xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 09bae3b6)
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20 
21 enum {
22 	GPIO_MODDEF0,
23 	GPIO_LOS,
24 	GPIO_TX_FAULT,
25 	GPIO_TX_DISABLE,
26 	GPIO_RATE_SELECT,
27 	GPIO_MAX,
28 
29 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30 	SFP_F_LOS = BIT(GPIO_LOS),
31 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34 
35 	SFP_E_INSERT = 0,
36 	SFP_E_REMOVE,
37 	SFP_E_DEV_DOWN,
38 	SFP_E_DEV_UP,
39 	SFP_E_TX_FAULT,
40 	SFP_E_TX_CLEAR,
41 	SFP_E_LOS_HIGH,
42 	SFP_E_LOS_LOW,
43 	SFP_E_TIMEOUT,
44 
45 	SFP_MOD_EMPTY = 0,
46 	SFP_MOD_PROBE,
47 	SFP_MOD_HPOWER,
48 	SFP_MOD_PRESENT,
49 	SFP_MOD_ERROR,
50 
51 	SFP_DEV_DOWN = 0,
52 	SFP_DEV_UP,
53 
54 	SFP_S_DOWN = 0,
55 	SFP_S_INIT,
56 	SFP_S_WAIT_LOS,
57 	SFP_S_LINK_UP,
58 	SFP_S_TX_FAULT,
59 	SFP_S_REINIT,
60 	SFP_S_TX_DISABLE,
61 };
62 
63 static const char  * const mod_state_strings[] = {
64 	[SFP_MOD_EMPTY] = "empty",
65 	[SFP_MOD_PROBE] = "probe",
66 	[SFP_MOD_HPOWER] = "hpower",
67 	[SFP_MOD_PRESENT] = "present",
68 	[SFP_MOD_ERROR] = "error",
69 };
70 
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
74 		return "Unknown module state";
75 	return mod_state_strings[mod_state];
76 }
77 
78 static const char * const dev_state_strings[] = {
79 	[SFP_DEV_DOWN] = "down",
80 	[SFP_DEV_UP] = "up",
81 };
82 
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
86 		return "Unknown device state";
87 	return dev_state_strings[dev_state];
88 }
89 
90 static const char * const event_strings[] = {
91 	[SFP_E_INSERT] = "insert",
92 	[SFP_E_REMOVE] = "remove",
93 	[SFP_E_DEV_DOWN] = "dev_down",
94 	[SFP_E_DEV_UP] = "dev_up",
95 	[SFP_E_TX_FAULT] = "tx_fault",
96 	[SFP_E_TX_CLEAR] = "tx_clear",
97 	[SFP_E_LOS_HIGH] = "los_high",
98 	[SFP_E_LOS_LOW] = "los_low",
99 	[SFP_E_TIMEOUT] = "timeout",
100 };
101 
102 static const char *event_to_str(unsigned short event)
103 {
104 	if (event >= ARRAY_SIZE(event_strings))
105 		return "Unknown event";
106 	return event_strings[event];
107 }
108 
109 static const char * const sm_state_strings[] = {
110 	[SFP_S_DOWN] = "down",
111 	[SFP_S_INIT] = "init",
112 	[SFP_S_WAIT_LOS] = "wait_los",
113 	[SFP_S_LINK_UP] = "link_up",
114 	[SFP_S_TX_FAULT] = "tx_fault",
115 	[SFP_S_REINIT] = "reinit",
116 	[SFP_S_TX_DISABLE] = "rx_disable",
117 };
118 
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
122 		return "Unknown state";
123 	return sm_state_strings[sm_state];
124 }
125 
126 static const char *gpio_of_names[] = {
127 	"mod-def0",
128 	"los",
129 	"tx-fault",
130 	"tx-disable",
131 	"rate-select0",
132 };
133 
134 static const enum gpiod_flags gpio_flags[] = {
135 	GPIOD_IN,
136 	GPIOD_IN,
137 	GPIOD_IN,
138 	GPIOD_ASIS,
139 	GPIOD_ASIS,
140 };
141 
142 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
143 #define T_RESET_US	10
144 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
145 
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT	msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL	msecs_to_jiffies(300)
156 #define T_PROBE_RETRY	msecs_to_jiffies(100)
157 
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR	22
162 
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS	50
165 
166 static DEFINE_MUTEX(sfp_mutex);
167 
168 struct sff_data {
169 	unsigned int gpios;
170 	bool (*module_supported)(const struct sfp_eeprom_id *id);
171 };
172 
173 struct sfp {
174 	struct device *dev;
175 	struct i2c_adapter *i2c;
176 	struct mii_bus *i2c_mii;
177 	struct sfp_bus *sfp_bus;
178 	struct phy_device *mod_phy;
179 	const struct sff_data *type;
180 	u32 max_power_mW;
181 
182 	unsigned int (*get_state)(struct sfp *);
183 	void (*set_state)(struct sfp *, unsigned int);
184 	int (*read)(struct sfp *, bool, u8, void *, size_t);
185 	int (*write)(struct sfp *, bool, u8, void *, size_t);
186 
187 	struct gpio_desc *gpio[GPIO_MAX];
188 
189 	unsigned int state;
190 	struct delayed_work poll;
191 	struct delayed_work timeout;
192 	struct mutex sm_mutex;
193 	unsigned char sm_mod_state;
194 	unsigned char sm_dev_state;
195 	unsigned short sm_state;
196 	unsigned int sm_retries;
197 
198 	struct sfp_eeprom_id id;
199 #if IS_ENABLED(CONFIG_HWMON)
200 	struct sfp_diag diag;
201 	struct device *hwmon_dev;
202 	char *hwmon_name;
203 #endif
204 
205 };
206 
207 static bool sff_module_supported(const struct sfp_eeprom_id *id)
208 {
209 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
210 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
211 }
212 
213 static const struct sff_data sff_data = {
214 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
215 	.module_supported = sff_module_supported,
216 };
217 
218 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
219 {
220 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
221 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
222 }
223 
224 static const struct sff_data sfp_data = {
225 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
226 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
227 	.module_supported = sfp_module_supported,
228 };
229 
230 static const struct of_device_id sfp_of_match[] = {
231 	{ .compatible = "sff,sff", .data = &sff_data, },
232 	{ .compatible = "sff,sfp", .data = &sfp_data, },
233 	{ },
234 };
235 MODULE_DEVICE_TABLE(of, sfp_of_match);
236 
237 static unsigned long poll_jiffies;
238 
239 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
