xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 139d3a21)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_ATTACH,
40 	SFP_E_DEV_DETACH,
41 	SFP_E_DEV_DOWN,
42 	SFP_E_DEV_UP,
43 	SFP_E_TX_FAULT,
44 	SFP_E_TX_CLEAR,
45 	SFP_E_LOS_HIGH,
46 	SFP_E_LOS_LOW,
47 	SFP_E_TIMEOUT,
48 
49 	SFP_MOD_EMPTY = 0,
50 	SFP_MOD_ERROR,
51 	SFP_MOD_PROBE,
52 	SFP_MOD_WAITDEV,
53 	SFP_MOD_HPOWER,
54 	SFP_MOD_WAITPWR,
55 	SFP_MOD_PRESENT,
56 
57 	SFP_DEV_DETACHED = 0,
58 	SFP_DEV_DOWN,
59 	SFP_DEV_UP,
60 
61 	SFP_S_DOWN = 0,
62 	SFP_S_WAIT,
63 	SFP_S_INIT,
64 	SFP_S_INIT_TX_FAULT,
65 	SFP_S_WAIT_LOS,
66 	SFP_S_LINK_UP,
67 	SFP_S_TX_FAULT,
68 	SFP_S_REINIT,
69 	SFP_S_TX_DISABLE,
70 };
71 
72 static const char  * const mod_state_strings[] = {
73 	[SFP_MOD_EMPTY] = "empty",
74 	[SFP_MOD_ERROR] = "error",
75 	[SFP_MOD_PROBE] = "probe",
76 	[SFP_MOD_WAITDEV] = "waitdev",
77 	[SFP_MOD_HPOWER] = "hpower",
78 	[SFP_MOD_WAITPWR] = "waitpwr",
79 	[SFP_MOD_PRESENT] = "present",
80 };
81 
82 static const char *mod_state_to_str(unsigned short mod_state)
83 {
84 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
85 		return "Unknown module state";
86 	return mod_state_strings[mod_state];
87 }
88 
89 static const char * const dev_state_strings[] = {
90 	[SFP_DEV_DETACHED] = "detached",
91 	[SFP_DEV_DOWN] = "down",
92 	[SFP_DEV_UP] = "up",
93 };
94 
95 static const char *dev_state_to_str(unsigned short dev_state)
96 {
97 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
98 		return "Unknown device state";
99 	return dev_state_strings[dev_state];
100 }
101 
102 static const char * const event_strings[] = {
103 	[SFP_E_INSERT] = "insert",
104 	[SFP_E_REMOVE] = "remove",
105 	[SFP_E_DEV_ATTACH] = "dev_attach",
106 	[SFP_E_DEV_DETACH] = "dev_detach",
107 	[SFP_E_DEV_DOWN] = "dev_down",
108 	[SFP_E_DEV_UP] = "dev_up",
109 	[SFP_E_TX_FAULT] = "tx_fault",
110 	[SFP_E_TX_CLEAR] = "tx_clear",
111 	[SFP_E_LOS_HIGH] = "los_high",
112 	[SFP_E_LOS_LOW] = "los_low",
113 	[SFP_E_TIMEOUT] = "timeout",
114 };
115 
116 static const char *event_to_str(unsigned short event)
117 {
118 	if (event >= ARRAY_SIZE(event_strings))
119 		return "Unknown event";
120 	return event_strings[event];
121 }
122 
123 static const char * const sm_state_strings[] = {
124 	[SFP_S_DOWN] = "down",
125 	[SFP_S_WAIT] = "wait",
126 	[SFP_S_INIT] = "init",
127 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
128 	[SFP_S_WAIT_LOS] = "wait_los",
129 	[SFP_S_LINK_UP] = "link_up",
130 	[SFP_S_TX_FAULT] = "tx_fault",
131 	[SFP_S_REINIT] = "reinit",
132 	[SFP_S_TX_DISABLE] = "rx_disable",
133 };
134 
135 static const char *sm_state_to_str(unsigned short sm_state)
136 {
137 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
138 		return "Unknown state";
139 	return sm_state_strings[sm_state];
140 }
141 
142 static const char *gpio_of_names[] = {
143 	"mod-def0",
144 	"los",
145 	"tx-fault",
146 	"tx-disable",
147 	"rate-select0",
148 };
149 
150 static const enum gpiod_flags gpio_flags[] = {
151 	GPIOD_IN,
152 	GPIOD_IN,
153 	GPIOD_IN,
154 	GPIOD_ASIS,
155 	GPIOD_ASIS,
156 };
157 
158 #define T_WAIT		msecs_to_jiffies(50)
159 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
160 #define T_RESET_US	10
161 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
162 
163 /* SFP module presence detection is poor: the three MOD DEF signals are
164  * the same length on the PCB, which means it's possible for MOD DEF 0 to
165  * connect before the I2C bus on MOD DEF 1/2.
166  *
167  * The SFF-8472 specifies t_serial ("Time from power on until module is
168  * ready for data transmission over the two wire serial bus.") as 300ms.
169  */
170 #define T_SERIAL		msecs_to_jiffies(300)
171 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
172 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
173 #define R_PROBE_RETRY_INIT	10
174 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
175 #define R_PROBE_RETRY_SLOW	12
176 
177 /* SFP modules appear to always have their PHY configured for bus address
178  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
179  */
180 #define SFP_PHY_ADDR	22
181 
182 struct sff_data {
183 	unsigned int gpios;
184 	bool (*module_supported)(const struct sfp_eeprom_id *id);
185 };
186 
187 struct sfp {
188 	struct device *dev;
189 	struct i2c_adapter *i2c;
190 	struct mii_bus *i2c_mii;
191 	struct sfp_bus *sfp_bus;
192 	struct phy_device *mod_phy;
193 	const struct sff_data *type;
194 	u32 max_power_mW;
195 
196 	unsigned int (*get_state)(struct sfp *);
197 	void (*set_state)(struct sfp *, unsigned int);
198 	int (*read)(struct sfp *, bool, u8, void *, size_t);
199 	int (*write)(struct sfp *, bool, u8, void *, size_t);
200 
201 	struct gpio_desc *gpio[GPIO_MAX];
202 	int gpio_irq[GPIO_MAX];
203 
204 	struct mutex st_mutex;			/* Protects state */
205 	unsigned int state;
206 	struct delayed_work poll;
207 	struct delayed_work timeout;
208 	struct mutex sm_mutex;			/* Protects state machine */
209 	unsigned char sm_mod_state;
210 	unsigned char sm_mod_tries_init;
211 	unsigned char sm_mod_tries;
212 	unsigned char sm_dev_state;
213 	unsigned short sm_state;
214 	unsigned int sm_retries;
215 
216 	struct sfp_eeprom_id id;
217 	unsigned int module_power_mW;
218 
219 #if IS_ENABLED(CONFIG_HWMON)
220 	struct sfp_diag diag;
221 	struct delayed_work hwmon_probe;
222 	unsigned int hwmon_tries;
223 	struct device *hwmon_dev;
224 	char *hwmon_name;
225 #endif
226 
227 };
228 
229 static bool sff_module_supported(const struct sfp_eeprom_id *id)
230 {
231 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
232 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
233 }
234 
235 static const struct sff_data sff_data = {
236 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
237 	.module_supported = sff_module_supported,
238 };
239 
240 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
241 {
242 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
243 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
244 }
245 
246 static const struct sff_data sfp_data = {
247 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
248 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
249 	.module_supported = sfp_module_supported,
250 };
251 
252 static const struct of_device_id sfp_of_match[] = {
