sfp, timeout); 1620 } 1621 1622 static void sfp_sm_phy_detach(struct sfp *sfp) 1623 { 1624 sfp_remove_phy(sfp->sfp_bus); 1625 phy_device_remove(sfp->mod_phy); 1626 phy_device_free(sfp->mod_phy); 1627 sfp->mod_phy = NULL; 1628 } 1629 1630 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1631 { 1632 struct phy_device *phy; 1633 int err; 1634 1635 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1636 if (phy == ERR_PTR(-ENODEV)) 1637 return PTR_ERR(phy); 1638 if (IS_ERR(phy)) { 1639 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1640 return PTR_ERR(phy); 1641 } 1642 1643 err = phy_device_register(phy); 1644 if (err) { 1645 phy_device_free(phy); 1646 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1647 ERR_PTR(err)); 1648 return err; 1649 } 1650 1651 err = sfp_add_phy(sfp->sfp_bus, phy); 1652 if (err) { 1653 phy_device_remove(phy); 1654 phy_device_free(phy); 1655 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1656 return err; 1657 } 1658 1659 sfp->mod_phy = phy; 1660 1661 return 0; 1662 } 1663 1664 static void sfp_sm_link_up(struct sfp *sfp) 1665 { 1666 sfp_link_up(sfp->sfp_bus); 1667 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1668 } 1669 1670 static void sfp_sm_link_down(struct sfp *sfp) 1671 { 1672 sfp_link_down(sfp->sfp_bus); 1673 } 1674 1675 static void sfp_sm_link_check_los(struct sfp *sfp) 1676 { 1677 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1678 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1679 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1680 bool los = false; 1681 1682 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1683 * are set, we assume that no LOS signal is available. If both are 1684 * set, we assume LOS is not implemented (and is meaningless.) 1685 */ 1686 if (los_options == los_inverted) 1687 los = !(sfp->state & SFP_F_LOS); 1688 else if (los_options == los_normal) 1689 los = !!(sfp->state & SFP_F_LOS); 1690 1691 if (los) 1692 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1693 else 1694 sfp_sm_link_up(sfp); 1695 } 1696 1697 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1698 { 1699 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1700 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1701 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1702 1703 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1704 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1705 } 1706 1707 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1708 { 1709 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1710 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1711 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1712 1713 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1714 (los_options == los_normal && event == SFP_E_LOS_LOW); 1715 } 1716 1717 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1718 { 1719 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1720 dev_err(sfp->dev, 1721 "module persistently indicates fault, disabling\n"); 1722 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1723 } else { 1724 if (warn) 1725 dev_err(sfp->dev, "module transmit fault indicated\n"); 1726 1727 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1728 } 1729 } 1730 1731 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1732 { 1733 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1734 return sfp_i2c_mdiobus_create(sfp); 1735 1736 return 0; 1737 } 1738 1739 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1740 * normally sits at I2C bus address 0x56, and may either be a clause 22 1741 * or clause 45 PHY. 1742 * 1743 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1744 * negotiation enabled, but some may be in 1000base-X - which is for the 1745 * PHY driver to determine. 1746 * 1747 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1748 * mode according to the negotiated line speed. 