xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 1154261e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ctype.h>
3 #include <linux/debugfs.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_ATTACH,
40 	SFP_E_DEV_DETACH,
41 	SFP_E_DEV_DOWN,
42 	SFP_E_DEV_UP,
43 	SFP_E_TX_FAULT,
44 	SFP_E_TX_CLEAR,
45 	SFP_E_LOS_HIGH,
46 	SFP_E_LOS_LOW,
47 	SFP_E_TIMEOUT,
48 
49 	SFP_MOD_EMPTY = 0,
50 	SFP_MOD_ERROR,
51 	SFP_MOD_PROBE,
52 	SFP_MOD_WAITDEV,
53 	SFP_MOD_HPOWER,
54 	SFP_MOD_WAITPWR,
55 	SFP_MOD_PRESENT,
56 
57 	SFP_DEV_DETACHED = 0,
58 	SFP_DEV_DOWN,
59 	SFP_DEV_UP,
60 
61 	SFP_S_DOWN = 0,
62 	SFP_S_FAIL,
63 	SFP_S_WAIT,
64 	SFP_S_INIT,
65 	SFP_S_INIT_PHY,
66 	SFP_S_INIT_TX_FAULT,
67 	SFP_S_WAIT_LOS,
68 	SFP_S_LINK_UP,
69 	SFP_S_TX_FAULT,
70 	SFP_S_REINIT,
71 	SFP_S_TX_DISABLE,
72 };
73 
74 static const char  * const mod_state_strings[] = {
75 	[SFP_MOD_EMPTY] = "empty",
76 	[SFP_MOD_ERROR] = "error",
77 	[SFP_MOD_PROBE] = "probe",
78 	[SFP_MOD_WAITDEV] = "waitdev",
79 	[SFP_MOD_HPOWER] = "hpower",
80 	[SFP_MOD_WAITPWR] = "waitpwr",
81 	[SFP_MOD_PRESENT] = "present",
82 };
83 
84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 		return "Unknown module state";
88 	return mod_state_strings[mod_state];
89 }
90 
91 static const char * const dev_state_strings[] = {
92 	[SFP_DEV_DETACHED] = "detached",
93 	[SFP_DEV_DOWN] = "down",
94 	[SFP_DEV_UP] = "up",
95 };
96 
97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 		return "Unknown device state";
101 	return dev_state_strings[dev_state];
102 }
103 
104 static const char * const event_strings[] = {
105 	[SFP_E_INSERT] = "insert",
106 	[SFP_E_REMOVE] = "remove",
107 	[SFP_E_DEV_ATTACH] = "dev_attach",
108 	[SFP_E_DEV_DETACH] = "dev_detach",
109 	[SFP_E_DEV_DOWN] = "dev_down",
110 	[SFP_E_DEV_UP] = "dev_up",
111 	[SFP_E_TX_FAULT] = "tx_fault",
112 	[SFP_E_TX_CLEAR] = "tx_clear",
113 	[SFP_E_LOS_HIGH] = "los_high",
114 	[SFP_E_LOS_LOW] = "los_low",
115 	[SFP_E_TIMEOUT] = "timeout",
116 };
117 
118 static const char *event_to_str(unsigned short event)
119 {
120 	if (event >= ARRAY_SIZE(event_strings))
121 		return "Unknown event";
122 	return event_strings[event];
123 }
124 
125 static const char * const sm_state_strings[] = {
126 	[SFP_S_DOWN] = "down",
127 	[SFP_S_FAIL] = "fail",
128 	[SFP_S_WAIT] = "wait",
129 	[SFP_S_INIT] = "init",
130 	[SFP_S_INIT_PHY] = "init_phy",
131 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 	[SFP_S_WAIT_LOS] = "wait_los",
133 	[SFP_S_LINK_UP] = "link_up",
134 	[SFP_S_TX_FAULT] = "tx_fault",
135 	[SFP_S_REINIT] = "reinit",
136 	[SFP_S_TX_DISABLE] = "tx_disable",
137 };
138 
139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 		return "Unknown state";
143 	return sm_state_strings[sm_state];
144 }
145 
146 static const char *gpio_names[] = {
147 	"mod-def0",
148 	"los",
149 	"tx-fault",
150 	"tx-disable",
151 	"rate-select0",
152 };
153 
154 static const enum gpiod_flags gpio_flags[] = {
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_ASIS,
159 	GPIOD_ASIS,
160 };
161 
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163  * non-cooled module to initialise its laser safety circuitry. We wait
164  * an initial T_WAIT period before we check the tx fault to give any PHY
165  * on board (for a copper SFP) time to initialise.
166  */
167 #define T_WAIT			msecs_to_jiffies(50)
168 #define T_WAIT_ROLLBALL		msecs_to_jiffies(25000)
169 #define T_START_UP		msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
171 
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US		10
176 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
177 
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT		5
184 #define N_FAULT			5
185 
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY		msecs_to_jiffies(50)
190 #define R_PHY_RETRY		12
191 
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL		msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT	10
203 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW	12
205 
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
209  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
210  */
211 #define SFP_PHY_ADDR		22
212 #define SFP_PHY_ADDR_ROLLBALL	17
213 
214 struct sff_data {
215 	unsigned int gpios;
216 	bool (*module_supported)(const struct sfp_eeprom_id *id);
217 };
218 
219 struct sfp {
220 	struct device *dev;
221 	struct i2c_adapter *i2c;
222 	struct mii_bus *i2c_mii;
223 	struct sfp_bus *sfp_bus;
224 	enum mdio_i2c_proto mdio_protocol;
225 	struct phy_device *mod_phy;
226 	const struct sff_data *type;
227 	size_t i2c_block_size;
228 	u32 max_power_mW;
229 
230 	unsigned int (*get_state)(struct sfp *);
231 	void (*set_state)(struct sfp *, unsigned int);
232 	int (*read)(struct sfp *, bool, u8, void *, size_t);
233 	int (*write)(struct sfp *, bool, u8, void *, size_t);
234 
235 	struct gpio_desc *gpio[GPIO_MAX];
236 	int gpio_irq[GPIO_MAX];
237 
238 	bool need_poll;
239 
240 	struct mutex st_mutex;			/* Protects state */
241 	unsigned int state_hw_mask;
242 	unsigned int state_soft_mask;
243 	unsigned int state;
244 	struct delayed_work poll;
245 	struct delayed_work timeout;
246 	struct mutex sm_mutex;			/* Protects state machine */
247 	unsigned char sm_mod_state;
248 	unsigned char sm_mod_tries_init;
249 	unsigned char sm_mod_tries;
250 	unsigned char sm_dev_state;
251 	unsigned short sm_state;
252 	unsigned char sm_fault_retries;
253 	unsigned char sm_phy_retries;
254 
255 	struct sfp_eeprom_id id;
256 	unsigned int module_power_mW;
257 	unsigned int module_t_start_up;
258 	unsigned int module_t_wait;
259 	bool tx_fault_ignore;
260 
261 	const struct sfp_quirk *quirk;
262 
263 #if IS_ENABLED(CONFIG_HWMON)
264 	struct sfp_diag diag;
265 	struct delayed_work hwmon_probe;
266 	unsigned int hwmon_tries;
267 	struct device *hwmon_dev;
268 	char *hwmon_name;
269 #endif
270 
271 #if IS_ENABLED(CONFIG_DEBUG_FS)
272 	struct dentry *debugfs_dir;
273 #endif
274 };
275 
276 static bool sff_module_supported(const struct sfp_eeprom_id *id)
277 {
278 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
279 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
280 }
281 
282 static const struct sff_data sff_data = {
283 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
284 	.module_supported = sff_module_supported,
285 };
286 
287 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
288 {
289 	if (id->base.phys_id == SFF8024_ID_SFP &&
290 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
291 		return true;
292 
293 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
294 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
295 	 * as supported based on vendor name and pn match.
296 	 */
297 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
298 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
299 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
300 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
301 		return true;
302 
303 	return false;
304 }
305 
306 static const struct sff_data sfp_data = {
307 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
308 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
309 	.module_supported = sfp_module_supported,
310 };
311 
312 static const struct of_device_id sfp_of_match[] = {
313 	{ .compatible = "sff,sff", .data = &sff_data, },
314 	{ .compatible = "sff,sfp", .data = &sfp_data, },
315 	{ },
316 };
317 MODULE_DEVICE_TABLE(of, sfp_of_match);
318 
319 static void sfp_fixup_long_startup(struct sfp *sfp)
320 {
321 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
322 }
323 
324 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
325 {
326 	sfp->tx_fault_ignore = true;
327 }
328 
329 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
330 {
331 	/* Ignore the TX_FAULT and LOS signals on this module.
332 	 * these are possibly used for other purposes on this
333 	 * module, e.g. a serial port.
334 	 */
335 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
336 }
337 
338 static void sfp_fixup_rollball(struct sfp *sfp)
339 {
340 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
341 	sfp->module_t_wait = T_WAIT_ROLLBALL;
342 }
343 
344 static void sfp_fixup_rollball_cc(struct sfp *sfp)
345 {
346 	sfp_fixup_rollball(sfp);
347 
348 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
349 	 * burned in EEPROM. For PHY probing we need the correct one.
350 	 */
351 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
352 }
353 
354 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
355 				unsigned long *modes,
356 				unsigned long *interfaces)
357 {
358 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
359 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
360 }
361 
362 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
363 				      unsigned long *modes,
364 				      unsigned long *interfaces)
365 {
366 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
367 	 * types including 10G Ethernet which is not truth. So clear all claimed
368 	 * modes and set only one mode which module supports: 1000baseX_Full.