240 {
241 	unsigned int i, state, v;
242 
243 	for (i = state = 0; i < GPIO_MAX; i++) {
244 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
245 			continue;
246 
247 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
248 		if (v)
249 			state |= BIT(i);
250 	}
251 
252 	return state;
253 }
254 
255 static unsigned int sff_gpio_get_state(struct sfp *sfp)
256 {
257 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
258 }
259 
260 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
261 {
262 	if (state & SFP_F_PRESENT) {
263 		/* If the module is present, drive the signals */
264 		if (sfp->gpio[GPIO_TX_DISABLE])
265 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
266 					       state & SFP_F_TX_DISABLE);
267 		if (state & SFP_F_RATE_SELECT)
268 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
269 					       state & SFP_F_RATE_SELECT);
270 	} else {
271 		/* Otherwise, let them float to the pull-ups */
272 		if (sfp->gpio[GPIO_TX_DISABLE])
273 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
274 		if (state & SFP_F_RATE_SELECT)
275 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
276 	}
277 }
278 
279 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
280 			size_t len)
281 {
282 	struct i2c_msg msgs[2];
283 	u8 bus_addr = a2 ? 0x51 : 0x50;
284 	int ret;
285 
286 	msgs[0].addr = bus_addr;
287 	msgs[0].flags = 0;
288 	msgs[0].len = 1;
289 	msgs[0].buf = &dev_addr;
290 	msgs[1].addr = bus_addr;
291 	msgs[1].flags = I2C_M_RD;
292 	msgs[1].len = len;
293 	msgs[1].buf = buf;
294 
295 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
296 	if (ret < 0)
297 		return ret;
298 
299 	return ret == ARRAY_SIZE(msgs) ? len : 0;
300 }
301 
302 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
303 	size_t len)
304 {
305 	struct i2c_msg msgs[1];
306 	u8 bus_addr = a2 ? 0x51 : 0x50;
307 	int ret;
308 
309 	msgs[0].addr = bus_addr;
310 	msgs[0].flags = 0;
311 	msgs[0].len = 1 + len;
312 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
313 	if (!msgs[0].buf)
314 		return -ENOMEM;
315 
316 	msgs[0].buf[0] = dev_addr;
317 	memcpy(&msgs[0].buf[1], buf, len);
318 
319 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
320 
321 	kfree(msgs[0].buf);
322 
323 	if (ret < 0)
324 		return ret;
325 
326 	return ret == ARRAY_SIZE(msgs) ? len : 0;
327 }
328 
329 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
330 {
331 	struct mii_bus *i2c_mii;
332 	int ret;
333 
334 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
335 		return -EINVAL;
336 
337 	sfp->i2c = i2c;
338 	sfp->read = sfp_i2c_read;
339 	sfp->write = sfp_i2c_write;
340 
341 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
342 	if (IS_ERR(i2c_mii))
343 		return PTR_ERR(i2c_mii);
344 
345 	i2c_mii->name = "SFP I2C Bus";
346 	i2c_mii->phy_mask = ~0;
347 
348 	ret = mdiobus_register(i2c_mii);
349 	if (ret < 0) {
350 		mdiobus_free(i2c_mii);
351 		return ret;
352 	}
353 
354 	sfp->i2c_mii = i2c_mii;
355 
356 	return 0;
357 }
358 
359 /* Interface */
360 static unsigned int sfp_get_state(struct sfp *sfp)
361 {
362 	return sfp->get_state(sfp);
363 }
364 
365 static void sfp_set_state(struct sfp *sfp, unsigned int state)
366 {
367 	sfp->set_state(sfp, state);
368 }
369 
370 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
371 {
372 	return sfp->read(sfp, a2, addr, buf, len);
373 }
374 
375 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
376 {
377 	return sfp->write(sfp, a2, addr, buf, len);
378 }
379 
380 static unsigned int sfp_check(void *buf, size_t len)
381 {
382 	u8 *p, check;
383 
384 	for (p = buf, check = 0; len; p++, len--)
385 		check += *p;
386 
387 	return check;
388 }
389 
390 /* hwmon */
391 #if IS_ENABLED(CONFIG_HWMON)
392 static umode_t sfp_hwmon_is_visible(const void *data,
393 				    enum hwmon_sensor_types type,
394 				    u32 attr, int channel)
395 {
396 	const struct sfp *sfp = data;
397 
398 	switch (type) {
399 	case hwmon_temp:
400 		switch (attr) {
401 		case hwmon_temp_input:
402 		case hwmon_temp_min_alarm:
403 		case hwmon_temp_max_alarm:
404 		case hwmon_temp_lcrit_alarm:
405 		case hwmon_temp_crit_alarm:
406 		case hwmon_temp_min:
407 		case hwmon_temp_max:
408 		case hwmon_temp_lcrit:
409 		case hwmon_temp_crit:
410 			return 0444;
411 		default:
412 			return 0;
413 		}
414 	case hwmon_in:
415 		switch (attr) {
416 		case hwmon_in_input:
417 		case hwmon_in_min_alarm:
418 		case hwmon_in_max_alarm:
419 		case hwmon_in_lcrit_alarm:
420 		case hwmon_in_crit_alarm:
421 		case hwmon_in_min:
422 		case hwmon_in_max:
423 		case hwmon_in_lcrit:
424 		case hwmon_in_crit:
425 			return 0444;
426 		default:
427 			return 0;
428 		}
429 	case hwmon_curr:
430 		switch (attr) {
431 		case hwmon_curr_input:
432 		case hwmon_curr_min_alarm:
433 		case hwmon_curr_max_alarm:
434 		case hwmon_curr_lcrit_alarm:
435 		case hwmon_curr_crit_alarm:
436 		case hwmon_curr_min:
437 		case hwmon_curr_max:
438 		case hwmon_curr_lcrit:
439 		case hwmon_curr_crit:
440 			return 0444;
441 		default:
442 			return 0;
443 		}
444 	case hwmon_power:
445 		/* External calibration of receive power requires
446 		 * floating point arithmetic. Doing that in the kernel
447 		 * is not easy, so just skip it. If the module does
448 		 * not require external calibration, we can however
449 		 * show receiver power, since FP is then not needed.
