1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "tx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_START_UP msecs_to_jiffies(300) 170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 171 172 /* t_reset is the time required to assert the TX_DISABLE signal to reset 173 * an indicated TX_FAULT. 174 */ 175 #define T_RESET_US 10 176 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 177 178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 179 * time. If the TX_FAULT signal is not deasserted after this number of 180 * attempts at clearing it, we decide that the module is faulty. 181 * N_FAULT is the same but after the module has initialised. 182 */ 183 #define N_FAULT_INIT 5 184 #define N_FAULT 5 185 186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 187 * R_PHY_RETRY is the number of attempts. 188 */ 189 #define T_PHY_RETRY msecs_to_jiffies(50) 190 #define R_PHY_RETRY 12 191 192 /* SFP module presence detection is poor: the three MOD DEF signals are 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to 194 * connect before the I2C bus on MOD DEF 1/2. 195 * 196 * The SFF-8472 specifies t_serial ("Time from power on until module is 197 * ready for data transmission over the two wire serial bus.") as 300ms. 198 */ 199 #define T_SERIAL msecs_to_jiffies(300) 200 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 202 #define R_PROBE_RETRY_INIT 10 203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 204 #define R_PROBE_RETRY_SLOW 12 205 206 /* SFP modules appear to always have their PHY configured for bus address 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 208 */ 209 #define SFP_PHY_ADDR 22 210 211 struct sff_data { 212 unsigned int gpios; 213 bool (*module_supported)(const struct sfp_eeprom_id *id); 214 }; 215 216 struct sfp { 217 struct device *dev; 218 struct i2c_adapter *i2c; 219 struct mii_bus *i2c_mii; 220 struct sfp_bus *sfp_bus; 221 struct phy_device *mod_phy; 222 const struct sff_data *type; 223 size_t i2c_block_size; 224 u32 max_power_mW; 225 226 unsigned int (*get_state)(struct sfp *); 227 void (*set_state)(struct sfp *, unsigned int); 228 int (*read)(struct sfp *, bool, u8, void *, size_t); 229 int (*write)(struct sfp *, bool, u8, void *, size_t); 230 231 struct gpio_desc *gpio[GPIO_MAX]; 232 int gpio_irq[GPIO_MAX]; 233 234 bool need_poll; 235 236 struct mutex st_mutex; /* Protects state */ 237 unsigned int state_hw_mask; 238 unsigned int state_soft_mask; 239 unsigned int state; 240 struct delayed_work poll; 241 struct delayed_work timeout; 242 struct mutex sm_mutex; /* Protects state machine */ 243 unsigned char sm_mod_state; 244 unsigned char sm_mod_tries_init; 245 unsigned char sm_mod_tries; 246 unsigned char sm_dev_state; 247 unsigned short sm_state; 248 unsigned char sm_fault_retries; 249 unsigned char sm_phy_retries; 250 251 struct sfp_eeprom_id id; 252 unsigned int module_power_mW; 253 unsigned int module_t_start_up; 254 bool tx_fault_ignore; 255 256 const struct sfp_quirk *quirk; 257 258 #if IS_ENABLED(CONFIG_HWMON) 259 struct sfp_diag diag; 260 struct delayed_work hwmon_probe; 261 unsigned int hwmon_tries; 262 struct device *hwmon_dev; 263 char *hwmon_name; 264 #endif 265 266 #if IS_ENABLED(CONFIG_DEBUG_FS) 267 struct dentry *debugfs_dir; 268 #endif 269 }; 270 271 static bool sff_module_supported(const struct sfp_eeprom_id *id) 272 { 273 return id->base.phys_id == SFF8024_ID_SFF_8472 && 274 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 275 } 276 277 static const struct sff_data sff_data = { 278 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 279 .module_supported = sff_module_supported, 280 }; 281 282 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 283 { 284 if (id->base.phys_id == SFF8024_ID_SFP && 285 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 286 return true; 287 288 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 289 * phys id SFF instead of SFP. Therefore mark this module explicitly 290 * as supported based on vendor name and pn match. 291 */ 292 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 293 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 294 !memcmp(id->base.vendor_name, "UBNT ", 16) && 295 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 296 return true; 297 298 return false; 299 } 300 301 static const struct sff_data sfp_data = { 302 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 303 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 304 .module_supported = sfp_module_supported, 305 }; 306 307 static const struct of_device_id sfp_of_match[] = { 308 { .compatible = "sff,sff", .data = &sff_data, }, 309 { .compatible = "sff,sfp", .data = &sfp_data, }, 310 { }, 311 }; 312 MODULE_DEVICE_TABLE(of, sfp_of_match); 313 314 static void sfp_fixup_long_startup(struct sfp *sfp) 315 { 316 sfp->module_t_start_up = T_START_UP_BAD_GPON; 317 } 318 319 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 320 { 321 sfp->tx_fault_ignore = true; 322 } 323 324 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 325 { 326 /* Ignore the TX_FAULT and LOS signals on this module. 327 * these are possibly used for other purposes on this 328 * module, e.g. a serial port. 329 */ 330 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 331 } 332 333 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 334 unsigned long *modes) 335 { 336 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 337 } 338 339 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 340 unsigned long *modes) 341 { 342 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 343 * types including 10G Ethernet which is not truth. So clear all claimed 344 * modes and set only one mode which module supports: 1000baseX_Full. 345 */ 346 linkmode_zero(modes); 347 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 348 } 349 350 static const struct sfp_quirk sfp_quirks[] = { 351 { 352 // Alcatel Lucent G-010S-P can operate at 2500base-X, but 353 // incorrectly report 2500MBd NRZ in their EEPROM 354 .vendor = "ALCATELLUCENT", 355 .part = "G010SP", 356 .modes = sfp_quirk_2500basex, 357 }, { 358 // Alcatel Lucent G-010S-A can operate at 2500base-X, but 359 // report 3.2GBd NRZ in their EEPROM 360 .vendor = "ALCATELLUCENT", 361 .part = "3FE46541AA", 362 .modes = sfp_quirk_2500basex, 363 .fixup = sfp_fixup_long_startup, 364 }, { 365 .vendor = "HALNy", 366 .part = "HL-GSFP", 367 .fixup = sfp_fixup_halny_gsfp, 368 }, { 369 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd 370 // NRZ in their EEPROM 371 .vendor = "HUAWEI", 372 .part = "MA5671A", 373 .modes = sfp_quirk_2500basex, 374 .fixup = sfp_fixup_ignore_tx_fault, 375 }, { 376 // Lantech 8330-262D-E can operate at 2500base-X, but 377 // incorrectly report 2500MBd NRZ in their EEPROM 378 .vendor = "Lantech", 379 .part = "8330-262D-E", 380 .modes = sfp_quirk_2500basex, 381 }, { 382 .vendor = "UBNT", 383 .part = "UF-INSTANT", 384 .modes = sfp_quirk_ubnt_uf_instant, 385 } 386 }; 387 388 static size_t sfp_strlen(const char *str, size_t maxlen) 389 { 390 size_t size, i; 391 392 /* Trailing characters should be filled with space chars, but 393 * some manufacturers can't read SFF-8472 and use NUL. 394 */ 395 for (i = 0, size = 0; i < maxlen; i++) 396 if (str[i] != ' ' && str[i] != '\0') 397 size = i + 1; 398 399 return size; 400 } 401 402 static bool sfp_match(const char *qs, const char *str, size_t len) 403 { 404 if (!qs) 405 return true; 406 if (strlen(qs) != len) 407 return false; 408 return !strncmp(qs, str, len); 409 } 410 411 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 412 { 413 const struct sfp_quirk *q; 414 unsigned int i; 415 size_t vs, ps; 416 417 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 418 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 419 420 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 421 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 422 sfp_match(q->part, id->base.vendor_pn, ps)) 423 return q; 424 425 return NULL; 426 } 427 428 static unsigned long poll_jiffies; 429 430 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 431 { 432 unsigned int i, state, v; 433 434 for (i = state = 0; i < GPIO_MAX; i++) { 435 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 436 continue; 437 438 v = gpiod_get_value_cansleep(sfp->gpio[i]); 439 if (v) 440 state |= BIT(i); 441 } 442 443 return state; 444 } 445 446 static unsigned int sff_gpio_get_state(struct sfp *sfp) 447 { 448 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 449 } 450 451 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 452 { 453 if (state & SFP_F_PRESENT) { 454 /* If the module is present, drive the signals */ 455 if (sfp->gpio[GPIO_TX_DISABLE]) 456 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 457 state & SFP_F_TX_DISABLE); 458 if (state & SFP_F_RATE_SELECT) 459 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 460 state & SFP_F_RATE_SELECT); 461 } else { 462 /* Otherwise, let them float to the pull-ups */ 463 if (sfp->gpio[GPIO_TX_DISABLE]) 464 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 465 if (state & SFP_F_RATE_SELECT) 466 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 467 } 468 } 469 470 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 471 size_t len) 472 { 473 struct i2c_msg msgs[2]; 474 u8 bus_addr = a2 ? 