1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 12 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state; 261 262 struct delayed_work poll; 263 struct delayed_work timeout; 264 struct mutex sm_mutex; /* Protects state machine */ 265 unsigned char sm_mod_state; 266 unsigned char sm_mod_tries_init; 267 unsigned char sm_mod_tries; 268 unsigned char sm_dev_state; 269 unsigned short sm_state; 270 unsigned char sm_fault_retries; 271 unsigned char sm_phy_retries; 272 273 struct sfp_eeprom_id id; 274 unsigned int module_power_mW; 275 unsigned int module_t_start_up; 276 unsigned int module_t_wait; 277 278 unsigned int rate_kbd; 279 unsigned int rs_threshold_kbd; 280 unsigned int rs_state_mask; 281 282 bool have_a2; 283 bool tx_fault_ignore; 284 285 const struct sfp_quirk *quirk; 286 287 #if IS_ENABLED(CONFIG_HWMON) 288 struct sfp_diag diag; 289 struct delayed_work hwmon_probe; 290 unsigned int hwmon_tries; 291 struct device *hwmon_dev; 292 char *hwmon_name; 293 #endif 294 295 #if IS_ENABLED(CONFIG_DEBUG_FS) 296 struct dentry *debugfs_dir; 297 #endif 298 }; 299 300 static bool sff_module_supported(const struct sfp_eeprom_id *id) 301 { 302 return id->base.phys_id == SFF8024_ID_SFF_8472 && 303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 304 } 305 306 static const struct sff_data sff_data = { 307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 308 .module_supported = sff_module_supported, 309 }; 310 311 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 312 { 313 if (id->base.phys_id == SFF8024_ID_SFP && 314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 315 return true; 316 317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 318 * phys id SFF instead of SFP. Therefore mark this module explicitly 319 * as supported based on vendor name and pn match. 320 */ 321 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 323 !memcmp(id->base.vendor_name, "UBNT ", 16) && 324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 325 return true; 326 327 return false; 328 } 329 330 static const struct sff_data sfp_data = { 331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 333 .module_supported = sfp_module_supported, 334 }; 335 336 static const struct of_device_id sfp_of_match[] = { 337 { .compatible = "sff,sff", .data = &sff_data, }, 338 { .compatible = "sff,sfp", .data = &sfp_data, }, 339 { }, 340 }; 341 MODULE_DEVICE_TABLE(of, sfp_of_match); 342 343 static void sfp_fixup_long_startup(struct sfp *sfp) 344 { 345 sfp->module_t_start_up = T_START_UP_BAD_GPON; 346 } 347 348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 349 { 350 sfp->tx_fault_ignore = true; 351 } 352 353 // For 10GBASE-T short-reach modules 354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 355 { 356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 358 } 359 360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs) 361 { 362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000); 364 } 365 366 static void sfp_fixup_fs_10gt(struct sfp *sfp) 367 { 368 sfp_fixup_10gbaset_30m(sfp); 369 370 // These SFPs need 4 seconds before the PHY can be accessed 371 sfp_fixup_rollball_proto(sfp, 4); 372 } 373 374 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 375 { 376 /* Ignore the TX_FAULT and LOS signals on this module. 377 * these are possibly used for other purposes on this 378 * module, e.g. a serial port. 379 */ 380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 381 } 382 383 static void sfp_fixup_rollball(struct sfp *sfp) 384 { 385 // Rollball SFPs need 25 seconds before the PHY can be accessed 386 sfp_fixup_rollball_proto(sfp, 25); 387 } 388 389 static void sfp_fixup_rollball_cc(struct sfp *sfp) 390 { 391 sfp_fixup_rollball(sfp); 392 393 /* Some RollBall SFPs may have wrong (zero) extended compliance code 394 * burned in EEPROM. For PHY probing we need the correct one. 395 */ 396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 397 } 398 399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 400 unsigned long *modes, 401 unsigned long *interfaces) 402 { 403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 405 } 406 407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 408 unsigned long *modes, 409 unsigned long *interfaces) 410 { 411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 412 } 413 414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 415 unsigned long *modes, 416 unsigned long *interfaces) 417 { 418 /* Copper 2.5G SFP */ 419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 421 sfp_quirk_disable_autoneg(id, modes, interfaces); 422 } 423 424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 429 * types including 10G Ethernet which is not truth. So clear all claimed 430 * modes and set only one mode which module supports: 1000baseX_Full. 431 */ 432 linkmode_zero(modes); 433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 434 } 435 436 #define SFP_QUIRK(_v, _p, _m, _f) \ 437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 440 441 static const struct sfp_quirk sfp_quirks[] = { 442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 443 // report 2500MBd NRZ in their EEPROM 444 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex, 445 sfp_fixup_ignore_tx_fault), 446 447 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 448 // NRZ in their EEPROM 449 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 450 sfp_fixup_long_startup), 451 452 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 453 // Rollball protocol to talk to the PHY. 454 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 455 456 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 457 // NRZ in their EEPROM 458 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 459 sfp_fixup_ignore_tx_fault), 460 461 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 462 463 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 464 // 2600MBd in their EERPOM 465 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 466 467 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 468 // their EEPROM 469 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 470 sfp_fixup_ignore_tx_fault), 471 472 // FS 2.5G Base-T 473 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 474 475 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 476 // 2500MBd NRZ in their EEPROM 477 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 478 479 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 480 481 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 482 // Rollball protocol to talk to the PHY. 483 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 484 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 485 486 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator 487 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), 488 489 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 490 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 491 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 492 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 493 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 494 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 495 }; 496 497 static size_t sfp_strlen(const char *str, size_t maxlen) 498 { 499 size_t size, i; 500 501 /* Trailing characters should be filled with space chars, but 502 * some manufacturers can't read SFF-8472 and use NUL. 503 */ 504 for (i = 0, size = 0; i < maxlen; i++) 505 if (str[i] != ' ' && str[i] != '\0') 506 size = i + 1; 507 508 return size; 509 } 510 511 static bool sfp_match(const char *qs, const char *str, size_t len) 512 { 513 if (!qs) 514 return true; 515 if (strlen(qs) != len) 516 return false; 517 return !strncmp(qs, str, len); 518 } 519 520 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 521 { 522 const struct sfp_quirk *q; 523 unsigned int i; 524 size_t vs, ps; 525 526 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 527 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 528 529 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 530 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 531 sfp_match(q->part, id->base.vendor_pn, ps)) 532 return q; 533 534 return NULL; 535 } 536 537 static unsigned long poll_jiffies; 538 539 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 540 { 541 unsigned int i, state, v; 542 543 for (i = state = 0; i < GPIO_MAX; i++) { 544 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 545 continue; 546 547 v = gpiod_get_value_cansleep(sfp->gpio[i]); 548 if (v) 549 state |= BIT(i); 550 } 551 552 return state; 553 } 554 555 static unsigned int sff_gpio_get_state(struct sfp *sfp) 556 { 557 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 558 } 559 560 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 561 { 562 unsigned int drive; 563 564 if (state & SFP_F_PRESENT) 565 /* If the module is present, drive the requested signals */ 566 drive = sfp->state_hw_drive; 567 else 568 /* Otherwise, let them float to the pull-ups */ 569 drive = 0; 570 571 if (sfp->gpio[GPIO_TX_DISABLE]) { 572 if (drive & SFP_F_TX_DISABLE) 573 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 574 state & SFP_F_TX_DISABLE); 575 else 576 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 577 } 578 579 if (sfp->gpio[GPIO_RS0]) { 580 if (drive & SFP_F_RS0) 581 gpiod_direction_output(sfp->gpio[GPIO_RS0], 582 state & SFP_F_RS0); 583 else 584 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 585 } 586 587 if (sfp->gpio[GPIO_RS1]) { 588 if (drive & SFP_F_RS1) 589 gpiod_direction_output(sfp->gpio[GPIO_RS1], 590 state & SFP_F_RS1); 591 else 592 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 593 } 594 } 595 596 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 597 size_t len) 598 { 599 struct i2c_msg msgs[2]; 600 u8 bus_addr = a2 ? 