253 	{ .compatible = "sff,sff", .data = &sff_data, },
254 	{ .compatible = "sff,sfp", .data = &sfp_data, },
255 	{ },
256 };
257 MODULE_DEVICE_TABLE(of, sfp_of_match);
258 
259 static unsigned long poll_jiffies;
260 
261 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
262 {
263 	unsigned int i, state, v;
264 
265 	for (i = state = 0; i < GPIO_MAX; i++) {
266 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
267 			continue;
268 
269 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
270 		if (v)
271 			state |= BIT(i);
272 	}
273 
274 	return state;
275 }
276 
277 static unsigned int sff_gpio_get_state(struct sfp *sfp)
278 {
279 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
280 }
281 
282 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
283 {
284 	if (state & SFP_F_PRESENT) {
285 		/* If the module is present, drive the signals */
286 		if (sfp->gpio[GPIO_TX_DISABLE])
287 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
288 					       state & SFP_F_TX_DISABLE);
289 		if (state & SFP_F_RATE_SELECT)
290 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
291 					       state & SFP_F_RATE_SELECT);
292 	} else {
293 		/* Otherwise, let them float to the pull-ups */
294 		if (sfp->gpio[GPIO_TX_DISABLE])
295 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
296 		if (state & SFP_F_RATE_SELECT)
297 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
298 	}
299 }
300 
301 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
302 			size_t len)
303 {
304 	struct i2c_msg msgs[2];
305 	u8 bus_addr = a2 ? 0x51 : 0x50;
306 	size_t this_len;
307 	int ret;
308 
309 	msgs[0].addr = bus_addr;
310 	msgs[0].flags = 0;
311 	msgs[0].len = 1;
312 	msgs[0].buf = &dev_addr;
313 	msgs[1].addr = bus_addr;
314 	msgs[1].flags = I2C_M_RD;
315 	msgs[1].len = len;
316 	msgs[1].buf = buf;
317 
318 	while (len) {
319 		this_len = len;
320 		if (this_len > 16)
321 			this_len = 16;
322 
323 		msgs[1].len = this_len;
324 
325 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
326 		if (ret < 0)
327 			return ret;
328 
329 		if (ret != ARRAY_SIZE(msgs))
330 			break;
331 
332 		msgs[1].buf += this_len;
333 		dev_addr += this_len;
334 		len -= this_len;
335 	}
336 
337 	return msgs[1].buf - (u8 *)buf;
338 }
339 
340 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
341 	size_t len)
342 {
343 	struct i2c_msg msgs[1];
344 	u8 bus_addr = a2 ? 0x51 : 0x50;
345 	int ret;
346 
347 	msgs[0].addr = bus_addr;
348 	msgs[0].flags = 0;
349 	msgs[0].len = 1 + len;
350 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
351 	if (!msgs[0].buf)
352 		return -ENOMEM;
353 
354 	msgs[0].buf[0] = dev_addr;
355 	memcpy(&msgs[0].buf[1], buf, len);
356 
357 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
358 
359 	kfree(msgs[0].buf);
360 
361 	if (ret < 0)
362 		return ret;
363 
364 	return ret == ARRAY_SIZE(msgs) ? len : 0;
365 }
366 
367 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
368 {
369 	struct mii_bus *i2c_mii;
370 	int ret;
371 
372 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
373 		return -EINVAL;
374 
375 	sfp->i2c = i2c;
376 	sfp->read = sfp_i2c_read;
377 	sfp->write = sfp_i2c_write;
378 
379 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
380 	if (IS_ERR(i2c_mii))
381 		return PTR_ERR(i2c_mii);
382 
383 	i2c_mii->name = "SFP I2C Bus";
384 	i2c_mii->phy_mask = ~0;
385 
386 	ret = mdiobus_register(i2c_mii);
387 	if (ret < 0) {
388 		mdiobus_free(i2c_mii);
389 		return ret;
390 	}
391 
392 	sfp->i2c_mii = i2c_mii;
393 
394 	return 0;
395 }
396 
397 /* Interface */
398 static unsigned int sfp_get_state(struct sfp *sfp)
399 {
400 	return sfp->get_state(sfp);
401 }
402 
403 static void sfp_set_state(struct sfp *sfp, unsigned int state)
404 {
405 	sfp->set_state(sfp, state);
406 }
407 
408 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
409 {
410 	return sfp->read(sfp, a2, addr, buf, len);
411 }
412 
413 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
414 {
415 	return sfp->write(sfp, a2, addr, buf, len);
416 }
417 
418 static unsigned int sfp_check(void *buf, size_t len)
419 {
420 	u8 *p, check;
421 
422 	for (p = buf, check = 0; len; p++, len--)
423 		check += *p;
424 
425 	return check;
426 }
427 
428 /* hwmon */
429 #if IS_ENABLED(CONFIG_HWMON)
430 static umode_t sfp_hwmon_is_visible(const void *data,
431 				    enum hwmon_sensor_types type,
432 				    u32 attr, int channel)
433 {
434 	const struct sfp *sfp = data;
435 
436 	switch (type) {
437 	case hwmon_temp:
438 		switch (attr) {
439 		case hwmon_temp_min_alarm:
440 		case hwmon_temp_max_alarm:
441 		case hwmon_temp_lcrit_alarm:
442 		case hwmon_temp_crit_alarm:
443 		case hwmon_temp_min:
444 		case hwmon_temp_max:
445 		case hwmon_temp_lcrit:
446 		case hwmon_temp_crit:
447 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
448 				return 0;
449 			/* fall through */
450 		case hwmon_temp_input:
451 		case hwmon_temp_label:
452 			return 0444;
453 		default:
454 			return 0;
455 		}
456 	case hwmon_in:
457 		switch (attr) {
458 		case hwmon_in_min_alarm:
459 		case hwmon_in_max_alarm:
460 		case hwmon_in_lcrit_alarm:
461 		case hwmon_in_crit_alarm:
462 		case hwmon_in_min:
463 		case hwmon_in_max:
464 		case hwmon_in_lcrit:
465 		case hwmon_in_crit:
466 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
467 				return 0;
468 			/* fall through */
469 		case hwmon_in_input:
470 		case hwmon_in_label:
471 			return 0444;
472 		default:
473 			return 0;
474 		}
475 	case hwmon_curr:
476 		switch (attr) {
477 		case hwmon_curr_min_alarm:
478 		case hwmon_curr_max_alarm:
479 		case hwmon_curr_lcrit_alarm:
480 		case hwmon_curr_crit_alarm:
481 		case hwmon_curr_min:
482 		case hwmon_curr_max:
483 		case hwmon_curr_lcrit:
484 		case hwmon_curr_crit:
485 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
486 				return 0;
487 			/* fall through */
488 		case hwmon_curr_input:
489 		case hwmon_curr_label:
490 			return 0444;
491 		default:
492 			return 0;
493 		}
494 	case hwmon_power:
495 		/* External calibration of receive power requires
496 		 * floating point arithmetic. Doing that in the kernel
497 		 * is not easy, so just skip it. If the module does
498 		 * not require external calibration, we can however
499 		 * show receiver power, since FP is then not needed.