450 		 */
451 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
452 		    channel == 1)
453 			return 0;
454 		switch (attr) {
455 		case hwmon_power_input:
456 		case hwmon_power_min_alarm:
457 		case hwmon_power_max_alarm:
458 		case hwmon_power_lcrit_alarm:
459 		case hwmon_power_crit_alarm:
460 		case hwmon_power_min:
461 		case hwmon_power_max:
462 		case hwmon_power_lcrit:
463 		case hwmon_power_crit:
464 			return 0444;
465 		default:
466 			return 0;
467 		}
468 	default:
469 		return 0;
470 	}
471 }
472 
473 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
474 {
475 	__be16 val;
476 	int err;
477 
478 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
479 	if (err < 0)
480 		return err;
481 
482 	*value = be16_to_cpu(val);
483 
484 	return 0;
485 }
486 
487 static void sfp_hwmon_to_rx_power(long *value)
488 {
489 	*value = DIV_ROUND_CLOSEST(*value, 100);
490 }
491 
492 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
493 				long *value)
494 {
495 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
496 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
497 }
498 
499 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
500 {
501 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
502 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
503 
504 	if (*value >= 0x8000)
505 		*value -= 0x10000;
506 
507 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
508 }
509 
510 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
511 {
512 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
513 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
514 
515 	*value = DIV_ROUND_CLOSEST(*value, 10);
516 }
517 
518 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
519 {
520 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
521 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
522 
523 	*value = DIV_ROUND_CLOSEST(*value, 500);
524 }
525 
526 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
527 {
528 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
529 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
530 
531 	*value = DIV_ROUND_CLOSEST(*value, 10);
532 }
533 
534 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
535 {
536 	int err;
537 
538 	err = sfp_hwmon_read_sensor(sfp, reg, value);
539 	if (err < 0)
540 		return err;
541 
542 	sfp_hwmon_calibrate_temp(sfp, value);
543 
544 	return 0;
545 }
546 
547 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
548 {
549 	int err;
550 
551 	err = sfp_hwmon_read_sensor(sfp, reg, value);
552 	if (err < 0)
553 		return err;
554 
555 	sfp_hwmon_calibrate_vcc(sfp, value);
556 
557 	return 0;
558 }
559 
560 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
561 {
562 	int err;
563 
564 	err = sfp_hwmon_read_sensor(sfp, reg, value);
565 	if (err < 0)
566 		return err;
567 
568 	sfp_hwmon_calibrate_bias(sfp, value);
569 
570 	return 0;
571 }
572 
573 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
574 {
575 	int err;
576 
577 	err = sfp_hwmon_read_sensor(sfp, reg, value);
578 	if (err < 0)
579 		return err;
580 
581 	sfp_hwmon_calibrate_tx_power(sfp, value);
582 
583 	return 0;
584 }
585 
586 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
587 {
588 	int err;
589 
590 	err = sfp_hwmon_read_sensor(sfp, reg, value);
591 	if (err < 0)
592 		return err;
593 
594 	sfp_hwmon_to_rx_power(value);
595 
596 	return 0;
597 }
598 
599 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
600 {
601 	u8 status;
602 	int err;
603 
604 	switch (attr) {
605 	case hwmon_temp_input:
606 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
607 
608 	case hwmon_temp_lcrit:
609 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
610 		sfp_hwmon_calibrate_temp(sfp, value);
611 		return 0;
612 
613 	case hwmon_temp_min:
614 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
615 		sfp_hwmon_calibrate_temp(sfp, value);
616 		return 0;
617 	case hwmon_temp_max:
618 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
619 		sfp_hwmon_calibrate_temp(sfp, value);
620 		return 0;
621 
622 	case hwmon_temp_crit:
623 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
624 		sfp_hwmon_calibrate_temp(sfp, value);
625 		return 0;
626 
627 	case hwmon_temp_lcrit_alarm:
628 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
629 		if (err < 0)
630 			return err;
631 
632 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
633 		return 0;
634 
635 	case hwmon_temp_min_alarm:
636 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
637 		if (err < 0)
638 			return err;
639 
640 		*value = !!(status & SFP_WARN0_TEMP_LOW);
641 		return 0;
642 
643 	case hwmon_temp_max_alarm:
644 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
645 		if (err < 0)
646 			return err;
647 
648 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
649 		return 0;
650 
651 	case hwmon_temp_crit_alarm:
652 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
653 		if (err < 0)
654 			return err;
655 
656 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
657 		return 0;
658 	default:
659 		return -EOPNOTSUPP;
660 	}
661 
662 	return -EOPNOTSUPP;
663 }
664 
665 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
666 {
667 	u8 status;
668 	int err;
669 
670 	switch (attr) {
671 	case hwmon_in_input:
672 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
673 
674 	case hwmon_in_lcrit:
675 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
676 		sfp_hwmon_calibrate_vcc(sfp, value);
677 		return 0;
678 
679 	case hwmon_in_min:
680 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
681 		sfp_hwmon_calibrate_vcc(sfp, value);
682 		return 0;
683 
684 	case hwmon_in_max:
685 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
686 		sfp_hwmon_calibrate_vcc(sfp, value);
687 		return 0;
688 
689 	case hwmon_in_crit:
690 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
691 		sfp_hwmon_calibrate_vcc(sfp, value);
692 		return 0;
693 
694 	case hwmon_in_lcrit_alarm:
695 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
696 		if (err < 0)
697 			return err;
698 
699 		*value = !!(status & SFP_ALARM0_VCC_LOW);
700 		return 0;
701 
702 	case hwmon_in_min_alarm:
703 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
704 		if (err < 0)
705 			return err;
706 
707 		*value = !!(status & SFP_WARN0_VCC_LOW);
708 		return 0;
709 
710 	case hwmon_in_max_alarm:
711 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
712 		if (err < 0)
713 			return err;
714 
715 		*value = !!(status & SFP_WARN0_VCC_HIGH);
716 		return 0;
717 
718 	case hwmon_in_crit_alarm:
719 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
720 		if (err < 0)
721 			return err;
722 
723 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
724 		return 0;
725 	default:
726 		return -EOPNOTSUPP;
727 	}
728 
729 	return -EOPNOTSUPP;
730 }
731 
732 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
733 {
734 	u8 status;
735 	int err;
736 
737 	switch (attr) {
738 	case hwmon_curr_input:
739 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
740 
741 	case hwmon_curr_lcrit:
742 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
743 		sfp_hwmon_calibrate_bias(sfp, value);
744 		return 0;
745 
746 	case hwmon_curr_min:
747 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
748 		sfp_hwmon_calibrate_bias(sfp, value);
749 		return 0;
750 
751 	case hwmon_curr_max:
752 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
753 		sfp_hwmon_calibrate_bias(sfp, value);
754 		return 0;
755 
756 	case hwmon_curr_crit:
757 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
758 		sfp_hwmon_calibrate_bias(sfp, value);
759 		return 0;
760 
761 	case hwmon_curr_lcrit_alarm:
762 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
763 		if (err < 0)
764 			return err;
765 
766 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
767 		return 0;
768 
769 	case hwmon_curr_min_alarm:
770 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
771 		if (err < 0)
772 			return err;
773 
774 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
775 		return 0;
776 
777 	case hwmon_curr_max_alarm:
778 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
779 		if (err < 0)
780 			return err;
781 
782 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
783 		return 0;
784 
785 	case hwmon_curr_crit_alarm:
786 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
787 		if (err < 0)
788 			return err;
789 
790 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
791 		return 0;
792 	default:
793 		return -EOPNOTSUPP;
794 	}
795 
796 	return -EOPNOTSUPP;
797 }
798 
799 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
800 {
801 	u8 status;
802 	int err;
803 
804 	switch (attr) {
805 	case hwmon_power_input:
806 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
807 
808 	case hwmon_power_lcrit:
809 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
810 		sfp_hwmon_calibrate_tx_power(sfp, value);
811 		return 0;
812 
813 	case hwmon_power_min:
814 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
815 		sfp_hwmon_calibrate_tx_power(sfp, value);
816 		return 0;
817 
818 	case hwmon_power_max:
819 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
820 		sfp_hwmon_calibrate_tx_power(sfp, value);
821 		return 0;
822 
823 	case hwmon_power_crit:
824 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
825 		sfp_hwmon_calibrate_tx_power(sfp, value);
826 		return 0;
827 
828 	case hwmon_power_lcrit_alarm:
829 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
830 		if (err < 0)
831 			return err;
832 
833 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
834 		return 0;
835 
836 	case hwmon_power_min_alarm:
837 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
838 		if (err < 0)
839 			return err;
840 
841 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
842 		return 0;
843 
844 	case hwmon_power_max_alarm:
845 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
846 		if (err < 0)
847 			return err;
848 
849 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
850 		return 0;
851 
852 	case hwmon_power_crit_alarm:
853 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
854 		if (err < 0)
855 			return err;
856 
857 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
858 		return 0;
859 	default:
860 		return -EOPNOTSUPP;
861 	}
862 
863 	return -EOPNOTSUPP;
864 }
865 
866 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
867 {
868 	u8 status;
869 	int err;
870 
871 	switch (attr) {
872 	case hwmon_power_input:
873 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
874 
875 	case hwmon_power_lcrit:
876 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
877 		sfp_hwmon_to_rx_power(value);
878 		return 0;
879 
880 	case hwmon_power_min:
881 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
882 		sfp_hwmon_to_rx_power(value);
883 		return 0;
884 
885 	case hwmon_power_max:
886 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
887 		sfp_hwmon_to_rx_power(value);
888 		return 0;
889 
890 	case hwmon_power_crit:
891 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
892 		sfp_hwmon_to_rx_power(value);
893 		return 0;
894 
895 	case hwmon_power_lcrit_alarm:
896 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
897 		if (err < 0)
898 			return err;
899 
900 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
901 		return 0;
902 
903 	case hwmon_power_min_alarm:
904 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
905 		if (err < 0)
906 			return err;
907 
908 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
909 		return 0;
910 
911 	case hwmon_power_max_alarm:
912 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
913 		if (err < 0)
914 			return err;
915 
916 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
917 		return 0;
918 
919 	case hwmon_power_crit_alarm:
920 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
921 		if (err < 0)
922 			return err;
923 
924 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
925 		return 0;
926 	default:
927 		return -EOPNOTSUPP;
928 	}
929 
930 	return -EOPNOTSUPP;
931 }
932 
933 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
934 			  u32 attr, int channel, long *value)
935 {
936 	struct sfp *sfp = dev_get_drvdata(dev);
937 
938 	switch (type) {
939 	case hwmon_temp:
940 		return sfp_hwmon_temp(sfp, attr, value);
941 	case hwmon_in:
942 		return sfp_hwmon_vcc(sfp, attr, value);
943 	case hwmon_curr:
944 		return sfp_hwmon_bias(sfp, attr, value);
945 	case hwmon_power:
946 		switch (channel) {
947 		case 0:
948 			return sfp_hwmon_tx_power(sfp, attr, value);
949 		case 1:
950 			return sfp_hwmon_rx_power(sfp, attr, value);
951 		default:
952 			return -EOPNOTSUPP;
953 		}
954 	default:
955 		return -EOPNOTSUPP;
956 	}
957 }
958 
959 static const struct hwmon_ops sfp_hwmon_ops = {
960 	.is_visible = sfp_hwmon_is_visible,
961 	.read = sfp_hwmon_read,
962 };
963 
964 static u32 sfp_hwmon_chip_config[] = {
965 	HWMON_C_REGISTER_TZ,
966 	0,
967 };
968 
969 static const struct hwmon_channel_info sfp_hwmon_chip = {
970 	.type = hwmon_chip,
971 	.config = sfp_hwmon_chip_config,
972 };
973 
974 static u32 sfp_hwmon_temp_config[] = {
975 	HWMON_T_INPUT |
976 	HWMON_T_MAX | HWMON_T_MIN |
977 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
978 	HWMON_T_CRIT | HWMON_T_LCRIT |
979 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
980 	0,
981 };
982 
983 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
984 	.type = hwmon_temp,
985 	.config = sfp_hwmon_temp_config,
986 };
987 
988 static u32 sfp_hwmon_vcc_config[] = {
989 	HWMON_I_INPUT |
990 	HWMON_I_MAX | HWMON_I_MIN |
991 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
992 	HWMON_I_CRIT | HWMON_I_LCRIT |
993 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
994 	0,
995 };
996 
997 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
998 	.type = hwmon_in,
999 	.config = sfp_hwmon_vcc_config,
1000 };
1001 
1002 static u32 sfp_hwmon_bias_config[] = {
1003 	HWMON_C_INPUT |
1004 	HWMON_C_MAX | HWMON_C_MIN |
1005 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1006 	HWMON_C_CRIT | HWMON_C_LCRIT |
1007 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1008 	0,
1009 };
1010 
1011 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1012 	.type = hwmon_curr,
1013 	.config = sfp_hwmon_bias_config,
1014 };
1015 
1016 static u32 sfp_hwmon_power_config[] = {
1017 	/* Transmit power */
1018 	HWMON_P_INPUT |
1019 	HWMON_P_MAX | HWMON_P_MIN |
1020 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1021 	HWMON_P_CRIT | HWMON_P_LCRIT |
1022 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1023 	/* Receive power */
1024 	HWMON_P_INPUT |
1025 	HWMON_P_MAX | HWMON_P_MIN |
1026 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1027 	HWMON_P_CRIT | HWMON_P_LCRIT |
1028 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1029 	0,
1030 };
1031 
1032 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1033 	.type = hwmon_power,
1034 	.config = sfp_hwmon_power_config,
1035 };
1036 
1037 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1038 	&sfp_hwmon_chip,
1039 	&sfp_hwmon_vcc_channel_info,
1040 	&sfp_hwmon_temp_channel_info,
1041 	&sfp_hwmon_bias_channel_info,
1042 	&sfp_hwmon_power_channel_info,
1043 	NULL,
1044 };
1045 
1046 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1047 	.ops = &sfp_hwmon_ops,
1048 	.info = sfp_hwmon_info,
1049 };
1050 
1051 static int sfp_hwmon_insert(struct sfp *sfp)
1052 {
1053 	int err, i;
1054 
1055 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1056 		return 0;
1057 
1058 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1059 		return 0;
1060 
1061 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1062 		/* This driver in general does not support address
1063 		 * change.