369 	 */
370 	linkmode_zero(modes);
371 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
372 }
373 
374 #define SFP_QUIRK(_v, _p, _m, _f) \
375 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
376 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
377 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
378 
379 static const struct sfp_quirk sfp_quirks[] = {
380 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
381 	// report 2500MBd NRZ in their EEPROM
382 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
383 
384 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
385 	// NRZ in their EEPROM
386 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
387 		  sfp_fixup_long_startup),
388 
389 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
390 
391 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
392 	// their EEPROM
393 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
394 		  sfp_fixup_ignore_tx_fault),
395 
396 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
397 	// 2500MBd NRZ in their EEPROM
398 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
399 
400 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
401 
402 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
403 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
404 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
405 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
406 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
407 };
408 
409 static size_t sfp_strlen(const char *str, size_t maxlen)
410 {
411 	size_t size, i;
412 
413 	/* Trailing characters should be filled with space chars, but
414 	 * some manufacturers can't read SFF-8472 and use NUL.
415 	 */
416 	for (i = 0, size = 0; i < maxlen; i++)
417 		if (str[i] != ' ' && str[i] != '\0')
418 			size = i + 1;
419 
420 	return size;
421 }
422 
423 static bool sfp_match(const char *qs, const char *str, size_t len)
424 {
425 	if (!qs)
426 		return true;
427 	if (strlen(qs) != len)
428 		return false;
429 	return !strncmp(qs, str, len);
430 }
431 
432 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
433 {
434 	const struct sfp_quirk *q;
435 	unsigned int i;
436 	size_t vs, ps;
437 
438 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
439 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
440 
441 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
442 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
443 		    sfp_match(q->part, id->base.vendor_pn, ps))
444 			return q;
445 
446 	return NULL;
447 }
448 
449 static unsigned long poll_jiffies;
450 
451 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
452 {
453 	unsigned int i, state, v;
454 
455 	for (i = state = 0; i < GPIO_MAX; i++) {
456 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
457 			continue;
458 
459 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
460 		if (v)
461 			state |= BIT(i);
462 	}
463 
464 	return state;
465 }
466 
467 static unsigned int sff_gpio_get_state(struct sfp *sfp)
468 {
469 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
470 }
471 
472 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
473 {
474 	if (state & SFP_F_PRESENT) {
475 		/* If the module is present, drive the signals */
476 		if (sfp->gpio[GPIO_TX_DISABLE])
477 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
478 					       state & SFP_F_TX_DISABLE);
479 		if (state & SFP_F_RATE_SELECT)
480 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
481 					       state & SFP_F_RATE_SELECT);
482 	} else {
483 		/* Otherwise, let them float to the pull-ups */
484 		if (sfp->gpio[GPIO_TX_DISABLE])
485 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
486 		if (state & SFP_F_RATE_SELECT)
487 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
488 	}
489 }
490 
491 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
492 			size_t len)
493 {
494 	struct i2c_msg msgs[2];
495 	u8 bus_addr = a2 ? 0x51 : 0x50;
496 	size_t block_size = sfp->i2c_block_size;
497 	size_t this_len;
498 	int ret;
499 
500 	msgs[0].addr = bus_addr;
501 	msgs[0].flags = 0;
502 	msgs[0].len = 1;
503 	msgs[0].buf = &dev_addr;
504 	msgs[1].addr = bus_addr;
505 	msgs[1].flags = I2C_M_RD;
506 	msgs[1].len = len;
507 	msgs[1].buf = buf;
508 
509 	while (len) {
510 		this_len = len;
511 		if (this_len > block_size)
512 			this_len = block_size;
513 
514 		msgs[1].len = this_len;
515 
516 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
517 		if (ret < 0)
518 			return ret;
519 
520 		if (ret != ARRAY_SIZE(msgs))
521 			break;
522 
523 		msgs[1].buf += this_len;
524 		dev_addr += this_len;
525 		len -= this_len;
526 	}
527 
528 	return msgs[1].buf - (u8 *)buf;
529 }
530 
531 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
532 	size_t len)
533 {
534 	struct i2c_msg msgs[1];
535 	u8 bus_addr = a2 ? 0x51 : 0x50;
536 	int ret;
537 
538 	msgs[0].addr = bus_addr;
539 	msgs[0].flags = 0;
540 	msgs[0].len = 1 + len;
541 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
542 	if (!msgs[0].buf)
543 		return -ENOMEM;
544 
545 	msgs[0].buf[0] = dev_addr;
546 	memcpy(&msgs[0].buf[1], buf, len);
547 
548 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
549 
550 	kfree(msgs[0].buf);
551 
552 	if (ret < 0)
553 		return ret;
554 
555 	return ret == ARRAY_SIZE(msgs) ? len : 0;
556 }
557 
558 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
559 {
560 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
561 		return -EINVAL;
562 
563 	sfp->i2c = i2c;
564 	sfp->read = sfp_i2c_read;
565 	sfp->write = sfp_i2c_write;
566 
567 	return 0;
568 }
569 
570 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
571 {
572 	struct mii_bus *i2c_mii;
573 	int ret;
574 
575 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
576 	if (IS_ERR(i2c_mii))
577 		return PTR_ERR(i2c_mii);
578 
579 	i2c_mii->name = "SFP I2C Bus";
580 	i2c_mii->phy_mask = ~0;
581 
582 	ret = mdiobus_register(i2c_mii);
583 	if (ret < 0) {
584 		mdiobus_free(i2c_mii);
585 		return ret;
586 	}
587 
588 	sfp->i2c_mii = i2c_mii;
589 
590 	return 0;
591 }
592 
593 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
594 {
595 	mdiobus_unregister(sfp->i2c_mii);
596 	sfp->i2c_mii = NULL;
597 }
598 
599 /* Interface */
600 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
601 {
602 	return sfp->read(sfp, a2, addr, buf, len);
603 }
604 
605 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
606 {
607 	return sfp->write(sfp, a2, addr, buf, len);
608 }
609 
610 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
611 {
612 	int ret;
613 	u8 old, v;
614 
615 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
616 	if (ret != sizeof(old))
617 		return ret;
618 
619 	v = (old & ~mask) | (val & mask);
620 	if (v == old)
621 		return sizeof(v);
622 
623 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
624 }
625 
626 static unsigned int sfp_soft_get_state(struct sfp *sfp)
627 {
628 	unsigned int state = 0;
629 	u8 status;
630 	int ret;
631 
632 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
633 	if (ret == sizeof(status)) {
634 		if (status & SFP_STATUS_RX_LOS)
635 			state |= SFP_F_LOS;
636 		if (status & SFP_STATUS_TX_FAULT)
637 			state |= SFP_F_TX_FAULT;
638 	} else {
639 		dev_err_ratelimited(sfp->dev,
640 				    "failed to read SFP soft status: %pe\n",
641 				    ERR_PTR(ret));
642 		/* Preserve the current state */
643 		state = sfp->state;
644 	}
645 
646 	return state & sfp->state_soft_mask;
647 }
648 
649 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
650 {
651 	u8 mask = SFP_STATUS_TX_DISABLE_FORCE;
652 	u8 val = 0;
653 
654 	if (state & SFP_F_TX_DISABLE)
655 		val |= SFP_STATUS_TX_DISABLE_FORCE;
656 
657 
658 	sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
659 }
660 
661 static void sfp_soft_start_poll(struct sfp *sfp)
662 {
663 	const struct sfp_eeprom_id *id = &sfp->id;
664 	unsigned int mask = 0;
665 
666 	sfp->state_soft_mask = 0;
667 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
668 		mask |= SFP_F_TX_DISABLE;
669 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
670 		mask |= SFP_F_TX_FAULT;
671 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
672 		mask |= SFP_F_LOS;
673 
674 	// Poll the soft state for hardware pins we want to ignore
675 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
676 
677 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
678 	    !sfp->need_poll)
679 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
680 }
681 
682 static void sfp_soft_stop_poll(struct sfp *sfp)
683 {
684 	sfp->state_soft_mask = 0;
685 }
686 
687 static unsigned int sfp_get_state(struct sfp *sfp)
688 {
689 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
690 	unsigned int state;
691 
692 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
693 	if (state & SFP_F_PRESENT && soft)
694 		state |= sfp_soft_get_state(sfp);
695 
696 	return state;
697 }
698 
699 static void sfp_set_state(struct sfp *sfp, unsigned int state)
700 {
701 	sfp->set_state(sfp, state);
702 
703 	if (state & SFP_F_PRESENT &&
704 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
705 		sfp_soft_set_state(sfp, state);
706 }
707 
708 static unsigned int sfp_check(void *buf, size_t len)
709 {
710 	u8 *p, check;
711 
712 	for (p = buf, check = 0; len; p++, len--)
713 		check += *p;
714 
715 	return check;
716 }
717 
718 /* hwmon */
719 #if IS_ENABLED(CONFIG_HWMON)
720 static umode_t sfp_hwmon_is_visible(const void *data,
721 				    enum hwmon_sensor_types type,
722 				    u32 attr, int channel)
723 {
724 	const struct sfp *sfp = data;
725 
726 	switch (type) {
727 	case hwmon_temp:
728 		switch (attr) {
729 		case hwmon_temp_min_alarm:
730 		case hwmon_temp_max_alarm:
731 		case hwmon_temp_lcrit_alarm:
732 		case hwmon_temp_crit_alarm:
733 		case hwmon_temp_min:
734 		case hwmon_temp_max:
735 		case hwmon_temp_lcrit:
736 		case hwmon_temp_crit:
737 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
738 				return 0;
739 			fallthrough;
740 		case hwmon_temp_input:
741 		case hwmon_temp_label:
742 			return 0444;
743 		default:
744 			return 0;
745 		}
746 	case hwmon_in:
747 		switch (attr) {
748 		case hwmon_in_min_alarm:
749 		case hwmon_in_max_alarm:
750 		case hwmon_in_lcrit_alarm:
751 		case hwmon_in_crit_alarm:
752 		case hwmon_in_min:
753 		case hwmon_in_max:
754 		case hwmon_in_lcrit:
755 		case hwmon_in_crit:
756 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
757 				return 0;
758 			fallthrough;
759 		case hwmon_in_input:
760 		case hwmon_in_label:
761 			return 0444;
762 		default:
763 			return 0;
764 		}
765 	case hwmon_curr:
766 		switch (attr) {
767 		case hwmon_curr_min_alarm:
768 		case hwmon_curr_max_alarm:
769 		case hwmon_curr_lcrit_alarm:
770 		case hwmon_curr_crit_alarm:
771 		case hwmon_curr_min:
772 		case hwmon_curr_max:
773 		case hwmon_curr_lcrit:
774 		case hwmon_curr_crit:
775 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
776 				return 0;
777 			fallthrough;
778 		case hwmon_curr_input:
779 		case hwmon_curr_label:
780 			return 0444;
781 		default:
782 			return 0;
783 		}
784 	case hwmon_power:
785 		/* External calibration of receive power requires
786 		 * floating point arithmetic. Doing that in the kernel
787 		 * is not easy, so just skip it. If the module does
788 		 * not require external calibration, we can however
789 		 * show receiver power, since FP is then not needed.