0x51 : 0x50; 475 size_t block_size = sfp->i2c_block_size; 476 size_t this_len; 477 int ret; 478 479 msgs[0].addr = bus_addr; 480 msgs[0].flags = 0; 481 msgs[0].len = 1; 482 msgs[0].buf = &dev_addr; 483 msgs[1].addr = bus_addr; 484 msgs[1].flags = I2C_M_RD; 485 msgs[1].len = len; 486 msgs[1].buf = buf; 487 488 while (len) { 489 this_len = len; 490 if (this_len > block_size) 491 this_len = block_size; 492 493 msgs[1].len = this_len; 494 495 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 496 if (ret < 0) 497 return ret; 498 499 if (ret != ARRAY_SIZE(msgs)) 500 break; 501 502 msgs[1].buf += this_len; 503 dev_addr += this_len; 504 len -= this_len; 505 } 506 507 return msgs[1].buf - (u8 *)buf; 508 } 509 510 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 511 size_t len) 512 { 513 struct i2c_msg msgs[1]; 514 u8 bus_addr = a2 ? 0x51 : 0x50; 515 int ret; 516 517 msgs[0].addr = bus_addr; 518 msgs[0].flags = 0; 519 msgs[0].len = 1 + len; 520 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 521 if (!msgs[0].buf) 522 return -ENOMEM; 523 524 msgs[0].buf[0] = dev_addr; 525 memcpy(&msgs[0].buf[1], buf, len); 526 527 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 528 529 kfree(msgs[0].buf); 530 531 if (ret < 0) 532 return ret; 533 534 return ret == ARRAY_SIZE(msgs) ? len : 0; 535 } 536 537 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 538 { 539 struct mii_bus *i2c_mii; 540 int ret; 541 542 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 543 return -EINVAL; 544 545 sfp->i2c = i2c; 546 sfp->read = sfp_i2c_read; 547 sfp->write = sfp_i2c_write; 548 549 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 550 if (IS_ERR(i2c_mii)) 551 return PTR_ERR(i2c_mii); 552 553 i2c_mii->name = "SFP I2C Bus"; 554 i2c_mii->phy_mask = ~0; 555 556 ret = mdiobus_register(i2c_mii); 557 if (ret < 0) { 558 mdiobus_free(i2c_mii); 559 return ret; 560 } 561 562 sfp->i2c_mii = i2c_mii; 563 564 return 0; 565 } 566 567 /* Interface */ 568 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 569 { 570 return sfp->read(sfp, a2, addr, buf, len); 571 } 572 573 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 574 { 575 return sfp->write(sfp, a2, addr, buf, len); 576 } 577 578 static unsigned int sfp_soft_get_state(struct sfp *sfp) 579 { 580 unsigned int state = 0; 581 u8 status; 582 int ret; 583 584 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 585 if (ret == sizeof(status)) { 586 if (status & SFP_STATUS_RX_LOS) 587 state |= SFP_F_LOS; 588 if (status & SFP_STATUS_TX_FAULT) 589 state |= SFP_F_TX_FAULT; 590 } else { 591 dev_err_ratelimited(sfp->dev, 592 "failed to read SFP soft status: %pe\n", 593 ERR_PTR(ret)); 594 /* Preserve the current state */ 595 state = sfp->state; 596 } 597 598 return state & sfp->state_soft_mask; 599 } 600 601 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 602 { 603 u8 status; 604 605 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 606 sizeof(status)) { 607 if (state & SFP_F_TX_DISABLE) 608 status |= SFP_STATUS_TX_DISABLE_FORCE; 609 else 610 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 611 612 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 613 } 614 } 615 616 static void sfp_soft_start_poll(struct sfp *sfp) 617 { 618 const struct sfp_eeprom_id *id = &sfp->id; 619 unsigned int mask = 0; 620 621 sfp->state_soft_mask = 0; 622 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 623 mask |= SFP_F_TX_DISABLE; 624 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 625 mask |= SFP_F_TX_FAULT; 626 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 627 mask |= SFP_F_LOS; 628 629 // Poll the soft state for hardware pins we want to ignore 630 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 631 632 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 633 !sfp->need_poll) 634 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 635 } 636 637 static void sfp_soft_stop_poll(struct sfp *sfp) 638 { 639 sfp->state_soft_mask = 0; 640 } 641 642 static unsigned int sfp_get_state(struct sfp *sfp) 643 { 644 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 645 unsigned int state; 646 647 state = sfp->get_state(sfp) & sfp->state_hw_mask; 648 if (state & SFP_F_PRESENT && soft) 649 state |= sfp_soft_get_state(sfp); 650 651 return state; 652 } 653 654 static void sfp_set_state(struct sfp *sfp, unsigned int state) 655 { 656 sfp->set_state(sfp, state); 657 658 if (state & SFP_F_PRESENT && 659 sfp->state_soft_mask & SFP_F_TX_DISABLE) 660 sfp_soft_set_state(sfp, state); 661 } 662 663 static unsigned int sfp_check(void *buf, size_t len) 664 { 665 u8 *p, check; 666 667 for (p = buf, check = 0; len; p++, len--) 668 check += *p; 669 670 return check; 671 } 672 673 /* hwmon */ 674 #if IS_ENABLED(CONFIG_HWMON) 675 static umode_t sfp_hwmon_is_visible(const void *data, 676 enum hwmon_sensor_types type, 677 u32 attr, int channel) 678 { 679 const struct sfp *sfp = data; 680 681 switch (type) { 682 case hwmon_temp: 683 switch (attr) { 684 case hwmon_temp_min_alarm: 685 case hwmon_temp_max_alarm: 686 case hwmon_temp_lcrit_alarm: 687 case hwmon_temp_crit_alarm: 688 case hwmon_temp_min: 689 case hwmon_temp_max: 690 case hwmon_temp_lcrit: 691 case hwmon_temp_crit: 692 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 693 return 0; 694 fallthrough; 695 case hwmon_temp_input: 696 case hwmon_temp_label: 697 return 0444; 698 default: 699 return 0; 700 } 701 case hwmon_in: 702 switch (attr) { 703 case hwmon_in_min_alarm: 704 case hwmon_in_max_alarm: 705 case hwmon_in_lcrit_alarm: 706 case hwmon_in_crit_alarm: 707 case hwmon_in_min: 708 case hwmon_in_max: 709 case hwmon_in_lcrit: 710 case hwmon_in_crit: 711 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 712 return 0; 713 fallthrough; 714 case hwmon_in_input: 715 case hwmon_in_label: 716 return 0444; 717 default: 718 return 0; 719 } 720 case hwmon_curr: 721 switch (attr) { 722 case hwmon_curr_min_alarm: 723 case hwmon_curr_max_alarm: 724 case hwmon_curr_lcrit_alarm: 725 case hwmon_curr_crit_alarm: 726 case hwmon_curr_min: 727 case hwmon_curr_max: 728 case hwmon_curr_lcrit: 729 case hwmon_curr_crit: 730 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 731 return 0; 732 fallthrough; 733 case hwmon_curr_input: 734 case hwmon_curr_label: 735 return 0444; 736 default: 737 return 0; 738 } 739 case hwmon_power: 740 /* External calibration of receive power requires 741 * floating point arithmetic. Doing that in the kernel 742 * is not easy, so just skip it. If the module does 743 * not require external calibration, we can however 744 * show receiver power, since FP is then not needed. 745 */ 746 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 747 channel == 1) 748 return 0; 749 switch (attr) { 750 case hwmon_power_min_alarm: 751 case hwmon_power_max_alarm: 752 case hwmon_power_lcrit_alarm: 753 case hwmon_power_crit_alarm: 754 case hwmon_power_min: 755 case hwmon_power_max: 756 case hwmon_power_lcrit: 757 case hwmon_power_crit: 758 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 759 return 0; 760 fallthrough; 761 case hwmon_power_input: 762 case hwmon_power_label: 763 return 0444; 764 default: 765 return 0; 766 } 767 default: 768 return 0; 769 } 770 } 771 772 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 773 { 774 __be16 val; 775 int err; 776 777 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 778 if (err < 0) 779 return err; 780 781 *value = be16_to_cpu(val); 782 783 return 0; 784 } 785 786 static void sfp_hwmon_to_rx_power(long *value) 787 { 788 *value = DIV_ROUND_CLOSEST(*value, 10); 789 } 790 791 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 792 long *value) 793 { 794 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 795 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 796 } 797 798 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 799 { 800 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 801 be16_to_cpu(sfp->diag.cal_t_offset), value); 802 803 if (*value >= 0x8000) 804 *value -= 0x10000; 805 806 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 807 } 808 809 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 810 { 811 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 812 be16_to_cpu(sfp->diag.cal_v_offset), value); 813 814 *value = DIV_ROUND_CLOSEST(*value, 10); 815 } 816 817 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 818 { 819 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 820 be16_to_cpu(sfp->diag.cal_txi_offset), value); 821 822 *value = DIV_ROUND_CLOSEST(*value, 500); 823 } 824 825 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 826 { 827 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 828 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 829 830 *value = DIV_ROUND_CLOSEST(*value, 10); 831 } 832 833 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 834 { 835 int err; 836 837 err = sfp_hwmon_read_sensor(sfp, reg, value); 838 if (err < 0) 839 return err; 840 841 sfp_hwmon_calibrate_temp(sfp, value); 842 843 return 0; 844 } 845 846 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 847 { 848 int err; 849 850 err = sfp_hwmon_read_sensor(sfp, reg, value); 851 if (err < 0) 852 return err; 853 854 sfp_hwmon_calibrate_vcc(sfp, value); 855 856 return 0; 857 } 858 859 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 860 { 861 int err; 862 863 err = sfp_hwmon_read_sensor(sfp, reg, value); 864 if (err < 0) 865 return err; 866 867 sfp_hwmon_calibrate_bias(sfp, value); 868 869 return 0; 870 } 871 872 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 873 { 874 int err; 875 876 err = sfp_hwmon_read_sensor(sfp, reg, value); 877 if (err < 0) 878 return err; 879 880 sfp_hwmon_calibrate_tx_power(sfp, value); 881 882 return 0; 883 } 884 885 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 886 { 887 int err; 888 889 err = sfp_hwmon_read_sensor(sfp, reg, value); 890 if (err < 0) 891 return err; 892 893 sfp_hwmon_to_rx_power(value); 894 895 return 0; 896 } 897 898 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 899 { 900 u8 status; 901 int err; 902 903 switch (attr) { 904 case hwmon_temp_input: 905 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 906 907 case hwmon_temp_lcrit: 908 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 909 sfp_hwmon_calibrate_temp(sfp, value); 910 return 0; 911 912 case hwmon_temp_min: 913 *value = be16_to_cpu(sfp->diag.temp_low_warn); 914 sfp_hwmon_calibrate_temp(sfp, value); 915 return 0; 916 case hwmon_temp_max: 917 *value = be16_to_cpu(sfp->diag.temp_high_warn); 918 sfp_hwmon_calibrate_temp(sfp, value); 919 return 0; 920 921 case hwmon_temp_crit: 922 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 923 sfp_hwmon_calibrate_temp(sfp, value); 924 return 0; 925 926 case hwmon_temp_lcrit_alarm: 927 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 928 if (err < 0) 929 return err; 930 931 *value = !!(status & SFP_ALARM0_TEMP_LOW); 932 return 0; 933 934 case hwmon_temp_min_alarm: 935 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 936 if (err < 0) 937 return err; 938 939 *value = !!(status & SFP_WARN0_TEMP_LOW); 940 return 0; 941 942 case hwmon_temp_max_alarm: 943 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 944 if (err < 0) 945 return err; 946 947 *value = !!(status & SFP_WARN0_TEMP_HIGH); 948 return 0; 949 950 case hwmon_temp_crit_alarm: 951 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 952 if (err < 0) 953 return err; 954 955 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 956 return 0; 957 default: 958 return -EOPNOTSUPP; 959 } 960 961 return -EOPNOTSUPP; 962 } 963 964 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 965 { 966 u8 status; 967 int err; 968 969 switch (attr) { 970 case hwmon_in_input: 971 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 972 973 case hwmon_in_lcrit: 974 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 975 sfp_hwmon_calibrate_vcc(sfp, value); 976 return 0; 977 978 case hwmon_in_min: 979 *value = be16_to_cpu(sfp->diag.volt_low_warn); 980 sfp_hwmon_calibrate_vcc(sfp, value); 981 return 0; 982 983 case hwmon_in_max: 984 *value = be16_to_cpu(sfp->diag.volt_high_warn); 985 sfp_hwmon_calibrate_vcc(sfp, value); 986 return 0; 987 988 case hwmon_in_crit: 989 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 990 sfp_hwmon_calibrate_vcc(sfp, value); 991 return 0; 992 993 case hwmon_in_lcrit_alarm: 994 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 995 if (err < 0) 996 return err; 997 998 *value = !!(status & SFP_ALARM0_VCC_LOW); 999 return 0; 1000 1001 case hwmon_in_min_alarm: 1002 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1003 if (err < 0) 1004 return err; 1005 1006 *value = !!(status & SFP_WARN0_VCC_LOW); 1007 return 0; 1008 1009 case hwmon_in_max_alarm: 1010 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1011 if (err < 0) 1012 return err; 1013 1014 *value = !!(status & SFP_WARN0_VCC_HIGH); 1015 return 0; 1016 1017 case hwmon_in_crit_alarm: 1018 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1019 if (err < 0) 1020 return err; 1021 1022 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1023 return 0; 1024 default: 1025 return -EOPNOTSUPP; 1026 } 1027 1028 return -EOPNOTSUPP; 1029 } 1030 1031 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1032 { 1033 u8 status; 1034 int err; 1035 1036 switch (attr) { 1037 case hwmon_curr_input: 1038 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1039 1040 case hwmon_curr_lcrit: 1041 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1042 sfp_hwmon_calibrate_bias(sfp, value); 1043 return 0; 1044 1045 case hwmon_curr_min: 1046 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1047 sfp_hwmon_calibrate_bias(sfp, value); 1048 return 0; 1049 1050 case hwmon_curr_max: 1051 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1052 sfp_hwmon_calibrate_bias(sfp, value); 1053 return 0; 1054 1055 case hwmon_curr_crit: 1056 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1057 sfp_hwmon_calibrate_bias(sfp, value); 1058 return 0; 1059 1060 case hwmon_curr_lcrit_alarm: 1061 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1062 if (err < 0) 1063 return err; 1064 1065 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1066 return 0; 1067 1068 case hwmon_curr_min_alarm: 1069 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1070 if (err < 0) 1071 return err; 1072 1073 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1074 return 0; 1075 1076 case hwmon_curr_max_alarm: 1077 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1078 if (err < 0) 1079 return err; 1080 1081 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1082 return 0; 1083 1084 case hwmon_curr_crit_alarm: 1085 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1086 if (err < 0) 1087 return err; 1088 1089 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1090 return 0; 1091 default: 1092 return -EOPNOTSUPP; 1093 } 1094 1095 return -EOPNOTSUPP; 1096 } 1097 1098 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1099 { 1100 u8 status; 1101 int err; 1102 1103 switch (attr) { 1104 case hwmon_power_input: 1105 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1106 1107 case hwmon_power_lcrit: 1108 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1109 sfp_hwmon_calibrate_tx_power(sfp, value); 1110 return 0; 1111 1112 case hwmon_power_min: 1113 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1114 sfp_hwmon_calibrate_tx_power(sfp, value); 1115 return 0; 1116 1117 case hwmon_power_max: 1118 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1119 sfp_hwmon_calibrate_tx_power(sfp, value); 1120 return 0; 1121 1122 case hwmon_power_crit: 1123 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1124 sfp_hwmon_calibrate_tx_power(sfp, value); 1125 return 0; 1126 1127 case hwmon_power_lcrit_alarm: 1128 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1129 if (err < 0) 1130 return err; 1131 1132 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1133 return 0; 1134 1135 case hwmon_power_min_alarm: 1136 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1137 if (err < 0) 1138 return err; 1139 1140 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1141 return 0; 1142 1143 case hwmon_power_max_alarm: 1144 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1145 if (err < 0) 1146 return err; 1147 1148 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1149 return 0; 1150 1151 case hwmon_power_crit_alarm: 1152 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1153 if (err < 0) 1154 return err; 1155 1156 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1157 return 0; 1158 default: 1159 return -EOPNOTSUPP; 1160 } 1161 1162 return -EOPNOTSUPP; 1163 } 1164 1165 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1166 { 1167 u8 status; 1168 int err; 1169 1170 switch (attr) { 1171 case hwmon_power_input: 1172 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1173 1174 case hwmon_power_lcrit: 1175 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1176 sfp_hwmon_to_rx_power(value); 1177 return 0; 1178 1179 case hwmon_power_min: 1180 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1181 sfp_hwmon_to_rx_power(value); 1182 return 0; 1183 1184 case hwmon_power_max: 1185 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1186 sfp_hwmon_to_rx_power(value); 1187 return 0; 1188 1189 case hwmon_power_crit: 1190 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1191 sfp_hwmon_to_rx_power(value); 1192 return 0; 1193 1194 case hwmon_power_lcrit_alarm: 1195 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1196 if (err < 0) 1197 return err; 1198 1199 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1200 return 0; 1201 1202 case hwmon_power_min_alarm: 1203 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1204 