1749 */ 1750 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1751 { 1752 int err = 0; 1753 1754 switch (sfp->mdio_protocol) { 1755 case MDIO_I2C_NONE: 1756 break; 1757 1758 case MDIO_I2C_MARVELL_C22: 1759 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1760 break; 1761 1762 case MDIO_I2C_C45: 1763 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1764 break; 1765 1766 case MDIO_I2C_ROLLBALL: 1767 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1768 break; 1769 } 1770 1771 return err; 1772 } 1773 1774 static int sfp_module_parse_power(struct sfp *sfp) 1775 { 1776 u32 power_mW = 1000; 1777 bool supports_a2; 1778 1779 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1780 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1781 power_mW = 1500; 1782 /* Added in Rev 11.9, but there is no compliance code for this */ 1783 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1784 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1785 power_mW = 2000; 1786 1787 /* Power level 1 modules (max. 1W) are always supported. */ 1788 if (power_mW <= 1000) { 1789 sfp->module_power_mW = power_mW; 1790 return 0; 1791 } 1792 1793 supports_a2 = sfp->id.ext.sff8472_compliance != 1794 SFP_SFF8472_COMPLIANCE_NONE || 1795 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1796 1797 if (power_mW > sfp->max_power_mW) { 1798 /* Module power specification exceeds the allowed maximum. */ 1799 if (!supports_a2) { 1800 /* The module appears not to implement bus address 1801 * 0xa2, so assume that the module powers up in the 1802 * indicated mode. 1803 */ 1804 dev_err(sfp->dev, 1805 "Host does not support %u.%uW modules\n", 1806 power_mW / 1000, (power_mW / 100) % 10); 1807 return -EINVAL; 1808 } else { 1809 dev_warn(sfp->dev, 1810 "Host does not support %u.%uW modules, module left in power mode 1\n", 1811 power_mW / 1000, (power_mW / 100) % 10); 1812 return 0; 1813 } 1814 } 1815 1816 if (!supports_a2) { 1817 /* The module power level is below the host maximum and the 1818 * module appears not to implement bus address 0xa2, so assume 1819 * that the module powers up in the indicated mode. 1820 */ 1821 return 0; 1822 } 1823 1824 /* If the module requires a higher power mode, but also requires 1825 * an address change sequence, warn the user that the module may 1826 * not be functional. 1827 */ 1828 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1829 dev_warn(sfp->dev, 1830 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1831 power_mW / 1000, (power_mW / 100) % 10); 1832 return 0; 1833 } 1834 1835 sfp->module_power_mW = power_mW; 1836 1837 return 0; 1838 } 1839 1840 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1841 { 1842 int err; 1843 1844 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1845 SFP_EXT_STATUS_PWRLVL_SELECT, 1846 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1847 if (err != sizeof(u8)) { 1848 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1849 enable ? "en" : "dis", ERR_PTR(err)); 1850 return -EAGAIN; 1851 } 1852 1853 if (enable) 1854 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1855 sfp->module_power_mW / 1000, 1856 (sfp->module_power_mW / 100) % 10); 1857 1858 return 0; 1859 } 1860 1861 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1862 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1863 * not support multibyte reads from the EEPROM. Each multi-byte read 1864 * operation returns just one byte of EEPROM followed by zeros. There is 1865 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1866 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1867 * name and vendor id into EEPROM, so there is even no way to detect if 1868 * module is V-SOL V2801F. Therefore check for those zeros in the read 1869 * data and then based on check switch to reading EEPROM to one byte 1870 * at a time. 1871 */ 1872 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1873 { 1874 size_t i, block_size = sfp->i2c_block_size; 1875 1876 /* Already using byte IO */ 1877 if (block_size == 1) 1878 return false; 1879 1880 for (i = 1; i < len; i += block_size) { 1881 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1882 return false; 1883 } 1884 return true; 1885 } 1886 1887 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1888 { 1889 u8 check; 1890 int err; 1891 1892 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1893 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1894 id->base.connector != SFF8024_CONNECTOR_LC) { 1895 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1896 id->base.phys_id = SFF8024_ID_SFF_8472; 1897 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1898 id->base.connector = SFF8024_CONNECTOR_LC; 1899 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1900 if (err != 3) { 1901 dev_err(sfp->dev, 1902 "Failed to rewrite module EEPROM: %pe\n", 1903 ERR_PTR(err)); 1904 return err; 1905 } 1906 1907 /* Cotsworks modules have been found to require a delay between write operations. */ 1908 mdelay(50); 1909 1910 /* Update base structure checksum */ 1911 check = sfp_check(&id->base, sizeof(id->base) - 1); 1912 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1913 if (err != 1) { 1914 dev_err(sfp->dev, 1915 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1916 ERR_PTR(err)); 1917 return err; 1918 } 1919 } 1920 return 0; 1921 } 1922 1923 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1924 { 1925 /* SFP module inserted - read I2C data */ 1926 struct sfp_eeprom_id id; 1927 bool cotsworks_sfbg; 1928 bool cotsworks; 1929 u8 check; 1930 int ret; 1931 1932 /* Some SFP modules and also some Linux I2C drivers do not like reads 1933 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1934 * a time. 1935 */ 1936 sfp->i2c_block_size = 16; 1937 1938 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1939 if (ret < 0) { 1940 if (report) 1941 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1942 ERR_PTR(ret)); 1943 return -EAGAIN; 1944 } 1945 1946 if (ret != sizeof(id.base)) { 1947 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1948 return -EAGAIN; 1949 } 1950 1951 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1952 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1953 * that EEPROM supports atomic 16bit read operation for diagnostic 1954 * fields, so do not switch to one byte reading at a time unless it 1955 * is really required and we have no other option. 1956 */ 1957 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1958 dev_info(sfp->dev, 1959 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1960 dev_info(sfp->dev, 1961 "Switching to reading EEPROM to one byte at a time\n"); 1962 sfp->i2c_block_size = 1; 1963 1964 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1965 if (ret < 0) { 1966 if (report) 1967 dev_err(sfp->dev, 1968 "failed to read EEPROM: %pe\n", 1969 ERR_PTR(ret)); 1970 return -EAGAIN; 1971 } 1972 1973 if (ret != sizeof(id.base)) { 1974 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1975 ERR_PTR(ret)); 1976 return -EAGAIN; 1977 } 1978 } 1979 1980 /* Cotsworks do not seem to update the checksums when they 1981 * do the final programming with the final module part number, 1982 * serial number and date code. 1983 */ 1984 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1985 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1986 1987 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1988 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1989 * Cotsworks PN matches and bytes are not correct. 1990 */ 1991 if (cotsworks && cotsworks_sfbg) { 1992 ret = sfp_cotsworks_fixup_check(sfp, &id); 1993 if (ret < 0) 1994 return ret; 1995 } 1996 1997 /* Validate the checksum over the base structure */ 1998 check = sfp_check(&id.base, sizeof(id.base) - 1); 1999 if (check != id.base.cc_base) { 2000 if (cotsworks) { 2001 dev_warn(sfp->dev, 2002 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2003 check, id.base.cc_base); 2004 } else { 2005 dev_err(sfp->dev, 2006 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2007 check, id.base.cc_base); 2008 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2009 16, 1, &id, sizeof(id), true); 2010 return -EINVAL; 2011 } 2012 } 2013 2014 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2015 if (ret < 0) { 2016 if (report) 2017 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2018 ERR_PTR(ret)); 2019 return -EAGAIN; 2020 } 2021 2022 if (ret != sizeof(id.ext)) { 2023 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2024 return -EAGAIN; 2025 } 2026 2027 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2028 if (check != id.ext.cc_ext) { 2029 if (cotsworks) { 2030 dev_warn(sfp->dev, 2031 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2032 check, id.ext.cc_ext); 2033 } else { 2034 dev_err(sfp->dev, 2035 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2036 check, id.ext.cc_ext); 2037 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2038 16, 1, &id, sizeof(id), true); 2039 memset(&id.ext, 0, sizeof(id.ext)); 2040 } 2041 } 2042 2043 sfp->id = id; 2044 2045 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2046 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2047 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2048 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2049 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2050 (int)sizeof(id.ext.datecode), id.ext.datecode); 2051 2052 /* Check whether we support this module */ 2053 if (!sfp->type->module_supported(&id)) { 2054 dev_err(sfp->dev, 2055 "module is not supported - phys id 0x%02x 0x%02x\n", 2056 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2057 return -EINVAL; 2058 } 2059 2060 /* If the module requires address swap mode, warn about it */ 2061 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2062 dev_warn(sfp->dev, 2063 "module address swap to access page 0xA2 is not supported.