790 		 */
791 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
792 		    channel == 1)
793 			return 0;
794 		switch (attr) {
795 		case hwmon_power_min_alarm:
796 		case hwmon_power_max_alarm:
797 		case hwmon_power_lcrit_alarm:
798 		case hwmon_power_crit_alarm:
799 		case hwmon_power_min:
800 		case hwmon_power_max:
801 		case hwmon_power_lcrit:
802 		case hwmon_power_crit:
803 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
804 				return 0;
805 			fallthrough;
806 		case hwmon_power_input:
807 		case hwmon_power_label:
808 			return 0444;
809 		default:
810 			return 0;
811 		}
812 	default:
813 		return 0;
814 	}
815 }
816 
817 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
818 {
819 	__be16 val;
820 	int err;
821 
822 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
823 	if (err < 0)
824 		return err;
825 
826 	*value = be16_to_cpu(val);
827 
828 	return 0;
829 }
830 
831 static void sfp_hwmon_to_rx_power(long *value)
832 {
833 	*value = DIV_ROUND_CLOSEST(*value, 10);
834 }
835 
836 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
837 				long *value)
838 {
839 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
840 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
841 }
842 
843 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
844 {
845 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
846 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
847 
848 	if (*value >= 0x8000)
849 		*value -= 0x10000;
850 
851 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
852 }
853 
854 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
855 {
856 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
857 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
858 
859 	*value = DIV_ROUND_CLOSEST(*value, 10);
860 }
861 
862 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
863 {
864 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
865 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
866 
867 	*value = DIV_ROUND_CLOSEST(*value, 500);
868 }
869 
870 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
871 {
872 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
873 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
874 
875 	*value = DIV_ROUND_CLOSEST(*value, 10);
876 }
877 
878 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
879 {
880 	int err;
881 
882 	err = sfp_hwmon_read_sensor(sfp, reg, value);
883 	if (err < 0)
884 		return err;
885 
886 	sfp_hwmon_calibrate_temp(sfp, value);
887 
888 	return 0;
889 }
890 
891 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
892 {
893 	int err;
894 
895 	err = sfp_hwmon_read_sensor(sfp, reg, value);
896 	if (err < 0)
897 		return err;
898 
899 	sfp_hwmon_calibrate_vcc(sfp, value);
900 
901 	return 0;
902 }
903 
904 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
905 {
906 	int err;
907 
908 	err = sfp_hwmon_read_sensor(sfp, reg, value);
909 	if (err < 0)
910 		return err;
911 
912 	sfp_hwmon_calibrate_bias(sfp, value);
913 
914 	return 0;
915 }
916 
917 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
918 {
919 	int err;
920 
921 	err = sfp_hwmon_read_sensor(sfp, reg, value);
922 	if (err < 0)
923 		return err;
924 
925 	sfp_hwmon_calibrate_tx_power(sfp, value);
926 
927 	return 0;
928 }
929 
930 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
931 {
932 	int err;
933 
934 	err = sfp_hwmon_read_sensor(sfp, reg, value);
935 	if (err < 0)
936 		return err;
937 
938 	sfp_hwmon_to_rx_power(value);
939 
940 	return 0;
941 }
942 
943 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
944 {
945 	u8 status;
946 	int err;
947 
948 	switch (attr) {
949 	case hwmon_temp_input:
950 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
951 
952 	case hwmon_temp_lcrit:
953 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
954 		sfp_hwmon_calibrate_temp(sfp, value);
955 		return 0;
956 
957 	case hwmon_temp_min:
958 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
959 		sfp_hwmon_calibrate_temp(sfp, value);
960 		return 0;
961 	case hwmon_temp_max:
962 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
963 		sfp_hwmon_calibrate_temp(sfp, value);
964 		return 0;
965 
966 	case hwmon_temp_crit:
967 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
968 		sfp_hwmon_calibrate_temp(sfp, value);
969 		return 0;
970 
971 	case hwmon_temp_lcrit_alarm:
972 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
973 		if (err < 0)
974 			return err;
975 
976 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
977 		return 0;
978 
979 	case hwmon_temp_min_alarm:
980 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
981 		if (err < 0)
982 			return err;
983 
984 		*value = !!(status & SFP_WARN0_TEMP_LOW);
985 		return 0;
986 
987 	case hwmon_temp_max_alarm:
988 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
989 		if (err < 0)
990 			return err;
991 
992 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
993 		return 0;
994 
995 	case hwmon_temp_crit_alarm:
996 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
997 		if (err < 0)
998 			return err;
999 
1000 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1001 		return 0;
1002 	default:
1003 		return -EOPNOTSUPP;
1004 	}
1005 
1006 	return -EOPNOTSUPP;
1007 }
1008 
1009 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1010 {
1011 	u8 status;
1012 	int err;
1013 
1014 	switch (attr) {
1015 	case hwmon_in_input:
1016 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1017 
1018 	case hwmon_in_lcrit:
1019 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1020 		sfp_hwmon_calibrate_vcc(sfp, value);
1021 		return 0;
1022 
1023 	case hwmon_in_min:
1024 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1025 		sfp_hwmon_calibrate_vcc(sfp, value);
1026 		return 0;
1027 
1028 	case hwmon_in_max:
1029 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1030 		sfp_hwmon_calibrate_vcc(sfp, value);
1031 		return 0;
1032 
1033 	case hwmon_in_crit:
1034 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1035 		sfp_hwmon_calibrate_vcc(sfp, value);
1036 		return 0;
1037 
1038 	case hwmon_in_lcrit_alarm:
1039 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1040 		if (err < 0)
1041 			return err;
1042 
1043 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1044 		return 0;
1045 
1046 	case hwmon_in_min_alarm:
1047 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1048 		if (err < 0)
1049 			return err;
1050 
1051 		*value = !!(status & SFP_WARN0_VCC_LOW);
1052 		return 0;
1053 
1054 	case hwmon_in_max_alarm:
1055 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1056 		if (err < 0)
1057 			return err;
1058 
1059 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1060 		return 0;
1061 
1062 	case hwmon_in_crit_alarm:
1063 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1064 		if (err < 0)
1065 			return err;
1066 
1067 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1068 		return 0;
1069 	default:
1070 		return -EOPNOTSUPP;
1071 	}
1072 
1073 	return -EOPNOTSUPP;
1074 }
1075 
1076 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1077 {
1078 	u8 status;
1079 	int err;
1080 
1081 	switch (attr) {
1082 	case hwmon_curr_input:
1083 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1084 
1085 	case hwmon_curr_lcrit:
1086 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1087 		sfp_hwmon_calibrate_bias(sfp, value);
1088 		return 0;
1089 
1090 	case hwmon_curr_min:
1091 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1092 		sfp_hwmon_calibrate_bias(sfp, value);
1093 		return 0;
1094 
1095 	case hwmon_curr_max:
1096 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1097 		sfp_hwmon_calibrate_bias(sfp, value);
1098 		return 0;
1099 
1100 	case hwmon_curr_crit:
1101 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1102 		sfp_hwmon_calibrate_bias(sfp, value);
1103 		return 0;
1104 
1105 	case hwmon_curr_lcrit_alarm:
1106 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1107 		if (err < 0)
1108 			return err;
1109 
1110 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1111 		return 0;
1112 
1113 	case hwmon_curr_min_alarm:
1114 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1115 		if (err < 0)
1116 			return err;
1117 
1118 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1119 		return 0;
1120 
1121 	case hwmon_curr_max_alarm:
1122 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1123 		if (err < 0)
1124 			return err;
1125 
1126 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1127 		return 0;
1128 
1129 	case hwmon_curr_crit_alarm:
1130 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1131 		if (err < 0)
1132 			return err;
1133 
1134 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1135 		return 0;
1136 	default:
1137 		return -EOPNOTSUPP;
1138 	}
1139 
1140 	return -EOPNOTSUPP;
1141 }
1142 
1143 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1144 {
1145 	u8 status;
1146 	int err;
1147 
1148 	switch (attr) {
1149 	case hwmon_power_input:
1150 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1151 
1152 	case hwmon_power_lcrit:
1153 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1154 		sfp_hwmon_calibrate_tx_power(sfp, value);
1155 		return 0;
1156 
1157 	case hwmon_power_min:
1158 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1159 		sfp_hwmon_calibrate_tx_power(sfp, value);
1160 		return 0;
1161 
1162 	case hwmon_power_max:
1163 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1164 		sfp_hwmon_calibrate_tx_power(sfp, value);
1165 		return 0;
1166 
1167 	case hwmon_power_crit:
1168 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1169 		sfp_hwmon_calibrate_tx_power(sfp, value);
1170 		return 0;
1171 
1172 	case hwmon_power_lcrit_alarm:
1173 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1174 		if (err < 0)
1175 			return err;
1176 
1177 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1178 		return 0;
1179 
1180 	case hwmon_power_min_alarm:
1181 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1182 		if (err < 0)
1183 			return err;
1184 
1185 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1186 		return 0;
1187 
1188 	case hwmon_power_max_alarm:
1189 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1190 		if (err < 0)
1191 			return err;
1192 
1193 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1194 		return 0;
1195 
1196 	case hwmon_power_crit_alarm:
1197 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1198 		if (err < 0)
1199 			return err;
1200 
1201 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1202 		return 0;
1203 	default:
1204 		return -EOPNOTSUPP;
1205 	}
1206 
1207 	return -EOPNOTSUPP;
1208 }
1209 
1210 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1211 {
1212 	u8 status;
1213 	int err;
1214 
1215 	switch (attr) {
1216 	case hwmon_power_input:
1217 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1218 
1219 	case hwmon_power_lcrit:
1220 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1221 		sfp_hwmon_to_rx_power(value);
1222 		return 0;
1223 
1224 	case hwmon_power_min:
1225 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1226 		sfp_hwmon_to_rx_power(value);
1227 		return 0;
1228 
1229 	case hwmon_power_max:
1230 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1231 		sfp_hwmon_to_rx_power(value);
1232 		return 0;
1233 
1234 	case hwmon_power_crit:
1235 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1236 		sfp_hwmon_to_rx_power(value);
1237 		return 0;
1238 
1239 	case hwmon_power_lcrit_alarm:
1240 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1241 		if (err < 0)
1242 			return err;
1243 
1244 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1245 		return 0;
1246 
1247 	case hwmon_power_min_alarm:
1248 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1249 		if (err < 0)
1250 			return err;
1251 
1252 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1253 		return 0;
1254 
1255 	case hwmon_power_max_alarm:
1256 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1257 		if (err < 0)
1258 			return err;
1259 
1260 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1261 		return 0;
1262 
1263 	case hwmon_power_crit_alarm:
1264 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1265 		if (err < 0)
1266 			return err;
1267 
1268 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1269 		return 0;
1270 	default:
1271 		return -EOPNOTSUPP;
1272 	}
1273 
1274 	return -EOPNOTSUPP;
1275 }
1276 
1277 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1278 			  u32 attr, int channel, long *value)
1279 {
1280 	struct sfp *sfp = dev_get_drvdata(dev);
1281 
1282 	switch (type) {
1283 	case hwmon_temp:
1284 		return sfp_hwmon_temp(sfp, attr, value);
1285 	case hwmon_in:
1286 		return sfp_hwmon_vcc(sfp, attr, value);
1287 	case hwmon_curr:
1288 		return sfp_hwmon_bias(sfp, attr, value);
1289 	case hwmon_power:
1290 		switch (channel) {
1291 		case 0:
1292 			return sfp_hwmon_tx_power(sfp, attr, value);
1293 		case 1:
1294 			return sfp_hwmon_rx_power(sfp, attr, value);
1295 		default:
1296 			return -EOPNOTSUPP;
1297 		}
1298 	default:
1299 		return -EOPNOTSUPP;
1300 	}
1301 }
1302 
1303 static const char *const sfp_hwmon_power_labels[] = {
1304 	"TX_power",
1305 	"RX_power",
1306 };
1307 
1308 static int sfp_hwmon_read_string(struct device *dev,
1309 				 enum hwmon_sensor_types type,
1310 				 u32 attr, int channel, const char **str)
1311 {
1312 	switch (type) {
1313 	case hwmon_curr:
1314 		switch (attr) {
1315 		case hwmon_curr_label:
1316 			*str = "bias";
1317 			return 0;
1318 		default:
1319 			return -EOPNOTSUPP;
1320 		}
1321 		break;
1322 	case hwmon_temp:
1323 		switch (attr) {
1324 		case hwmon_temp_label:
1325 			*str = "temperature";
1326 			return 0;
1327 		default:
1328 			return -EOPNOTSUPP;
1329 		}
1330 		break;
1331 	case hwmon_in:
1332 		switch (attr) {
1333 		case hwmon_in_label:
1334 			*str = "VCC";
1335 			return 0;
1336 		default:
1337 			return -EOPNOTSUPP;
1338 		}
1339 		break;
1340 	case hwmon_power:
1341 		switch (attr) {
1342 		case hwmon_power_label:
1343 			*str = sfp_hwmon_power_labels[channel];
1344 			return 0;
1345 		default:
1346 			return -EOPNOTSUPP;
1347 		}
1348 		break;
1349 	default:
1350 		return -EOPNOTSUPP;
1351 	}
1352 
1353 	return -EOPNOTSUPP;
1354 }
1355 
1356 static const struct hwmon_ops sfp_hwmon_ops = {
1357 	.is_visible = sfp_hwmon_is_visible,
1358 	.read = sfp_hwmon_read,
1359 	.read_string = sfp_hwmon_read_string,
1360 };
1361 
1362 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1363 	HWMON_CHANNEL_INFO(chip,
1364 			   HWMON_C_REGISTER_TZ),
1365 	HWMON_CHANNEL_INFO(in,
1366 			   HWMON_I_INPUT |
1367 			   HWMON_I_MAX | HWMON_I_MIN |
1368 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1369 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1370 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1371 			   HWMON_I_LABEL),
1372 	HWMON_CHANNEL_INFO(temp,
1373 			   HWMON_T_INPUT |
1374 			   HWMON_T_MAX | HWMON_T_MIN |
1375 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1376 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1377 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1378 			   HWMON_T_LABEL),
1379 	HWMON_CHANNEL_INFO(curr,
1380 			   HWMON_C_INPUT |
1381 			   HWMON_C_MAX | HWMON_C_MIN |
1382 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1383 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1384 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1385 			   HWMON_C_LABEL),
1386 	HWMON_CHANNEL_INFO(power,
1387 			   /* Transmit power */
1388 			   HWMON_P_INPUT |
1389 			   HWMON_P_MAX | HWMON_P_MIN |
1390 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1391 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1392 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1393 			   HWMON_P_LABEL,
1394 			   /* Receive power */
1395 			   HWMON_P_INPUT |
1396 			   HWMON_P_MAX | HWMON_P_MIN |
1397 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1398 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1399 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1400 			   HWMON_P_LABEL),
1401 	NULL,
1402 };
1403 
1404 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1405 	.ops = &sfp_hwmon_ops,
1406 	.info = sfp_hwmon_info,
1407 };
1408 
1409 static void sfp_hwmon_probe(struct work_struct *work)
1410 {
1411 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1412 	int err;
1413 
1414 	/* hwmon interface needs to access 16bit registers in atomic way to
1415 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1416 	 * possible to guarantee coherency because EEPROM is broken in such way
1417 	 * that does not support atomic 16bit read operation then we have to
1418 	 * skip registration of hwmon device.
1419 	 */
1420 	if (sfp->i2c_block_size < 2) {
1421 		dev_info(sfp->dev,
1422 			 "skipping hwmon device registration due to broken EEPROM\n");
1423 		dev_info(sfp->dev,
1424 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1425 		return;
1426 	}
1427 
1428 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1429 	if (err < 0) {
1430 		if (sfp->hwmon_tries--) {
1431 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1432 					 T_PROBE_RETRY_SLOW);
1433 		} else {
1434 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1435 				 ERR_PTR(err));
1436 		}
1437 		return;
1438 	}
1439 
1440 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1441 	if (IS_ERR(sfp->hwmon_name)) {
1442 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1443 		return;
1444 	}
1445 
1446 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1447 							 sfp->hwmon_name, sfp,
1448 							 &sfp_hwmon_chip_info,
1449 							 NULL);
1450 	if (IS_ERR(sfp->hwmon_dev))
1451 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1452 			PTR_ERR(sfp->hwmon_dev));
1453 }
1454 
1455 static int sfp_hwmon_insert(struct sfp *sfp)
1456 {
1457 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1458 		return 0;
1459 
1460 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1461 		return 0;
1462 
1463 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1464 		/* This driver in general does not support address
1465 		 * change.