if (err < 0) 1205 return err; 1206 1207 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1208 return 0; 1209 1210 case hwmon_power_max_alarm: 1211 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1212 if (err < 0) 1213 return err; 1214 1215 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1216 return 0; 1217 1218 case hwmon_power_crit_alarm: 1219 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1220 if (err < 0) 1221 return err; 1222 1223 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1224 return 0; 1225 default: 1226 return -EOPNOTSUPP; 1227 } 1228 1229 return -EOPNOTSUPP; 1230 } 1231 1232 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1233 u32 attr, int channel, long *value) 1234 { 1235 struct sfp *sfp = dev_get_drvdata(dev); 1236 1237 switch (type) { 1238 case hwmon_temp: 1239 return sfp_hwmon_temp(sfp, attr, value); 1240 case hwmon_in: 1241 return sfp_hwmon_vcc(sfp, attr, value); 1242 case hwmon_curr: 1243 return sfp_hwmon_bias(sfp, attr, value); 1244 case hwmon_power: 1245 switch (channel) { 1246 case 0: 1247 return sfp_hwmon_tx_power(sfp, attr, value); 1248 case 1: 1249 return sfp_hwmon_rx_power(sfp, attr, value); 1250 default: 1251 return -EOPNOTSUPP; 1252 } 1253 default: 1254 return -EOPNOTSUPP; 1255 } 1256 } 1257 1258 static const char *const sfp_hwmon_power_labels[] = { 1259 "TX_power", 1260 "RX_power", 1261 }; 1262 1263 static int sfp_hwmon_read_string(struct device *dev, 1264 enum hwmon_sensor_types type, 1265 u32 attr, int channel, const char **str) 1266 { 1267 switch (type) { 1268 case hwmon_curr: 1269 switch (attr) { 1270 case hwmon_curr_label: 1271 *str = "bias"; 1272 return 0; 1273 default: 1274 return -EOPNOTSUPP; 1275 } 1276 break; 1277 case hwmon_temp: 1278 switch (attr) { 1279 case hwmon_temp_label: 1280 *str = "temperature"; 1281 return 0; 1282 default: 1283 return -EOPNOTSUPP; 1284 } 1285 break; 1286 case hwmon_in: 1287 switch (attr) { 1288 case hwmon_in_label: 1289 *str = "VCC"; 1290 return 0; 1291 default: 1292 return -EOPNOTSUPP; 1293 } 1294 break; 1295 case hwmon_power: 1296 switch (attr) { 1297 case hwmon_power_label: 1298 *str = sfp_hwmon_power_labels[channel]; 1299 return 0; 1300 default: 1301 return -EOPNOTSUPP; 1302 } 1303 break; 1304 default: 1305 return -EOPNOTSUPP; 1306 } 1307 1308 return -EOPNOTSUPP; 1309 } 1310 1311 static const struct hwmon_ops sfp_hwmon_ops = { 1312 .is_visible = sfp_hwmon_is_visible, 1313 .read = sfp_hwmon_read, 1314 .read_string = sfp_hwmon_read_string, 1315 }; 1316 1317 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1318 HWMON_CHANNEL_INFO(chip, 1319 HWMON_C_REGISTER_TZ), 1320 HWMON_CHANNEL_INFO(in, 1321 HWMON_I_INPUT | 1322 HWMON_I_MAX | HWMON_I_MIN | 1323 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1324 HWMON_I_CRIT | HWMON_I_LCRIT | 1325 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1326 HWMON_I_LABEL), 1327 HWMON_CHANNEL_INFO(temp, 1328 HWMON_T_INPUT | 1329 HWMON_T_MAX | HWMON_T_MIN | 1330 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1331 HWMON_T_CRIT | HWMON_T_LCRIT | 1332 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1333 HWMON_T_LABEL), 1334 HWMON_CHANNEL_INFO(curr, 1335 HWMON_C_INPUT | 1336 HWMON_C_MAX | HWMON_C_MIN | 1337 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1338 HWMON_C_CRIT | HWMON_C_LCRIT | 1339 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1340 HWMON_C_LABEL), 1341 HWMON_CHANNEL_INFO(power, 1342 /* Transmit power */ 1343 HWMON_P_INPUT | 1344 HWMON_P_MAX | HWMON_P_MIN | 1345 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1346 HWMON_P_CRIT | HWMON_P_LCRIT | 1347 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1348 HWMON_P_LABEL, 1349 /* Receive power */ 1350 HWMON_P_INPUT | 1351 HWMON_P_MAX | HWMON_P_MIN | 1352 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1353 HWMON_P_CRIT | HWMON_P_LCRIT | 1354 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1355 HWMON_P_LABEL), 1356 NULL, 1357 }; 1358 1359 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1360 .ops = &sfp_hwmon_ops, 1361 .info = sfp_hwmon_info, 1362 }; 1363 1364 static void sfp_hwmon_probe(struct work_struct *work) 1365 { 1366 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1367 int err; 1368 1369 /* hwmon interface needs to access 16bit registers in atomic way to 1370 * guarantee coherency of the diagnostic monitoring data. If it is not 1371 * possible to guarantee coherency because EEPROM is broken in such way 1372 * that does not support atomic 16bit read operation then we have to 1373 * skip registration of hwmon device. 1374 */ 1375 if (sfp->i2c_block_size < 2) { 1376 dev_info(sfp->dev, 1377 "skipping hwmon device registration due to broken EEPROM\n"); 1378 dev_info(sfp->dev, 1379 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1380 return; 1381 } 1382 1383 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1384 if (err < 0) { 1385 if (sfp->hwmon_tries--) { 1386 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1387 T_PROBE_RETRY_SLOW); 1388 } else { 1389 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1390 ERR_PTR(err)); 1391 } 1392 return; 1393 } 1394 1395 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1396 if (IS_ERR(sfp->hwmon_name)) { 1397 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1398 return; 1399 } 1400 1401 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1402 sfp->hwmon_name, sfp, 1403 &sfp_hwmon_chip_info, 1404 NULL); 1405 if (IS_ERR(sfp->hwmon_dev)) 1406 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1407 PTR_ERR(sfp->hwmon_dev)); 1408 } 1409 1410 static int sfp_hwmon_insert(struct sfp *sfp) 1411 { 1412 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1413 return 0; 1414 1415 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1416 return 0; 1417 1418 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1419 /* This driver in general does not support address 1420 * change. 1421 */ 1422 return 0; 1423 1424 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1425 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1426 1427 return 0; 1428 } 1429 1430 static void sfp_hwmon_remove(struct sfp *sfp) 1431 { 1432 cancel_delayed_work_sync(&sfp->hwmon_probe); 1433 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1434 hwmon_device_unregister(sfp->hwmon_dev); 1435 sfp->hwmon_dev = NULL; 1436 kfree(sfp->hwmon_name); 1437 } 1438 } 1439 1440 static int sfp_hwmon_init(struct sfp *sfp) 1441 { 1442 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1443 1444 return 0; 1445 } 1446 1447 static void sfp_hwmon_exit(struct sfp *sfp) 1448 { 1449 cancel_delayed_work_sync(&sfp->hwmon_probe); 1450 } 1451 #else 1452 static int sfp_hwmon_insert(struct sfp *sfp) 1453 { 1454 return 0; 1455 } 1456 1457 static void sfp_hwmon_remove(struct sfp *sfp) 1458 { 1459 } 1460 1461 static int sfp_hwmon_init(struct sfp *sfp) 1462 { 1463 return 0; 1464 } 1465 1466 static void sfp_hwmon_exit(struct sfp *sfp) 1467 { 1468 } 1469 #endif 1470 1471 /* Helpers */ 1472 static void sfp_module_tx_disable(struct sfp *sfp) 1473 { 1474 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1475 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1476 sfp->state |= SFP_F_TX_DISABLE; 1477 sfp_set_state(sfp, sfp->state); 1478 } 1479 1480 static void sfp_module_tx_enable(struct sfp *sfp) 1481 { 1482 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1483 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1484 sfp->state &= ~SFP_F_TX_DISABLE; 1485 sfp_set_state(sfp, sfp->state); 1486 } 1487 1488 #if IS_ENABLED(CONFIG_DEBUG_FS) 1489 static int sfp_debug_state_show(struct seq_file *s, void *data) 1490 { 1491 struct sfp *sfp = s->private; 1492 1493 seq_printf(s, "Module state: %s\n", 1494 mod_state_to_str(sfp->sm_mod_state)); 1495 seq_printf(s, "Module probe attempts: %d %d\n", 1496 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1497 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1498 seq_printf(s, "Device state: %s\n", 1499 dev_state_to_str(sfp->sm_dev_state)); 1500 seq_printf(s, "Main state: %s\n", 1501 sm_state_to_str(sfp->sm_state)); 1502 seq_printf(s, "Fault recovery remaining retries: %d\n", 1503 sfp->sm_fault_retries); 1504 seq_printf(s, "PHY probe remaining retries: %d\n", 1505 sfp->sm_phy_retries); 1506 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1507 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1508 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1509 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1510 return 0; 1511 } 1512 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1513 1514 static void sfp_debugfs_init(struct sfp *sfp) 1515 { 1516 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1517 1518 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1519 &sfp_debug_state_fops); 1520 } 1521 1522 static void sfp_debugfs_exit(struct sfp *sfp) 1523 { 1524 debugfs_remove_recursive(sfp->debugfs_dir); 1525 } 1526 #else 1527 static void sfp_debugfs_init(struct sfp *sfp) 1528 { 1529 } 1530 1531 