\n"); 2064 2065 /* Parse the module power requirement */ 2066 ret = sfp_module_parse_power(sfp); 2067 if (ret < 0) 2068 return ret; 2069 2070 /* Initialise state bits to use from hardware */ 2071 sfp->state_hw_mask = SFP_F_PRESENT; 2072 if (sfp->gpio[GPIO_TX_DISABLE]) 2073 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2074 if (sfp->gpio[GPIO_TX_FAULT]) 2075 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2076 if (sfp->gpio[GPIO_LOS]) 2077 sfp->state_hw_mask |= SFP_F_LOS; 2078 2079 sfp->module_t_start_up = T_START_UP; 2080 sfp->module_t_wait = T_WAIT; 2081 2082 sfp->tx_fault_ignore = false; 2083 2084 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2085 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2086 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2087 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2088 sfp->mdio_protocol = MDIO_I2C_C45; 2089 else if (sfp->id.base.e1000_base_t) 2090 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2091 else 2092 sfp->mdio_protocol = MDIO_I2C_NONE; 2093 2094 sfp->quirk = sfp_lookup_quirk(&id); 2095 if (sfp->quirk && sfp->quirk->fixup) 2096 sfp->quirk->fixup(sfp); 2097 2098 return 0; 2099 } 2100 2101 static void sfp_sm_mod_remove(struct sfp *sfp) 2102 { 2103 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2104 sfp_module_remove(sfp->sfp_bus); 2105 2106 sfp_hwmon_remove(sfp); 2107 2108 memset(&sfp->id, 0, sizeof(sfp->id)); 2109 sfp->module_power_mW = 0; 2110 2111 dev_info(sfp->dev, "module removed\n"); 2112 } 2113 2114 /* This state machine tracks the upstream's state */ 2115 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2116 { 2117 switch (sfp->sm_dev_state) { 2118 default: 2119 if (event == SFP_E_DEV_ATTACH) 2120 sfp->sm_dev_state = SFP_DEV_DOWN; 2121 break; 2122 2123 case SFP_DEV_DOWN: 2124 if (event == SFP_E_DEV_DETACH) 2125 sfp->sm_dev_state = SFP_DEV_DETACHED; 2126 else if (event == SFP_E_DEV_UP) 2127 sfp->sm_dev_state = SFP_DEV_UP; 2128 break; 2129 2130 case SFP_DEV_UP: 2131 if (event == SFP_E_DEV_DETACH) 2132 sfp->sm_dev_state = SFP_DEV_DETACHED; 2133 else if (event == SFP_E_DEV_DOWN) 2134 sfp->sm_dev_state = SFP_DEV_DOWN; 2135 break; 2136 } 2137 } 2138 2139 /* This state machine tracks the insert/remove state of the module, probes 2140 * the on-board EEPROM, and sets up the power level. 2141 */ 2142 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2143 { 2144 int err; 2145 2146 /* Handle remove event globally, it resets this state machine */ 2147 if (event == SFP_E_REMOVE) { 2148 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2149 sfp_sm_mod_remove(sfp); 2150 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2151 return; 2152 } 2153 2154 /* Handle device detach globally */ 2155 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2156 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2157 if (sfp->module_power_mW > 1000 && 2158 sfp->sm_mod_state > SFP_MOD_HPOWER) 2159 sfp_sm_mod_hpower(sfp, false); 2160 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2161 return; 2162 } 2163 2164 switch (sfp->sm_mod_state) { 2165 default: 2166 if (event == SFP_E_INSERT) { 2167 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2168 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2169 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2170 } 2171 break; 2172 2173 case SFP_MOD_PROBE: 2174 /* Wait for T_PROBE_INIT to time out */ 2175 if (event != SFP_E_TIMEOUT) 2176 break; 2177 2178 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2179 if (err == -EAGAIN) { 2180 if (sfp->sm_mod_tries_init && 2181 --sfp->sm_mod_tries_init) { 2182 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2183 break; 2184 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2185 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2186 dev_warn(sfp->dev, 2187 "please wait, module slow to respond\n"); 2188 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2189 break; 2190 } 2191 } 2192 if (err < 0) { 2193 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2194 break; 2195 } 2196 2197 /* Force a poll to re-read the hardware