500 		 */
501 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
502 		    channel == 1)
503 			return 0;
504 		switch (attr) {
505 		case hwmon_power_min_alarm:
506 		case hwmon_power_max_alarm:
507 		case hwmon_power_lcrit_alarm:
508 		case hwmon_power_crit_alarm:
509 		case hwmon_power_min:
510 		case hwmon_power_max:
511 		case hwmon_power_lcrit:
512 		case hwmon_power_crit:
513 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
514 				return 0;
515 			/* fall through */
516 		case hwmon_power_input:
517 		case hwmon_power_label:
518 			return 0444;
519 		default:
520 			return 0;
521 		}
522 	default:
523 		return 0;
524 	}
525 }
526 
527 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
528 {
529 	__be16 val;
530 	int err;
531 
532 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
533 	if (err < 0)
534 		return err;
535 
536 	*value = be16_to_cpu(val);
537 
538 	return 0;
539 }
540 
541 static void sfp_hwmon_to_rx_power(long *value)
542 {
543 	*value = DIV_ROUND_CLOSEST(*value, 10);
544 }
545 
546 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
547 				long *value)
548 {
549 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
550 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
551 }
552 
553 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
554 {
555 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
556 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
557 
558 	if (*value >= 0x8000)
559 		*value -= 0x10000;
560 
561 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
562 }
563 
564 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
565 {
566 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
567 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
568 
569 	*value = DIV_ROUND_CLOSEST(*value, 10);
570 }
571 
572 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
573 {
574 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
575 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
576 
577 	*value = DIV_ROUND_CLOSEST(*value, 500);
578 }
579 
580 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
581 {
582 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
583 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
584 
585 	*value = DIV_ROUND_CLOSEST(*value, 10);
586 }
587 
588 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
589 {
590 	int err;
591 
592 	err = sfp_hwmon_read_sensor(sfp, reg, value);
593 	if (err < 0)
594 		return err;
595 
596 	sfp_hwmon_calibrate_temp(sfp, value);
597 
598 	return 0;
599 }
600 
601 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
602 {
603 	int err;
604 
605 	err = sfp_hwmon_read_sensor(sfp, reg, value);
606 	if (err < 0)
607 		return err;
608 
609 	sfp_hwmon_calibrate_vcc(sfp, value);
610 
611 	return 0;
612 }
613 
614 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
615 {
616 	int err;
617 
618 	err = sfp_hwmon_read_sensor(sfp, reg, value);
619 	if (err < 0)
620 		return err;
621 
622 	sfp_hwmon_calibrate_bias(sfp, value);
623 
624 	return 0;
625 }
626 
627 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
628 {
629 	int err;
630 
631 	err = sfp_hwmon_read_sensor(sfp, reg, value);
632 	if (err < 0)
633 		return err;
634 
635 	sfp_hwmon_calibrate_tx_power(sfp, value);
636 
637 	return 0;
638 }
639 
640 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
641 {
642 	int err;
643 
644 	err = sfp_hwmon_read_sensor(sfp, reg, value);
645 	if (err < 0)
646 		return err;
647 
648 	sfp_hwmon_to_rx_power(value);
649 
650 	return 0;
651 }
652 
653 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
654 {
655 	u8 status;
656 	int err;
657 
658 	switch (attr) {
659 	case hwmon_temp_input:
660 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
661 
662 	case hwmon_temp_lcrit:
663 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
664 		sfp_hwmon_calibrate_temp(sfp, value);
665 		return 0;
666 
667 	case hwmon_temp_min:
668 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
669 		sfp_hwmon_calibrate_temp(sfp, value);
670 		return 0;
671 	case hwmon_temp_max:
672 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
673 		sfp_hwmon_calibrate_temp(sfp, value);
674 		return 0;
675 
676 	case hwmon_temp_crit:
677 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
678 		sfp_hwmon_calibrate_temp(sfp, value);
679 		return 0;
680 
681 	case hwmon_temp_lcrit_alarm:
682 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
683 		if (err < 0)
684 			return err;
685 
686 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
687 		return 0;
688 
689 	case hwmon_temp_min_alarm:
690 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
691 		if (err < 0)
692 			return err;
693 
694 		*value = !!(status & SFP_WARN0_TEMP_LOW);
695 		return 0;
696 
697 	case hwmon_temp_max_alarm:
698 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
699 		if (err < 0)
700 			return err;
701 
702 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
703 		return 0;
704 
705 	case hwmon_temp_crit_alarm:
706 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
707 		if (err < 0)
708 			return err;
709 
710 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
711 		return 0;
712 	default:
713 		return -EOPNOTSUPP;
714 	}
715 
716 	return -EOPNOTSUPP;
717 }
718 
719 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
720 {
721 	u8 status;
722 	int err;
723 
724 	switch (attr) {
725 	case hwmon_in_input:
726 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
727 
728 	case hwmon_in_lcrit:
729 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
730 		sfp_hwmon_calibrate_vcc(sfp, value);
731 		return 0;
732 
733 	case hwmon_in_min:
734 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
735 		sfp_hwmon_calibrate_vcc(sfp, value);
736 		return 0;
737 
738 	case hwmon_in_max:
739 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
740 		sfp_hwmon_calibrate_vcc(sfp, value);
741 		return 0;
742 
743 	case hwmon_in_crit:
744 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
745 		sfp_hwmon_calibrate_vcc(sfp, value);
746 		return 0;
747 
748 	case hwmon_in_lcrit_alarm:
749 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
750 		if (err < 0)
751 			return err;
752 
753 		*value = !!(status & SFP_ALARM0_VCC_LOW);
754 		return 0;
755 
756 	case hwmon_in_min_alarm:
757 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
758 		if (err < 0)
759 			return err;
760 
761 		*value = !!(status & SFP_WARN0_VCC_LOW);
762 		return 0;
763 
764 	case hwmon_in_max_alarm:
765 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
766 		if (err < 0)
767 			return err;
768 
769 		*value = !!(status & SFP_WARN0_VCC_HIGH);
770 		return 0;
771 
772 	case hwmon_in_crit_alarm:
773 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
774 		if (err < 0)
775 			return err;
776 
777 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
778 		return 0;
779 	default:
780 		return -EOPNOTSUPP;
781 	}
782 
783 	return -EOPNOTSUPP;
784 }
785 
786 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
787 {
788 	u8 status;
789 	int err;
790 
791 	switch (attr) {
792 	case hwmon_curr_input:
793 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
794 
795 	case hwmon_curr_lcrit:
796 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
797 		sfp_hwmon_calibrate_bias(sfp, value);
798 		return 0;
799 
800 	case hwmon_curr_min:
801 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
802 		sfp_hwmon_calibrate_bias(sfp, value);
803 		return 0;
804 
805 	case hwmon_curr_max:
806 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
807 		sfp_hwmon_calibrate_bias(sfp, value);
808 		return 0;
809 
810 	case hwmon_curr_crit:
811 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
812 		sfp_hwmon_calibrate_bias(sfp, value);
813 		return 0;
814 
815 	case hwmon_curr_lcrit_alarm:
816 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
817 		if (err < 0)
818 			return err;
819 
820 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
821 		return 0;
822 
823 	case hwmon_curr_min_alarm:
824 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
825 		if (err < 0)
826 			return err;
827 
828 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
829 		return 0;
830 
831 	case hwmon_curr_max_alarm:
832 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
833 		if (err < 0)
834 			return err;
835 
836 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
837 		return 0;
838 
839 	case hwmon_curr_crit_alarm:
840 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
841 		if (err < 0)
842 			return err;
843 
844 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
845 		return 0;
846 	default:
847 		return -EOPNOTSUPP;
848 	}
849 
850 	return -EOPNOTSUPP;
851 }
852 
853 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
854 {
855 	u8 status;
856 	int err;
857 
858 	switch (attr) {
859 	case hwmon_power_input:
860 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
861 
862 	case hwmon_power_lcrit:
863 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
864 		sfp_hwmon_calibrate_tx_power(sfp, value);
865 		return 0;
866 
867 	case hwmon_power_min:
868 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