1466 		 */
1467 		return 0;
1468 
1469 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1470 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1471 
1472 	return 0;
1473 }
1474 
1475 static void sfp_hwmon_remove(struct sfp *sfp)
1476 {
1477 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1478 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1479 		hwmon_device_unregister(sfp->hwmon_dev);
1480 		sfp->hwmon_dev = NULL;
1481 		kfree(sfp->hwmon_name);
1482 	}
1483 }
1484 
1485 static int sfp_hwmon_init(struct sfp *sfp)
1486 {
1487 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1488 
1489 	return 0;
1490 }
1491 
1492 static void sfp_hwmon_exit(struct sfp *sfp)
1493 {
1494 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1495 }
1496 #else
1497 static int sfp_hwmon_insert(struct sfp *sfp)
1498 {
1499 	return 0;
1500 }
1501 
1502 static void sfp_hwmon_remove(struct sfp *sfp)
1503 {
1504 }
1505 
1506 static int sfp_hwmon_init(struct sfp *sfp)
1507 {
1508 	return 0;
1509 }
1510 
1511 static void sfp_hwmon_exit(struct sfp *sfp)
1512 {
1513 }
1514 #endif
1515 
1516 /* Helpers */
1517 static void sfp_module_tx_disable(struct sfp *sfp)
1518 {
1519 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1520 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1521 	sfp->state |= SFP_F_TX_DISABLE;
1522 	sfp_set_state(sfp, sfp->state);
1523 }
1524 
1525 static void sfp_module_tx_enable(struct sfp *sfp)
1526 {
1527 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1528 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1529 	sfp->state &= ~SFP_F_TX_DISABLE;
1530 	sfp_set_state(sfp, sfp->state);
1531 }
1532 
1533 #if IS_ENABLED(CONFIG_DEBUG_FS)
1534 static int sfp_debug_state_show(struct seq_file *s, void *data)
1535 {
1536 	struct sfp *sfp = s->private;
1537 
1538 	seq_printf(s, "Module state: %s\n",
1539 		   mod_state_to_str(sfp->sm_mod_state));
1540 	seq_printf(s, "Module probe attempts: %d %d\n",
1541 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1542 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1543 	seq_printf(s, "Device state: %s\n",
1544 		   dev_state_to_str(sfp->sm_dev_state));
1545 	seq_printf(s, "Main state: %s\n",
1546 		   sm_state_to_str(sfp->sm_state));
1547 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1548 		   sfp->sm_fault_retries);
1549 	seq_printf(s, "PHY probe remaining retries: %d\n",
1550 		   sfp->sm_phy_retries);
1551 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1552 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1553 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1554 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1555 	return 0;
1556 }
1557 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1558 
1559 static void sfp_debugfs_init(struct sfp *sfp)
1560 {
1561 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1562 
1563 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1564 			    &sfp_debug_state_fops);
1565 }
1566 
1567 static void sfp_debugfs_exit(struct sfp *sfp)
1568 {
1569 	debugfs_remove_recursive(sfp->debugfs_dir);
1570 }
1571 #else
1572 static void sfp_debugfs_init(struct sfp *sfp)
1573 {
1574 }
1575 
1576 static void sfp_debugfs_exit(struct sfp *sfp)
1577 {
1578 }
1579 #endif
1580 
1581 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1582 {
1583 	unsigned int state = sfp->state;
1584 
1585 	if (state & SFP_F_TX_DISABLE)
1586 		return;
1587 
1588 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1589 
1590 	udelay(T_RESET_US);
1591 
1592 	sfp_set_state(sfp, state);
1593 }
1594 
1595 /* SFP state machine */
1596 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1597 {
1598 	if (timeout)
1599 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1600 				 timeout);
1601 	else
1602 		cancel_delayed_work(&sfp->timeout);
1603 }
1604 
1605 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1606 			unsigned int timeout)
1607 {
1608 	sfp->sm_state = state;
1609 	sfp_sm_set_timer(sfp, timeout);
1610 }
1611 
1612 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1613 			    unsigned int timeout)
1614 {
1615 	sfp->sm_mod_state = state;
1616 	sfp_sm_set_timer(sfp, timeout);
1617 }
1618 
1619 static void sfp_sm_phy_detach(struct sfp *sfp)
1620 {
1621 	sfp_remove_phy(sfp->sfp_bus);
1622 	phy_device_remove(sfp->mod_phy);
1623 	phy_device_free(sfp->mod_phy);
1624 	sfp->mod_phy = NULL;
1625 }
1626 
1627 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1628 {
1629 	struct phy_device *phy;
1630 	int err;
1631 
1632 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1633 	if (phy == ERR_PTR(-ENODEV))
1634 		return PTR_ERR(phy);
1635 	if (IS_ERR(phy)) {
1636 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1637 		return PTR_ERR(phy);
1638 	}
1639 
1640 	err = phy_device_register(phy);
1641 	if (err) {
1642 		phy_device_free(phy);
1643 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1644 			ERR_PTR(err));
1645 		return err;
1646 	}
1647 
1648 	err = sfp_add_phy(sfp->sfp_bus, phy);
1649 	if (err) {
1650 		phy_device_remove(phy);
1651 		phy_device_free(phy);
1652 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1653 		return err;
1654 	}
1655 
1656 	sfp->mod_phy = phy;
1657 
1658 	return 0;
1659 }
1660 
1661 static void sfp_sm_link_up(struct sfp *sfp)
1662 {
1663 	sfp_link_up(sfp->sfp_bus);
1664 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1665 }
1666 
1667 static void sfp_sm_link_down(struct sfp *sfp)
1668 {
1669 	sfp_link_down(sfp->sfp_bus);
1670 }
1671 
1672 static void sfp_sm_link_check_los(struct sfp *sfp)
1673 {
1674 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1675 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1676 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1677 	bool los = false;
1678 
1679 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1680 	 * are set, we assume that no LOS signal is available. If both are
1681 	 * set, we assume LOS is not implemented (and is meaningless.)
1682 	 */
1683 	if (los_options == los_inverted)
1684 		los = !(sfp->state & SFP_F_LOS);
1685 	else if (los_options == los_normal)
1686 		los = !!(sfp->state & SFP_F_LOS);
1687 
1688 	if (los)
1689 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1690 	else
1691 		sfp_sm_link_up(sfp);
1692 }
1693 
1694 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1695 {
1696 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1697 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1698 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1699 
1700 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1701 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1702 }
1703 
1704 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1705 {
1706 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1707 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1708 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1709 
1710 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1711 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1712 }
1713 
1714 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1715 {
1716 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1717 		dev_err(sfp->dev,
1718 			"module persistently indicates fault, disabling\n");
1719 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1720 	} else {
1721 		if (warn)
1722 			dev_err(sfp->dev, "module transmit fault indicated\n");
1723 
1724 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1725 	}
1726 }
1727 
1728 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1729 {
1730 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1731 		return sfp_i2c_mdiobus_create(sfp);
1732 
1733 	return 0;
1734 }
1735 
1736 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1737  * normally sits at I2C bus address 0x56, and may either be a clause 22
1738  * or clause 45 PHY.
1739  *
1740  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1741  * negotiation enabled, but some may be in 1000base-X - which is for the
1742  * PHY driver to determine.
1743  *
1744  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1745  * mode according to the negotiated line speed.
1746  */
1747 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1748 {
1749 	int err = 0;
1750 
1751 	switch (sfp->mdio_protocol) {
1752 	case MDIO_I2C_NONE:
1753 		break;
1754 
1755 	case MDIO_I2C_MARVELL_C22:
1756 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1757 		break;
1758 
1759 	case MDIO_I2C_C45:
1760 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1761 		break;
1762 
1763 	case MDIO_I2C_ROLLBALL:
1764 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1765 		break;
1766 	}
1767 
1768 	return err;
1769 }
1770 
1771 static int sfp_module_parse_power(struct sfp *sfp)
1772 {
1773 	u32 power_mW = 1000;
1774 	bool supports_a2;
1775 
1776 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1777 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1778 		power_mW = 1500;
1779 	/* Added in Rev 11.9, but there is no compliance code for this */
1780 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1781 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1782 		power_mW = 2000;
1783 
1784 	/* Power level 1 modules (max. 1W) are always supported. */
1785 	if (power_mW <= 1000) {
1786 		sfp->module_power_mW = power_mW;
1787 		return 0;
1788 	}
1789 
1790 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1791 				SFP_SFF8472_COMPLIANCE_NONE ||
1792 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1793 
1794 	if (power_mW > sfp->max_power_mW) {
1795 		/* Module power specification exceeds the allowed maximum. */
1796 		if (!supports_a2) {
1797 			/* The module appears not to implement bus address
1798 			 * 0xa2, so assume that the module powers up in the
1799 			 * indicated mode.
1800 			 */
1801 			dev_err(sfp->dev,
1802 				"Host does not support %u.%uW modules\n",
1803 				power_mW / 1000, (power_mW / 100) % 10);
1804 			return -EINVAL;
1805 		} else {
1806 			dev_warn(sfp->dev,
1807 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1808 				 power_mW / 1000, (power_mW / 100) % 10);
1809 			return 0;
1810 		}
1811 	}
1812 
1813 	if (!supports_a2) {
1814 		/* The module power level is below the host maximum and the
1815 		 * module appears not to implement bus address 0xa2, so assume
1816 		 * that the module powers up in the indicated mode.
1817 		 */
1818 		return 0;
1819 	}
1820 
1821 	/* If the module requires a higher power mode, but also requires
1822 	 * an address change sequence, warn the user that the module may
1823 	 * not be functional.
1824 	 */
1825 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1826 		dev_warn(sfp->dev,
1827 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1828 			 power_mW / 1000, (power_mW / 100) % 10);
1829 		return 0;
1830 	}
1831 
1832 	sfp->module_power_mW = power_mW;
1833 
1834 	return 0;
1835 }
1836 
1837 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1838 {
1839 	int err;
1840 
1841 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1842 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1843 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1844 	if (err != sizeof(u8)) {
1845 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1846 			enable ? "en" : "dis", ERR_PTR(err));
1847 		return -EAGAIN;
1848 	}
1849 
1850 	if (enable)
1851 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1852 			 sfp->module_power_mW / 1000,
1853 			 (sfp->module_power_mW / 100) % 10);
1854 
1855 	return 0;
1856 }
1857 
1858 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1859  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1860  * not support multibyte reads from the EEPROM. Each multi-byte read
1861  * operation returns just one byte of EEPROM followed by zeros. There is
1862  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1863  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1864  * name and vendor id into EEPROM, so there is even no way to detect if
1865  * module is V-SOL V2801F. Therefore check for those zeros in the read
1866  * data and then based on check switch to reading EEPROM to one byte
1867  * at a time.