signal state after 2198 * sfp_sm_mod_probe() changed state_hw_mask. 2199 */ 2200 mod_delayed_work(system_wq, &sfp->poll, 1); 2201 2202 err = sfp_hwmon_insert(sfp); 2203 if (err) 2204 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2205 ERR_PTR(err)); 2206 2207 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2208 fallthrough; 2209 case SFP_MOD_WAITDEV: 2210 /* Ensure that the device is attached before proceeding */ 2211 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2212 break; 2213 2214 /* Report the module insertion to the upstream device */ 2215 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2216 sfp->quirk); 2217 if (err < 0) { 2218 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2219 break; 2220 } 2221 2222 /* If this is a power level 1 module, we are done */ 2223 if (sfp->module_power_mW <= 1000) 2224 goto insert; 2225 2226 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2227 fallthrough; 2228 case SFP_MOD_HPOWER: 2229 /* Enable high power mode */ 2230 err = sfp_sm_mod_hpower(sfp, true); 2231 if (err < 0) { 2232 if (err != -EAGAIN) { 2233 sfp_module_remove(sfp->sfp_bus); 2234 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2235 } else { 2236 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2237 } 2238 break; 2239 } 2240 2241 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2242 break; 2243 2244 case SFP_MOD_WAITPWR: 2245 /* Wait for T_HPOWER_LEVEL to time out */ 2246 if (event != SFP_E_TIMEOUT) 2247 break; 2248 2249 insert: 2250 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2251 break; 2252 2253 case SFP_MOD_PRESENT: 2254 case SFP_MOD_ERROR: 2255 break; 2256 } 2257 } 2258 2259 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2260 { 2261 unsigned long timeout; 2262 int ret; 2263 2264 /* Some events are global */ 2265 if (sfp->sm_state != SFP_S_DOWN && 2266 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2267 sfp->sm_dev_state != SFP_DEV_UP)) { 2268 if (sfp->sm_state == SFP_S_LINK_UP && 2269 sfp->sm_dev_state == SFP_DEV_UP) 2270 sfp_sm_link_down(sfp); 2271 if (sfp->sm_state > SFP_S_INIT) 2272 sfp_module_stop(sfp->sfp_bus); 2273 if (sfp->mod_phy) 2274 sfp_sm_phy_detach(sfp); 2275 if (sfp->i2c_mii) 2276 sfp_i2c_mdiobus_destroy(sfp); 2277 sfp_module_tx_disable(sfp); 2278 sfp_soft_stop_poll(sfp); 2279 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2280 return; 2281 } 2282 2283 /* The main state machine */ 2284 switch (sfp->sm_state) { 2285 case SFP_S_DOWN: 2286 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2287 sfp->sm_dev_state != SFP_DEV_UP) 2288 break; 2289 2290 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2291 sfp_soft_start_poll(sfp); 2292 2293 sfp_module_tx_enable(sfp); 2294 2295 /* Initialise the fault clearance retries */ 2296 sfp->sm_fault_retries = N_FAULT_INIT; 2297 2298 /* We need to check the TX_FAULT state, which is not defined 2299 * while TX_DISABLE is asserted. The earliest we want to do 2300 * anything (such as probe for a PHY) is 50ms (or more on 2301 * specific modules). 2302 */ 2303 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2304 break; 2305 2306 case SFP_S_WAIT: 2307 if (event != SFP_E_TIMEOUT) 2308 break; 2309 2310 if (sfp->state & SFP_F_TX_FAULT) { 2311 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2312 * from the TX_DISABLE deassertion for the module to 2313 * initialise, which is indicated by TX_FAULT 2314 * deasserting. 2315 */ 2316 timeout = sfp->module_t_start_up; 2317 if (timeout > sfp->module_t_wait) 2318 timeout -= sfp->module_t_wait; 2319 else 2320 timeout = 1; 2321 2322 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2323 } else { 2324 /* TX_FAULT is not asserted, assume the module has 2325 * finished initialising. 2326 */ 2327 goto init_done; 2328 } 2329 break; 2330 2331 case SFP_S_INIT: 2332 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2333 /* TX_FAULT is still asserted after t_init 2334 * or t_start_up, so assume there is a fault. 2335 */ 2336 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2337 sfp->sm_fault_retries == N_FAULT_INIT); 2338 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2339 init_done: 2340 /* Create mdiobus and start trying for PHY */ 2341 ret = sfp_sm_add_mdio_bus(sfp); 2342 if (ret < 0) { 2343 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2344 break; 2345 } 2346 sfp->sm_phy_retries = R_PHY_RETRY; 2347 goto phy_probe; 2348 } 2349 break; 2350 2351 case SFP_S_INIT_PHY: 2352 if (event != SFP_E_TIMEOUT) 2353 break; 2354 phy_probe: 2355 /* TX_FAULT deasserted or we timed out with TX_FAULT 2356 * clear. Probe for the PHY and check the LOS state. 