0x51 : 0x50; 601 size_t block_size = sfp->i2c_block_size; 602 size_t this_len; 603 int ret; 604 605 msgs[0].addr = bus_addr; 606 msgs[0].flags = 0; 607 msgs[0].len = 1; 608 msgs[0].buf = &dev_addr; 609 msgs[1].addr = bus_addr; 610 msgs[1].flags = I2C_M_RD; 611 msgs[1].len = len; 612 msgs[1].buf = buf; 613 614 while (len) { 615 this_len = len; 616 if (this_len > block_size) 617 this_len = block_size; 618 619 msgs[1].len = this_len; 620 621 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 622 if (ret < 0) 623 return ret; 624 625 if (ret != ARRAY_SIZE(msgs)) 626 break; 627 628 msgs[1].buf += this_len; 629 dev_addr += this_len; 630 len -= this_len; 631 } 632 633 return msgs[1].buf - (u8 *)buf; 634 } 635 636 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 637 size_t len) 638 { 639 struct i2c_msg msgs[1]; 640 u8 bus_addr = a2 ? 0x51 : 0x50; 641 int ret; 642 643 msgs[0].addr = bus_addr; 644 msgs[0].flags = 0; 645 msgs[0].len = 1 + len; 646 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 647 if (!msgs[0].buf) 648 return -ENOMEM; 649 650 msgs[0].buf[0] = dev_addr; 651 memcpy(&msgs[0].buf[1], buf, len); 652 653 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 654 655 kfree(msgs[0].buf); 656 657 if (ret < 0) 658 return ret; 659 660 return ret == ARRAY_SIZE(msgs) ? len : 0; 661 } 662 663 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 664 { 665 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 666 return -EINVAL; 667 668 sfp->i2c = i2c; 669 sfp->read = sfp_i2c_read; 670 sfp->write = sfp_i2c_write; 671 672 return 0; 673 } 674 675 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 676 { 677 struct mii_bus *i2c_mii; 678 int ret; 679 680 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 681 if (IS_ERR(i2c_mii)) 682 return PTR_ERR(i2c_mii); 683 684 i2c_mii->name = "SFP I2C Bus"; 685 i2c_mii->phy_mask = ~0; 686 687 ret = mdiobus_register(i2c_mii); 688 if (ret < 0) { 689 mdiobus_free(i2c_mii); 690 return ret; 691 } 692 693 sfp->i2c_mii = i2c_mii; 694 695 return 0; 696 } 697 698 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 699 { 700 mdiobus_unregister(sfp->i2c_mii); 701 sfp->i2c_mii = NULL; 702 } 703 704 /* Interface */ 705 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 706 { 707 return sfp->read(sfp, a2, addr, buf, len); 708 } 709 710 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 711 { 712 return sfp->write(sfp, a2, addr, buf, len); 713 } 714 715 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 716 { 717 int ret; 718 u8 old, v; 719 720 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 721 if (ret != sizeof(old)) 722 return ret; 723 724 v = (old & ~mask) | (val & mask); 725 if (v == old) 726 return sizeof(v); 727 728 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 729 } 730 731 static unsigned int sfp_soft_get_state(struct sfp *sfp) 732 { 733 unsigned int state = 0; 734 u8 status; 735 int ret; 736 737 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 738 if (ret == sizeof(status)) { 739 if (status & SFP_STATUS_RX_LOS) 740 state |= SFP_F_LOS; 741 if (status & SFP_STATUS_TX_FAULT) 742 state |= SFP_F_TX_FAULT; 743 } else { 744 dev_err_ratelimited(sfp->dev, 745 "failed to read SFP soft status: %pe\n", 746 ERR_PTR(ret)); 747 /* Preserve the current state */ 748 state = sfp->state; 749 } 750 751 return state & sfp->state_soft_mask; 752 } 753 754 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 755 unsigned int soft) 756 { 757 u8 mask = 0; 758 u8 val = 0; 759 760 if (soft & SFP_F_TX_DISABLE) 761 mask |= SFP_STATUS_TX_DISABLE_FORCE; 762 if (state & SFP_F_TX_DISABLE) 763 val |= SFP_STATUS_TX_DISABLE_FORCE; 764 765 if (soft & SFP_F_RS0) 766 mask |= SFP_STATUS_RS0_SELECT; 767 if (state & SFP_F_RS0) 768 val |= SFP_STATUS_RS0_SELECT; 769 770 if (mask) 771 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 772 773 val = mask = 0; 774 if (soft & SFP_F_RS1) 775 mask |= SFP_EXT_STATUS_RS1_SELECT; 776 if (state & SFP_F_RS1) 777 val |= SFP_EXT_STATUS_RS1_SELECT; 778 779 if (mask) 780 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 781 } 782 783 static void sfp_soft_start_poll(struct sfp *sfp) 784 { 785 const struct sfp_eeprom_id *id = &sfp->id; 786 unsigned int mask = 0; 787 788 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 789 mask |= SFP_F_TX_DISABLE; 790 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 791 mask |= SFP_F_TX_FAULT; 792 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 793 mask |= SFP_F_LOS; 794 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 795 mask |= sfp->rs_state_mask; 796 797 mutex_lock(&sfp->st_mutex); 798 // Poll the soft state for hardware pins we want to ignore 799 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 800 801 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 802 !sfp->need_poll) 803 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 804 mutex_unlock(&sfp->st_mutex); 805 } 806 807 static void sfp_soft_stop_poll(struct sfp *sfp) 808 { 809 mutex_lock(&sfp->st_mutex); 810 sfp->state_soft_mask = 0; 811 mutex_unlock(&sfp->st_mutex); 812 } 813 814 /* sfp_get_state() - must be called with st_mutex held, or in the 815 * initialisation path. 816 */ 817 static unsigned int sfp_get_state(struct sfp *sfp) 818 { 819 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 820 unsigned int state; 821 822 state = sfp->get_state(sfp) & sfp->state_hw_mask; 823 if (state & SFP_F_PRESENT && soft) 824 state |= sfp_soft_get_state(sfp); 825 826 return state; 827 } 828 829 /* sfp_set_state() - must be called with st_mutex held, or in the 830 * initialisation path. 831 */ 832 static void sfp_set_state(struct sfp *sfp, unsigned int state) 833 { 834 unsigned int soft; 835 836 sfp->set_state(sfp, state); 837 838 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 839 if (state & SFP_F_PRESENT && soft) 840 sfp_soft_set_state(sfp, state, soft); 841 } 842 843 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 844 { 845 mutex_lock(&sfp->st_mutex); 846 sfp->state = (sfp->state & ~mask) | set; 847 sfp_set_state(sfp, sfp->state); 848 mutex_unlock(&sfp->st_mutex); 849 } 850 851 static unsigned int sfp_check(void *buf, size_t len) 852 { 853 u8 *p, check; 854 855 for (p = buf, check = 0; len; p++, len--) 856 check += *p; 857 858 return check; 859 } 860 861 /* hwmon */ 862 #if IS_ENABLED(CONFIG_HWMON) 863 static umode_t sfp_hwmon_is_visible(const void *data, 864 enum hwmon_sensor_types type, 865 u32 attr, int channel) 866 { 867 const struct sfp *sfp = data; 868 869 switch (type) { 870 case hwmon_temp: 871 switch (attr) { 872 case hwmon_temp_min_alarm: 873 case hwmon_temp_max_alarm: 874 case hwmon_temp_lcrit_alarm: 875 case hwmon_temp_crit_alarm: 876 case hwmon_temp_min: 877 case hwmon_temp_max: 878 case hwmon_temp_lcrit: 879 case hwmon_temp_crit: 880 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 881 return 0; 882 fallthrough; 883 case hwmon_temp_input: 884 case hwmon_temp_label: 885 return 0444; 886 default: 887 return 0; 888 } 889 case hwmon_in: 890 switch (attr) { 891 case hwmon_in_min_alarm: 892 case hwmon_in_max_alarm: 893 case hwmon_in_lcrit_alarm: 894 case hwmon_in_crit_alarm: 895 case hwmon_in_min: 896 case hwmon_in_max: 897 case hwmon_in_lcrit: 898 case hwmon_in_crit: 899 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 900 return 0; 901 fallthrough; 902 case hwmon_in_input: 903 case hwmon_in_label: 904 return 0444; 905 default: 906 return 0; 907 } 908 case hwmon_curr: 909 switch (attr) { 910 case hwmon_curr_min_alarm: 911 case hwmon_curr_max_alarm: 912 case hwmon_curr_lcrit_alarm: 913 case hwmon_curr_crit_alarm: 914 case hwmon_curr_min: 915 case hwmon_curr_max: 916 case hwmon_curr_lcrit: 917 case hwmon_curr_crit: 918 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 919 return 0; 920 fallthrough; 921 case hwmon_curr_input: 922 case hwmon_curr_label: 923 return 0444; 924 default: 925 return 0; 926 } 927 case hwmon_power: 928 /* External calibration of receive power requires 929 * floating point arithmetic. Doing that in the kernel 930 * is not easy, so just skip it. If the module does 931 * not require external calibration, we can however 932 * show receiver power, since FP is then not needed. 933 */ 934 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 935 channel == 1) 936 return 0; 937 switch (attr) { 938 case hwmon_power_min_alarm: 939 case hwmon_power_max_alarm: 940 case hwmon_power_lcrit_alarm: 941 case hwmon_power_crit_alarm: 942 case hwmon_power_min: 943 case hwmon_power_max: 944 case hwmon_power_lcrit: 945 case hwmon_power_crit: 946 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 947 return 0; 948 fallthrough; 949 case hwmon_power_input: 950 case hwmon_power_label: 951 return 0444; 952 default: 953 return 0; 954 } 955 default: 956 return 0; 957 } 958 } 959 960 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 961 { 962 __be16 val; 963 int err; 964 965 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 966 if (err < 0) 967 return err; 968 969 *value = be16_to_cpu(val); 970 971 return 0; 972 } 973 974 static void sfp_hwmon_to_rx_power(long *value) 975 { 976 *value = DIV_ROUND_CLOSEST(*value, 10); 977 } 978 979 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 980 long *value) 981 { 982 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 983 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 984 } 985 986 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 987 { 988 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 989 be16_to_cpu(sfp->diag.cal_t_offset), value); 990 991 if (*value >= 0x8000) 992 *value -= 0x10000; 993 994 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 995 } 996 997 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 998 { 999 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1000 be16_to_cpu(sfp->diag.cal_v_offset), value); 1001 1002 *value = DIV_ROUND_CLOSEST(*value, 10); 1003 } 1004 1005 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1006 { 1007 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1008 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1009 1010 *value = DIV_ROUND_CLOSEST(*value, 500); 1011 } 1012 1013 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1014 { 1015 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1016 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1017 1018 *value = DIV_ROUND_CLOSEST(*value, 10); 1019 } 1020 1021 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1022 { 1023 int err; 1024 1025 err = sfp_hwmon_read_sensor(sfp, reg, value); 1026 if (err < 0) 1027 return err; 1028 1029 sfp_hwmon_calibrate_temp(sfp, value); 1030 1031 return 0; 1032 } 1033 1034 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1035 { 1036 int err; 1037 1038 err = sfp_hwmon_read_sensor(sfp, reg, value); 1039 if (err < 0) 1040 return err; 1041 1042 sfp_hwmon_calibrate_vcc(sfp, value); 1043 1044 return 0; 1045 } 1046 1047 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1048 { 1049 int err; 1050 1051 err = sfp_hwmon_read_sensor(sfp, reg, value); 1052 if (err < 0) 1053 return err; 1054 1055 sfp_hwmon_calibrate_bias(sfp, value); 1056 1057 return 0; 1058 } 1059 1060 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1061 { 1062 int err; 1063 1064 err = sfp_hwmon_read_sensor(sfp, reg, value); 1065 if (err < 0) 1066 return err; 1067 1068 sfp_hwmon_calibrate_tx_power(sfp, value); 1069 1070 return 0; 1071 } 1072 1073 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1074 { 1075 int err; 1076 1077 err = sfp_hwmon_read_sensor(sfp, reg, value); 1078 if (err < 0) 1079 return err; 1080 1081 sfp_hwmon_to_rx_power(value); 1082 1083 return 0; 1084 } 1085 1086 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1087 { 1088 u8 status; 1089 int err; 1090 1091 switch (attr) { 1092 case hwmon_temp_input: 1093 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1094 1095 case hwmon_temp_lcrit: 1096 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1097 sfp_hwmon_calibrate_temp(sfp, value); 1098 return 0; 1099 1100 case hwmon_temp_min: 1101 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1102 sfp_hwmon_calibrate_temp(sfp, value); 1103 return 0; 1104 case hwmon_temp_max: 1105 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1106 sfp_hwmon_calibrate_temp(sfp, value); 1107 return 0; 1108 1109 case hwmon_temp_crit: 1110 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1111 sfp_hwmon_calibrate_temp(sfp, value); 1112 return 0; 1113 1114 case hwmon_temp_lcrit_alarm: 1115 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1116 if (err < 0) 1117 return err; 1118 1119 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1120 return 0; 1121 1122 case hwmon_temp_min_alarm: 1123 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1124 if (err < 0) 1125 return err; 1126 1127 *value = !!(status & SFP_WARN0_TEMP_LOW); 1128 return 0; 1129 1130 case hwmon_temp_max_alarm: 1131 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1132 if (err < 0) 1133 return err; 1134 1135 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1136 return 0; 1137 1138 case hwmon_temp_crit_alarm: 1139 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1140 if (err < 0) 1141 return err; 1142 1143 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1144 return 0; 1145 default: 1146 return -EOPNOTSUPP; 1147 } 1148 1149 return -EOPNOTSUPP; 1150 } 1151 1152 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1153 { 1154 u8 status; 1155 int err; 1156 1157 switch (attr) { 1158 case hwmon_in_input: 1159 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1160 1161 case hwmon_in_lcrit: 1162 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1163 sfp_hwmon_calibrate_vcc(sfp, value); 1164 return 0; 1165 1166 case hwmon_in_min: 1167 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1168 sfp_hwmon_calibrate_vcc(sfp, value); 1169 return 0; 1170 1171 case hwmon_in_max: 1172 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1173 sfp_hwmon_calibrate_vcc(sfp, value); 1174 return 0; 1175 1176 case hwmon_in_crit: 1177 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1178 sfp_hwmon_calibrate_vcc(sfp, value); 1179 return 0; 1180 1181 case hwmon_in_lcrit_alarm: 1182 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1183 if (err < 0) 1184 return err; 1185 1186 *value = !!(status & SFP_ALARM0_VCC_LOW); 1187 return 0; 1188 1189 case hwmon_in_min_alarm: 1190 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1191 if (err < 0) 1192 return err; 1193 1194 *value = !!(status & SFP_WARN0_VCC_LOW); 1195 return 0; 1196 1197 case hwmon_in_max_alarm: 1198 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1199 if (err < 0) 1200 return err; 1201 1202 *value = !!(status & SFP_WARN0_VCC_HIGH); 1203 return 0; 1204 1205 case hwmon_in_crit_alarm: 1206 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1207 if (err < 0) 1208 return err; 1209 1210 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1211 return 0; 1212 default: 1213 return -EOPNOTSUPP; 1214 } 1215 1216 return -EOPNOTSUPP; 1217 } 1218 1219 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1220 { 1221 u8 status; 1222 int err; 1223 1224 switch (attr) { 1225 case hwmon_curr_input: 1226 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1227 1228 case hwmon_curr_lcrit: 1229 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1230 sfp_hwmon_calibrate_bias(sfp, value); 1231 return 0; 1232 1233 case hwmon_curr_min: 1234 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1235 sfp_hwmon_calibrate_bias(sfp, value); 1236 return 0; 1237 1238 case hwmon_curr_max: 1239 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1240 sfp_hwmon_calibrate_bias(sfp, value); 1241 return 0; 1242 1243 case hwmon_curr_crit: 1244 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1245 sfp_hwmon_calibrate_bias(sfp, value); 1246 return 0; 1247 1248 case hwmon_curr_lcrit_alarm: 1249 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1250 if (err < 0) 1251 return err; 1252 1253 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1254 return 0; 1255 1256 case hwmon_curr_min_alarm: 1257 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1258 if (err < 0) 1259 return err; 1260 1261 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1262 return 0; 1263 1264 case hwmon_curr_max_alarm: 1265 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1266 if (err < 0) 1267 return err; 1268 1269 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1270 return 0; 1271 1272 case hwmon_curr_crit_alarm: 1273 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1274 if (err < 0) 1275 return err; 1276 1277 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1278 return 0; 1279 default: 1280 return -EOPNOTSUPP; 1281 } 1282 1283 return -EOPNOTSUPP; 1284 } 1285 1286 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1287 { 1288 u8 status; 1289 int err; 1290 1291 switch (attr) { 1292 case hwmon_power_input: 1293 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1294 1295 case hwmon_power_lcrit: 1296 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1297 sfp_hwmon_calibrate_tx_power(sfp, value); 1298 return 0; 1299 1300 case hwmon_power_min: 1301 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1302 sfp_hwmon_calibrate_tx_power(sfp, value); 1303 return 0; 1304 1305 case hwmon_power_max: 1306 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1307 sfp_hwmon_calibrate_tx_power(sfp, value); 1308 return 0; 1309 1310 case hwmon_power_crit: 1311 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1312 sfp_hwmon_calibrate_tx_power(sfp, value); 1313 return 0; 1314 1315 case hwmon_power_lcrit_alarm: 1316 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1317 if (err < 0) 1318 return err; 1319 1320 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1321 return 0; 1322 1323 case hwmon_power_min_alarm: 1324 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1325 if (err < 0) 1326 return err; 1327 1328 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1329 return 0; 1330 1331 case hwmon_power_max_alarm: 1332 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1333 if (err < 0) 1334 return err; 1335 1336 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1337 return 0; 1338 1339 case hwmon_power_crit_alarm: 1340 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1341 if (err < 0) 1342 return err; 1343 1344 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1345 return 0; 1346 default: 1347 return -EOPNOTSUPP; 1348 } 1349 1350 return -EOPNOTSUPP; 1351 } 1352 1353 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1354 { 1355 u8 status; 1356 int err; 1357 1358 switch (attr) { 1359 case hwmon_power_input: 1360 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1361 1362 case hwmon_power_lcrit: 1363 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1364 sfp_hwmon_to_rx_power(value); 1365 return 0; 1366 1367 case hwmon_power_min: 1368 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1369 sfp_hwmon_to_rx_power(value); 1370 return 0; 1371 1372 case hwmon_power_max: 1373 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1374 sfp_hwmon_to_rx_power(value); 1375 return 0; 1376 1377 case hwmon_power_crit: 1378 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1379 sfp_hwmon_to_rx_power(value); 1380 return 0; 1381 1382 case hwmon_power_lcrit_alarm: 1383 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1384 if (err < 0) 1385 return err; 1386 1387 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1388 return 0; 1389 1390 case hwmon_power_min_alarm: 1391 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1392 if (err < 0) 1393 return err; 1394 1395 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1396 return 0; 1397 1398 case hwmon_power_max_alarm: 1399 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1400 if (err < 0) 1401 return err; 1402 1403 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1404 return 0; 1405 1406 case hwmon_power_crit_alarm: 1407 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1408 if (err < 0) 1409 return err; 1410 1411 