869 		sfp_hwmon_calibrate_tx_power(sfp, value);
870 		return 0;
871 
872 	case hwmon_power_max:
873 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
874 		sfp_hwmon_calibrate_tx_power(sfp, value);
875 		return 0;
876 
877 	case hwmon_power_crit:
878 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
879 		sfp_hwmon_calibrate_tx_power(sfp, value);
880 		return 0;
881 
882 	case hwmon_power_lcrit_alarm:
883 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
884 		if (err < 0)
885 			return err;
886 
887 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
888 		return 0;
889 
890 	case hwmon_power_min_alarm:
891 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
892 		if (err < 0)
893 			return err;
894 
895 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
896 		return 0;
897 
898 	case hwmon_power_max_alarm:
899 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
900 		if (err < 0)
901 			return err;
902 
903 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
904 		return 0;
905 
906 	case hwmon_power_crit_alarm:
907 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
908 		if (err < 0)
909 			return err;
910 
911 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
912 		return 0;
913 	default:
914 		return -EOPNOTSUPP;
915 	}
916 
917 	return -EOPNOTSUPP;
918 }
919 
920 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
921 {
922 	u8 status;
923 	int err;
924 
925 	switch (attr) {
926 	case hwmon_power_input:
927 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
928 
929 	case hwmon_power_lcrit:
930 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
931 		sfp_hwmon_to_rx_power(value);
932 		return 0;
933 
934 	case hwmon_power_min:
935 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
936 		sfp_hwmon_to_rx_power(value);
937 		return 0;
938 
939 	case hwmon_power_max:
940 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
941 		sfp_hwmon_to_rx_power(value);
942 		return 0;
943 
944 	case hwmon_power_crit:
945 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
946 		sfp_hwmon_to_rx_power(value);
947 		return 0;
948 
949 	case hwmon_power_lcrit_alarm:
950 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
951 		if (err < 0)
952 			return err;
953 
954 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
955 		return 0;
956 
957 	case hwmon_power_min_alarm:
958 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
959 		if (err < 0)
960 			return err;
961 
962 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
963 		return 0;
964 
965 	case hwmon_power_max_alarm:
966 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
967 		if (err < 0)
968 			return err;
969 
970 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
971 		return 0;
972 
973 	case hwmon_power_crit_alarm:
974 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
975 		if (err < 0)
976 			return err;
977 
978 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
979 		return 0;
980 	default:
981 		return -EOPNOTSUPP;
982 	}
983 
984 	return -EOPNOTSUPP;
985 }
986 
987 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
988 			  u32 attr, int channel, long *value)
989 {
990 	struct sfp *sfp = dev_get_drvdata(dev);
991 
992 	switch (type) {
993 	case hwmon_temp:
994 		return sfp_hwmon_temp(sfp, attr, value);
995 	case hwmon_in:
996 		return sfp_hwmon_vcc(sfp, attr, value);
997 	case hwmon_curr:
998 		return sfp_hwmon_bias(sfp, attr, value);
999 	case hwmon_power:
1000 		switch (channel) {
1001 		case 0:
1002 			return sfp_hwmon_tx_power(sfp, attr, value);
1003 		case 1:
1004 			return sfp_hwmon_rx_power(sfp, attr, value);
1005 		default:
1006 			return -EOPNOTSUPP;
1007 		}
1008 	default:
1009 		return -EOPNOTSUPP;
1010 	}
1011 }
1012 
1013 static const char *const sfp_hwmon_power_labels[] = {
1014 	"TX_power",
1015 	"RX_power",
1016 };
1017 
1018 static int sfp_hwmon_read_string(struct device *dev,
1019 				 enum hwmon_sensor_types type,
1020 				 u32 attr, int channel, const char **str)
1021 {
1022 	switch (type) {
1023 	case hwmon_curr:
1024 		switch (attr) {
1025 		case hwmon_curr_label:
1026 			*str = "bias";
1027 			return 0;
1028 		default:
1029 			return -EOPNOTSUPP;
1030 		}
1031 		break;
1032 	case hwmon_temp:
1033 		switch (attr) {
1034 		case hwmon_temp_label:
1035 			*str = "temperature";
1036 			return 0;
1037 		default:
1038 			return -EOPNOTSUPP;
1039 		}
1040 		break;
1041 	case hwmon_in:
1042 		switch (attr) {
1043 		case hwmon_in_label:
1044 			*str = "VCC";
1045 			return 0;
1046 		default:
1047 			return -EOPNOTSUPP;
1048 		}
1049 		break;
1050 	case hwmon_power:
1051 		switch (attr) {
1052 		case hwmon_power_label:
1053 			*str = sfp_hwmon_power_labels[channel];
1054 			return 0;
1055 		default:
1056 			return -EOPNOTSUPP;
1057 		}
1058 		break;
1059 	default:
1060 		return -EOPNOTSUPP;
1061 	}
1062 
1063 	return -EOPNOTSUPP;
1064 }
1065 
1066 static const struct hwmon_ops sfp_hwmon_ops = {
1067 	.is_visible = sfp_hwmon_is_visible,
1068 	.read = sfp_hwmon_read,
1069 	.read_string = sfp_hwmon_read_string,
1070 };
1071 
1072 static u32 sfp_hwmon_chip_config[] = {
1073 	HWMON_C_REGISTER_TZ,
1074 	0,
1075 };
1076 
1077 static const struct hwmon_channel_info sfp_hwmon_chip = {
1078 	.type = hwmon_chip,
1079 	.config = sfp_hwmon_chip_config,
1080 };
1081 
1082 static u32 sfp_hwmon_temp_config[] = {
1083 	HWMON_T_INPUT |
1084 	HWMON_T_MAX | HWMON_T_MIN |
1085 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1086 	HWMON_T_CRIT | HWMON_T_LCRIT |
1087 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1088 	HWMON_T_LABEL,
1089 	0,
1090 };
1091 
1092 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1093 	.type = hwmon_temp,
1094 	.config = sfp_hwmon_temp_config,
1095 };
1096 
1097 static u32 sfp_hwmon_vcc_config[] = {
1098 	HWMON_I_INPUT |
1099 	HWMON_I_MAX | HWMON_I_MIN |
1100 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1101 	HWMON_I_CRIT | HWMON_I_LCRIT |
1102 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1103 	HWMON_I_LABEL,
1104 	0,
1105 };
1106 
1107 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1108 	.type = hwmon_in,
1109 	.config = sfp_hwmon_vcc_config,
1110 };
1111 
1112 static u32 sfp_hwmon_bias_config[] = {
1113 	HWMON_C_INPUT |
1114 	HWMON_C_MAX | HWMON_C_MIN |
1115 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1116 	HWMON_C_CRIT | HWMON_C_LCRIT |
1117 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1118 	HWMON_C_LABEL,
1119 	0,
1120 };
1121 
1122 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1123 	.type = hwmon_curr,
1124 	.config = sfp_hwmon_bias_config,
1125 };
1126 
1127 static u32 sfp_hwmon_power_config[] = {
1128 	/* Transmit power */
1129 	HWMON_P_INPUT |
1130 	HWMON_P_MAX | HWMON_P_MIN |
1131 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1132 	HWMON_P_CRIT | HWMON_P_LCRIT |
1133 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1134 	HWMON_P_LABEL,
1135 	/* Receive power */
1136 	HWMON_P_INPUT |
1137 	HWMON_P_MAX | HWMON_P_MIN |
1138 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1139 	HWMON_P_CRIT | HWMON_P_LCRIT |
1140 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1141 	HWMON_P_LABEL,
1142 	0,
1143 };
1144 
1145 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1146 	.type = hwmon_power,
1147 	.config = sfp_hwmon_power_config,
1148 };
1149 
1150 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1151 	&sfp_hwmon_chip,
1152 	&sfp_hwmon_vcc_channel_info,
1153 	&sfp_hwmon_temp_channel_info,
1154 	&sfp_hwmon_bias_channel_info,
1155 	&sfp_hwmon_power_channel_info,
1156 	NULL,
1157 };
1158 
1159 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1160 	.ops = &sfp_hwmon_ops,
1161 	.info = sfp_hwmon_info,
1162 };
1163 
1164 static void sfp_hwmon_probe(struct work_struct *work)
1165 {
1166 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1167 	int err, i;
1168 
1169 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1170 	if (err < 0) {
1171 		if (sfp->hwmon_tries--) {
1172 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1173 					 T_PROBE_RETRY_SLOW);
1174 		} else {
1175 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1176 		}
1177 		return;
1178 	}
1179 
1180 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1181 	if (!sfp->hwmon_name) {
1182 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1183 		return;
1184 	}
1185 
1186 	for (i = 0; sfp->hwmon_name[i]; i++)
1187 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1188 			sfp->hwmon_name[i] = '_';
1189 
1190 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1191 							 sfp->hwmon_name, sfp,
1192 							 &sfp_hwmon_chip_info,
1193 							 NULL);
1194 	if (IS_ERR(sfp->hwmon_dev))
1195 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1196 			PTR_ERR(sfp->hwmon_dev));
1197 }
1198 
1199 static int sfp_hwmon_insert(struct sfp *sfp)
1200 {
1201 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1202 		return 0;
1203 
1204 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1205 		return 0;
1206 
1207 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1208 		/* This driver in general does not support address
1209 		 * change.