static void sfp_debugfs_exit(struct sfp *sfp) 1532 { 1533 } 1534 #endif 1535 1536 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1537 { 1538 unsigned int state = sfp->state; 1539 1540 if (state & SFP_F_TX_DISABLE) 1541 return; 1542 1543 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1544 1545 udelay(T_RESET_US); 1546 1547 sfp_set_state(sfp, state); 1548 } 1549 1550 /* SFP state machine */ 1551 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1552 { 1553 if (timeout) 1554 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1555 timeout); 1556 else 1557 cancel_delayed_work(&sfp->timeout); 1558 } 1559 1560 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1561 unsigned int timeout) 1562 { 1563 sfp->sm_state = state; 1564 sfp_sm_set_timer(sfp, timeout); 1565 } 1566 1567 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1568 unsigned int timeout) 1569 { 1570 sfp->sm_mod_state = state; 1571 sfp_sm_set_timer(sfp, timeout); 1572 } 1573 1574 static void sfp_sm_phy_detach(struct sfp *sfp) 1575 { 1576 sfp_remove_phy(sfp->sfp_bus); 1577 phy_device_remove(sfp->mod_phy); 1578 phy_device_free(sfp->mod_phy); 1579 sfp->mod_phy = NULL; 1580 } 1581 1582 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1583 { 1584 struct phy_device *phy; 1585 int err; 1586 1587 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1588 if (phy == ERR_PTR(-ENODEV)) 1589 return PTR_ERR(phy); 1590 if (IS_ERR(phy)) { 1591 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1592 return PTR_ERR(phy); 1593 } 1594 1595 err = phy_device_register(phy); 1596 if (err) { 1597 phy_device_free(phy); 1598 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1599 ERR_PTR(err)); 1600 return err; 1601 } 1602 1603 err = sfp_add_phy(sfp->sfp_bus, phy); 1604 if (err) { 1605 phy_device_remove(phy); 1606 phy_device_free(phy); 1607 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1608 return err; 1609 } 1610 1611 sfp->mod_phy = phy; 1612 1613 return 0; 1614 } 1615 1616 static void sfp_sm_link_up(struct sfp *sfp) 1617 { 1618 sfp_link_up(sfp->sfp_bus); 1619 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1620 } 1621 1622 static void sfp_sm_link_down(struct sfp *sfp) 1623 { 1624 sfp_link_down(sfp->sfp_bus); 1625 } 1626 1627 static void sfp_sm_link_check_los(struct sfp *sfp) 1628 { 1629 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1630 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1631 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1632 bool los = false; 1633 1634 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1635 * are set, we assume that no LOS signal is available. If both are 1636 * set, we assume LOS is not implemented (and is meaningless.) 1637 */ 1638 if (los_options == los_inverted) 1639 los = !(sfp->state & SFP_F_LOS); 1640 else if (los_options == los_normal) 1641 los = !!(sfp->state & SFP_F_LOS); 1642 1643 if (los) 1644 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1645 else 1646 sfp_sm_link_up(sfp); 1647 } 1648 1649 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1650 { 1651 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1652 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1653 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1654 1655 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1656 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1657 } 1658 1659 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1660 { 1661 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1662 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1663 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1664 1665 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1666 (los_options == los_normal && event == SFP_E_LOS_LOW); 1667 } 1668 1669 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1670 { 1671 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1672 dev_err(sfp->dev, 1673 "module persistently indicates fault, disabling\n"); 1674 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1675 } else { 1676 if (warn) 1677 dev_err(sfp->dev, "module transmit fault indicated\n"); 1678 1679 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1680 } 1681 } 1682 1683 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1684 * normally sits at I2C bus address 0x56, and may either be a clause 22 1685 * or clause 45 PHY. 1686 * 1687 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1688 * negotiation enabled, but some may be in 1000base-X - which is for the 1689 * PHY driver to determine. 1690 * 1691 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1692 * mode according to the negotiated line speed. 1693 */ 1694 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1695 { 1696 int err = 0; 1697 1698 switch (sfp->id.base.extended_cc) { 1699 case SFF8024_ECC_10GBASE_T_SFI: 1700 case SFF8024_ECC_10GBASE_T_SR: 1701 case SFF8024_ECC_5GBASE_T: 1702 case SFF8024_ECC_2_5GBASE_T: 1703 err = sfp_sm_probe_phy(sfp, true); 1704 break; 1705 1706 default: 1707 if (sfp->id.base.e1000_base_t) 1708 err = sfp_sm_probe_phy(sfp, false); 1709 break; 1710 } 1711 return err; 1712 } 1713 1714 static int sfp_module_parse_power(struct sfp *sfp) 1715 { 1716 u32 power_mW = 1000; 1717 bool supports_a2; 1718 1719 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1720 power_mW = 1500; 1721 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1722 power_mW = 2000; 1723 1724 supports_a2 = sfp->id.ext.sff8472_compliance != 1725 SFP_SFF8472_COMPLIANCE_NONE || 1726 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1727 1728 if (power_mW > sfp->max_power_mW) { 1729 /* Module power specification exceeds the allowed maximum. */ 1730 if (!supports_a2) { 1731 /* The module appears not to implement bus address 1732 * 0xa2, so assume that the module powers up in the 1733 * indicated mode. 1734 */ 1735 dev_err(sfp->dev, 1736 "Host does not support %u.%uW modules\n", 1737 power_mW / 1000, (power_mW / 100) % 10); 1738 return -EINVAL; 1739 } else { 1740 dev_warn(sfp->dev, 1741 "Host does not support %u.%uW modules, module left in power mode 1\n", 1742 power_mW / 1000, (power_mW / 100) % 10); 1743 return 0; 1744 } 1745 } 1746 1747 if (power_mW <= 1000) { 1748 /* Modules below 1W do not require a power change sequence */ 1749 sfp->module_power_mW = power_mW; 1750 return 0; 1751 } 1752 1753 if (!supports_a2) { 1754 /* The module power level is below the host maximum and the 1755 * module appears not to implement bus address 0xa2, so assume 1756 * that the module powers up in the indicated mode. 1757 */ 1758 return 0; 1759 } 1760 1761 /* If the module requires a higher power mode, but also requires 1762 * an address change sequence, warn the user that the module may 1763 * not be functional. 1764 */ 1765 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1766 dev_warn(sfp->dev, 1767 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1768 power_mW / 1000, (power_mW / 100) % 10); 1769 return 0; 1770 } 1771 1772 sfp->module_power_mW = power_mW; 1773 1774 return 0; 1775 } 1776 1777 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1778 { 1779 u8 val; 1780 int err; 1781 1782 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1783 if (err != sizeof(val)) { 1784 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err)); 1785 return -EAGAIN; 1786 } 1787 1788 /* DM7052 reports as a high power module, responds to reads (with 1789 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1790 * if the bit is already set, we're already in high power mode. 1791 */ 1792 if (!!(val & BIT(0)) == enable) 1793 return 0; 1794 1795 if (enable) 1796 val |= BIT(0); 1797 else 1798 val &= ~BIT(0); 1799 1800 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1801 if (err != sizeof(val)) { 1802 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n", 1803 ERR_PTR(err)); 1804 return -EAGAIN; 1805 } 1806 1807 if (enable) 1808 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1809 sfp->module_power_mW / 1000, 1810 (sfp->module_power_mW / 100) % 10); 1811 1812 return 0; 1813 } 1814 1815 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1816 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1817 * not support multibyte reads from the EEPROM. Each multi-byte read 1818 * operation returns just one byte of EEPROM followed by zeros. There is 1819 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1820 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1821 * name and vendor id into EEPROM, so there is even no way to detect if 1822 * module is V-SOL V2801F. Therefore check for those zeros in the read 1823 * data and then based on check switch to reading EEPROM to one byte 1824 * at a time. 1825 */ 1826 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1827 { 1828 size_t i, block_size = sfp->i2c_block_size; 1829 1830 /* Already using byte IO */ 1831 if (block_size == 1) 1832 return false; 1833 1834 for (i = 1; i < len; i += block_size) { 1835 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1842 { 1843 u8 check; 1844 int err; 1845 1846 