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1412 return 0; 1413 default: 1414 return -EOPNOTSUPP; 1415 } 1416 1417 return -EOPNOTSUPP; 1418 } 1419 1420 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1421 u32 attr, int channel, long *value) 1422 { 1423 struct sfp *sfp = dev_get_drvdata(dev); 1424 1425 switch (type) { 1426 case hwmon_temp: 1427 return sfp_hwmon_temp(sfp, attr, value); 1428 case hwmon_in: 1429 return sfp_hwmon_vcc(sfp, attr, value); 1430 case hwmon_curr: 1431 return sfp_hwmon_bias(sfp, attr, value); 1432 case hwmon_power: 1433 switch (channel) { 1434 case 0: 1435 return sfp_hwmon_tx_power(sfp, attr, value); 1436 case 1: 1437 return sfp_hwmon_rx_power(sfp, attr, value); 1438 default: 1439 return -EOPNOTSUPP; 1440 } 1441 default: 1442 return -EOPNOTSUPP; 1443 } 1444 } 1445 1446 static const char *const sfp_hwmon_power_labels[] = { 1447 "TX_power", 1448 "RX_power", 1449 }; 1450 1451 static int sfp_hwmon_read_string(struct device *dev, 1452 enum hwmon_sensor_types type, 1453 u32 attr, int channel, const char **str) 1454 { 1455 switch (type) { 1456 case hwmon_curr: 1457 switch (attr) { 1458 case hwmon_curr_label: 1459 *str = "bias"; 1460 return 0; 1461 default: 1462 return -EOPNOTSUPP; 1463 } 1464 break; 1465 case hwmon_temp: 1466 switch (attr) { 1467 case hwmon_temp_label: 1468 *str = "temperature"; 1469 return 0; 1470 default: 1471 return -EOPNOTSUPP; 1472 } 1473 break; 1474 case hwmon_in: 1475 switch (attr) { 1476 case hwmon_in_label: 1477 *str = "VCC"; 1478 return 0; 1479 default: 1480 return -EOPNOTSUPP; 1481 } 1482 break; 1483 case hwmon_power: 1484 switch (attr) { 1485 case hwmon_power_label: 1486 *str = sfp_hwmon_power_labels[channel]; 1487 return 0; 1488 default: 1489 return -EOPNOTSUPP; 1490 } 1491 break; 1492 default: 1493 return -EOPNOTSUPP; 1494 } 1495 1496 return -EOPNOTSUPP; 1497 } 1498 1499 static const struct hwmon_ops sfp_hwmon_ops = { 1500 .is_visible = sfp_hwmon_is_visible, 1501 .read = sfp_hwmon_read, 1502 .read_string = sfp_hwmon_read_string, 1503 }; 1504 1505 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1506 HWMON_CHANNEL_INFO(chip, 1507 HWMON_C_REGISTER_TZ), 1508 HWMON_CHANNEL_INFO(in, 1509 HWMON_I_INPUT | 1510 HWMON_I_MAX | HWMON_I_MIN | 1511 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1512 HWMON_I_CRIT | HWMON_I_LCRIT | 1513 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1514 HWMON_I_LABEL), 1515 HWMON_CHANNEL_INFO(temp, 1516 HWMON_T_INPUT | 1517 HWMON_T_MAX | HWMON_T_MIN | 1518 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1519 HWMON_T_CRIT | HWMON_T_LCRIT | 1520 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1521 HWMON_T_LABEL), 1522 HWMON_CHANNEL_INFO(curr, 1523 HWMON_C_INPUT | 1524 HWMON_C_MAX | HWMON_C_MIN | 1525 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1526 HWMON_C_CRIT | HWMON_C_LCRIT | 1527 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1528 HWMON_C_LABEL), 1529 HWMON_CHANNEL_INFO(power, 1530 /* Transmit power */ 1531 HWMON_P_INPUT | 1532 HWMON_P_MAX | HWMON_P_MIN | 1533 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1534 HWMON_P_CRIT | HWMON_P_LCRIT | 1535 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1536 HWMON_P_LABEL, 1537 /* Receive power */ 1538 HWMON_P_INPUT | 1539 HWMON_P_MAX | HWMON_P_MIN | 1540 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1541 HWMON_P_CRIT | HWMON_P_LCRIT | 1542 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1543 HWMON_P_LABEL), 1544 NULL, 1545 }; 1546 1547 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1548 .ops = &sfp_hwmon_ops, 1549 .info = sfp_hwmon_info, 1550 }; 1551 1552 static void sfp_hwmon_probe(struct work_struct *work) 1553 { 1554 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1555 int err; 1556 1557 /* hwmon interface needs to access 16bit registers in atomic way to 1558 * guarantee coherency of the diagnostic monitoring data. If it is not 1559 * possible to guarantee coherency because EEPROM is broken in such way 1560 * that does not support atomic 16bit read operation then we have to 1561 * skip registration of hwmon device. 1562 */ 1563 if (sfp->i2c_block_size < 2) { 1564 dev_info(sfp->dev, 1565 "skipping hwmon device registration due to broken EEPROM\n"); 1566 dev_info(sfp->dev, 1567 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1568 return; 1569 } 1570 1571 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1572 if (err < 0) { 1573 if (sfp->hwmon_tries--) { 1574 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1575 T_PROBE_RETRY_SLOW); 1576 } else { 1577 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1578 ERR_PTR(err)); 1579 } 1580 return; 1581 } 1582 1583 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1584 if (IS_ERR(sfp->hwmon_name)) { 1585 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1586 return; 1587 } 1588 1589 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1590 sfp->hwmon_name, sfp, 1591 &sfp_hwmon_chip_info, 1592 NULL); 1593 if (IS_ERR(sfp->hwmon_dev)) 1594 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1595 PTR_ERR(sfp->hwmon_dev)); 1596 } 1597 1598 static int sfp_hwmon_insert(struct sfp *sfp) 1599 { 1600 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1601 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1602 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1603 } 1604 1605 return 0; 1606 } 1607 1608 static void sfp_hwmon_remove(struct sfp *sfp) 1609 { 1610 cancel_delayed_work_sync(&sfp->hwmon_probe); 1611 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1612 hwmon_device_unregister(sfp->hwmon_dev); 1613 sfp->hwmon_dev = NULL; 1614 kfree(sfp->hwmon_name); 1615 } 1616 } 1617 1618 static int sfp_hwmon_init(struct sfp *sfp) 1619 { 1620 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1621 1622 return 0; 1623 } 1624 1625 static void sfp_hwmon_exit(struct sfp *sfp) 1626 { 1627 cancel_delayed_work_sync(&sfp->hwmon_probe); 1628 } 1629 #else 1630 static int sfp_hwmon_insert(struct sfp *sfp) 1631 { 1632 return 0; 1633 } 1634 1635 static void sfp_hwmon_remove(struct sfp *sfp) 1636 { 1637 } 1638 1639 static int sfp_hwmon_init(struct sfp *sfp) 1640 { 1641 return 0; 1642 } 1643 1644 static void sfp_hwmon_exit(struct sfp *sfp) 1645 { 1646 } 1647 #endif 1648 1649 /* Helpers */ 1650 static void sfp_module_tx_disable(struct sfp *sfp) 1651 { 1652 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1653 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1654 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1655 } 1656 1657 static void sfp_module_tx_enable(struct sfp *sfp) 1658 { 1659 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1660 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1661 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1662 } 1663 1664 #if IS_ENABLED(CONFIG_DEBUG_FS) 1665 static int sfp_debug_state_show(struct seq_file *s, void *data) 1666 { 1667 struct sfp *sfp = s->private; 1668 1669 seq_printf(s, "Module state: %s\n", 1670 mod_state_to_str(sfp->sm_mod_state)); 1671 seq_printf(s, "Module probe attempts: %d %d\n", 1672 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1673 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1674 seq_printf(s, "Device state: %s\n", 1675 dev_state_to_str(sfp->sm_dev_state)); 1676 seq_printf(s, "Main state: %s\n", 1677 sm_state_to_str(sfp->sm_state)); 1678 seq_printf(s, "Fault recovery remaining retries: %d\n", 1679 sfp->sm_fault_retries); 1680 seq_printf(s, "PHY probe remaining retries: %d\n", 1681 sfp->sm_phy_retries); 1682 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1683 seq_printf(s, "Rate select threshold: %u kBd\n", 1684 sfp->rs_threshold_kbd); 1685 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1686 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1687 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1688 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1689 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1690 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1691 return 0; 1692 } 1693 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1694 1695 static void sfp_debugfs_init(struct sfp *sfp) 1696 { 1697 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1698 1699 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1700 &sfp_debug_state_fops); 1701 } 1702 1703 static void sfp_debugfs_exit(struct sfp *sfp) 1704 { 1705 debugfs_remove_recursive(sfp->debugfs_dir); 1706 } 1707 #else 1708 static void sfp_debugfs_init(struct sfp *sfp) 1709 { 1710 } 1711 1712 static void sfp_debugfs_exit(struct sfp *sfp) 1713 { 1714 } 1715 #endif 1716 1717 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1718 { 1719 unsigned int state; 1720 1721 mutex_lock(&sfp->st_mutex); 1722 state = sfp->state; 1723 if (!