1064 		 */
1065 		return 0;
1066 
1067 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1068 	if (err < 0)
1069 		return err;
1070 
1071 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1072 	if (!sfp->hwmon_name)
1073 		return -ENODEV;
1074 
1075 	for (i = 0; sfp->hwmon_name[i]; i++)
1076 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1077 			sfp->hwmon_name[i] = '_';
1078 
1079 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1080 							 sfp->hwmon_name, sfp,
1081 							 &sfp_hwmon_chip_info,
1082 							 NULL);
1083 
1084 	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1085 }
1086 
1087 static void sfp_hwmon_remove(struct sfp *sfp)
1088 {
1089 	hwmon_device_unregister(sfp->hwmon_dev);
1090 	kfree(sfp->hwmon_name);
1091 }
1092 #else
1093 static int sfp_hwmon_insert(struct sfp *sfp)
1094 {
1095 	return 0;
1096 }
1097 
1098 static void sfp_hwmon_remove(struct sfp *sfp)
1099 {
1100 }
1101 #endif
1102 
1103 /* Helpers */
1104 static void sfp_module_tx_disable(struct sfp *sfp)
1105 {
1106 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1107 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1108 	sfp->state |= SFP_F_TX_DISABLE;
1109 	sfp_set_state(sfp, sfp->state);
1110 }
1111 
1112 static void sfp_module_tx_enable(struct sfp *sfp)
1113 {
1114 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1115 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1116 	sfp->state &= ~SFP_F_TX_DISABLE;
1117 	sfp_set_state(sfp, sfp->state);
1118 }
1119 
1120 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1121 {
1122 	unsigned int state = sfp->state;
1123 
1124 	if (state & SFP_F_TX_DISABLE)
1125 		return;
1126 
1127 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1128 
1129 	udelay(T_RESET_US);
1130 
1131 	sfp_set_state(sfp, state);
1132 }
1133 
1134 /* SFP state machine */
1135 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1136 {
1137 	if (timeout)
1138 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1139 				 timeout);
1140 	else
1141 		cancel_delayed_work(&sfp->timeout);
1142 }
1143 
1144 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1145 			unsigned int timeout)
1146 {
1147 	sfp->sm_state = state;
1148 	sfp_sm_set_timer(sfp, timeout);
1149 }
1150 
1151 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1152 			    unsigned int timeout)
1153 {
1154 	sfp->sm_mod_state = state;
1155 	sfp_sm_set_timer(sfp, timeout);
1156 }
1157 
1158 static void sfp_sm_phy_detach(struct sfp *sfp)
1159 {
1160 	phy_stop(sfp->mod_phy);
1161 	sfp_remove_phy(sfp->sfp_bus);
1162 	phy_device_remove(sfp->mod_phy);
1163 	phy_device_free(sfp->mod_phy);
1164 	sfp->mod_phy = NULL;
1165 }
1166 
1167 static void sfp_sm_probe_phy(struct sfp *sfp)
1168 {
1169 	struct phy_device *phy;
1170 	int err;
1171 
1172 	msleep(T_PHY_RESET_MS);
1173 
1174 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1175 	if (phy == ERR_PTR(-ENODEV)) {
1176 		dev_info(sfp->dev, "no PHY detected\n");
1177 		return;
1178 	}
1179 	if (IS_ERR(phy)) {
1180 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1181 		return;
1182 	}
1183 
1184 	err = sfp_add_phy(sfp->sfp_bus, phy);
1185 	if (err) {
1186 		phy_device_remove(phy);
1187 		phy_device_free(phy);
1188 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1189 		return;
1190 	}
1191 
1192 	sfp->mod_phy = phy;
1193 	phy_start(phy);
1194 }
1195 
1196 static void sfp_sm_link_up(struct sfp *sfp)
1197 {
1198 	sfp_link_up(sfp->sfp_bus);
1199 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1200 }
1201 
1202 static void sfp_sm_link_down(struct sfp *sfp)
1203 {
1204 	sfp_link_down(sfp->sfp_bus);
1205 }
1206 
1207 static void sfp_sm_link_check_los(struct sfp *sfp)
1208 {
1209 	unsigned int los = sfp->state & SFP_F_LOS;
1210 
1211 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1212 	 * are set, we assume that no LOS signal is available.
1213 	 */
1214 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1215 		los ^= SFP_F_LOS;
1216 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1217 		los = 0;
1218 
1219 	if (los)
1220 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1221 	else
1222 		sfp_sm_link_up(sfp);
1223 }
1224 
1225 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1226 {
1227 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1228 		event == SFP_E_LOS_LOW) ||
1229 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1230 		event == SFP_E_LOS_HIGH);
1231 }
1232 
1233 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1234 {
1235 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1236 		event == SFP_E_LOS_HIGH) ||
1237 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1238 		event == SFP_E_LOS_LOW);
1239 }
1240 
1241 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1242 {
1243 	if (sfp->sm_retries && !--sfp->sm_retries) {
1244 		dev_err(sfp->dev,
1245 			"module persistently indicates fault, disabling\n");
1246 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1247 	} else {
1248 		if (warn)
1249 			dev_err(sfp->dev, "module transmit fault indicated\n");
1250 
1251 		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1252 	}
1253 }
1254 
1255 static void sfp_sm_mod_init(struct sfp *sfp)
1256 {
1257 	sfp_module_tx_enable(sfp);
1258 
1259 	/* Wait t_init before indicating that the link is up, provided the
1260 	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1261 	 * this time, that's fine too.
1262 	 */
1263 	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1264 	sfp->sm_retries = 5;
1265 
1266 	/* Setting the serdes link mode is guesswork: there's no
1267 	 * field in the EEPROM which indicates what mode should
1268 	 * be used.
1269 	 *
1270 	 * If it's a gigabit-only fiber module, it probably does
1271 	 * not have a PHY, so switch to 802.3z negotiation mode.