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1847 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1848 id->base.connector != SFF8024_CONNECTOR_LC) { 1849 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1850 id->base.phys_id = SFF8024_ID_SFF_8472; 1851 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1852 id->base.connector = SFF8024_CONNECTOR_LC; 1853 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1854 if (err != 3) { 1855 dev_err(sfp->dev, 1856 "Failed to rewrite module EEPROM: %pe\n", 1857 ERR_PTR(err)); 1858 return err; 1859 } 1860 1861 /* Cotsworks modules have been found to require a delay between write operations. */ 1862 mdelay(50); 1863 1864 /* Update base structure checksum */ 1865 check = sfp_check(&id->base, sizeof(id->base) - 1); 1866 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1867 if (err != 1) { 1868 dev_err(sfp->dev, 1869 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1870 ERR_PTR(err)); 1871 return err; 1872 } 1873 } 1874 return 0; 1875 } 1876 1877 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1878 { 1879 /* SFP module inserted - read I2C data */ 1880 struct sfp_eeprom_id id; 1881 bool cotsworks_sfbg; 1882 bool cotsworks; 1883 u8 check; 1884 int ret; 1885 1886 /* Some SFP modules and also some Linux I2C drivers do not like reads 1887 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1888 * a time. 1889 */ 1890 sfp->i2c_block_size = 16; 1891 1892 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1893 if (ret < 0) { 1894 if (report) 1895 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1896 ERR_PTR(ret)); 1897 return -EAGAIN; 1898 } 1899 1900 if (ret != sizeof(id.base)) { 1901 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1902 return -EAGAIN; 1903 } 1904 1905 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1906 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1907 * that EEPROM supports atomic 16bit read operation for diagnostic 1908 * fields, so do not switch to one byte reading at a time unless it 1909 * is really required and we have no other option. 1910 */ 1911 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1912 dev_info(sfp->dev, 1913 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1914 dev_info(sfp->dev, 1915 "Switching to reading EEPROM to one byte at a time\n"); 1916 sfp->i2c_block_size = 1; 1917 1918 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1919 if (ret < 0) { 1920 if (report) 1921 dev_err(sfp->dev, 1922 "failed to read EEPROM: %pe\n", 1923 ERR_PTR(ret)); 1924 return -EAGAIN; 1925 } 1926 1927 if (ret != sizeof(id.base)) { 1928 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1929 ERR_PTR(ret)); 1930 return -EAGAIN; 1931 } 1932 } 1933 1934 /* Cotsworks do not seem to update the checksums when they 1935 * do the final programming with the final module part number, 1936 * serial number and date code. 1937 */ 1938 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1939 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1940 1941 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1942 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1943 * Cotsworks PN matches and bytes are not correct. 1944 */ 1945 if (cotsworks && cotsworks_sfbg) { 1946 ret = sfp_cotsworks_fixup_check(sfp, &id); 1947 if (ret < 0) 1948 return ret; 1949 } 1950 1951 /* Validate the checksum over the base structure */ 1952 check = sfp_check(&id.base, sizeof(id.base) - 1); 1953 if (check != id.base.cc_base) { 1954 if (cotsworks) { 1955 dev_warn(sfp->dev, 1956 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1957 check, id.base.cc_base); 1958 } else { 1959 dev_err(sfp->dev, 1960 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1961 check, id.base.cc_base); 1962 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1963 16, 1, &id, sizeof(id), true); 1964 return -EINVAL; 1965 } 1966 } 1967 1968 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1969 if (ret < 0) { 1970 if (report) 1971 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1972 ERR_PTR(ret)); 1973 return -EAGAIN; 1974 } 1975 1976 if (ret != sizeof(id.ext)) { 1977 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1978 return -EAGAIN; 1979 } 1980 1981 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1982 if (check != id.ext.cc_ext) { 1983 if (cotsworks) { 1984 dev_warn(sfp->dev, 1985 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1986 check, id.ext.cc_ext); 1987 } else { 1988 dev_err(sfp->dev, 1989 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1990 check, id.ext.cc_ext); 1991 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1992 16, 1, &id, sizeof(id), true); 1993 memset(&id.ext, 0, sizeof(id.ext)); 1994 } 1995 } 1996 1997 sfp->id = id; 1998 1999 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2000 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2001 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2002 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2003 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2004 (int)sizeof(id.ext.datecode), id.ext.datecode); 2005 2006 /* Check whether we support this module */ 2007 if (!sfp->type->module_supported(&id)) { 2008 dev_err(sfp->dev, 2009 "module is not supported - phys id 0x%02x 0x%02x\n", 2010 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2011 return -EINVAL; 2012 } 2013 2014 /* If the module requires address swap mode, warn about it */ 2015 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2016 dev_warn(sfp->dev, 2017 "module address swap to access page 0xA2 is not supported.\n"); 2018 2019 /* Parse the module power requirement */ 2020 ret = sfp_module_parse_power(sfp); 2021 if (ret < 0) 2022 return ret; 2023 2024 /* Initialise state bits to use from hardware */ 2025 sfp->state_hw_mask = SFP_F_PRESENT; 2026 if (sfp->gpio[GPIO_TX_DISABLE]) 2027 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2028 if (sfp->gpio[GPIO_TX_FAULT]) 2029 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2030 if (sfp->gpio[GPIO_LOS]) 2031 sfp->state_hw_mask |= SFP_F_LOS; 2032 2033 sfp->module_t_start_up = T_START_UP; 2034 2035 sfp->tx_fault_ignore = false; 2036 2037 sfp->quirk = sfp_lookup_quirk(&id); 2038 if (sfp->quirk && sfp->quirk->fixup) 2039 sfp->quirk->fixup(sfp); 2040 2041 return 0; 2042 } 2043 2044 static void sfp_sm_mod_remove(struct sfp *sfp) 2045 { 2046 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2047 sfp_module_remove(sfp->sfp_bus); 2048 2049 sfp_hwmon_remove(sfp); 2050 2051 memset(&sfp->id, 0, sizeof(sfp->id)); 2052 sfp->module_power_mW = 0; 2053 2054 dev_info(sfp->dev, "module removed\n"); 2055 } 2056 2057 /* This state machine tracks the upstream's state */ 2058 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2059 { 2060 switch (sfp->sm_dev_state) { 2061 default: 2062 if (event == SFP_E_DEV_ATTACH) 2063 sfp->sm_dev_state = SFP_DEV_DOWN; 2064 break; 2065 2066 case SFP_DEV_DOWN: 2067 if (event == SFP_E_DEV_DETACH) 2068 sfp->sm_dev_state = SFP_DEV_DETACHED; 2069 else if (event == SFP_E_DEV_UP) 2070 sfp->sm_dev_state = SFP_DEV_UP; 2071 break; 2072 2073 case SFP_DEV_UP: 2074 if (event == SFP_E_DEV_DETACH) 2075 sfp->sm_dev_state = SFP_DEV_DETACHED; 2076 else if (event == SFP_E_DEV_DOWN) 2077 sfp->sm_dev_state = SFP_DEV_DOWN; 2078 break; 2079 } 2080 } 2081 2082 /* This state machine tracks the insert/remove state of the module, probes 2083 * the on-board EEPROM, and sets up the power level. 2084 */ 2085 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2086 { 2087 int err; 2088 2089 /* Handle remove event globally, it resets this state machine */ 2090 if (event == SFP_E_REMOVE) { 2091 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2092 sfp_sm_mod_remove(sfp); 2093 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2094 return; 2095 } 2096 2097 /* Handle device detach globally */ 2098 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2099 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2100 if (sfp->module_power_mW > 1000 && 2101 sfp->sm_mod_state > SFP_MOD_HPOWER) 2102 sfp_sm_mod_hpower(sfp, false); 2103 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2104 return; 2105 } 2106 2107 switch (sfp->sm_mod_state) { 2108 default: 2109 if (event == SFP_E_INSERT) { 2110 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2111 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2112 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2113 } 2114 break; 2115 2116 case SFP_MOD_PROBE: 2117 /* Wait for T_PROBE_INIT to time out */ 2118 if (event != SFP_E_TIMEOUT) 2119 break; 2120 2121 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2122 if (err == -EAGAIN) { 2123 if (sfp->sm_mod_tries_init && 2124 --sfp->sm_mod_tries_init) { 2125 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2126 break; 2127 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2128 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2129 dev_warn(sfp->dev, 2130 "please wait, module slow to respond\n"); 2131 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2132 