(state & SFP_F_TX_DISABLE)) { 1724 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1725 1726 udelay(T_RESET_US); 1727 1728 sfp_set_state(sfp, state); 1729 } 1730 mutex_unlock(&sfp->st_mutex); 1731 } 1732 1733 /* SFP state machine */ 1734 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1735 { 1736 if (timeout) 1737 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1738 timeout); 1739 else 1740 cancel_delayed_work(&sfp->timeout); 1741 } 1742 1743 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1744 unsigned int timeout) 1745 { 1746 sfp->sm_state = state; 1747 sfp_sm_set_timer(sfp, timeout); 1748 } 1749 1750 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1751 unsigned int timeout) 1752 { 1753 sfp->sm_mod_state = state; 1754 sfp_sm_set_timer(sfp, timeout); 1755 } 1756 1757 static void sfp_sm_phy_detach(struct sfp *sfp) 1758 { 1759 sfp_remove_phy(sfp->sfp_bus); 1760 phy_device_remove(sfp->mod_phy); 1761 phy_device_free(sfp->mod_phy); 1762 sfp->mod_phy = NULL; 1763 } 1764 1765 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1766 { 1767 struct phy_device *phy; 1768 int err; 1769 1770 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1771 if (phy == ERR_PTR(-ENODEV)) 1772 return PTR_ERR(phy); 1773 if (IS_ERR(phy)) { 1774 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1775 return PTR_ERR(phy); 1776 } 1777 1778 /* Mark this PHY as being on a SFP module */ 1779 phy->is_on_sfp_module = true; 1780 1781 err = phy_device_register(phy); 1782 if (err) { 1783 phy_device_free(phy); 1784 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1785 ERR_PTR(err)); 1786 return err; 1787 } 1788 1789 err = sfp_add_phy(sfp->sfp_bus, phy); 1790 if (err) { 1791 phy_device_remove(phy); 1792 phy_device_free(phy); 1793 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1794 return err; 1795 } 1796 1797 sfp->mod_phy = phy; 1798 1799 return 0; 1800 } 1801 1802 static void sfp_sm_link_up(struct sfp *sfp) 1803 { 1804 sfp_link_up(sfp->sfp_bus); 1805 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1806 } 1807 1808 static void sfp_sm_link_down(struct sfp *sfp) 1809 { 1810 sfp_link_down(sfp->sfp_bus); 1811 } 1812 1813 static void sfp_sm_link_check_los(struct sfp *sfp) 1814 { 1815 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1816 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1817 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1818 bool los = false; 1819 1820 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1821 * are set, we assume that no LOS signal is available. If both are 1822 * set, we assume LOS is not implemented (and is meaningless.) 1823 */ 1824 if (los_options == los_inverted) 1825 los = !(sfp->state & SFP_F_LOS); 1826 else if (los_options == los_normal) 1827 los = !!(sfp->state & SFP_F_LOS); 1828 1829 if (los) 1830 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1831 else 1832 sfp_sm_link_up(sfp); 1833 } 1834 1835 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1836 { 1837 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1838 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1839 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1840 1841 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1842 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1843 } 1844 1845 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1846 { 1847 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1848 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1849 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1850 1851 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1852 (los_options == los_normal && event == SFP_E_LOS_LOW); 1853 } 1854 1855 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1856 { 1857 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1858 dev_err(sfp->dev, 1859 "module persistently indicates fault, disabling\n"); 1860 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1861 } else { 1862 if (warn) 1863 dev_err(sfp->dev, "module transmit fault indicated\n"); 1864 1865 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1866 } 1867 } 1868 1869 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1870 { 1871 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1872 return sfp_i2c_mdiobus_create(sfp); 1873 1874 return 0; 1875 } 1876 1877 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1878 * normally sits at I2C bus address 0x56, and may either be a clause 22 1879 * or clause 45 PHY. 1880 * 1881 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1882 * negotiation enabled, but some may be in 1000base-X - which is for the 1883 * PHY driver to determine. 1884 * 1885 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1886 * mode according to the negotiated line speed. 1887 */ 1888 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1889 { 1890 int err = 0; 1891 1892 switch (sfp->mdio_protocol) { 1893 case MDIO_I2C_NONE: 1894 break; 1895 1896 case MDIO_I2C_MARVELL_C22: 1897 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1898 break; 1899 1900 case MDIO_I2C_C45: 1901 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1902 break; 1903 1904 case MDIO_I2C_ROLLBALL: 1905 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1906 break; 1907 } 1908 1909 return err; 1910 } 1911 1912 static int sfp_module_parse_power(struct sfp *sfp) 1913 { 1914 u32 power_mW = 1000; 1915 bool supports_a2; 1916 1917 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1918 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1919 power_mW = 1500; 1920 /* Added in Rev 11.9, but there is no compliance code for this */ 1921 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1922 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1923 power_mW = 2000; 1924 1925 /* Power level 1 modules (max. 1W) are always supported. */ 1926 if (power_mW <= 1000) { 1927 sfp->module_power_mW = power_mW; 1928 return 0; 1929 } 1930 1931 supports_a2 = sfp->id.ext.sff8472_compliance != 1932 SFP_SFF8472_COMPLIANCE_NONE || 1933 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1934 1935 if (power_mW > sfp->max_power_mW) { 1936 /* Module power specification exceeds the allowed maximum. */ 1937 if (!supports_a2) { 1938 /* The module appears not to implement bus address 1939 * 0xa2, so assume that the module powers up in the 1940 * indicated mode. 1941 */ 1942 dev_err(sfp->dev, 1943 "Host does not support %u.%uW modules\n", 1944 power_mW / 1000, (power_mW / 100) % 10); 1945 return -EINVAL; 1946 } else { 1947 dev_warn(sfp->dev, 1948 "Host does not support %u.%uW modules, module left in power mode 1\n", 1949 power_mW / 1000, (power_mW / 100) % 10); 1950 return 0; 1951 } 1952 } 1953 1954 if (!supports_a2) { 1955 /* The module power level is below the host maximum and the 1956 * module appears not to implement bus address 0xa2, so assume 1957 * that the module powers up in the indicated mode. 1958 */ 1959 return 0; 1960 } 1961 1962 /* If the module requires a higher power mode, but also requires 1963 * an address change sequence, warn the user that the module may 1964 * not be functional. 1965 */ 1966 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1967 dev_warn(sfp->dev, 1968 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1969 power_mW / 1000, (power_mW / 100) % 10); 1970 return 0; 1971 } 1972 1973 sfp->module_power_mW = power_mW; 1974 1975 return 0; 1976 } 1977 1978 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1979 { 1980 int err; 1981 1982 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1983 SFP_EXT_STATUS_PWRLVL_SELECT, 1984 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1985 if (err != sizeof(u8)) { 1986 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1987 enable ? "en" : "dis", ERR_PTR(err)); 1988 return -EAGAIN; 1989 } 1990 1991 if (enable) 1992 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1993 sfp->module_power_mW / 1000, 1994 (sfp->module_power_mW / 100) % 10); 1995 1996 return 0; 1997 } 1998 1999 static void sfp_module_parse_rate_select(struct sfp *sfp) 2000 { 2001 u8 rate_id; 2002 2003 sfp->rs_threshold_kbd = 0; 2004 sfp->rs_state_mask = 0; 2005 2006 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2007 /* No support for RateSelect */ 2008 return; 2009 2010 /* Default to INF-8074 RateSelect operation. The signalling threshold 2011 * rate is not well specified, so always select "Full Bandwidth", but 2012 * SFF-8079 reveals that it is understood that RS0 will be low for 2013 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2014 * This method exists prior to SFF-8472. 2015 */ 2016 sfp->rs_state_mask = SFP_F_RS0; 2017 sfp->rs_threshold_kbd = 1594; 2018 2019 /* Parse the rate identifier, which is complicated due to history: 2020 * SFF-8472 rev 9.5 marks this field as reserved. 2021 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2022 * compliance is not required. 2023 * SFF-8472 rev 10.2 defines this field using values 0..4 2024 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2025 * and even values. 2026 */ 2027 rate_id = sfp->id.base.rate_id; 2028 if (rate_id == 0) 2029 /* Unspecified */ 2030 return; 2031 2032 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2033 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2034 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2035 */ 2036 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2037 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2038 rate_id == 3) 2039 rate_id = SFF_RID_8431; 2040 2041 if (rate_id & SFF_RID_8079) { 2042 /* SFF-8079 RateSelect / Application Select in conjunction with 2043 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2044 * with only bit 0 used, which takes precedence over SFF-8472. 