2357 */ 2358 ret = sfp_sm_probe_for_phy(sfp); 2359 if (ret == -ENODEV) { 2360 if (--sfp->sm_phy_retries) { 2361 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2362 break; 2363 } else { 2364 dev_info(sfp->dev, "no PHY detected\n"); 2365 } 2366 } else if (ret) { 2367 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2368 break; 2369 } 2370 if (sfp_module_start(sfp->sfp_bus)) { 2371 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2372 break; 2373 } 2374 sfp_sm_link_check_los(sfp); 2375 2376 /* Reset the fault retry count */ 2377 sfp->sm_fault_retries = N_FAULT; 2378 break; 2379 2380 case SFP_S_INIT_TX_FAULT: 2381 if (event == SFP_E_TIMEOUT) { 2382 sfp_module_tx_fault_reset(sfp); 2383 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2384 } 2385 break; 2386 2387 case SFP_S_WAIT_LOS: 2388 if (event == SFP_E_TX_FAULT) 2389 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2390 else if (sfp_los_event_inactive(sfp, event)) 2391 sfp_sm_link_up(sfp); 2392 break; 2393 2394 case SFP_S_LINK_UP: 2395 if (event == SFP_E_TX_FAULT) { 2396 sfp_sm_link_down(sfp); 2397 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2398 } else if (sfp_los_event_active(sfp, event)) { 2399 sfp_sm_link_down(sfp); 2400 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2401 } 2402 break; 2403 2404 case SFP_S_TX_FAULT: 2405 if (event == SFP_E_TIMEOUT) { 2406 sfp_module_tx_fault_reset(sfp); 2407 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2408 } 2409 break; 2410 2411 case SFP_S_REINIT: 2412 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2413 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2414 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2415 dev_info(sfp->dev, "module transmit fault recovered\n"); 2416 sfp_sm_link_check_los(sfp); 2417 } 2418 break; 2419 2420 case SFP_S_TX_DISABLE: 2421 break; 2422 } 2423 } 2424 2425 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2426 { 2427 mutex_lock(&sfp->sm_mutex); 2428 2429 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2430 mod_state_to_str(sfp->sm_mod_state), 2431 dev_state_to_str(sfp->sm_dev_state), 2432 sm_state_to_str(sfp->sm_state), 2433 event_to_str(event)); 2434 2435 sfp_sm_device(sfp, event); 2436 sfp_sm_module(sfp, event); 2437 sfp_sm_main(sfp, event); 2438 2439 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2440 mod_state_to_str(sfp->sm_mod_state), 2441 dev_state_to_str(sfp->sm_dev_state), 2442 sm_state_to_str(sfp->sm_state)); 2443 2444 mutex_unlock(&sfp->sm_mutex); 2445 } 2446 2447 static void sfp_attach(struct sfp *sfp) 2448 { 2449 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2450 } 2451 2452 static void sfp_detach(struct sfp *sfp) 2453 { 2454 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2455 } 2456 2457 static void sfp_start(struct sfp *sfp) 2458 { 2459 sfp_sm_event(sfp, SFP_E_DEV_UP); 2460 } 2461 2462 static void sfp_stop(struct sfp *sfp) 2463 { 2464 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2465 } 2466 2467 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2468 { 2469 /* locking... and check module is present */ 2470 2471 if (sfp->id.ext.sff8472_compliance && 2472 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2473 modinfo->type = ETH_MODULE_SFF_8472; 2474 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2475 } else { 2476 modinfo->type = ETH_MODULE_SFF_8079; 2477 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2478 } 2479 return 0; 2480 } 2481 2482 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2483 u8 *data) 2484 { 2485 unsigned int first, last, len; 2486 int ret; 2487 2488 if (ee->len == 0) 2489 return -EINVAL; 2490 2491 first = ee->offset; 2492 last = ee->offset + ee->len; 2493 if (first < ETH_MODULE_SFF_8079_LEN) { 2494 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2495 len -= first; 2496 2497 ret = sfp_read(sfp, false, first, data, len); 2498 if (ret < 0) 2499 return ret; 2500 2501 first += len; 2502 data += len; 2503 } 2504 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2505 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2506 len -= first; 2507 first -= ETH_MODULE_SFF_8079_LEN; 2508 2509 ret = sfp_read(sfp, true, first, data, len); 2510 if (ret < 0) 2511 return ret; 2512 } 2513 return 0; 2514 } 2515 2516 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2517 