1272 	 * Otherwise, switch to SGMII mode (which is required to
1273 	 * support non-gigabit speeds) and probe for a PHY.
1274 	 */
1275 	if (sfp->id.base.e1000_base_t ||
1276 	    sfp->id.base.e100_base_lx ||
1277 	    sfp->id.base.e100_base_fx)
1278 		sfp_sm_probe_phy(sfp);
1279 }
1280 
1281 static int sfp_sm_mod_hpower(struct sfp *sfp)
1282 {
1283 	u32 power;
1284 	u8 val;
1285 	int err;
1286 
1287 	power = 1000;
1288 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1289 		power = 1500;
1290 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1291 		power = 2000;
1292 
1293 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1294 	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1295 	    SFP_DIAGMON_DDM) {
1296 		/* The module appears not to implement bus address 0xa2,
1297 		 * or requires an address change sequence, so assume that
1298 		 * the module powers up in the indicated power mode.
1299 		 */
1300 		if (power > sfp->max_power_mW) {
1301 			dev_err(sfp->dev,
1302 				"Host does not support %u.%uW modules\n",
1303 				power / 1000, (power / 100) % 10);
1304 			return -EINVAL;
1305 		}
1306 		return 0;
1307 	}
1308 
1309 	if (power > sfp->max_power_mW) {
1310 		dev_warn(sfp->dev,
1311 			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1312 			 power / 1000, (power / 100) % 10);
1313 		return 0;
1314 	}
1315 
1316 	if (power <= 1000)
1317 		return 0;
1318 
1319 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1320 	if (err != sizeof(val)) {
1321 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1322 		err = -EAGAIN;
1323 		goto err;
1324 	}
1325 
1326 	val |= BIT(0);
1327 
1328 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1329 	if (err != sizeof(val)) {
1330 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1331 		err = -EAGAIN;
1332 		goto err;
1333 	}
1334 
1335 	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1336 		 power / 1000, (power / 100) % 10);
1337 	return T_HPOWER_LEVEL;
1338 
1339 err:
1340 	return err;
1341 }
1342 
1343 static int sfp_sm_mod_probe(struct sfp *sfp)
1344 {
1345 	/* SFP module inserted - read I2C data */
1346 	struct sfp_eeprom_id id;
1347 	bool cotsworks;
1348 	u8 check;
1349 	int ret;
1350 
1351 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1352 	if (ret < 0) {
1353 		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1354 		return -EAGAIN;
1355 	}
1356 
1357 	if (ret != sizeof(id)) {
1358 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1359 		return -EAGAIN;
1360 	}
1361 
1362 	/* Cotsworks do not seem to update the checksums when they
1363 	 * do the final programming with the final module part number,
1364 	 * serial number and date code.
1365 	 */
1366 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1367 
1368 	/* Validate the checksum over the base structure */
1369 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1370 	if (check != id.base.cc_base) {
1371 		if (cotsworks) {
1372 			dev_warn(sfp->dev,
1373 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1374 				 check, id.base.cc_base);
1375 		} else {
1376 			dev_err(sfp->dev,
1377 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1378 				check, id.base.cc_base);
1379 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1380 				       16, 1, &id, sizeof(id), true);
1381 			return -EINVAL;
1382 		}
1383 	}
1384 
1385 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1386 	if (check != id.ext.cc_ext) {
1387 		if (cotsworks) {
1388 			dev_warn(sfp->dev,
1389 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1390 				 check, id.ext.cc_ext);
1391 		} else {
1392 			dev_err(sfp->dev,
1393 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1394 				check, id.ext.cc_ext);
1395 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1396 				       16, 1, &id, sizeof(id), true);
1397 			memset(&id.ext, 0, sizeof(id.ext));
1398 		}
1399 	}
1400 
1401 	sfp->id = id;
1402 
1403 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1404 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1405 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1406 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1407 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1408 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1409 
1410 	/* Check whether we support this module */
1411 	if (!sfp->type->module_supported(&sfp->id)) {
1412 		dev_err(sfp->dev,
1413 			"module is not supported - phys id 0x%02x 0x%02x\n",
1414 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1415 		return -EINVAL;
1416 	}
1417 
1418 	/* If the module requires address swap mode, warn about it */
1419 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1420 		dev_warn(sfp->dev,
1421 			 "module address swap to access page 0xA2 is not supported.\n");
1422 
1423 	ret = sfp_hwmon_insert(sfp);
1424 	if (ret < 0)
1425 		return ret;
1426 
1427 	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	return sfp_sm_mod_hpower(sfp);
1432 }
1433 
1434 static void sfp_sm_mod_remove(struct sfp *sfp)
1435 {
1436 	sfp_module_remove(sfp->sfp_bus);
1437 
1438 	sfp_hwmon_remove(sfp);
1439 
1440 	if (sfp->mod_phy)
1441 		sfp_sm_phy_detach(sfp);
1442 
1443 	sfp_module_tx_disable(sfp);
1444 
1445 	memset(&sfp->id, 0, sizeof(sfp->id));
1446 
1447 	dev_info(sfp->dev, "module removed\n");
1448 }
1449 
1450 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1451 {
1452 	mutex_lock(&sfp->sm_mutex);
1453 
1454 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1455 		mod_state_to_str(sfp->sm_mod_state),
1456 		dev_state_to_str(sfp->sm_dev_state),
1457 		sm_state_to_str(sfp->sm_state),
1458 		event_to_str(event));
1459 
1460 	/* This state machine tracks the insert/remove state of
1461 	 * the module, and handles probing the on-board EEPROM.
1462 	 */
1463 	switch (sfp->sm_mod_state) {
1464 	default:
1465 		if (event == SFP_E_INSERT) {
1466 			sfp_module_tx_disable(sfp);
1467 			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1468 		}
1469 		break;
1470 
1471 	case SFP_MOD_PROBE:
1472 		if (event == SFP_E_REMOVE) {
1473 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1474 		} else if (event == SFP_E_TIMEOUT) {
1475 			int val = sfp_sm_mod_probe(sfp);
1476 
1477 			if (val == 0)
1478 				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1479 			else if (val > 0)
1480 				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1481 			else if (val != -EAGAIN)
1482 				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1483 			else
1484 				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1485 		}
1486 		break;
1487 
1488 	case SFP_MOD_HPOWER:
1489 		if (event == SFP_E_TIMEOUT) {
1490 			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1491 			break;
1492 		}
1493 		/* fallthrough */
1494 	case SFP_MOD_PRESENT:
1495 	case SFP_MOD_ERROR:
1496 		if (event == SFP_E_REMOVE) {
1497 			sfp_sm_mod_remove(sfp);
1498 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1499 		}
1500 		break;
1501 	}
1502 
1503 	/* This state machine tracks the netdev up/down state */
1504 	switch (sfp->sm_dev_state) {
1505 	default:
1506 		if (event == SFP_E_DEV_UP)
1507 			sfp->sm_dev_state = SFP_DEV_UP;
1508 		break;
1509 
1510 	case SFP_DEV_UP:
1511 		if (event == SFP_E_DEV_DOWN) {
1512 			/* If the module has a PHY, avoid raising TX disable
1513 			 * as this resets the PHY. Otherwise, raise it to
1514 			 * turn the laser off.