2045 */ 2046 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2047 /* SFF-8079 Part 1 - rate selection between Fibre 2048 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2049 * is high for 2125, so we have to subtract 1 to 2050 * include it. 2051 */ 2052 sfp->rs_threshold_kbd = 2125 - 1; 2053 sfp->rs_state_mask = SFP_F_RS0; 2054 } 2055 return; 2056 } 2057 2058 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2059 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2060 return; 2061 2062 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2063 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2064 */ 2065 switch (rate_id) { 2066 case SFF_RID_8431_RX_ONLY: 2067 sfp->rs_threshold_kbd = 4250; 2068 sfp->rs_state_mask = SFP_F_RS0; 2069 break; 2070 2071 case SFF_RID_8431_TX_ONLY: 2072 sfp->rs_threshold_kbd = 4250; 2073 sfp->rs_state_mask = SFP_F_RS1; 2074 break; 2075 2076 case SFF_RID_8431: 2077 sfp->rs_threshold_kbd = 4250; 2078 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2079 break; 2080 2081 case SFF_RID_10G8G: 2082 sfp->rs_threshold_kbd = 9000; 2083 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2084 break; 2085 } 2086 } 2087 2088 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2089 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2090 * not support multibyte reads from the EEPROM. Each multi-byte read 2091 * operation returns just one byte of EEPROM followed by zeros. There is 2092 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2093 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2094 * name and vendor id into EEPROM, so there is even no way to detect if 2095 * module is V-SOL V2801F. Therefore check for those zeros in the read 2096 * data and then based on check switch to reading EEPROM to one byte 2097 * at a time. 2098 */ 2099 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2100 { 2101 size_t i, block_size = sfp->i2c_block_size; 2102 2103 /* Already using byte IO */ 2104 if (block_size == 1) 2105 return false; 2106 2107 for (i = 1; i < len; i += block_size) { 2108 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2109 return false; 2110 } 2111 return true; 2112 } 2113 2114 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2115 { 2116 u8 check; 2117 int err; 2118 2119 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2120 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2121 id->base.connector != SFF8024_CONNECTOR_LC) { 2122 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2123 id->base.phys_id = SFF8024_ID_SFF_8472; 2124 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2125 id->base.connector = SFF8024_CONNECTOR_LC; 2126 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2127 if (err != 3) { 2128 dev_err(sfp->dev, 2129 "Failed to rewrite module EEPROM: %pe\n", 2130 ERR_PTR(err)); 2131 return err; 2132 } 2133 2134 /* Cotsworks modules have been found to require a delay between write operations. */ 2135 mdelay(50); 2136 2137 /* Update base structure checksum */ 2138 check = sfp_check(&id->base, sizeof(id->base) - 1); 2139 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2140 if (err != 1) { 2141 dev_err(sfp->dev, 2142 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2143 ERR_PTR(err)); 2144 return err; 2145 } 2146 } 2147 return 0; 2148 } 2149 2150 static int sfp_module_parse_sff8472(struct sfp *sfp) 2151 { 2152 /* If the module requires address swap mode, warn about it */ 2153 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2154 dev_warn(sfp->dev, 2155 "module address swap to access page 0xA2 is not supported.\n"); 2156 else 2157 sfp->have_a2 = true; 2158 2159 return 0; 2160 } 2161 2162 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2163 { 2164 /* SFP module inserted - read I2C data */ 2165 struct sfp_eeprom_id id; 2166 bool cotsworks_sfbg; 2167 unsigned int mask; 2168 bool cotsworks; 2169 u8 check; 2170 int ret; 2171 2172 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2173 2174 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2175 if (ret < 0) { 2176 if (report) 2177 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2178 ERR_PTR(ret)); 2179 return -EAGAIN; 2180 } 2181 2182 if (ret != sizeof(id.base)) { 2183 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2184 return -EAGAIN; 2185 } 2186 2187 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2188 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2189 * that EEPROM supports atomic 16bit read operation for diagnostic 2190 * fields, so do not switch to one byte reading at a time unless it 2191 * is really required and we have no other option. 2192 */ 2193 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2194 dev_info(sfp->dev, 2195 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2196 dev_info(sfp->dev, 2197 "Switching to reading EEPROM to one byte at a time\n"); 2198 sfp->i2c_block_size = 1; 2199 2200 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2201 if (ret < 0) { 2202 if (report) 2203 dev_err(sfp->dev, 2204 "failed to read EEPROM: %pe\n", 2205 ERR_PTR(ret)); 2206 return -EAGAIN; 2207 } 2208 2209 if (ret != sizeof(id.base)) { 2210 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2211 ERR_PTR(ret)); 2212 return -EAGAIN; 2213 } 2214 } 2215 2216 /* Cotsworks do not seem to update the checksums when they 2217 * do the final programming with the final module part number, 2218 * serial number and date code. 2219 */ 2220 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2221 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2222 2223 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2224 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2225 * Cotsworks PN matches and bytes are not correct. 2226 */ 2227 if (cotsworks && cotsworks_sfbg) { 2228 ret = sfp_cotsworks_fixup_check(sfp, &id); 2229 if (ret < 0) 2230 return ret; 2231 } 2232 2233 /* Validate the checksum over the base structure */ 2234 check = sfp_check(&id.base, sizeof(id.base) - 1); 2235 if (check != id.base.cc_base) { 2236 if (cotsworks) { 2237 dev_warn(sfp->dev, 2238 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2239 check, id.base.cc_base); 2240 } else { 2241 dev_err(sfp->dev, 2242 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2243 check, id.base.cc_base); 2244 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2245 16, 1, &id, sizeof(id), true); 2246 return -EINVAL; 2247 } 2248 } 2249 2250 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2251 if (ret < 0) { 2252 if (report) 2253 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2254 ERR_PTR(ret)); 2255 return -EAGAIN; 2256 } 2257 2258 if (ret != sizeof(id.ext)) { 2259 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2260 return -EAGAIN; 2261 } 2262 2263 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2264 if (check != id.ext.cc_ext) { 2265 if (cotsworks) { 2266 dev_warn(sfp->dev, 2267 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2268 check, id.ext.cc_ext); 2269 } else { 2270 dev_err(sfp->dev, 2271 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2272 check, id.ext.cc_ext); 2273 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2274 16, 1, &id, sizeof(id), true); 2275 memset(&id.ext, 0, sizeof(id.ext)); 2276 } 2277 } 2278 2279 sfp->id = id; 2280 2281 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2282 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2283 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2284 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2285 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2286 (int)sizeof(id.ext.datecode), id.ext.datecode); 2287 2288 /* Check whether we support this module */ 2289 if (!sfp->type->module_supported(&id)) { 2290 dev_err(sfp->dev, 2291 "module is not supported - phys id 0x%02x 0x%02x\n", 2292 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2293 return -EINVAL; 2294 } 2295 2296 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2297 ret = sfp_module_parse_sff8472(sfp); 2298 if (ret < 0) 2299 return ret; 2300 } 2301 2302 /* Parse the module power requirement */ 2303 ret = sfp_module_parse_power(sfp); 2304 if (ret < 0) 2305 return ret; 2306 2307 sfp_module_parse_rate_select(sfp); 2308 2309 mask = SFP_F_PRESENT; 2310 if (sfp->gpio[GPIO_TX_DISABLE]) 2311 mask |= SFP_F_TX_DISABLE; 2312 if (sfp->gpio[GPIO_TX_FAULT]) 2313 mask |= SFP_F_TX_FAULT; 2314 if (sfp->gpio[GPIO_LOS]) 2315 mask |= SFP_F_LOS; 2316 if (sfp->gpio[GPIO_RS0]) 2317 mask |= SFP_F_RS0; 2318 if (sfp->gpio[GPIO_RS1]) 2319 mask |= SFP_F_RS1; 2320 2321 sfp->module_t_start_up = T_START_UP; 2322 sfp->module_t_wait = T_WAIT; 2323 2324 sfp->tx_fault_ignore = false; 2325 2326 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2327 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2328 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2329 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2330 sfp->mdio_protocol = MDIO_I2C_C45; 2331 else if (sfp->id.base.e1000_base_t) 2332 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2333 else 2334 sfp->mdio_protocol = MDIO_I2C_NONE; 2335 2336 sfp->quirk = sfp_lookup_quirk(&id); 2337 2338 mutex_lock(&sfp->st_mutex); 2339 /* Initialise state bits to use from hardware */ 2340 sfp->state_hw_mask = mask; 2341 2342 /* We want to drive the rate select pins that the module is using */ 2343 sfp->state_hw_drive |= sfp->rs_state_mask; 2344 2345 if (sfp->quirk && sfp->quirk->fixup) 2346 sfp->quirk->fixup(sfp); 2347 mutex_unlock(&sfp->st_mutex); 2348 2349 return 0; 2350 } 2351 2352 static void sfp_sm_mod_remove(struct sfp *sfp) 2353 { 2354 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2355 sfp_module_remove(sfp->sfp_bus); 2356 2357 sfp_hwmon_remove(sfp); 2358 2359 memset(&sfp->id, 0, sizeof(sfp->id)); 2360 sfp->module_power_mW = 0; 2361 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2362 sfp->have_a2 = false; 2363 2364 dev_info(sfp->dev, "module removed\n"); 2365 } 2366 2367 /* This state machine tracks the upstream's state */ 2368 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2369 { 2370 switch (sfp->sm_dev_state) { 2371 default: 2372 if (event == SFP_E_DEV_ATTACH) 2373 sfp->sm_dev_state = SFP_DEV_DOWN; 2374 break; 2375 2376 case SFP_DEV_DOWN: 2377 if (event == SFP_E_DEV_DETACH) 2378 sfp->sm_dev_state = SFP_DEV_DETACHED; 2379 else if (event == SFP_E_DEV_UP) 2380 sfp->sm_dev_state = SFP_DEV_UP; 2381 break; 2382 2383 case SFP_DEV_UP: 2384 if (event == SFP_E_DEV_DETACH) 2385 sfp->sm_dev_state = SFP_DEV_DETACHED; 2386 else if (event == SFP_E_DEV_DOWN) 2387 sfp->sm_dev_state = SFP_DEV_DOWN; 2388 break; 2389 } 2390 } 2391 2392 /* This state machine tracks the insert/remove state of the module, probes 2393 * the on-board EEPROM, and sets up the power level. 