const struct ethtool_module_eeprom *page, 2518 struct netlink_ext_ack *extack) 2519 { 2520 if (page->bank) { 2521 NL_SET_ERR_MSG(extack, "Banks not supported"); 2522 return -EOPNOTSUPP; 2523 } 2524 2525 if (page->page) { 2526 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2527 return -EOPNOTSUPP; 2528 } 2529 2530 if (page->i2c_address != 0x50 && 2531 page->i2c_address != 0x51) { 2532 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2533 return -EOPNOTSUPP; 2534 } 2535 2536 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2537 page->data, page->length); 2538 }; 2539 2540 static const struct sfp_socket_ops sfp_module_ops = { 2541 .attach = sfp_attach, 2542 .detach = sfp_detach, 2543 .start = sfp_start, 2544 .stop = sfp_stop, 2545 .module_info = sfp_module_info, 2546 .module_eeprom = sfp_module_eeprom, 2547 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2548 }; 2549 2550 static void sfp_timeout(struct work_struct *work) 2551 { 2552 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2553 2554 rtnl_lock(); 2555 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2556 rtnl_unlock(); 2557 } 2558 2559 static void sfp_check_state(struct sfp *sfp) 2560 { 2561 unsigned int state, i, changed; 2562 2563 mutex_lock(&sfp->st_mutex); 2564 state = sfp_get_state(sfp); 2565 changed = state ^ sfp->state; 2566 if (sfp->tx_fault_ignore) 2567 changed &= SFP_F_PRESENT | SFP_F_LOS; 2568 else 2569 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2570 2571 for (i = 0; i < GPIO_MAX; i++) 2572 if (changed & BIT(i)) 2573 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2574 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2575 2576 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2577 sfp->state = state; 2578 2579 rtnl_lock(); 2580 if (changed & SFP_F_PRESENT) 2581 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2582 SFP_E_INSERT : SFP_E_REMOVE); 2583 2584 if (changed & SFP_F_TX_FAULT) 2585 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2586 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2587 2588 if (changed & SFP_F_LOS) 2589 sfp_sm_event(sfp, state & SFP_F_LOS ? 2590 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2591 rtnl_unlock(); 2592 mutex_unlock(&sfp->st_mutex); 2593 } 2594 2595 static irqreturn_t sfp_irq(int irq, void *data) 2596 { 2597 struct sfp *sfp = data; 2598 2599 sfp_check_state(sfp); 2600 2601 return IRQ_HANDLED; 2602 } 2603 2604 static void sfp_poll(struct work_struct *work) 2605 { 2606 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2607 2608 sfp_check_state(sfp); 2609 2610 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2611 sfp->need_poll) 2612 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2613 } 2614 2615 static struct sfp *sfp_alloc(struct device *dev) 2616 { 2617 struct sfp *sfp; 2618 2619 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2620 if (!sfp) 2621 return ERR_PTR(-ENOMEM); 2622 2623 sfp->dev = dev; 2624 2625 mutex_init(&sfp->sm_mutex); 2626 mutex_init(&sfp->st_mutex); 2627 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2628 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2629 2630 sfp_hwmon_init(sfp); 2631 2632 return sfp; 2633 } 2634 2635 static void sfp_cleanup(void *data) 2636 { 2637 struct sfp *sfp = data; 2638 2639 sfp_hwmon_exit(sfp); 2640 2641 cancel_delayed_work_sync(&sfp->poll); 2642 cancel_delayed_work_sync(&sfp->timeout); 2643 if (sfp->i2c_mii) { 2644 mdiobus_unregister(sfp->i2c_mii); 2645 mdiobus_free(sfp->i2c_mii); 2646 } 2647 if (sfp->i2c) 2648 i2c_put_adapter(sfp->i2c); 2649 kfree(sfp); 2650 } 2651 2652 static int sfp_i2c_get(struct sfp *sfp) 2653 { 2654 struct fwnode_handle *h; 2655 struct i2c_adapter *i2c; 2656 int err; 2657 2658 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2659 if (IS_ERR(h)) { 2660 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2661 return -ENODEV; 2662 } 2663 2664 i2c = i2c_get_adapter_by_fwnode(h); 2665 if (!i2c) { 2666 err = -EPROBE_DEFER; 2667 goto put; 2668 } 2669 2670 err = sfp_i2c_configure(sfp, i2c); 2671 if (err) 2672 i2c_put_adapter(i2c); 2673 put: 2674 fwnode_handle_put(h); 2675 return err; 2676 } 2677 2678 static int sfp_probe(struct platform_device *pdev) 2679 { 2680 const struct sff_data *sff; 2681 char *sfp_irq_name; 2682 struct sfp *sfp; 2683 int err, i; 2684 2685 sfp = sfp_alloc(&pdev->dev); 2686 if (IS_ERR(sfp)) 2687 return PTR_ERR(sfp); 2688 2689 platform_set_drvdata(pdev, sfp); 2690 2691 