1210 		 */
1211 		return 0;
1212 
1213 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1214 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1215 
1216 	return 0;
1217 }
1218 
1219 static void sfp_hwmon_remove(struct sfp *sfp)
1220 {
1221 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1222 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1223 		hwmon_device_unregister(sfp->hwmon_dev);
1224 		sfp->hwmon_dev = NULL;
1225 		kfree(sfp->hwmon_name);
1226 	}
1227 }
1228 
1229 static int sfp_hwmon_init(struct sfp *sfp)
1230 {
1231 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1232 
1233 	return 0;
1234 }
1235 
1236 static void sfp_hwmon_exit(struct sfp *sfp)
1237 {
1238 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1239 }
1240 #else
1241 static int sfp_hwmon_insert(struct sfp *sfp)
1242 {
1243 	return 0;
1244 }
1245 
1246 static void sfp_hwmon_remove(struct sfp *sfp)
1247 {
1248 }
1249 
1250 static int sfp_hwmon_init(struct sfp *sfp)
1251 {
1252 	return 0;
1253 }
1254 
1255 static void sfp_hwmon_exit(struct sfp *sfp)
1256 {
1257 }
1258 #endif
1259 
1260 /* Helpers */
1261 static void sfp_module_tx_disable(struct sfp *sfp)
1262 {
1263 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1264 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1265 	sfp->state |= SFP_F_TX_DISABLE;
1266 	sfp_set_state(sfp, sfp->state);
1267 }
1268 
1269 static void sfp_module_tx_enable(struct sfp *sfp)
1270 {
1271 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1272 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1273 	sfp->state &= ~SFP_F_TX_DISABLE;
1274 	sfp_set_state(sfp, sfp->state);
1275 }
1276 
1277 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1278 {
1279 	unsigned int state = sfp->state;
1280 
1281 	if (state & SFP_F_TX_DISABLE)
1282 		return;
1283 
1284 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1285 
1286 	udelay(T_RESET_US);
1287 
1288 	sfp_set_state(sfp, state);
1289 }
1290 
1291 /* SFP state machine */
1292 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1293 {
1294 	if (timeout)
1295 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1296 				 timeout);
1297 	else
1298 		cancel_delayed_work(&sfp->timeout);
1299 }
1300 
1301 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1302 			unsigned int timeout)
1303 {
1304 	sfp->sm_state = state;
1305 	sfp_sm_set_timer(sfp, timeout);
1306 }
1307 
1308 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1309 			    unsigned int timeout)
1310 {
1311 	sfp->sm_mod_state = state;
1312 	sfp_sm_set_timer(sfp, timeout);
1313 }
1314 
1315 static void sfp_sm_phy_detach(struct sfp *sfp)
1316 {
1317 	phy_stop(sfp->mod_phy);
1318 	sfp_remove_phy(sfp->sfp_bus);
1319 	phy_device_remove(sfp->mod_phy);
1320 	phy_device_free(sfp->mod_phy);
1321 	sfp->mod_phy = NULL;
1322 }
1323 
1324 static void sfp_sm_probe_phy(struct sfp *sfp)
1325 {
1326 	struct phy_device *phy;
1327 	int err;
1328 
1329 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1330 	if (phy == ERR_PTR(-ENODEV)) {
1331 		dev_info(sfp->dev, "no PHY detected\n");
1332 		return;
1333 	}
1334 	if (IS_ERR(phy)) {
1335 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1336 		return;
1337 	}
1338 
1339 	err = sfp_add_phy(sfp->sfp_bus, phy);
1340 	if (err) {
1341 		phy_device_remove(phy);
1342 		phy_device_free(phy);
1343 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1344 		return;
1345 	}
1346 
1347 	sfp->mod_phy = phy;
1348 	phy_start(phy);
1349 }
1350 
1351 static void sfp_sm_link_up(struct sfp *sfp)
1352 {
1353 	sfp_link_up(sfp->sfp_bus);
1354 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1355 }
1356 
1357 static void sfp_sm_link_down(struct sfp *sfp)
1358 {
1359 	sfp_link_down(sfp->sfp_bus);
1360 }
1361 
1362 static void sfp_sm_link_check_los(struct sfp *sfp)
1363 {
1364 	unsigned int los = sfp->state & SFP_F_LOS;
1365 
1366 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1367 	 * are set, we assume that no LOS signal is available.
1368 	 */
1369 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1370 		los ^= SFP_F_LOS;
1371 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1372 		los = 0;
1373 
1374 	if (los)
1375 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1376 	else
1377 		sfp_sm_link_up(sfp);
1378 }
1379 
1380 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1381 {
1382 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1383 		event == SFP_E_LOS_LOW) ||
1384 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1385 		event == SFP_E_LOS_HIGH);
1386 }
1387 
1388 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1389 {
1390 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1391 		event == SFP_E_LOS_HIGH) ||
1392 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1393 		event == SFP_E_LOS_LOW);
1394 }
1395 
1396 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1397 {
1398 	if (sfp->sm_retries && !--sfp->sm_retries) {
1399 		dev_err(sfp->dev,
1400 			"module persistently indicates fault, disabling\n");
1401 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1402 	} else {
1403 		if (warn)
1404 			dev_err(sfp->dev, "module transmit fault indicated\n");
1405 
1406 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1407 	}
1408 }
1409 
1410 static void sfp_sm_mod_init(struct sfp *sfp)
1411 {
1412 	sfp_module_tx_enable(sfp);
1413 }
1414 
1415 static void sfp_sm_probe_for_phy(struct sfp *sfp)
1416 {
1417 	/* Setting the serdes link mode is guesswork: there's no
1418 	 * field in the EEPROM which indicates what mode should
1419 	 * be used.
1420 	 *
1421 	 * If it's a gigabit-only fiber module, it probably does
1422 	 * not have a PHY, so switch to 802.3z negotiation mode.
1423 	 * Otherwise, switch to SGMII mode (which is required to
1424 	 * support non-gigabit speeds) and probe for a PHY.
1425 	 */
1426 	if (sfp->id.base.e1000_base_t ||
1427 	    sfp->id.base.e100_base_lx ||
1428 	    sfp->id.base.e100_base_fx)
1429 		sfp_sm_probe_phy(sfp);
1430 }
1431 
1432 static int sfp_module_parse_power(struct sfp *sfp)
1433 {
1434 	u32 power_mW = 1000;
1435 
1436 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1437 		power_mW = 1500;
1438 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1439 		power_mW = 2000;
1440 
1441 	if (power_mW > sfp->max_power_mW) {
1442 		/* Module power specification exceeds the allowed maximum. */
1443 		if (sfp->id.ext.sff8472_compliance ==
1444 			SFP_SFF8472_COMPLIANCE_NONE &&
1445 		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1446 			/* The module appears not to implement bus address
1447 			 * 0xa2, so assume that the module powers up in the
1448 			 * indicated mode.
1449 			 */
1450 			dev_err(sfp->dev,
1451 				"Host does not support %u.%uW modules\n",
1452 				power_mW / 1000, (power_mW / 100) % 10);
1453 			return -EINVAL;
1454 		} else {
1455 			dev_warn(sfp->dev,
1456 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1457 				 power_mW / 1000, (power_mW / 100) % 10);
1458 			return 0;
1459 		}
1460 	}
1461 
1462 	/* If the module requires a higher power mode, but also requires
1463 	 * an address change sequence, warn the user that the module may
1464 	 * not be functional.