1868  */
1869 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1870 {
1871 	size_t i, block_size = sfp->i2c_block_size;
1872 
1873 	/* Already using byte IO */
1874 	if (block_size == 1)
1875 		return false;
1876 
1877 	for (i = 1; i < len; i += block_size) {
1878 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1879 			return false;
1880 	}
1881 	return true;
1882 }
1883 
1884 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1885 {
1886 	u8 check;
1887 	int err;
1888 
1889 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1890 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1891 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1892 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1893 		id->base.phys_id = SFF8024_ID_SFF_8472;
1894 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1895 		id->base.connector = SFF8024_CONNECTOR_LC;
1896 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1897 		if (err != 3) {
1898 			dev_err(sfp->dev,
1899 				"Failed to rewrite module EEPROM: %pe\n",
1900 				ERR_PTR(err));
1901 			return err;
1902 		}
1903 
1904 		/* Cotsworks modules have been found to require a delay between write operations. */
1905 		mdelay(50);
1906 
1907 		/* Update base structure checksum */
1908 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1909 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1910 		if (err != 1) {
1911 			dev_err(sfp->dev,
1912 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1913 				ERR_PTR(err));
1914 			return err;
1915 		}
1916 	}
1917 	return 0;
1918 }
1919 
1920 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1921 {
1922 	/* SFP module inserted - read I2C data */
1923 	struct sfp_eeprom_id id;
1924 	bool cotsworks_sfbg;
1925 	bool cotsworks;
1926 	u8 check;
1927 	int ret;
1928 
1929 	/* Some SFP modules and also some Linux I2C drivers do not like reads
1930 	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1931 	 * a time.
1932 	 */
1933 	sfp->i2c_block_size = 16;
1934 
1935 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1936 	if (ret < 0) {
1937 		if (report)
1938 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1939 				ERR_PTR(ret));
1940 		return -EAGAIN;
1941 	}
1942 
1943 	if (ret != sizeof(id.base)) {
1944 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1945 		return -EAGAIN;
1946 	}
1947 
1948 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1949 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1950 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1951 	 * fields, so do not switch to one byte reading at a time unless it
1952 	 * is really required and we have no other option.
1953 	 */
1954 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1955 		dev_info(sfp->dev,
1956 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1957 		dev_info(sfp->dev,
1958 			 "Switching to reading EEPROM to one byte at a time\n");
1959 		sfp->i2c_block_size = 1;
1960 
1961 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1962 		if (ret < 0) {
1963 			if (report)
1964 				dev_err(sfp->dev,
1965 					"failed to read EEPROM: %pe\n",
1966 					ERR_PTR(ret));
1967 			return -EAGAIN;
1968 		}
1969 
1970 		if (ret != sizeof(id.base)) {
1971 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
1972 				ERR_PTR(ret));
1973 			return -EAGAIN;
1974 		}
1975 	}
1976 
1977 	/* Cotsworks do not seem to update the checksums when they
1978 	 * do the final programming with the final module part number,
1979 	 * serial number and date code.
1980 	 */
1981 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1982 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1983 
1984 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1985 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1986 	 * Cotsworks PN matches and bytes are not correct.
1987 	 */
1988 	if (cotsworks && cotsworks_sfbg) {
1989 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1990 		if (ret < 0)
1991 			return ret;
1992 	}
1993 
1994 	/* Validate the checksum over the base structure */
1995 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1996 	if (check != id.base.cc_base) {
1997 		if (cotsworks) {
1998 			dev_warn(sfp->dev,
1999 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2000 				 check, id.base.cc_base);
2001 		} else {
2002 			dev_err(sfp->dev,
2003 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2004 				check, id.base.cc_base);
2005 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2006 				       16, 1, &id, sizeof(id), true);
2007 			return -EINVAL;
2008 		}
2009 	}
2010 
2011 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2012 	if (ret < 0) {
2013 		if (report)
2014 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2015 				ERR_PTR(ret));
2016 		return -EAGAIN;
2017 	}
2018 
2019 	if (ret != sizeof(id.ext)) {
2020 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2021 		return -EAGAIN;
2022 	}
2023 
2024 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2025 	if (check != id.ext.cc_ext) {
2026 		if (cotsworks) {
2027 			dev_warn(sfp->dev,
2028 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2029 				 check, id.ext.cc_ext);
2030 		} else {
2031 			dev_err(sfp->dev,
2032 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2033 				check, id.ext.cc_ext);
2034 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2035 				       16, 1, &id, sizeof(id), true);
2036 			memset(&id.ext, 0, sizeof(id.ext));
2037 		}
2038 	}
2039 
2040 	sfp->id = id;
2041 
2042 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2043 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2044 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2045 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2046 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2047 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2048 
2049 	/* Check whether we support this module */
2050 	if (!sfp->type->module_supported(&id)) {
2051 		dev_err(sfp->dev,
2052 			"module is not supported - phys id 0x%02x 0x%02x\n",
2053 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2054 		return -EINVAL;
2055 	}
2056 
2057 	/* If the module requires address swap mode, warn about it */
2058 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2059 		dev_warn(sfp->dev,
2060 			 "module address swap to access page 0xA2 is not supported.\n");
2061 
2062 	/* Parse the module power requirement */
2063 	ret = sfp_module_parse_power(sfp);
2064 	if (ret < 0)
2065 		return ret;
2066 
2067 	/* Initialise state bits to use from hardware */
2068 	sfp->state_hw_mask = SFP_F_PRESENT;
2069 	if (sfp->gpio[GPIO_TX_DISABLE])
2070 		sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2071 	if (sfp->gpio[GPIO_TX_FAULT])
2072 		sfp->state_hw_mask |= SFP_F_TX_FAULT;
2073 	if (sfp->gpio[GPIO_LOS])
2074 		sfp->state_hw_mask |= SFP_F_LOS;
2075 
2076 	sfp->module_t_start_up = T_START_UP;
2077 	sfp->module_t_wait = T_WAIT;
2078 
2079 	sfp->tx_fault_ignore = false;
2080 
2081 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2082 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2083 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2084 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2085 		sfp->mdio_protocol = MDIO_I2C_C45;
2086 	else if (sfp->id.base.e1000_base_t)
2087 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2088 	else
2089 		sfp->mdio_protocol = MDIO_I2C_NONE;
2090 
2091 	sfp->quirk = sfp_lookup_quirk(&id);
2092 	if (sfp->quirk && sfp->quirk->fixup)
2093 		sfp->quirk->fixup(sfp);
2094 
2095 	return 0;
2096 }
2097 
2098 static void sfp_sm_mod_remove(struct sfp *sfp)
2099 {
2100 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2101 		sfp_module_remove(sfp->sfp_bus);
2102 
2103 	sfp_hwmon_remove(sfp);
2104 
2105 	memset(&sfp->id, 0, sizeof(sfp->id));
2106 	sfp->module_power_mW = 0;
2107 
2108 	dev_info(sfp->dev, "module removed\n");
2109 }
2110 
2111 /* This state machine tracks the upstream's state */
2112 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2113 {
2114 	switch (sfp->sm_dev_state) {
2115 	default:
2116 		if (event == SFP_E_DEV_ATTACH)
2117 			sfp->sm_dev_state = SFP_DEV_DOWN;
2118 		break;
2119 
2120 	case SFP_DEV_DOWN:
2121 		if (event == SFP_E_DEV_DETACH)
2122 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2123 		else if (event == SFP_E_DEV_UP)
2124 			sfp->sm_dev_state = SFP_DEV_UP;
2125 		break;
2126 
2127 	case SFP_DEV_UP:
2128 		if (event == SFP_E_DEV_DETACH)
2129 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2130 		else if (event == SFP_E_DEV_DOWN)
2131 			sfp->sm_dev_state = SFP_DEV_DOWN;
2132 		break;
2133 	}
2134 }
2135 
2136 /* This state machine tracks the insert/remove state of the module, probes
2137  * the on-board EEPROM, and sets up the power level.