1515 			 */
1516 			if (!sfp->mod_phy)
1517 				sfp_module_tx_disable(sfp);
1518 			sfp->sm_dev_state = SFP_DEV_DOWN;
1519 		}
1520 		break;
1521 	}
1522 
1523 	/* Some events are global */
1524 	if (sfp->sm_state != SFP_S_DOWN &&
1525 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1526 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1527 		if (sfp->sm_state == SFP_S_LINK_UP &&
1528 		    sfp->sm_dev_state == SFP_DEV_UP)
1529 			sfp_sm_link_down(sfp);
1530 		if (sfp->mod_phy)
1531 			sfp_sm_phy_detach(sfp);
1532 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1533 		mutex_unlock(&sfp->sm_mutex);
1534 		return;
1535 	}
1536 
1537 	/* The main state machine */
1538 	switch (sfp->sm_state) {
1539 	case SFP_S_DOWN:
1540 		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1541 		    sfp->sm_dev_state == SFP_DEV_UP)
1542 			sfp_sm_mod_init(sfp);
1543 		break;
1544 
1545 	case SFP_S_INIT:
1546 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1547 			sfp_sm_fault(sfp, true);
1548 		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1549 			sfp_sm_link_check_los(sfp);
1550 		break;
1551 
1552 	case SFP_S_WAIT_LOS:
1553 		if (event == SFP_E_TX_FAULT)
1554 			sfp_sm_fault(sfp, true);
1555 		else if (sfp_los_event_inactive(sfp, event))
1556 			sfp_sm_link_up(sfp);
1557 		break;
1558 
1559 	case SFP_S_LINK_UP:
1560 		if (event == SFP_E_TX_FAULT) {
1561 			sfp_sm_link_down(sfp);
1562 			sfp_sm_fault(sfp, true);
1563 		} else if (sfp_los_event_active(sfp, event)) {
1564 			sfp_sm_link_down(sfp);
1565 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1566 		}
1567 		break;
1568 
1569 	case SFP_S_TX_FAULT:
1570 		if (event == SFP_E_TIMEOUT) {
1571 			sfp_module_tx_fault_reset(sfp);
1572 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1573 		}
1574 		break;
1575 
1576 	case SFP_S_REINIT:
1577 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1578 			sfp_sm_fault(sfp, false);
1579 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1580 			dev_info(sfp->dev, "module transmit fault recovered\n");
1581 			sfp_sm_link_check_los(sfp);
1582 		}
1583 		break;
1584 
1585 	case SFP_S_TX_DISABLE:
1586 		break;
1587 	}
1588 
1589 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1590 		mod_state_to_str(sfp->sm_mod_state),
1591 		dev_state_to_str(sfp->sm_dev_state),
1592 		sm_state_to_str(sfp->sm_state));
1593 
1594 	mutex_unlock(&sfp->sm_mutex);
1595 }
1596 
1597 static void sfp_start(struct sfp *sfp)
1598 {
1599 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1600 }
1601 
1602 static void sfp_stop(struct sfp *sfp)
1603 {
1604 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1605 }
1606 
1607 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1608 {
1609 	/* locking... and check module is present */
1610 
1611 	if (sfp->id.ext.sff8472_compliance &&
1612 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1613 		modinfo->type = ETH_MODULE_SFF_8472;
1614 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1615 	} else {
1616 		modinfo->type = ETH_MODULE_SFF_8079;
1617 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1618 	}
1619 	return 0;
1620 }
1621 
1622 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1623 			     u8 *data)
1624 {
1625 	unsigned int first, last, len;
1626 	int ret;
1627 
1628 	if (ee->len == 0)
1629 		return -EINVAL;
1630 
1631 	first = ee->offset;
1632 	last = ee->offset + ee->len;
1633 	if (first < ETH_MODULE_SFF_8079_LEN) {
1634 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1635 		len -= first;
1636 
1637 		ret = sfp_read(sfp, false, first, data, len);
1638 		if (ret < 0)
1639 			return ret;
1640 
1641 		first += len;
1642 		data += len;
1643 	}
1644 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1645 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1646 		len -= first;
1647 		first -= ETH_MODULE_SFF_8079_LEN;
1648 
1649 		ret = sfp_read(sfp, true, first, data, len);
1650 		if (ret < 0)
1651 			return ret;
1652 	}
1653 	return 0;
1654 }
1655 
1656 static const struct sfp_socket_ops sfp_module_ops = {
1657 	.start = sfp_start,
1658 	.stop = sfp_stop,
1659 	.module_info = sfp_module_info,
1660 	.module_eeprom = sfp_module_eeprom,
1661 };
1662 
1663 static void sfp_timeout(struct work_struct *work)
1664 {
1665 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1666 
1667 	rtnl_lock();
1668 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1669 	rtnl_unlock();
1670 }
1671 
1672 static void sfp_check_state(struct sfp *sfp)
1673 {
1674 	unsigned int state, i, changed;
1675 
1676 	state = sfp_get_state(sfp);
1677 	changed = state ^ sfp->state;
1678 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1679 
1680 	for (i = 0; i < GPIO_MAX; i++)
1681 		if (changed & BIT(i))
1682 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1683 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1684 
1685 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1686 	sfp->state = state;
1687 
1688 	rtnl_lock();
1689 	if (changed & SFP_F_PRESENT)
1690 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1691 				SFP_E_INSERT : SFP_E_REMOVE);
1692 
1693 	if (changed & SFP_F_TX_FAULT)
1694 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1695 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1696 
1697 	if (changed & SFP_F_LOS)
1698 		sfp_sm_event(sfp, state & SFP_F_LOS ?