1465 	 */
1466 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1467 		dev_warn(sfp->dev,
1468 			 "Address Change Sequence not supported but module requies %u.%uW, module may not be functional\n",
1469 			 power_mW / 1000, (power_mW / 100) % 10);
1470 		return 0;
1471 	}
1472 
1473 	sfp->module_power_mW = power_mW;
1474 
1475 	return 0;
1476 }
1477 
1478 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1479 {
1480 	u8 val;
1481 	int err;
1482 
1483 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1484 	if (err != sizeof(val)) {
1485 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1486 		return -EAGAIN;
1487 	}
1488 
1489 	if (enable)
1490 		val |= BIT(0);
1491 	else
1492 		val &= ~BIT(0);
1493 
1494 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1495 	if (err != sizeof(val)) {
1496 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1497 		return -EAGAIN;
1498 	}
1499 
1500 	if (enable)
1501 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1502 			 sfp->module_power_mW / 1000,
1503 			 (sfp->module_power_mW / 100) % 10);
1504 
1505 	return 0;
1506 }
1507 
1508 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1509 {
1510 	/* SFP module inserted - read I2C data */
1511 	struct sfp_eeprom_id id;
1512 	bool cotsworks;
1513 	u8 check;
1514 	int ret;
1515 
1516 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1517 	if (ret < 0) {
1518 		if (report)
1519 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1520 		return -EAGAIN;
1521 	}
1522 
1523 	if (ret != sizeof(id)) {
1524 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1525 		return -EAGAIN;
1526 	}
1527 
1528 	/* Cotsworks do not seem to update the checksums when they
1529 	 * do the final programming with the final module part number,
1530 	 * serial number and date code.
1531 	 */
1532 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1533 
1534 	/* Validate the checksum over the base structure */
1535 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1536 	if (check != id.base.cc_base) {
1537 		if (cotsworks) {
1538 			dev_warn(sfp->dev,
1539 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1540 				 check, id.base.cc_base);
1541 		} else {
1542 			dev_err(sfp->dev,
1543 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1544 				check, id.base.cc_base);
1545 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1546 				       16, 1, &id, sizeof(id), true);
1547 			return -EINVAL;
1548 		}
1549 	}
1550 
1551 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1552 	if (check != id.ext.cc_ext) {
1553 		if (cotsworks) {
1554 			dev_warn(sfp->dev,
1555 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1556 				 check, id.ext.cc_ext);
1557 		} else {
1558 			dev_err(sfp->dev,
1559 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1560 				check, id.ext.cc_ext);
1561 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1562 				       16, 1, &id, sizeof(id), true);
1563 			memset(&id.ext, 0, sizeof(id.ext));
1564 		}
1565 	}
1566 
1567 	sfp->id = id;
1568 
1569 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1570 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1571 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1572 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1573 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1574 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1575 
1576 	/* Check whether we support this module */
1577 	if (!sfp->type->module_supported(&sfp->id)) {
1578 		dev_err(sfp->dev,
1579 			"module is not supported - phys id 0x%02x 0x%02x\n",
1580 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1581 		return -EINVAL;
1582 	}
1583 
1584 	/* If the module requires address swap mode, warn about it */
1585 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1586 		dev_warn(sfp->dev,
1587 			 "module address swap to access page 0xA2 is not supported.\n");
1588 
1589 	/* Parse the module power requirement */
1590 	ret = sfp_module_parse_power(sfp);
1591 	if (ret < 0)
1592 		return ret;
1593 
1594 	return 0;
1595 }
1596 
1597 static void sfp_sm_mod_remove(struct sfp *sfp)
1598 {
1599 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1600 		sfp_module_remove(sfp->sfp_bus);
1601 
1602 	sfp_hwmon_remove(sfp);
1603 
1604 	memset(&sfp->id, 0, sizeof(sfp->id));
1605 	sfp->module_power_mW = 0;
1606 
1607 	dev_info(sfp->dev, "module removed\n");
1608 }
1609 
1610 /* This state machine tracks the upstream's state */
1611 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1612 {
1613 	switch (sfp->sm_dev_state) {
1614 	default:
1615 		if (event == SFP_E_DEV_ATTACH)
1616 			sfp->sm_dev_state = SFP_DEV_DOWN;
1617 		break;
1618 
1619 	case SFP_DEV_DOWN:
1620 		if (event == SFP_E_DEV_DETACH)
1621 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1622 		else if (event == SFP_E_DEV_UP)
1623 			sfp->sm_dev_state = SFP_DEV_UP;
1624 		break;
1625 
1626 	case SFP_DEV_UP:
1627 		if (event == SFP_E_DEV_DETACH)
1628 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1629 		else if (event == SFP_E_DEV_DOWN)
1630 			sfp->sm_dev_state = SFP_DEV_DOWN;
1631 		break;
1632 	}
1633 }
1634 
1635 /* This state machine tracks the insert/remove state of the module, probes
1636  * the on-board EEPROM, and sets up the power level.
1637  */
1638 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1639 {
1640 	int err;
1641 
1642 	/* Handle remove event globally, it resets this state machine */
1643 	if (event == SFP_E_REMOVE) {
1644 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1645 			sfp_sm_mod_remove(sfp);
1646 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1647 		return;
1648 	}
1649 
1650 	/* Handle device detach globally */
1651 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1652 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1653 		if (sfp->module_power_mW > 1000 &&
1654 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1655 			sfp_sm_mod_hpower(sfp, false);
1656 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1657 		return;
1658 	}
1659 
1660 	switch (sfp->sm_mod_state) {
1661 	default:
1662 		if (event == SFP_E_INSERT) {
1663 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1664 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1665 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1666 		}
1667 		break;
1668 
1669 	case SFP_MOD_PROBE:
1670 		/* Wait for T_PROBE_INIT to time out */
1671 		if (event != SFP_E_TIMEOUT)
1672 			break;
1673 
1674 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1675 		if (err == -EAGAIN) {
1676 			if (sfp->sm_mod_tries_init &&
1677 			   --sfp->sm_mod_tries_init) {
1678 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1679 				break;
1680 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1681 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1682 					dev_warn(sfp->dev,
1683 						 "please wait, module slow to respond\n");
1684 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1685 				break;
1686 			}
1687 		}
1688 		if (err < 0) {
1689 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1690 			break;
1691 		}
1692 
1693 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1694 		/* fall through */
1695 	case SFP_MOD_WAITDEV:
1696 		/* Ensure that the device is attached before proceeding */
1697 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
1698 			break;
1699 
1700 		/* Report the module insertion to the upstream device */
1701 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1702 		if (err < 0) {
1703 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1704 			break;
1705 		}
1706 
1707 		/* If this is a power level 1 module, we are done */
1708 		if (sfp->module_power_mW <= 1000)
1709 			goto insert;
1710 
1711 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1712 		/* fall through */
1713 	case SFP_MOD_HPOWER:
1714 		/* Enable high power mode */
1715 		err = sfp_sm_mod_hpower(sfp, true);
1716 		if (err < 0) {
1717 			if (err != -EAGAIN) {
1718 				sfp_module_remove(sfp->sfp_bus);
1719 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1720 			} else {
1721 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1722 			}
1723 			break;
1724 		}
1725 
1726 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1727 		break;
1728 
1729 	case SFP_MOD_WAITPWR:
1730 		/* Wait for T_HPOWER_LEVEL to time out */
1731 		if (event != SFP_E_TIMEOUT)
1732 			break;
1733 
1734 	insert:
1735 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1736 		break;
1737 
1738 	case SFP_MOD_PRESENT:
1739 	case SFP_MOD_ERROR:
1740 		break;
1741 	}
1742 
1743 #if IS_ENABLED(CONFIG_HWMON)
1744 	if (sfp->sm_mod_state >= SFP_MOD_WAITDEV &&
1745 	    IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1746 		err = sfp_hwmon_insert(sfp);
1747 		if (err)
1748 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1749 	}
1750 #endif
1751 }
1752 
1753 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1754 {
1755 	unsigned long timeout;
1756 
1757 	/* Some events are global */
1758 	if (sfp->sm_state != SFP_S_DOWN &&
1759 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1760 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1761 		if (sfp->sm_state == SFP_S_LINK_UP &&
1762 		    sfp->sm_dev_state == SFP_DEV_UP)
1763 			sfp_sm_link_down(sfp);
1764 		if (sfp->mod_phy)
1765 			sfp_sm_phy_detach(sfp);
1766 		sfp_module_tx_disable(sfp);
1767 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1768 		return;
1769 	}
1770 
1771 	/* The main state machine */
1772 	switch (sfp->sm_state) {
1773 	case SFP_S_DOWN:
1774 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1775 		    sfp->sm_dev_state != SFP_DEV_UP)
1776 			break;
1777 
1778 		sfp_sm_mod_init(sfp);
1779 
1780 		/* Initialise the fault clearance retries */
1781 		sfp->sm_retries = 5;
1782 
1783 		/* We need to check the TX_FAULT state, which is not defined
1784 		 * while TX_DISABLE is asserted. The earliest we want to do
1785 		 * anything (such as probe for a PHY) is 50ms.