2138  */
2139 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2140 {
2141 	int err;
2142 
2143 	/* Handle remove event globally, it resets this state machine */
2144 	if (event == SFP_E_REMOVE) {
2145 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2146 			sfp_sm_mod_remove(sfp);
2147 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2148 		return;
2149 	}
2150 
2151 	/* Handle device detach globally */
2152 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2153 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2154 		if (sfp->module_power_mW > 1000 &&
2155 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2156 			sfp_sm_mod_hpower(sfp, false);
2157 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2158 		return;
2159 	}
2160 
2161 	switch (sfp->sm_mod_state) {
2162 	default:
2163 		if (event == SFP_E_INSERT) {
2164 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2165 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2166 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2167 		}
2168 		break;
2169 
2170 	case SFP_MOD_PROBE:
2171 		/* Wait for T_PROBE_INIT to time out */
2172 		if (event != SFP_E_TIMEOUT)
2173 			break;
2174 
2175 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2176 		if (err == -EAGAIN) {
2177 			if (sfp->sm_mod_tries_init &&
2178 			   --sfp->sm_mod_tries_init) {
2179 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2180 				break;
2181 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2182 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2183 					dev_warn(sfp->dev,
2184 						 "please wait, module slow to respond\n");
2185 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2186 				break;
2187 			}
2188 		}
2189 		if (err < 0) {
2190 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2191 			break;
2192 		}
2193 
2194 		err = sfp_hwmon_insert(sfp);
2195 		if (err)
2196 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2197 				 ERR_PTR(err));
2198 
2199 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2200 		fallthrough;
2201 	case SFP_MOD_WAITDEV:
2202 		/* Ensure that the device is attached before proceeding */
2203 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2204 			break;
2205 
2206 		/* Report the module insertion to the upstream device */
2207 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2208 					sfp->quirk);
2209 		if (err < 0) {
2210 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2211 			break;
2212 		}
2213 
2214 		/* If this is a power level 1 module, we are done */
2215 		if (sfp->module_power_mW <= 1000)
2216 			goto insert;
2217 
2218 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2219 		fallthrough;
2220 	case SFP_MOD_HPOWER:
2221 		/* Enable high power mode */
2222 		err = sfp_sm_mod_hpower(sfp, true);
2223 		if (err < 0) {
2224 			if (err != -EAGAIN) {
2225 				sfp_module_remove(sfp->sfp_bus);
2226 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2227 			} else {
2228 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2229 			}
2230 			break;
2231 		}
2232 
2233 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2234 		break;
2235 
2236 	case SFP_MOD_WAITPWR:
2237 		/* Wait for T_HPOWER_LEVEL to time out */
2238 		if (event != SFP_E_TIMEOUT)
2239 			break;
2240 
2241 	insert:
2242 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2243 		break;
2244 
2245 	case SFP_MOD_PRESENT:
2246 	case SFP_MOD_ERROR:
2247 		break;
2248 	}
2249 }
2250 
2251 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2252 {
2253 	unsigned long timeout;
2254 	int ret;
2255 
2256 	/* Some events are global */
2257 	if (sfp->sm_state != SFP_S_DOWN &&
2258 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2259 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2260 		if (sfp->sm_state == SFP_S_LINK_UP &&
2261 		    sfp->sm_dev_state == SFP_DEV_UP)
2262 			sfp_sm_link_down(sfp);
2263 		if (sfp->sm_state > SFP_S_INIT)
2264 			sfp_module_stop(sfp->sfp_bus);
2265 		if (sfp->mod_phy)
2266 			sfp_sm_phy_detach(sfp);
2267 		if (sfp->i2c_mii)
2268 			sfp_i2c_mdiobus_destroy(sfp);
2269 		sfp_module_tx_disable(sfp);
2270 		sfp_soft_stop_poll(sfp);
2271 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2272 		return;
2273 	}
2274 
2275 	/* The main state machine */
2276 	switch (sfp->sm_state) {
2277 	case SFP_S_DOWN:
2278 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2279 		    sfp->sm_dev_state != SFP_DEV_UP)
2280 			break;
2281 
2282 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2283 			sfp_soft_start_poll(sfp);
2284 
2285 		sfp_module_tx_enable(sfp);
2286 
2287 		/* Initialise the fault clearance retries */
2288 		sfp->sm_fault_retries = N_FAULT_INIT;
2289 
2290 		/* We need to check the TX_FAULT state, which is not defined
2291 		 * while TX_DISABLE is asserted. The earliest we want to do
2292 		 * anything (such as probe for a PHY) is 50ms (or more on
2293 		 * specific modules).
2294 		 */
2295 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2296 		break;
2297 
2298 	case SFP_S_WAIT:
2299 		if (event != SFP_E_TIMEOUT)
2300 			break;
2301 
2302 		if (sfp->state & SFP_F_TX_FAULT) {
2303 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2304 			 * from the TX_DISABLE deassertion for the module to
2305 			 * initialise, which is indicated by TX_FAULT
2306 			 * deasserting.
2307 			 */
2308 			timeout = sfp->module_t_start_up;
2309 			if (timeout > sfp->module_t_wait)
2310 				timeout -= sfp->module_t_wait;
2311 			else
2312 				timeout = 1;
2313 
2314 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2315 		} else {
2316 			/* TX_FAULT is not asserted, assume the module has
2317 			 * finished initialising.
2318 			 */
2319 			goto init_done;
2320 		}
2321 		break;
2322 
2323 	case SFP_S_INIT:
2324 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2325 			/* TX_FAULT is still asserted after t_init
2326 			 * or t_start_up, so assume there is a fault.
2327 			 */
2328 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2329 				     sfp->sm_fault_retries == N_FAULT_INIT);
2330 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2331 	init_done:
2332 			/* Create mdiobus and start trying for PHY */
2333 			ret = sfp_sm_add_mdio_bus(sfp);
2334 			if (ret < 0) {
2335 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2336 				break;
2337 			}
2338 			sfp->sm_phy_retries = R_PHY_RETRY;
2339 			goto phy_probe;
2340 		}
2341 		break;
2342 
2343 	case SFP_S_INIT_PHY:
2344 		if (event != SFP_E_TIMEOUT)
2345 			break;
2346 	phy_probe:
2347 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2348 		 * clear.  Probe for the PHY and check the LOS state.
2349 		 */
2350 		ret = sfp_sm_probe_for_phy(sfp);
2351 		if (ret == -ENODEV) {
2352 			if (--sfp->sm_phy_retries) {
2353 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2354 				break;
2355 			} else {
2356 				dev_info(sfp->dev, "no PHY detected\n");
2357 			}
2358 		} else if (ret) {
2359 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2360 			break;
2361 		}
2362 		if (sfp_module_start(sfp->sfp_bus)) {
2363 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2364 			break;
2365 		}
2366 		sfp_sm_link_check_los(sfp);
2367 
2368 		/* Reset the fault retry count */
2369 		sfp->sm_fault_retries = N_FAULT;
2370 		break;
2371 
2372 	case SFP_S_INIT_TX_FAULT:
2373 		if (event == SFP_E_TIMEOUT) {
2374 			sfp_module_tx_fault_reset(sfp);
2375 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2376 		}
2377 		break;
2378 
2379 	case SFP_S_WAIT_LOS:
2380 		if (event == SFP_E_TX_FAULT)
2381 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2382 		else if (sfp_los_event_inactive(sfp, event))
2383 			sfp_sm_link_up(sfp);
2384 		break;
2385 
2386 	case SFP_S_LINK_UP:
2387 		if (event == SFP_E_TX_FAULT) {
2388 			sfp_sm_link_down(sfp);
2389 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2390 		} else if (sfp_los_event_active(sfp, event)) {
2391 			sfp_sm_link_down(sfp);
2392 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2393 		}
2394 		break;
2395 
2396 	case SFP_S_TX_FAULT:
2397 		if (event == SFP_E_TIMEOUT) {
2398 			sfp_module_tx_fault_reset(sfp);
2399 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2400 		}
2401 		break;
2402 
2403 	case SFP_S_REINIT:
2404 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2405 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2406 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2407 			dev_info(sfp->dev, "module transmit fault recovered\n");
2408 			sfp_sm_link_check_los(sfp);
2409 		}
2410 		break;
2411 
2412 	case SFP_S_TX_DISABLE:
2413 		break;
2414 	}
2415 }
2416 
2417 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2418 {
2419 	mutex_lock(&sfp->sm_mutex);
2420 
2421 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2422 		mod_state_to_str(sfp->sm_mod_state),
2423 		dev_state_to_str(sfp->sm_dev_state),
2424 		sm_state_to_str(sfp->sm_state),
2425 		event_to_str(event));
2426 
2427 	sfp_sm_device(sfp, event);
2428 	sfp_sm_module(sfp, event);
2429 	sfp_sm_main(sfp, event);
2430 
2431 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2432 		mod_state_to_str(sfp->sm_mod_state),
2433 		dev_state_to_str(sfp->sm_dev_state),
2434 		sm_state_to_str(sfp->sm_state));
2435 
2436 	mutex_unlock(&sfp->sm_mutex);
2437 }
2438 
2439 static void sfp_attach(struct sfp *sfp)
2440 {
2441 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2442 }
2443 
2444 static void sfp_detach(struct sfp *sfp)
2445 {
2446 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2447 }
2448 
2449 static void sfp_start(struct sfp *sfp)
2450 {
2451 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2452 }
2453 
2454 static void sfp_stop(struct sfp *sfp)
2455 {
2456 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2457 }
2458 
2459 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2460 {
2461 	/* locking... and check module is present */
2462 
2463 	if (sfp->id.ext.sff8472_compliance &&
2464 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2465 		modinfo->type = ETH_MODULE_SFF_8472;
2466 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2467 	} else {
2468 		modinfo->type = ETH_MODULE_SFF_8079;
2469 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2470 	}
2471 	return 0;
2472 }
2473 