2394 */ 2395 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2396 { 2397 int err; 2398 2399 /* Handle remove event globally, it resets this state machine */ 2400 if (event == SFP_E_REMOVE) { 2401 sfp_sm_mod_remove(sfp); 2402 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2403 return; 2404 } 2405 2406 /* Handle device detach globally */ 2407 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2408 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2409 if (sfp->module_power_mW > 1000 && 2410 sfp->sm_mod_state > SFP_MOD_HPOWER) 2411 sfp_sm_mod_hpower(sfp, false); 2412 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2413 return; 2414 } 2415 2416 switch (sfp->sm_mod_state) { 2417 default: 2418 if (event == SFP_E_INSERT) { 2419 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2420 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2421 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2422 } 2423 break; 2424 2425 case SFP_MOD_PROBE: 2426 /* Wait for T_PROBE_INIT to time out */ 2427 if (event != SFP_E_TIMEOUT) 2428 break; 2429 2430 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2431 if (err == -EAGAIN) { 2432 if (sfp->sm_mod_tries_init && 2433 --sfp->sm_mod_tries_init) { 2434 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2435 break; 2436 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2437 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2438 dev_warn(sfp->dev, 2439 "please wait, module slow to respond\n"); 2440 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2441 break; 2442 } 2443 } 2444 if (err < 0) { 2445 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2446 break; 2447 } 2448 2449 /* Force a poll to re-read the hardware signal state after 2450 * sfp_sm_mod_probe() changed state_hw_mask. 2451 */ 2452 mod_delayed_work(system_wq, &sfp->poll, 1); 2453 2454 err = sfp_hwmon_insert(sfp); 2455 if (err) 2456 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2457 ERR_PTR(err)); 2458 2459 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2460 fallthrough; 2461 case SFP_MOD_WAITDEV: 2462 /* Ensure that the device is attached before proceeding */ 2463 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2464 break; 2465 2466 /* Report the module insertion to the upstream device */ 2467 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2468 sfp->quirk); 2469 if (err < 0) { 2470 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2471 break; 2472 } 2473 2474 /* If this is a power level 1 module, we are done */ 2475 if (sfp->module_power_mW <= 1000) 2476 goto insert; 2477 2478 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2479 fallthrough; 2480 case SFP_MOD_HPOWER: 2481 /* Enable high power mode */ 2482 err = sfp_sm_mod_hpower(sfp, true); 2483 if (err < 0) { 2484 if (err != -EAGAIN) { 2485 sfp_module_remove(sfp->sfp_bus); 2486 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2487 } else { 2488 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2489 } 2490 break; 2491 } 2492 2493 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2494 break; 2495 2496 case SFP_MOD_WAITPWR: 2497 /* Wait for T_HPOWER_LEVEL to time out */ 2498 if (event != SFP_E_TIMEOUT) 2499 break; 2500 2501 insert: 2502 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2503 break; 2504 2505 case SFP_MOD_PRESENT: 2506 case SFP_MOD_ERROR: 2507 break; 2508 } 2509 } 2510 2511 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2512 { 2513 unsigned long timeout; 2514 int ret; 2515 2516 /* Some events are global */ 2517 if (sfp->sm_state != SFP_S_DOWN && 2518 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2519 sfp->sm_dev_state != SFP_DEV_UP)) { 2520 if (sfp->sm_state == SFP_S_LINK_UP && 2521 sfp->sm_dev_state == SFP_DEV_UP) 2522 sfp_sm_link_down(sfp); 2523 if (sfp->sm_state > SFP_S_INIT) 2524 sfp_module_stop(sfp->sfp_bus); 2525 if (sfp->mod_phy) 2526 sfp_sm_phy_detach(sfp); 2527 if (sfp->i2c_mii) 2528 sfp_i2c_mdiobus_destroy(sfp); 2529 sfp_module_tx_disable(sfp); 2530 sfp_soft_stop_poll(sfp); 2531 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2532 return; 2533 } 2534 2535 /* The main state machine */ 2536 switch (sfp->sm_state) { 2537 case SFP_S_DOWN: 2538 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2539 sfp->sm_dev_state != SFP_DEV_UP) 2540 break; 2541 2542 /* Only use the soft state bits if we have access to the A2h 2543 * memory, which implies that we have some level of SFF-8472 2544 * compliance. 2545 */ 2546 if (sfp->have_a2) 2547 sfp_soft_start_poll(sfp); 2548 2549 sfp_module_tx_enable(sfp); 2550 2551 /* Initialise the fault clearance retries */ 2552 sfp->sm_fault_retries = N_FAULT_INIT; 2553 2554 /* We need to check the TX_FAULT state, which is not defined 2555 * while TX_DISABLE is asserted. The earliest we want to do 2556 * anything (such as probe for a PHY) is 50ms (or more on 2557 * specific modules). 2558 */ 2559 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2560 break; 2561 2562 case SFP_S_WAIT: 2563 if (event != SFP_E_TIMEOUT) 2564 break; 2565 2566 if (sfp->state & SFP_F_TX_FAULT) { 2567 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2568 * from the TX_DISABLE deassertion for the module to 2569 * initialise, which is indicated by TX_FAULT 2570 * deasserting. 2571 */ 2572 timeout = sfp->module_t_start_up; 2573 if (timeout > sfp->module_t_wait) 2574 timeout -= sfp->module_t_wait; 2575 else 2576 timeout = 1; 2577 2578 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2579 } else { 2580 /* TX_FAULT is not asserted, assume the module has 2581 * finished initialising. 2582 */ 2583 goto init_done; 2584 } 2585 break; 2586 2587 case SFP_S_INIT: 2588 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2589 /* TX_FAULT is still asserted after t_init 2590 * or t_start_up, so assume there is a fault. 2591 */ 2592 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2593 sfp->sm_fault_retries == N_FAULT_INIT); 2594 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2595 init_done: 2596 /* Create mdiobus and start trying for PHY */ 2597 ret = sfp_sm_add_mdio_bus(sfp); 2598 if (ret < 0) { 2599 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2600 break; 2601 } 2602 sfp->sm_phy_retries = R_PHY_RETRY; 2603 goto phy_probe; 2604 } 2605 break; 2606 2607 case SFP_S_INIT_PHY: 2608 if (event != SFP_E_TIMEOUT) 2609 break; 2610 phy_probe: 2611 /* TX_FAULT deasserted or we timed out with TX_FAULT 2612 * clear. Probe for the PHY and check the LOS state. 2613 */ 2614 ret = sfp_sm_probe_for_phy(sfp); 2615 if (ret == -ENODEV) { 2616 if (--sfp->sm_phy_retries) { 2617 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2618 break; 2619 } else { 2620 dev_info(sfp->dev, "no PHY detected\n"); 2621 } 2622 } else if (ret) { 2623 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2624 break; 2625 } 2626 if (sfp_module_start(sfp->sfp_bus)) { 2627 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2628 break; 2629 } 2630 sfp_sm_link_check_los(sfp); 2631 2632 /* Reset the fault retry count */ 2633 sfp->sm_fault_retries = N_FAULT; 2634 break; 2635 2636 case SFP_S_INIT_TX_FAULT: 2637 if (event == SFP_E_TIMEOUT) { 2638 sfp_module_tx_fault_reset(sfp); 2639 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2640 } 2641 break; 2642 2643 case SFP_S_WAIT_LOS: 2644 if (event == SFP_E_TX_FAULT) 2645 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2646 else if (sfp_los_event_inactive(sfp, event)) 2647 sfp_sm_link_up(sfp); 2648 break; 2649 2650 case SFP_S_LINK_UP: 2651 if (event == SFP_E_TX_FAULT) { 2652 sfp_sm_link_down(sfp); 2653 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2654 } else if (sfp_los_event_active(sfp, event)) { 2655 sfp_sm_link_down(sfp); 2656 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2657 } 2658 break; 2659 2660 case SFP_S_TX_FAULT: 2661 if (event == SFP_E_TIMEOUT) { 2662 sfp_module_tx_fault_reset(sfp); 2663 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2664 } 2665 break; 2666 2667 case SFP_S_REINIT: 2668 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2669 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2670 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2671 dev_info(sfp->dev, "module transmit fault recovered\n"); 2672 sfp_sm_link_check_los(sfp); 2673 } 2674 break; 2675 2676 case SFP_S_TX_DISABLE: 2677 break; 2678 } 2679 } 2680 2681 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2682 { 2683 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2684 mod_state_to_str(sfp->sm_mod_state), 2685 dev_state_to_str(sfp->sm_dev_state), 2686 sm_state_to_str(sfp->sm_state), 2687 event_to_str(event)); 2688 2689 sfp_sm_device(sfp, event); 2690 sfp_sm_module(sfp, event); 2691 sfp_sm_main(sfp, event); 2692 2693 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2694 mod_state_to_str(sfp->sm_mod_state), 2695 dev_state_to_str(sfp->sm_dev_state), 2696 sm_state_to_str(sfp->sm_state)); 2697 } 2698 2699 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2700 { 2701 mutex_lock(&sfp->sm_mutex); 2702 __sfp_sm_event(sfp, event); 2703 mutex_unlock(&sfp->sm_mutex); 2704 } 2705 2706 static void sfp_attach(struct sfp *sfp) 2707 { 2708 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2709 } 2710 2711 static void sfp_detach(struct sfp *sfp) 2712 { 2713 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2714 } 2715 2716 static void sfp_start(struct sfp *sfp) 2717 { 2718 sfp_sm_event(sfp, SFP_E_DEV_UP); 2719 } 2720 2721 static void sfp_stop(struct sfp *sfp) 2722 { 2723 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2724 } 2725 2726 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2727 { 2728 unsigned int set; 2729 2730 sfp->rate_kbd = rate_kbd; 2731 2732 if (rate_kbd > sfp->rs_threshold_kbd) 2733 set = sfp->rs_state_mask; 2734 else 2735 set = 0; 2736 2737 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2738 } 2739 2740 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2741 { 2742 /* locking... and check module is present */ 2743 2744 if (sfp->id.ext.sff8472_compliance && 2745 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2746 modinfo->type = ETH_MODULE_SFF_8472; 2747 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2748 } else { 2749 modinfo->type = ETH_MODULE_SFF_8079; 2750 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2751 } 2752 return 0; 2753 } 2754 2755 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2756 u8 *data) 2757 { 2758 unsigned int first, last, len; 2759 int ret; 2760 2761 if (!