break; 2133 } 2134 } 2135 if (err < 0) { 2136 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2137 break; 2138 } 2139 2140 err = sfp_hwmon_insert(sfp); 2141 if (err) 2142 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2143 ERR_PTR(err)); 2144 2145 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2146 fallthrough; 2147 case SFP_MOD_WAITDEV: 2148 /* Ensure that the device is attached before proceeding */ 2149 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2150 break; 2151 2152 /* Report the module insertion to the upstream device */ 2153 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2154 sfp->quirk); 2155 if (err < 0) { 2156 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2157 break; 2158 } 2159 2160 /* If this is a power level 1 module, we are done */ 2161 if (sfp->module_power_mW <= 1000) 2162 goto insert; 2163 2164 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2165 fallthrough; 2166 case SFP_MOD_HPOWER: 2167 /* Enable high power mode */ 2168 err = sfp_sm_mod_hpower(sfp, true); 2169 if (err < 0) { 2170 if (err != -EAGAIN) { 2171 sfp_module_remove(sfp->sfp_bus); 2172 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2173 } else { 2174 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2175 } 2176 break; 2177 } 2178 2179 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2180 break; 2181 2182 case SFP_MOD_WAITPWR: 2183 /* Wait for T_HPOWER_LEVEL to time out */ 2184 if (event != SFP_E_TIMEOUT) 2185 break; 2186 2187 insert: 2188 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2189 break; 2190 2191 case SFP_MOD_PRESENT: 2192 case SFP_MOD_ERROR: 2193 break; 2194 } 2195 } 2196 2197 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2198 { 2199 unsigned long timeout; 2200 int ret; 2201 2202 /* Some events are global */ 2203 if (sfp->sm_state != SFP_S_DOWN && 2204 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2205 sfp->sm_dev_state != SFP_DEV_UP)) { 2206 if (sfp->sm_state == SFP_S_LINK_UP && 2207 sfp->sm_dev_state == SFP_DEV_UP) 2208 sfp_sm_link_down(sfp); 2209 if (sfp->sm_state > SFP_S_INIT) 2210 sfp_module_stop(sfp->sfp_bus); 2211 if (sfp->mod_phy) 2212 sfp_sm_phy_detach(sfp); 2213 sfp_module_tx_disable(sfp); 2214 sfp_soft_stop_poll(sfp); 2215 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2216 return; 2217 } 2218 2219 /* The main state machine */ 2220 switch (sfp->sm_state) { 2221 case SFP_S_DOWN: 2222 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2223 sfp->sm_dev_state != SFP_DEV_UP) 2224 break; 2225 2226 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2227 sfp_soft_start_poll(sfp); 2228 2229 sfp_module_tx_enable(sfp); 2230 2231 /* Initialise the fault clearance retries */ 2232 sfp->sm_fault_retries = N_FAULT_INIT; 2233 2234 /* We need to check the TX_FAULT state, which is not defined 2235 * while TX_DISABLE is asserted. The earliest we want to do 2236 * anything (such as probe for a PHY) is 50ms. 2237 */ 2238 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2239 break; 2240 2241 case SFP_S_WAIT: 2242 if (event != SFP_E_TIMEOUT) 2243 break; 2244 2245 if (sfp->state & SFP_F_TX_FAULT) { 2246 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2247 * from the TX_DISABLE deassertion for the module to 2248 * initialise, which is indicated by TX_FAULT 2249 * deasserting. 2250 */ 2251 timeout = sfp->module_t_start_up; 2252 if (timeout > T_WAIT) 2253 timeout -= T_WAIT; 2254 else 2255 timeout = 1; 2256 2257 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2258 } else { 2259 /* TX_FAULT is not asserted, assume the module has 2260 * finished initialising. 2261 */ 2262 goto init_done; 2263 } 2264 break; 2265 2266 case SFP_S_INIT: 2267 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2268 /* TX_FAULT is still asserted after t_init 2269 * or t_start_up, so assume there is a fault. 2270 */ 2271 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2272 sfp->sm_fault_retries == N_FAULT_INIT); 2273 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2274 init_done: 2275 sfp->sm_phy_retries = R_PHY_RETRY; 2276 goto phy_probe; 2277 } 2278 break; 2279 2280 case SFP_S_INIT_PHY: 2281 if (event != SFP_E_TIMEOUT) 2282 break; 2283 phy_probe: 2284 /* TX_FAULT deasserted or we timed out with TX_FAULT 2285 * clear. Probe for the PHY and check the LOS state. 2286 */ 2287 ret = sfp_sm_probe_for_phy(sfp); 2288 if (ret == -ENODEV) { 2289 if (--sfp->sm_phy_retries) { 2290 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2291 break; 2292 } else { 2293 dev_info(sfp->dev, "no PHY detected\n"); 2294 } 2295 } else if (ret) { 2296 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2297 break; 2298 } 2299 if (sfp_module_start(sfp->sfp_bus)) { 2300 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2301 break; 2302 } 2303 sfp_sm_link_check_los(sfp); 2304 2305 /* Reset the fault retry count */ 2306 sfp->sm_fault_retries = N_FAULT; 2307 break; 2308 2309 case SFP_S_INIT_TX_FAULT: 2310 if (event == SFP_E_TIMEOUT) { 2311 sfp_module_tx_fault_reset(sfp); 2312 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2313 } 2314 break; 2315 2316 case SFP_S_WAIT_LOS: 2317 if (event == SFP_E_TX_FAULT) 2318 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2319 else if (sfp_los_event_inactive(sfp, event)) 2320 sfp_sm_link_up(sfp); 2321 break; 2322 2323 case SFP_S_LINK_UP: 2324 if (event == SFP_E_TX_FAULT) { 2325 sfp_sm_link_down(sfp); 2326 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2327 } else if (sfp_los_event_active(sfp, event)) { 2328 sfp_sm_link_down(sfp); 2329 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2330 } 2331 break; 2332 2333 case SFP_S_TX_FAULT: 2334 if (event == SFP_E_TIMEOUT) { 2335 sfp_module_tx_fault_reset(sfp); 2336 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2337 } 2338 break; 2339 2340 case SFP_S_REINIT: 2341 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2342 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2343 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2344 dev_info(sfp->dev, "module transmit fault recovered\n"); 2345 sfp_sm_link_check_los(sfp); 2346 } 2347 break; 2348 2349 case SFP_S_TX_DISABLE: 2350 break; 2351 } 2352 } 2353 2354 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2355 { 2356 mutex_lock(&sfp->sm_mutex); 2357 2358 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2359 mod_state_to_str(sfp->sm_mod_state), 2360 dev_state_to_str(sfp->sm_dev_state), 2361 sm_state_to_str(sfp->sm_state), 2362 event_to_str(event)); 2363 2364 sfp_sm_device(sfp, event); 2365 sfp_sm_module(sfp, event); 2366 sfp_sm_main(sfp, event); 2367 2368 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2369 mod_state_to_str(sfp->sm_mod_state), 2370 dev_state_to_str(sfp->sm_dev_state), 2371 sm_state_to_str(sfp->sm_state)); 2372 2373 mutex_unlock(&sfp->sm_mutex); 2374 } 2375 2376 static void sfp_attach(struct sfp *sfp) 2377 { 2378 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2379 } 2380 2381 static void sfp_detach(struct sfp *sfp) 2382 { 2383 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2384 } 2385 2386 static void sfp_start(struct sfp *sfp) 2387 { 2388 sfp_sm_event(sfp, SFP_E_DEV_UP); 2389 } 2390 2391 static void sfp_stop(struct sfp *sfp) 2392 { 2393 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2394 } 2395 2396 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2397 { 2398 /* locking... and check module is present */ 2399 2400 if (sfp->id.ext.sff8472_compliance && 2401 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2402 modinfo->type = ETH_MODULE_SFF_8472; 2403 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2404 } else { 2405 modinfo->type = ETH_MODULE_SFF_8079; 2406 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2407 } 2408 return 0; 2409 } 2410 2411 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2412 u8 *data) 2413 { 2414 unsigned int first, last, len; 2415 int ret; 2416 2417 if (ee->len == 0) 2418 return -EINVAL; 2419 2420 first = ee->offset; 2421 last = ee->offset + ee->len; 2422 if (first < ETH_MODULE_SFF_8079_LEN) { 2423 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2424 len -= first; 2425 2426 ret = sfp_read(sfp, false, first, data, len); 2427 if (ret < 0) 2428 return ret; 2429 2430 first += len; 2431 data += len; 2432 } 2433 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2434 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2435 len -= first; 2436 first -= ETH_MODULE_SFF_8079_LEN; 2437 2438 ret = sfp_read(sfp, true, first, data, len); 2439 if (ret < 0) 2440 return ret; 2441 } 2442 return 0; 2443 } 2444 2445 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2446 const struct ethtool_module_eeprom *page, 2447 struct netlink_ext_ack *extack) 2448 { 2449 if (page->bank) { 2450 NL_SET_ERR_MSG(extack, "Banks not supported"); 2451 return -EOPNOTSUPP; 2452 } 2453 2454 if (page->page) { 2455 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2456 return -EOPNOTSUPP; 2457 } 2458 2459 if (page->i2c_address != 0x50 && 2460 page->i2c_address != 0x51) { 2461 