2474 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2475 			     u8 *data)
2476 {
2477 	unsigned int first, last, len;
2478 	int ret;
2479 
2480 	if (ee->len == 0)
2481 		return -EINVAL;
2482 
2483 	first = ee->offset;
2484 	last = ee->offset + ee->len;
2485 	if (first < ETH_MODULE_SFF_8079_LEN) {
2486 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2487 		len -= first;
2488 
2489 		ret = sfp_read(sfp, false, first, data, len);
2490 		if (ret < 0)
2491 			return ret;
2492 
2493 		first += len;
2494 		data += len;
2495 	}
2496 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2497 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2498 		len -= first;
2499 		first -= ETH_MODULE_SFF_8079_LEN;
2500 
2501 		ret = sfp_read(sfp, true, first, data, len);
2502 		if (ret < 0)
2503 			return ret;
2504 	}
2505 	return 0;
2506 }
2507 
2508 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2509 				     const struct ethtool_module_eeprom *page,
2510 				     struct netlink_ext_ack *extack)
2511 {
2512 	if (page->bank) {
2513 		NL_SET_ERR_MSG(extack, "Banks not supported");
2514 		return -EOPNOTSUPP;
2515 	}
2516 
2517 	if (page->page) {
2518 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2519 		return -EOPNOTSUPP;
2520 	}
2521 
2522 	if (page->i2c_address != 0x50 &&
2523 	    page->i2c_address != 0x51) {
2524 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2525 		return -EOPNOTSUPP;
2526 	}
2527 
2528 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2529 			page->data, page->length);
2530 };
2531 
2532 static const struct sfp_socket_ops sfp_module_ops = {
2533 	.attach = sfp_attach,
2534 	.detach = sfp_detach,
2535 	.start = sfp_start,
2536 	.stop = sfp_stop,
2537 	.module_info = sfp_module_info,
2538 	.module_eeprom = sfp_module_eeprom,
2539 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2540 };
2541 
2542 static void sfp_timeout(struct work_struct *work)
2543 {
2544 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2545 
2546 	rtnl_lock();
2547 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2548 	rtnl_unlock();
2549 }
2550 
2551 static void sfp_check_state(struct sfp *sfp)
2552 {
2553 	unsigned int state, i, changed;
2554 
2555 	mutex_lock(&sfp->st_mutex);
2556 	state = sfp_get_state(sfp);
2557 	changed = state ^ sfp->state;
2558 	if (sfp->tx_fault_ignore)
2559 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2560 	else
2561 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2562 
2563 	for (i = 0; i < GPIO_MAX; i++)
2564 		if (changed & BIT(i))
2565 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2566 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2567 
2568 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2569 	sfp->state = state;
2570 
2571 	rtnl_lock();
2572 	if (changed & SFP_F_PRESENT)
2573 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2574 				SFP_E_INSERT : SFP_E_REMOVE);
2575 
2576 	if (changed & SFP_F_TX_FAULT)
2577 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2578 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2579 
2580 	if (changed & SFP_F_LOS)
2581 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2582 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2583 	rtnl_unlock();
2584 	mutex_unlock(&sfp->st_mutex);
2585 }
2586 
2587 static irqreturn_t sfp_irq(int irq, void *data)
2588 {
2589 	struct sfp *sfp = data;
2590 
2591 	sfp_check_state(sfp);
2592 
2593 	return IRQ_HANDLED;
2594 }
2595 
2596 static void sfp_poll(struct work_struct *work)
2597 {
2598 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2599 
2600 	sfp_check_state(sfp);
2601 
2602 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2603 	    sfp->need_poll)
2604 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2605 }
2606 
2607 static struct sfp *sfp_alloc(struct device *dev)
2608 {
2609 	struct sfp *sfp;
2610 
2611 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2612 	if (!sfp)
2613 		return ERR_PTR(-ENOMEM);
2614 
2615 	sfp->dev = dev;
2616 
2617 	mutex_init(&sfp->sm_mutex);
2618 	mutex_init(&sfp->st_mutex);
2619 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2620 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2621 
2622 	sfp_hwmon_init(sfp);
2623 
2624 	return sfp;
2625 }
2626 
2627 static void sfp_cleanup(void *data)
2628 {
2629 	struct sfp *sfp = data;
2630 
2631 	sfp_hwmon_exit(sfp);
2632 
2633 	cancel_delayed_work_sync(&sfp->poll);
2634 	cancel_delayed_work_sync(&sfp->timeout);
2635 	if (sfp->i2c_mii) {
2636 		mdiobus_unregister(sfp->i2c_mii);
2637 		mdiobus_free(sfp->i2c_mii);
2638 	}
2639 	if (sfp->i2c)
2640 		i2c_put_adapter(sfp->i2c);
2641 	kfree(sfp);
2642 }
2643 
2644 static int sfp_i2c_get(struct sfp *sfp)
2645 {
2646 	struct fwnode_handle *h;
2647 	struct i2c_adapter *i2c;
2648 	int err;
2649 
2650 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2651 	if (IS_ERR(h)) {
2652 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2653 		return -ENODEV;
2654 	}
2655 
2656 	i2c = i2c_get_adapter_by_fwnode(h);
2657 	if (!i2c) {
2658 		err = -EPROBE_DEFER;
2659 		goto put;
2660 	}
2661 
2662 	err = sfp_i2c_configure(sfp, i2c);
2663 	if (err)
2664 		i2c_put_adapter(i2c);
2665 put:
2666 	fwnode_handle_put(h);
2667 	return err;
2668 }
2669 
2670 static int sfp_probe(struct platform_device *pdev)
2671 {
2672 	const struct sff_data *sff;
2673 	char *sfp_irq_name;
2674 	struct sfp *sfp;
2675 	int err, i;
2676 
2677 	sfp = sfp_alloc(&pdev->dev);
2678 	if (IS_ERR(sfp))
2679 		return PTR_ERR(sfp);
2680 
2681 	platform_set_drvdata(pdev, sfp);
2682 
2683 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2684 	if (err < 0)
2685 		return err;
2686 
2687 	sff = device_get_match_data(sfp->dev);
2688 	if (!sff)
2689 		sff = &sfp_data;
2690 
2691 	sfp->type = sff;
2692 
2693 	err = sfp_i2c_get(sfp);
2694 	if (err)
2695 		return err;
2696 
2697 	for (i = 0; i < GPIO_MAX; i++)
2698 		if (sff->gpios & BIT(i)) {
2699 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2700 					   gpio_names[i], gpio_flags[i]);
2701 			if (IS_ERR(sfp->gpio[i]))
2702 				return PTR_ERR(sfp->gpio[i]);
2703 		}
2704 
2705 	sfp->state_hw_mask = SFP_F_PRESENT;
2706 
2707 	sfp->get_state = sfp_gpio_get_state;
2708 	sfp->set_state = sfp_gpio_set_state;
2709 
2710 	/* Modules that have no detect signal are always present */
2711 	if (!(sfp->gpio[GPIO_MODDEF0]))
2712 		sfp->get_state = sff_gpio_get_state;
2713 
2714 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2715 				 &sfp->max_power_mW);
2716 	if (sfp->max_power_mW < 1000) {
2717 		if (sfp->max_power_mW)
2718 			dev_warn(sfp->dev,
2719 				 "Firmware bug: host maximum power should be at least 1W\n");
2720 		sfp->max_power_mW = 1000;
2721 	}
2722 
2723 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2724 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2725 
2726 	/* Get the initial state, and always signal TX disable,
2727 	 * since the network interface will not be up.
2728 	 */
2729 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2730 
2731 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2732 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2733 		sfp->state |= SFP_F_RATE_SELECT;
2734 	sfp_set_state(sfp, sfp->state);
2735 	sfp_module_tx_disable(sfp);
2736 	if (sfp->state & SFP_F_PRESENT) {
2737 		rtnl_lock();
2738 		sfp_sm_event(sfp, SFP_E_INSERT);
2739 		rtnl_unlock();
2740 	}
2741 
2742 	for (i = 0; i < GPIO_MAX; i++) {
2743 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2744 			continue;
2745 
2746 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2747 		if (sfp->gpio_irq[i] < 0) {
2748 			sfp->gpio_irq[i] = 0;
2749 			sfp->need_poll = true;
2750 			continue;
2751 		}
2752 
2753 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2754 					      "%s-%s", dev_name(sfp->dev),
2755 					      gpio_names[i]);
2756 
2757 		if (!sfp_irq_name)
2758 			return -ENOMEM;
2759 
2760 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2761 						NULL, sfp_irq,
2762 						IRQF_ONESHOT |
2763 						IRQF_TRIGGER_RISING |
2764 						IRQF_TRIGGER_FALLING,
2765 						sfp_irq_name, sfp);
2766 		if (err) {
2767 			sfp->gpio_irq[i] = 0;
2768 			sfp->need_poll = true;
2769 		}
2770 	}
2771 
2772 	if (sfp->need_poll)
2773 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2774 
2775 	/* We could have an issue in cases no Tx disable pin is available or
2776 	 * wired as modules using a laser as their light source will continue to
2777 	 * be active when the fiber is removed. This could be a safety issue and
2778 	 * we should at least warn the user about that.
2779 	 */
2780 	if (!sfp->gpio[GPIO_TX_DISABLE])
2781 		dev_warn(sfp->dev,
2782 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2783 
2784 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2785 	if (!sfp->sfp_bus)
2786 		return -ENOMEM;
2787 
2788 	sfp_debugfs_init(sfp);
2789 
2790 	return 0;
2791 }
2792 
2793 static int sfp_remove(struct platform_device *pdev)
2794 {
2795 	struct sfp *sfp = platform_get_drvdata(pdev);
2796 
2797 	sfp_debugfs_exit(sfp);
2798 	sfp_unregister_socket(sfp->sfp_bus);
2799 
2800 	rtnl_lock();
2801 	sfp_sm_event(sfp, SFP_E_REMOVE);
2802 	rtnl_unlock();
2803 
2804 	return 0;
2805 }
2806 
2807 static void sfp_shutdown(struct platform_device *pdev)
2808 {
2809 	struct sfp *sfp = platform_get_drvdata(pdev);
2810 	int i;
2811 
2812 	for (i = 0; i < GPIO_MAX; i++) {
2813 		if (!sfp->gpio_irq[i])
2814 			continue;
2815 
2816 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2817 	}
2818 
2819 	cancel_delayed_work_sync(&sfp->poll);
2820 	cancel_delayed_work_sync(&sfp->timeout);
2821 }
2822 
2823 static struct platform_driver sfp_driver = {
2824 	.probe = sfp_probe,
2825 	.remove = sfp_remove,
2826 	.shutdown = sfp_shutdown,
2827 	.driver = {
2828 		.name = "sfp",
2829 		.of_match_table = sfp_of_match,
2830 	},
2831 };
2832 
2833 static int sfp_init(void)
2834 {
2835 	poll_jiffies = msecs_to_jiffies(100);
2836 
2837 	return platform_driver_register(&sfp_driver);
2838 }
2839 module_init(sfp_init);
2840 
2841 static void sfp_exit(void)
2842 {
2843 	platform_driver_unregister(&sfp_driver);
2844 }
2845 module_exit(sfp_exit);
2846 
2847 MODULE_ALIAS("platform:sfp");
2848 MODULE_AUTHOR("Russell King");
2849 MODULE_LICENSE("GPL v2");
2850