1786 		 */
1787 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1788 		break;
1789 
1790 	case SFP_S_WAIT:
1791 		if (event != SFP_E_TIMEOUT)
1792 			break;
1793 
1794 		if (sfp->state & SFP_F_TX_FAULT) {
1795 			/* Wait t_init before indicating that the link is up,
1796 			 * provided the current state indicates no TX_FAULT. If
1797 			 * TX_FAULT clears before this time, that's fine too.
1798 			 */
1799 			timeout = T_INIT_JIFFIES;
1800 			if (timeout > T_WAIT)
1801 				timeout -= T_WAIT;
1802 			else
1803 				timeout = 1;
1804 
1805 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
1806 		} else {
1807 			/* TX_FAULT is not asserted, assume the module has
1808 			 * finished initialising.
1809 			 */
1810 			goto init_done;
1811 		}
1812 		break;
1813 
1814 	case SFP_S_INIT:
1815 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1816 			/* TX_FAULT is still asserted after t_init, so assume
1817 			 * there is a fault.
1818 			 */
1819 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
1820 				     sfp->sm_retries == 5);
1821 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1822 	init_done:	/* TX_FAULT deasserted or we timed out with TX_FAULT
1823 			 * clear.  Probe for the PHY and check the LOS state.
1824 			 */
1825 			sfp_sm_probe_for_phy(sfp);
1826 			sfp_sm_link_check_los(sfp);
1827 
1828 			/* Reset the fault retry count */
1829 			sfp->sm_retries = 5;
1830 		}
1831 		break;
1832 
1833 	case SFP_S_INIT_TX_FAULT:
1834 		if (event == SFP_E_TIMEOUT) {
1835 			sfp_module_tx_fault_reset(sfp);
1836 			sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1837 		}
1838 		break;
1839 
1840 	case SFP_S_WAIT_LOS:
1841 		if (event == SFP_E_TX_FAULT)
1842 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
1843 		else if (sfp_los_event_inactive(sfp, event))
1844 			sfp_sm_link_up(sfp);
1845 		break;
1846 
1847 	case SFP_S_LINK_UP:
1848 		if (event == SFP_E_TX_FAULT) {
1849 			sfp_sm_link_down(sfp);
1850 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
1851 		} else if (sfp_los_event_active(sfp, event)) {
1852 			sfp_sm_link_down(sfp);
1853 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1854 		}
1855 		break;
1856 
1857 	case SFP_S_TX_FAULT:
1858 		if (event == SFP_E_TIMEOUT) {
1859 			sfp_module_tx_fault_reset(sfp);
1860 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1861 		}
1862 		break;
1863 
1864 	case SFP_S_REINIT:
1865 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1866 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
1867 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1868 			dev_info(sfp->dev, "module transmit fault recovered\n");
1869 			sfp_sm_link_check_los(sfp);
1870 		}
1871 		break;
1872 
1873 	case SFP_S_TX_DISABLE:
1874 		break;
1875 	}
1876 }
1877 
1878 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1879 {
1880 	mutex_lock(&sfp->sm_mutex);
1881 
1882 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1883 		mod_state_to_str(sfp->sm_mod_state),
1884 		dev_state_to_str(sfp->sm_dev_state),
1885 		sm_state_to_str(sfp->sm_state),
1886 		event_to_str(event));
1887 
1888 	sfp_sm_device(sfp, event);
1889 	sfp_sm_module(sfp, event);
1890 	sfp_sm_main(sfp, event);
1891 
1892 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1893 		mod_state_to_str(sfp->sm_mod_state),
1894 		dev_state_to_str(sfp->sm_dev_state),
1895 		sm_state_to_str(sfp->sm_state));
1896 
1897 	mutex_unlock(&sfp->sm_mutex);
1898 }
1899 
1900 static void sfp_attach(struct sfp *sfp)
1901 {
1902 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
1903 }
1904 
1905 static void sfp_detach(struct sfp *sfp)
1906 {
1907 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
1908 }
1909 
1910 static void sfp_start(struct sfp *sfp)
1911 {
1912 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1913 }
1914 
1915 static void sfp_stop(struct sfp *sfp)
1916 {
1917 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1918 }
1919 
1920 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1921 {
1922 	/* locking... and check module is present */
1923 
1924 	if (sfp->id.ext.sff8472_compliance &&
1925 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1926 		modinfo->type = ETH_MODULE_SFF_8472;
1927 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1928 	} else {
1929 		modinfo->type = ETH_MODULE_SFF_8079;
1930 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1931 	}
1932 	return 0;
1933 }
1934 
1935 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1936 			     u8 *data)
1937 {
1938 	unsigned int first, last, len;
1939 	int ret;
1940 
1941 	if (ee->len == 0)
1942 		return -EINVAL;
1943 
1944 	first = ee->offset;
1945 	last = ee->offset + ee->len;
1946 	if (first < ETH_MODULE_SFF_8079_LEN) {
1947 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1948 		len -= first;
1949 
1950 		ret = sfp_read(sfp, false, first, data, len);
1951 		if (ret < 0)
1952 			return ret;
1953 
1954 		first += len;
1955 		data += len;
1956 	}
1957 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1958 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1959 		len -= first;
1960 		first -= ETH_MODULE_SFF_8079_LEN;
1961 
1962 		ret = sfp_read(sfp, true, first, data, len);
1963 		if (ret < 0)
1964 			return ret;
1965 	}
1966 	return 0;
1967 }
1968 
1969 static const struct sfp_socket_ops sfp_module_ops = {
1970 	.attach = sfp_attach,
1971 	.detach = sfp_detach,
1972 	.start = sfp_start,
1973 	.stop = sfp_stop,
1974 	.module_info = sfp_module_info,
1975 	.module_eeprom = sfp_module_eeprom,
1976 };
1977 
1978 static void sfp_timeout(struct work_struct *work)
1979 {
1980 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1981 
1982 	rtnl_lock();
1983 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1984 	rtnl_unlock();
1985 }
1986 
1987 static void sfp_check_state(struct sfp *sfp)
1988 {
1989 	unsigned int state, i, changed;
1990 
1991 	mutex_lock(&sfp->st_mutex);
1992 	state = sfp_get_state(sfp);
1993 	changed = state ^ sfp->state;
1994 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1995 
1996 	for (i = 0; i < GPIO_MAX; i++)
1997 		if (changed & BIT(i))
1998 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1999 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2000 
2001 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2002 	sfp->state = state;
2003 
2004 	rtnl_lock();
2005 	if (changed & SFP_F_PRESENT)
2006 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2007 				SFP_E_INSERT : SFP_E_REMOVE);
2008 
2009 	if (changed & SFP_F_TX_FAULT)
2010 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2011 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2012 
2013 	if (changed & SFP_F_LOS)
2014 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2015 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2016 	rtnl_unlock();
2017 	mutex_unlock(&sfp->st_mutex);
2018 }
2019 
2020 static irqreturn_t sfp_irq(int irq, void *data)