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2692 if (err < 0) 2693 return err; 2694 2695 sff = device_get_match_data(sfp->dev); 2696 if (!sff) 2697 sff = &sfp_data; 2698 2699 sfp->type = sff; 2700 2701 err = sfp_i2c_get(sfp); 2702 if (err) 2703 return err; 2704 2705 for (i = 0; i < GPIO_MAX; i++) 2706 if (sff->gpios & BIT(i)) { 2707 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2708 gpio_names[i], gpio_flags[i]); 2709 if (IS_ERR(sfp->gpio[i])) 2710 return PTR_ERR(sfp->gpio[i]); 2711 } 2712 2713 sfp->state_hw_mask = SFP_F_PRESENT; 2714 2715 sfp->get_state = sfp_gpio_get_state; 2716 sfp->set_state = sfp_gpio_set_state; 2717 2718 /* Modules that have no detect signal are always present */ 2719 if (!(sfp->gpio[GPIO_MODDEF0])) 2720 sfp->get_state = sff_gpio_get_state; 2721 2722 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2723 &sfp->max_power_mW); 2724 if (sfp->max_power_mW < 1000) { 2725 if (sfp->max_power_mW) 2726 dev_warn(sfp->dev, 2727 "Firmware bug: host maximum power should be at least 1W\n"); 2728 sfp->max_power_mW = 1000; 2729 } 2730 2731 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2732 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2733 2734 /* Get the initial state, and always signal TX disable, 2735 * since the network interface will not be up. 2736 */ 2737 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2738 2739 if (sfp->gpio[GPIO_RATE_SELECT] && 2740 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2741 sfp->state |= SFP_F_RATE_SELECT; 2742 sfp_set_state(sfp, sfp->state); 2743 sfp_module_tx_disable(sfp); 2744 if (sfp->state & SFP_F_PRESENT) { 2745 rtnl_lock(); 2746 sfp_sm_event(sfp, SFP_E_INSERT); 2747 rtnl_unlock(); 2748 } 2749 2750 for (i = 0; i < GPIO_MAX; i++) { 2751 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2752 continue; 2753 2754 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2755 if (sfp->gpio_irq[i] < 0) { 2756 sfp->gpio_irq[i] = 0; 2757 sfp->need_poll = true; 2758 continue; 2759 } 2760 2761 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2762 "%s-%s", dev_name(sfp->dev), 2763 gpio_names[i]); 2764 2765 if (!sfp_irq_name) 2766 return -ENOMEM; 2767 2768 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2769 NULL, sfp_irq, 2770 IRQF_ONESHOT | 2771 IRQF_TRIGGER_RISING | 2772 IRQF_TRIGGER_FALLING, 2773 sfp_irq_name, sfp); 2774 if (err) { 2775 sfp->gpio_irq[i] = 0; 2776 sfp->need_poll = true; 2777 } 2778 } 2779 2780 if (sfp->need_poll) 2781 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2782 2783 /* We could have an issue in cases no Tx disable pin is available or 2784 * wired as modules using a laser as their light source will continue to 2785 * be active when the fiber is removed. This could be a safety issue and 2786 * we should at least warn the user about that. 2787 */ 2788 if (!sfp->gpio[GPIO_TX_DISABLE]) 2789 dev_warn(sfp->dev, 2790 "No tx_disable pin: SFP modules will always be emitting.\n"); 2791 2792 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2793 if (!sfp->sfp_bus) 2794 return -ENOMEM; 2795 2796 sfp_debugfs_init(sfp); 2797 2798 return 0; 2799 } 2800 2801 static int sfp_remove(struct platform_device *pdev) 2802 { 2803 struct sfp *sfp = platform_get_drvdata(pdev); 2804 2805 sfp_debugfs_exit(sfp); 2806 sfp_unregister_socket(sfp->sfp_bus); 2807 2808 rtnl_lock(); 2809 sfp_sm_event(sfp, SFP_E_REMOVE); 2810 rtnl_unlock(); 2811 2812 return 0; 2813 } 2814 2815 static void sfp_shutdown(struct platform_device *pdev) 2816 { 2817 struct sfp *sfp = platform_get_drvdata(pdev); 2818 int i; 2819 2820 for (i = 0; i < GPIO_MAX; i++) { 2821 if (!sfp->gpio_irq[i]) 2822 continue; 2823 2824 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2825 } 2826 2827 cancel_delayed_work_sync(&sfp->poll); 2828 cancel_delayed_work_sync(&sfp->timeout); 2829 } 2830 2831 static struct platform_driver sfp_driver = { 2832 .probe = sfp_probe, 2833 .remove = sfp_remove, 2834 .shutdown = sfp_shutdown, 2835 .driver = { 2836 .name = "sfp", 2837 .of_match_table = sfp_of_match, 2838 }, 2839 }; 2840 2841 static int sfp_init(void) 2842 { 2843 poll_jiffies = msecs_to_jiffies(100); 2844 2845 return platform_driver_register(&sfp_driver); 2846 } 2847 module_init(sfp_init); 2848 2849 static void sfp_exit(void) 2850 { 2851 platform_driver_unregister(&sfp_driver); 2852 } 2853 module_exit(sfp_exit); 2854 2855 MODULE_ALIAS("platform:sfp"); 2856 MODULE_AUTHOR("Russell King"); 2857 MODULE_LICENSE("GPL v2"); 2858