(sfp->state & SFP_F_PRESENT)) 2762 return -ENODEV; 2763 2764 if (ee->len == 0) 2765 return -EINVAL; 2766 2767 first = ee->offset; 2768 last = ee->offset + ee->len; 2769 if (first < ETH_MODULE_SFF_8079_LEN) { 2770 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2771 len -= first; 2772 2773 ret = sfp_read(sfp, false, first, data, len); 2774 if (ret < 0) 2775 return ret; 2776 2777 first += len; 2778 data += len; 2779 } 2780 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2781 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2782 len -= first; 2783 first -= ETH_MODULE_SFF_8079_LEN; 2784 2785 ret = sfp_read(sfp, true, first, data, len); 2786 if (ret < 0) 2787 return ret; 2788 } 2789 return 0; 2790 } 2791 2792 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2793 const struct ethtool_module_eeprom *page, 2794 struct netlink_ext_ack *extack) 2795 { 2796 if (!(sfp->state & SFP_F_PRESENT)) 2797 return -ENODEV; 2798 2799 if (page->bank) { 2800 NL_SET_ERR_MSG(extack, "Banks not supported"); 2801 return -EOPNOTSUPP; 2802 } 2803 2804 if (page->page) { 2805 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2806 return -EOPNOTSUPP; 2807 } 2808 2809 if (page->i2c_address != 0x50 && 2810 page->i2c_address != 0x51) { 2811 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2812 return -EOPNOTSUPP; 2813 } 2814 2815 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2816 page->data, page->length); 2817 }; 2818 2819 static const struct sfp_socket_ops sfp_module_ops = { 2820 .attach = sfp_attach, 2821 .detach = sfp_detach, 2822 .start = sfp_start, 2823 .stop = sfp_stop, 2824 .set_signal_rate = sfp_set_signal_rate, 2825 .module_info = sfp_module_info, 2826 .module_eeprom = sfp_module_eeprom, 2827 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2828 }; 2829 2830 static void sfp_timeout(struct work_struct *work) 2831 { 2832 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2833 2834 rtnl_lock(); 2835 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2836 rtnl_unlock(); 2837 } 2838 2839 static void sfp_check_state(struct sfp *sfp) 2840 { 2841 unsigned int state, i, changed; 2842 2843 rtnl_lock(); 2844 mutex_lock(&sfp->st_mutex); 2845 state = sfp_get_state(sfp); 2846 changed = state ^ sfp->state; 2847 if (sfp->tx_fault_ignore) 2848 changed &= SFP_F_PRESENT | SFP_F_LOS; 2849 else 2850 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2851 2852 for (i = 0; i < GPIO_MAX; i++) 2853 if (changed & BIT(i)) 2854 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2855 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2856 2857 state |= sfp->state & SFP_F_OUTPUTS; 2858 sfp->state = state; 2859 mutex_unlock(&sfp->st_mutex); 2860 2861 mutex_lock(&sfp->sm_mutex); 2862 if (changed & SFP_F_PRESENT) 2863 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2864 SFP_E_INSERT : SFP_E_REMOVE); 2865 2866 if (changed & SFP_F_TX_FAULT) 2867 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2868 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2869 2870 if (changed & SFP_F_LOS) 2871 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2872 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2873 mutex_unlock(&sfp->sm_mutex); 2874 rtnl_unlock(); 2875 } 2876 2877 static irqreturn_t sfp_irq(int irq, void *data) 2878 { 2879 struct sfp *sfp = data; 2880 2881 sfp_check_state(sfp); 2882 2883 return IRQ_HANDLED; 2884 } 2885 2886 static void sfp_poll(struct work_struct *work) 2887 { 2888 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2889 2890 sfp_check_state(sfp); 2891 2892 // st_mutex doesn't need to be held here for state_soft_mask, 2893 // it's unimportant if we race while reading this. 2894 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2895 sfp->need_poll) 2896 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2897 } 2898 2899 static struct sfp *sfp_alloc(struct device *dev) 2900 { 2901 struct sfp *sfp; 2902 2903 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2904 if (!sfp) 2905 return ERR_PTR(-ENOMEM); 2906 2907 sfp->dev = dev; 2908 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2909 2910 mutex_init(&sfp->sm_mutex); 2911 mutex_init(&sfp->st_mutex); 2912 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2913 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2914 2915 sfp_hwmon_init(sfp); 2916 2917 return sfp; 2918 } 2919 2920 static void sfp_cleanup(void *data) 2921 { 2922 struct sfp *sfp = data; 2923 2924 sfp_hwmon_exit(sfp); 2925 2926 cancel_delayed_work_sync(&sfp->poll); 2927 cancel_delayed_work_sync(&sfp->timeout); 2928 if (sfp->i2c_mii) { 2929 mdiobus_unregister(sfp->i2c_mii); 2930 mdiobus_free(sfp->i2c_mii); 2931 } 2932 if (sfp->i2c) 2933 i2c_put_adapter(sfp->i2c); 2934 kfree(sfp); 2935 } 2936 2937 static int sfp_i2c_get(struct sfp *sfp) 2938 { 2939 struct fwnode_handle *h; 2940 struct i2c_adapter *i2c; 2941 int err; 2942 2943 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2944 if (IS_ERR(h)) { 2945 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2946 return -ENODEV; 2947 } 2948 2949 i2c = i2c_get_adapter_by_fwnode(h); 2950 if (!i2c) { 2951 err = -EPROBE_DEFER; 2952 goto put; 2953 } 2954 2955 err = sfp_i2c_configure(sfp, i2c); 2956 if (err) 2957 i2c_put_adapter(i2c); 2958 put: 2959 fwnode_handle_put(h); 2960 return err; 2961 } 2962 2963 static int sfp_probe(struct platform_device *pdev) 2964 { 2965 const struct sff_data *sff; 2966 char *sfp_irq_name; 2967 struct sfp *sfp; 2968 int err, i; 2969 2970 sfp = sfp_alloc(&pdev->dev); 2971 if (IS_ERR(sfp)) 2972 return PTR_ERR(sfp); 2973 2974 platform_set_drvdata(pdev, sfp); 2975 2976 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2977 if (err < 0) 2978 return err; 2979 2980 sff = device_get_match_data(sfp->dev); 2981 if (!sff) 2982 sff = &sfp_data; 2983 2984 sfp->type = sff; 2985 2986 err = sfp_i2c_get(sfp); 2987 if (err) 2988 return err; 2989 2990 for (i = 0; i < GPIO_MAX; i++) 2991 if (sff->gpios & BIT(i)) { 2992 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2993 gpio_names[i], gpio_flags[i]); 2994 if (IS_ERR(sfp->gpio[i])) 2995 return PTR_ERR(sfp->gpio[i]); 2996 } 2997 2998 sfp->state_hw_mask = SFP_F_PRESENT; 2999 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3000 3001 sfp->get_state = sfp_gpio_get_state; 3002 sfp->set_state = sfp_gpio_set_state; 3003 3004 /* Modules that have no detect signal are always present */ 3005 if (!(sfp->gpio[GPIO_MODDEF0])) 3006 sfp->get_state = sff_gpio_get_state; 3007 3008 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3009 &sfp->max_power_mW); 3010 if (sfp->max_power_mW < 1000) { 3011 if (sfp->max_power_mW) 3012 dev_warn(sfp->dev, 3013 "Firmware bug: host maximum power should be at least 1W\n"); 3014 sfp->max_power_mW = 1000; 3015 } 3016 3017 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3018 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3019 3020 /* Get the initial state, and always signal TX disable, 3021 * since the network interface will not be up. 3022 */ 3023 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3024 3025 if (sfp->gpio[GPIO_RS0] && 3026 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3027 sfp->state |= SFP_F_RS0; 3028 sfp_set_state(sfp, sfp->state); 3029 sfp_module_tx_disable(sfp); 3030 if (sfp->state & SFP_F_PRESENT) { 3031 rtnl_lock(); 3032 sfp_sm_event(sfp, SFP_E_INSERT); 3033 rtnl_unlock(); 3034 } 3035 3036 for (i = 0; i < GPIO_MAX; i++) { 3037 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3038 continue; 3039 3040 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3041 if (sfp->gpio_irq[i] < 0) { 3042 sfp->gpio_irq[i] = 0; 3043 sfp->need_poll = true; 3044 continue; 3045 } 3046 3047 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3048 "%s-%s", dev_name(sfp->dev), 3049 gpio_names[i]); 3050 3051 if (!sfp_irq_name) 3052 return -ENOMEM; 3053 3054 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3055 NULL, sfp_irq, 3056 IRQF_ONESHOT | 3057 IRQF_TRIGGER_RISING | 3058 IRQF_TRIGGER_FALLING, 3059 sfp_irq_name, sfp); 3060 if (err) { 3061 sfp->gpio_irq[i] = 0; 3062 sfp->need_poll = true; 3063 } 3064 } 3065 3066 if (sfp->need_poll) 3067 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3068 3069 /* We could have an issue in cases no Tx disable pin is available or 3070 * wired as modules using a laser as their light source will continue to 3071 * be active when the fiber is removed. This could be a safety issue and 3072 * we should at least warn the user about that. 3073 */ 3074 if (!sfp->gpio[GPIO_TX_DISABLE]) 3075 dev_warn(sfp->dev, 3076 "No tx_disable pin: SFP modules will always be emitting.\n"); 3077 3078 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3079 if (!sfp->sfp_bus) 3080 return -ENOMEM; 3081 3082 sfp_debugfs_init(sfp); 3083 3084 return 0; 3085 } 3086 3087 static int sfp_remove(struct platform_device *pdev) 3088 { 3089 struct sfp *sfp = platform_get_drvdata(pdev); 3090 3091 sfp_debugfs_exit(sfp); 3092 sfp_unregister_socket(sfp->sfp_bus); 3093 3094 rtnl_lock(); 3095 sfp_sm_event(sfp, SFP_E_REMOVE); 3096 rtnl_unlock(); 3097 3098 return 0; 3099 } 3100 3101 static void sfp_shutdown(struct platform_device *pdev) 3102 { 3103 struct sfp *sfp = platform_get_drvdata(pdev); 3104 int i; 3105 3106 for (i = 0; i < GPIO_MAX; i++) { 3107 if (!sfp->gpio_irq[i]) 3108 continue; 3109 3110 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3111 } 3112 3113 cancel_delayed_work_sync(&sfp->poll); 3114 cancel_delayed_work_sync(&sfp->timeout); 3115 } 3116 3117 static struct platform_driver sfp_driver = { 3118 .probe = sfp_probe, 3119 .remove = sfp_remove, 3120 .shutdown = sfp_shutdown, 3121 .driver = { 3122 .name = "sfp", 3123 .of_match_table = sfp_of_match, 3124 }, 3125 }; 3126 3127 static int sfp_init(void) 3128 { 3129 poll_jiffies = msecs_to_jiffies(100); 3130 3131 return platform_driver_register(&sfp_driver); 3132 } 3133 module_init(sfp_init); 3134 3135 static void sfp_exit(void) 3136 { 3137 platform_driver_unregister(&sfp_driver); 3138 } 3139 module_exit(sfp_exit); 3140 3141 MODULE_ALIAS("platform:sfp"); 3142 MODULE_AUTHOR("Russell King"); 3143 MODULE_LICENSE("GPL v2"); 3144