1699 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1700 	rtnl_unlock();
1701 }
1702 
1703 static irqreturn_t sfp_irq(int irq, void *data)
1704 {
1705 	struct sfp *sfp = data;
1706 
1707 	sfp_check_state(sfp);
1708 
1709 	return IRQ_HANDLED;
1710 }
1711 
1712 static void sfp_poll(struct work_struct *work)
1713 {
1714 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1715 
1716 	sfp_check_state(sfp);
1717 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1718 }
1719 
1720 static struct sfp *sfp_alloc(struct device *dev)
1721 {
1722 	struct sfp *sfp;
1723 
1724 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1725 	if (!sfp)
1726 		return ERR_PTR(-ENOMEM);
1727 
1728 	sfp->dev = dev;
1729 
1730 	mutex_init(&sfp->sm_mutex);
1731 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1732 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1733 
1734 	return sfp;
1735 }
1736 
1737 static void sfp_cleanup(void *data)
1738 {
1739 	struct sfp *sfp = data;
1740 
1741 	cancel_delayed_work_sync(&sfp->poll);
1742 	cancel_delayed_work_sync(&sfp->timeout);
1743 	if (sfp->i2c_mii) {
1744 		mdiobus_unregister(sfp->i2c_mii);
1745 		mdiobus_free(sfp->i2c_mii);
1746 	}
1747 	if (sfp->i2c)
1748 		i2c_put_adapter(sfp->i2c);
1749 	kfree(sfp);
1750 }
1751 
1752 static int sfp_probe(struct platform_device *pdev)
1753 {
1754 	const struct sff_data *sff;
1755 	struct sfp *sfp;
1756 	bool poll = false;
1757 	int irq, err, i;
1758 
1759 	sfp = sfp_alloc(&pdev->dev);
1760 	if (IS_ERR(sfp))
1761 		return PTR_ERR(sfp);
1762 
1763 	platform_set_drvdata(pdev, sfp);
1764 
1765 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1766 	if (err < 0)
1767 		return err;
1768 
1769 	sff = sfp->type = &sfp_data;
1770 
1771 	if (pdev->dev.of_node) {
1772 		struct device_node *node = pdev->dev.of_node;
1773 		const struct of_device_id *id;
1774 		struct i2c_adapter *i2c;
1775 		struct device_node *np;
1776 
1777 		id = of_match_node(sfp_of_match, node);
1778 		if (WARN_ON(!id))
1779 			return -EINVAL;
1780 
1781 		sff = sfp->type = id->data;
1782 
1783 		np = of_parse_phandle(node, "i2c-bus", 0);
1784 		if (!np) {
1785 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1786 			return -ENODEV;
1787 		}
1788 
1789 		i2c = of_find_i2c_adapter_by_node(np);
1790 		of_node_put(np);
1791 		if (!i2c)
1792 			return -EPROBE_DEFER;
1793 
1794 		err = sfp_i2c_configure(sfp, i2c);
1795 		if (err < 0) {
1796 			i2c_put_adapter(i2c);
1797 			return err;
1798 		}
1799 	}
1800 
1801 	for (i = 0; i < GPIO_MAX; i++)
1802 		if (sff->gpios & BIT(i)) {
1803 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1804 					   gpio_of_names[i], gpio_flags[i]);
1805 			if (IS_ERR(sfp->gpio[i]))
1806 				return PTR_ERR(sfp->gpio[i]);
1807 		}
1808 
1809 	sfp->get_state = sfp_gpio_get_state;
1810 	sfp->set_state = sfp_gpio_set_state;
1811 
1812 	/* Modules that have no detect signal are always present */
1813 	if (!(sfp->gpio[GPIO_MODDEF0]))
1814 		sfp->get_state = sff_gpio_get_state;
1815 
1816 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1817 				 &sfp->max_power_mW);
1818 	if (!sfp->max_power_mW)
1819 		sfp->max_power_mW = 1000;
1820 
1821 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1822 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1823 
1824 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1825 	if (!sfp->sfp_bus)
1826 		return -ENOMEM;
1827 
1828 	/* Get the initial state, and always signal TX disable,
1829 	 * since the network interface will not be up.
1830 	 */
1831 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1832 
1833 	if (sfp->gpio[GPIO_RATE_SELECT] &&
1834 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1835 		sfp->state |= SFP_F_RATE_SELECT;
1836 	sfp_set_state(sfp, sfp->state);
1837 	sfp_module_tx_disable(sfp);
1838 	rtnl_lock();
1839 	if (sfp->state & SFP_F_PRESENT)
1840 		sfp_sm_event(sfp, SFP_E_INSERT);
1841 	rtnl_unlock();
1842 
1843 	for (i = 0; i < GPIO_MAX; i++) {
1844 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1845 			continue;
1846 
1847 		irq = gpiod_to_irq(sfp->gpio[i]);
1848 		if (!irq) {
1849 			poll = true;
1850 			continue;
1851 		}
1852 
1853 		err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1854 						IRQF_ONESHOT |
1855 						IRQF_TRIGGER_RISING |
1856 						IRQF_TRIGGER_FALLING,
1857 						dev_name(sfp->dev), sfp);
1858 		if (err)
1859 			poll = true;
1860 	}
1861 
1862 	if (poll)
1863 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1864 
1865 	/* We could have an issue in cases no Tx disable pin is available or
1866 	 * wired as modules using a laser as their light source will continue to
1867 	 * be active when the fiber is removed. This could be a safety issue and
1868 	 * we should at least warn the user about that.
1869 	 */
1870 	if (!sfp->gpio[GPIO_TX_DISABLE])
1871 		dev_warn(sfp->dev,
1872 			 "No tx_disable pin: SFP modules will always be emitting.\n");
1873 
1874 	return 0;
1875 }
1876 
1877 static int sfp_remove(struct platform_device *pdev)
1878 {
1879 	struct sfp *sfp = platform_get_drvdata(pdev);
1880 
1881 	sfp_unregister_socket(sfp->sfp_bus);
1882 
1883 	return 0;
1884 }
1885 
1886 static struct platform_driver sfp_driver = {
1887 	.probe = sfp_probe,
1888 	.remove = sfp_remove,
1889 	.driver = {
1890 		.name = "sfp",
1891 		.of_match_table = sfp_of_match,
1892 	},
1893 };
1894 
1895 static int sfp_init(void)
1896 {
1897 	poll_jiffies = msecs_to_jiffies(100);
1898 
1899 	return platform_driver_register(&sfp_driver);
1900 }
1901 module_init(sfp_init);
1902 
1903 static void sfp_exit(void)
1904 {
1905 	platform_driver_unregister(&sfp_driver);
1906 }
1907 module_exit(sfp_exit);
1908 
1909 MODULE_ALIAS("platform:sfp");
1910 MODULE_AUTHOR("Russell King");
1911 MODULE_LICENSE("GPL v2");
1912