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2462 return -EOPNOTSUPP; 2463 } 2464 2465 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2466 page->data, page->length); 2467 }; 2468 2469 static const struct sfp_socket_ops sfp_module_ops = { 2470 .attach = sfp_attach, 2471 .detach = sfp_detach, 2472 .start = sfp_start, 2473 .stop = sfp_stop, 2474 .module_info = sfp_module_info, 2475 .module_eeprom = sfp_module_eeprom, 2476 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2477 }; 2478 2479 static void sfp_timeout(struct work_struct *work) 2480 { 2481 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2482 2483 rtnl_lock(); 2484 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2485 rtnl_unlock(); 2486 } 2487 2488 static void sfp_check_state(struct sfp *sfp) 2489 { 2490 unsigned int state, i, changed; 2491 2492 mutex_lock(&sfp->st_mutex); 2493 state = sfp_get_state(sfp); 2494 changed = state ^ sfp->state; 2495 if (sfp->tx_fault_ignore) 2496 changed &= SFP_F_PRESENT | SFP_F_LOS; 2497 else 2498 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2499 2500 for (i = 0; i < GPIO_MAX; i++) 2501 if (changed & BIT(i)) 2502 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2503 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2504 2505 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2506 sfp->state = state; 2507 2508 rtnl_lock(); 2509 if (changed & SFP_F_PRESENT) 2510 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2511 SFP_E_INSERT : SFP_E_REMOVE); 2512 2513 if (changed & SFP_F_TX_FAULT) 2514 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2515 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2516 2517 if (changed & SFP_F_LOS) 2518 sfp_sm_event(sfp, state & SFP_F_LOS ? 2519 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2520 rtnl_unlock(); 2521 mutex_unlock(&sfp->st_mutex); 2522 } 2523 2524 static irqreturn_t sfp_irq(int irq, void *data) 2525 { 2526 struct sfp *sfp = data; 2527 2528 sfp_check_state(sfp); 2529 2530 return IRQ_HANDLED; 2531 } 2532 2533 static void sfp_poll(struct work_struct *work) 2534 { 2535 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2536 2537 sfp_check_state(sfp); 2538 2539 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2540 sfp->need_poll) 2541 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2542 } 2543 2544 static struct sfp *sfp_alloc(struct device *dev) 2545 { 2546 struct sfp *sfp; 2547 2548 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2549 if (!sfp) 2550 return ERR_PTR(-ENOMEM); 2551 2552 sfp->dev = dev; 2553 2554 mutex_init(&sfp->sm_mutex); 2555 mutex_init(&sfp->st_mutex); 2556 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2557 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2558 2559 sfp_hwmon_init(sfp); 2560 2561 return sfp; 2562 } 2563 2564 static void sfp_cleanup(void *data) 2565 { 2566 struct sfp *sfp = data; 2567 2568 sfp_hwmon_exit(sfp); 2569 2570 cancel_delayed_work_sync(&sfp->poll); 2571 cancel_delayed_work_sync(&sfp->timeout); 2572 if (sfp->i2c_mii) { 2573 mdiobus_unregister(sfp->i2c_mii); 2574 mdiobus_free(sfp->i2c_mii); 2575 } 2576 if (sfp->i2c) 2577 i2c_put_adapter(sfp->i2c); 2578 kfree(sfp); 2579 } 2580 2581 static int sfp_probe(struct platform_device *pdev) 2582 { 2583 const struct sff_data *sff; 2584 struct i2c_adapter *i2c; 2585 char *sfp_irq_name; 2586 struct sfp *sfp; 2587 int err, i; 2588 2589 sfp = sfp_alloc(&pdev->dev); 2590 if (IS_ERR(sfp)) 2591 return PTR_ERR(sfp); 2592 2593 platform_set_drvdata(pdev, sfp); 2594 2595 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2596 if (err < 0) 2597 return err; 2598 2599 sff = sfp->type = &sfp_data; 2600 2601 if (pdev->dev.of_node) { 2602 struct device_node *node = pdev->dev.of_node; 2603 const struct of_device_id *id; 2604 struct device_node *np; 2605 2606 id = of_match_node(sfp_of_match, node); 2607 if (WARN_ON(!id)) 2608 return -EINVAL; 2609 2610 sff = sfp->type = id->data; 2611 2612 np = of_parse_phandle(node, "i2c-bus", 0); 2613 if (!np) { 2614 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2615 return -ENODEV; 2616 } 2617 2618 i2c = of_find_i2c_adapter_by_node(np); 2619 of_node_put(np); 2620 } else if (has_acpi_companion(&pdev->dev)) { 2621 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2622 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2623 struct fwnode_reference_args args; 2624 struct acpi_handle *acpi_handle; 2625 int ret; 2626 2627 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2628 if (ret || !is_acpi_device_node(args.fwnode)) { 2629 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2630 return -ENODEV; 2631 } 2632 2633 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2634 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2635 } else { 2636 return -EINVAL; 2637 } 2638 2639 if (!i2c) 2640 return -EPROBE_DEFER; 2641 2642 err = sfp_i2c_configure(sfp, i2c); 2643 if (err < 0) { 2644 i2c_put_adapter(i2c); 2645 return err; 2646 } 2647 2648 for (i = 0; i < GPIO_MAX; i++) 2649 if (sff->gpios & BIT(i)) { 2650 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2651 gpio_of_names[i], gpio_flags[i]); 2652 if (IS_ERR(sfp->gpio[i])) 2653 return PTR_ERR(sfp->gpio[i]); 2654 } 2655 2656 sfp->state_hw_mask = SFP_F_PRESENT; 2657 2658 sfp->get_state = sfp_gpio_get_state; 2659 sfp->set_state = sfp_gpio_set_state; 2660 2661 /* Modules that have no detect signal are always present */ 2662 if (!(sfp->gpio[GPIO_MODDEF0])) 2663 sfp->get_state = sff_gpio_get_state; 2664 2665 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2666 &sfp->max_power_mW); 2667 if (!sfp->max_power_mW) 2668 sfp->max_power_mW = 1000; 2669 2670 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2671 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2672 2673 /* Get the initial state, and always signal TX disable, 2674 * since the network interface will not be up. 2675 */ 2676 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2677 2678 if (sfp->gpio[GPIO_RATE_SELECT] && 2679 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2680 sfp->state |= SFP_F_RATE_SELECT; 2681 sfp_set_state(sfp, sfp->state); 2682 sfp_module_tx_disable(sfp); 2683 if (sfp->state & SFP_F_PRESENT) { 2684 rtnl_lock(); 2685 sfp_sm_event(sfp, SFP_E_INSERT); 2686 rtnl_unlock(); 2687 } 2688 2689 for (i = 0; i < GPIO_MAX; i++) { 2690 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2691 continue; 2692 2693 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2694 if (sfp->gpio_irq[i] < 0) { 2695 sfp->gpio_irq[i] = 0; 2696 sfp->need_poll = true; 2697 continue; 2698 } 2699 2700 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2701 "%s-%s", dev_name(sfp->dev), 2702 gpio_of_names[i]); 2703 2704 if (!sfp_irq_name) 2705 return -ENOMEM; 2706 2707 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2708 NULL, sfp_irq, 2709 IRQF_ONESHOT | 2710 IRQF_TRIGGER_RISING | 2711 IRQF_TRIGGER_FALLING, 2712 sfp_irq_name, sfp); 2713 if (err) { 2714 sfp->gpio_irq[i] = 0; 2715 sfp->need_poll = true; 2716 } 2717 } 2718 2719 if (sfp->need_poll) 2720 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2721 2722 /* We could have an issue in cases no Tx disable pin is available or 2723 * wired as modules using a laser as their light source will continue to 2724 * be active when the fiber is removed. This could be a safety issue and 2725 * we should at least warn the user about that. 2726 */ 2727 if (!sfp->gpio[GPIO_TX_DISABLE]) 2728 dev_warn(sfp->dev, 2729 "No tx_disable pin: SFP modules will always be emitting.\n"); 2730 2731 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2732 if (!sfp->sfp_bus) 2733 return -ENOMEM; 2734 2735 sfp_debugfs_init(sfp); 2736 2737 return 0; 2738 } 2739 2740 static int sfp_remove(struct platform_device *pdev) 2741 { 2742 struct sfp *sfp = platform_get_drvdata(pdev); 2743 2744 sfp_debugfs_exit(sfp); 2745 sfp_unregister_socket(sfp->sfp_bus); 2746 2747 rtnl_lock(); 2748 sfp_sm_event(sfp, SFP_E_REMOVE); 2749 rtnl_unlock(); 2750 2751 return 0; 2752 } 2753 2754 static void sfp_shutdown(struct platform_device *pdev) 2755 { 2756 struct sfp *sfp = platform_get_drvdata(pdev); 2757 int i; 2758 2759 for (i = 0; i < GPIO_MAX; i++) { 2760 if (!sfp->gpio_irq[i]) 2761 continue; 2762 2763 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2764 } 2765 2766 cancel_delayed_work_sync(&sfp->poll); 2767 cancel_delayed_work_sync(&sfp->timeout); 2768 } 2769 2770 static struct platform_driver sfp_driver = { 2771 .probe = sfp_probe, 2772 .remove = sfp_remove, 2773 .shutdown = sfp_shutdown, 2774 .driver = { 2775 .name = "sfp", 2776 .of_match_table = sfp_of_match, 2777 }, 2778 }; 2779 2780 static int sfp_init(void) 2781 { 2782 poll_jiffies = msecs_to_jiffies(100); 2783 2784 return platform_driver_register(&sfp_driver); 2785 } 2786 module_init(sfp_init); 2787 2788 static void sfp_exit(void) 2789 { 2790 platform_driver_unregister(&sfp_driver); 2791 } 2792 module_exit(sfp_exit); 2793 2794 MODULE_ALIAS("platform:sfp"); 2795 MODULE_AUTHOR("Russell King"); 2796 MODULE_LICENSE("GPL v2"); 2797