2021 {
2022 	struct sfp *sfp = data;
2023 
2024 	sfp_check_state(sfp);
2025 
2026 	return IRQ_HANDLED;
2027 }
2028 
2029 static void sfp_poll(struct work_struct *work)
2030 {
2031 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2032 
2033 	sfp_check_state(sfp);
2034 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2035 }
2036 
2037 static struct sfp *sfp_alloc(struct device *dev)
2038 {
2039 	struct sfp *sfp;
2040 
2041 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2042 	if (!sfp)
2043 		return ERR_PTR(-ENOMEM);
2044 
2045 	sfp->dev = dev;
2046 
2047 	mutex_init(&sfp->sm_mutex);
2048 	mutex_init(&sfp->st_mutex);
2049 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2050 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2051 
2052 	sfp_hwmon_init(sfp);
2053 
2054 	return sfp;
2055 }
2056 
2057 static void sfp_cleanup(void *data)
2058 {
2059 	struct sfp *sfp = data;
2060 
2061 	sfp_hwmon_exit(sfp);
2062 
2063 	cancel_delayed_work_sync(&sfp->poll);
2064 	cancel_delayed_work_sync(&sfp->timeout);
2065 	if (sfp->i2c_mii) {
2066 		mdiobus_unregister(sfp->i2c_mii);
2067 		mdiobus_free(sfp->i2c_mii);
2068 	}
2069 	if (sfp->i2c)
2070 		i2c_put_adapter(sfp->i2c);
2071 	kfree(sfp);
2072 }
2073 
2074 static int sfp_probe(struct platform_device *pdev)
2075 {
2076 	const struct sff_data *sff;
2077 	struct i2c_adapter *i2c;
2078 	struct sfp *sfp;
2079 	bool poll = false;
2080 	int err, i;
2081 
2082 	sfp = sfp_alloc(&pdev->dev);
2083 	if (IS_ERR(sfp))
2084 		return PTR_ERR(sfp);
2085 
2086 	platform_set_drvdata(pdev, sfp);
2087 
2088 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2089 	if (err < 0)
2090 		return err;
2091 
2092 	sff = sfp->type = &sfp_data;
2093 
2094 	if (pdev->dev.of_node) {
2095 		struct device_node *node = pdev->dev.of_node;
2096 		const struct of_device_id *id;
2097 		struct device_node *np;
2098 
2099 		id = of_match_node(sfp_of_match, node);
2100 		if (WARN_ON(!id))
2101 			return -EINVAL;
2102 
2103 		sff = sfp->type = id->data;
2104 
2105 		np = of_parse_phandle(node, "i2c-bus", 0);
2106 		if (!np) {
2107 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2108 			return -ENODEV;
2109 		}
2110 
2111 		i2c = of_find_i2c_adapter_by_node(np);
2112 		of_node_put(np);
2113 	} else if (has_acpi_companion(&pdev->dev)) {
2114 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2115 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2116 		struct fwnode_reference_args args;
2117 		struct acpi_handle *acpi_handle;
2118 		int ret;
2119 
2120 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2121 		if (ret || !is_acpi_device_node(args.fwnode)) {
2122 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2123 			return -ENODEV;
2124 		}
2125 
2126 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2127 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2128 	} else {
2129 		return -EINVAL;
2130 	}
2131 
2132 	if (!i2c)
2133 		return -EPROBE_DEFER;
2134 
2135 	err = sfp_i2c_configure(sfp, i2c);
2136 	if (err < 0) {
2137 		i2c_put_adapter(i2c);
2138 		return err;
2139 	}
2140 
2141 	for (i = 0; i < GPIO_MAX; i++)
2142 		if (sff->gpios & BIT(i)) {
2143 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2144 					   gpio_of_names[i], gpio_flags[i]);
2145 			if (IS_ERR(sfp->gpio[i]))
2146 				return PTR_ERR(sfp->gpio[i]);
2147 		}
2148 
2149 	sfp->get_state = sfp_gpio_get_state;
2150 	sfp->set_state = sfp_gpio_set_state;
2151 
2152 	/* Modules that have no detect signal are always present */
2153 	if (!(sfp->gpio[GPIO_MODDEF0]))
2154 		sfp->get_state = sff_gpio_get_state;
2155 
2156 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2157 				 &sfp->max_power_mW);
2158 	if (!sfp->max_power_mW)
2159 		sfp->max_power_mW = 1000;
2160 
2161 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2162 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2163 
2164 	/* Get the initial state, and always signal TX disable,
2165 	 * since the network interface will not be up.
2166 	 */
2167 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2168 
2169 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2170 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2171 		sfp->state |= SFP_F_RATE_SELECT;
2172 	sfp_set_state(sfp, sfp->state);
2173 	sfp_module_tx_disable(sfp);
2174 	if (sfp->state & SFP_F_PRESENT) {
2175 		rtnl_lock();
2176 		sfp_sm_event(sfp, SFP_E_INSERT);
2177 		rtnl_unlock();
2178 	}
2179 
2180 	for (i = 0; i < GPIO_MAX; i++) {
2181 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2182 			continue;
2183 
2184 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2185 		if (!sfp->gpio_irq[i]) {
2186 			poll = true;
2187 			continue;
2188 		}
2189 
2190 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2191 						NULL, sfp_irq,
2192 						IRQF_ONESHOT |
2193 						IRQF_TRIGGER_RISING |
2194 						IRQF_TRIGGER_FALLING,
2195 						dev_name(sfp->dev), sfp);
2196 		if (err) {
2197 			sfp->gpio_irq[i] = 0;
2198 			poll = true;
2199 		}
2200 	}
2201 
2202 	if (poll)
2203 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2204 
2205 	/* We could have an issue in cases no Tx disable pin is available or
2206 	 * wired as modules using a laser as their light source will continue to
2207 	 * be active when the fiber is removed. This could be a safety issue and
2208 	 * we should at least warn the user about that.
2209 	 */
2210 	if (!sfp->gpio[GPIO_TX_DISABLE])
2211 		dev_warn(sfp->dev,
2212 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2213 
2214 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2215 	if (!sfp->sfp_bus)
2216 		return -ENOMEM;
2217 
2218 	return 0;
2219 }
2220 
2221 static int sfp_remove(struct platform_device *pdev)
2222 {
2223 	struct sfp *sfp = platform_get_drvdata(pdev);
2224 
2225 	sfp_unregister_socket(sfp->sfp_bus);
2226 
2227 	return 0;
2228 }
2229 
2230 static void sfp_shutdown(struct platform_device *pdev)
2231 {
2232 	struct sfp *sfp = platform_get_drvdata(pdev);
2233 	int i;
2234 
2235 	for (i = 0; i < GPIO_MAX; i++) {
2236 		if (!sfp->gpio_irq[i])
2237 			continue;
2238 
2239 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2240 	}
2241 
2242 	cancel_delayed_work_sync(&sfp->poll);
2243 	cancel_delayed_work_sync(&sfp->timeout);
2244 }
2245 
2246 static struct platform_driver sfp_driver = {
2247 	.probe = sfp_probe,
2248 	.remove = sfp_remove,
2249 	.shutdown = sfp_shutdown,
2250 	.driver = {
2251 		.name = "sfp",
2252 		.of_match_table = sfp_of_match,
2253 	},
2254 };
2255 
2256 static int sfp_init(void)
2257 {
2258 	poll_jiffies = msecs_to_jiffies(100);
2259 
2260 	return platform_driver_register(&sfp_driver);
2261 }
2262 module_init(sfp_init);
2263 
2264 static void sfp_exit(void)
2265 {
2266 	platform_driver_unregister(&sfp_driver);
2267 }
2268 module_exit(sfp_exit);
2269 
2270 MODULE_ALIAS("platform:sfp");
2271 MODULE_AUTHOR("Russell King");
2272 MODULE_LICENSE("GPL v2");
2273