1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/kref.h> 4 #include <linux/list.h> 5 #include <linux/mutex.h> 6 #include <linux/phylink.h> 7 #include <linux/property.h> 8 #include <linux/rtnetlink.h> 9 #include <linux/slab.h> 10 11 #include "sfp.h" 12 13 /** 14 * struct sfp_bus - internal representation of a sfp bus 15 */ 16 struct sfp_bus { 17 /* private: */ 18 struct kref kref; 19 struct list_head node; 20 const struct fwnode_handle *fwnode; 21 22 const struct sfp_socket_ops *socket_ops; 23 struct device *sfp_dev; 24 struct sfp *sfp; 25 const struct sfp_quirk *sfp_quirk; 26 27 const struct sfp_upstream_ops *upstream_ops; 28 void *upstream; 29 struct phy_device *phydev; 30 31 bool registered; 32 bool started; 33 }; 34 35 /** 36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type 37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 38 * @id: a pointer to the module's &struct sfp_eeprom_id 39 * @support: optional pointer to an array of unsigned long for the 40 * ethtool support mask 41 * 42 * Parse the EEPROM identification given in @id, and return one of 43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL, 44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with 45 * the connector type. 46 * 47 * If the port type is not known, returns %PORT_OTHER. 48 */ 49 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id, 50 unsigned long *support) 51 { 52 int port; 53 54 /* port is the physical connector, set this from the connector field. */ 55 switch (id->base.connector) { 56 case SFF8024_CONNECTOR_SC: 57 case SFF8024_CONNECTOR_FIBERJACK: 58 case SFF8024_CONNECTOR_LC: 59 case SFF8024_CONNECTOR_MT_RJ: 60 case SFF8024_CONNECTOR_MU: 61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL: 62 case SFF8024_CONNECTOR_MPO_1X12: 63 case SFF8024_CONNECTOR_MPO_2X16: 64 port = PORT_FIBRE; 65 break; 66 67 case SFF8024_CONNECTOR_RJ45: 68 port = PORT_TP; 69 break; 70 71 case SFF8024_CONNECTOR_COPPER_PIGTAIL: 72 port = PORT_DA; 73 break; 74 75 case SFF8024_CONNECTOR_UNSPEC: 76 if (id->base.e1000_base_t) { 77 port = PORT_TP; 78 break; 79 } 80 fallthrough; 81 case SFF8024_CONNECTOR_SG: /* guess */ 82 case SFF8024_CONNECTOR_HSSDC_II: 83 case SFF8024_CONNECTOR_NOSEPARATE: 84 case SFF8024_CONNECTOR_MXC_2X16: 85 port = PORT_OTHER; 86 break; 87 default: 88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n", 89 id->base.connector); 90 port = PORT_OTHER; 91 break; 92 } 93 94 if (support) { 95 switch (port) { 96 case PORT_FIBRE: 97 phylink_set(support, FIBRE); 98 break; 99 100 case PORT_TP: 101 phylink_set(support, TP); 102 break; 103 } 104 } 105 106 return port; 107 } 108 EXPORT_SYMBOL_GPL(sfp_parse_port); 109 110 /** 111 * sfp_may_have_phy() - indicate whether the module may have a PHY 112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 113 * @id: a pointer to the module's &struct sfp_eeprom_id 114 * 115 * Parse the EEPROM identification given in @id, and return whether 116 * this module may have a PHY. 117 */ 118 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id) 119 { 120 if (id->base.e1000_base_t) 121 return true; 122 123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) { 124 switch (id->base.extended_cc) { 125 case SFF8024_ECC_10GBASE_T_SFI: 126 case SFF8024_ECC_10GBASE_T_SR: 127 case SFF8024_ECC_5GBASE_T: 128 case SFF8024_ECC_2_5GBASE_T: 129 return true; 130 } 131 } 132 133 return false; 134 } 135 EXPORT_SYMBOL_GPL(sfp_may_have_phy); 136 137 /** 138 * sfp_parse_support() - Parse the eeprom id for supported link modes 139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 140 * @id: a pointer to the module's &struct sfp_eeprom_id 141 * @support: pointer to an array of unsigned long for the ethtool support mask 142 * @interfaces: pointer to an array of unsigned long for phy interface modes 143 * mask 144 * 145 * Parse the EEPROM identification information and derive the supported 146 * ethtool link modes for the module. 147 */ 148 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id, 149 unsigned long *support, unsigned long *interfaces) 150 { 151 unsigned int br_min, br_nom, br_max; 152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, }; 153 154 phylink_set(modes, Autoneg); 155 phylink_set(modes, Pause); 156 phylink_set(modes, Asym_Pause); 157 158 /* Decode the bitrate information to MBd */ 159 br_min = br_nom = br_max = 0; 160 if (id->base.br_nominal) { 161 if (id->base.br_nominal != 255) { 162 br_nom = id->base.br_nominal * 100; 163 br_min = br_nom - id->base.br_nominal * id->ext.br_min; 164 br_max = br_nom + id->base.br_nominal * id->ext.br_max; 165 } else if (id->ext.br_max) { 166 br_nom = 250 * id->ext.br_max; 167 br_max = br_nom + br_nom * id->ext.br_min / 100; 168 br_min = br_nom - br_nom * id->ext.br_min / 100; 169 } 170 171 /* When using passive cables, in case neither BR,min nor BR,max 172 * are specified, set br_min to 0 as the nominal value is then 173 * used as the maximum. 174 */ 175 if (br_min == br_max && id->base.sfp_ct_passive) 176 br_min = 0; 177 } 178 179 /* Set ethtool support from the compliance fields. */ 180 if (id->base.e10g_base_sr) { 181 phylink_set(modes, 10000baseSR_Full); 182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 183 } 184 if (id->base.e10g_base_lr) { 185 phylink_set(modes, 10000baseLR_Full); 186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 187 } 188 if (id->base.e10g_base_lrm) { 189 phylink_set(modes, 10000baseLRM_Full); 190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 191 } 192 if (id->base.e10g_base_er) { 193 phylink_set(modes, 10000baseER_Full); 194 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 195 } 196 if (id->base.e1000_base_sx || 197 id->base.e1000_base_lx || 198 id->base.e1000_base_cx) { 199 phylink_set(modes, 1000baseX_Full); 200 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 201 } 202 if (id->base.e1000_base_t) { 203 phylink_set(modes, 1000baseT_Half); 204 phylink_set(modes, 1000baseT_Full); 205 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 206 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces); 207 } 208 209 /* 1000Base-PX or 1000Base-BX10 */ 210 if ((id->base.e_base_px || id->base.e_base_bx10) && 211 br_min <= 1300 && br_max >= 1200) { 212 phylink_set(modes, 1000baseX_Full); 213 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 214 } 215 216 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */ 217 if (id->base.e100_base_fx || id->base.e100_base_lx) { 218 phylink_set(modes, 100baseFX_Full); 219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces); 220 } 221 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) { 222 phylink_set(modes, 100baseFX_Full); 223 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces); 224 } 225 226 /* For active or passive cables, select the link modes 227 * based on the bit rates and the cable compliance bytes. 228 */ 229 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) { 230 /* This may look odd, but some manufacturers use 12000MBd */ 231 if (br_min <= 12000 && br_max >= 10300) { 232 phylink_set(modes, 10000baseCR_Full); 233 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 234 } 235 if (br_min <= 3200 && br_max >= 3100) { 236 phylink_set(modes, 2500baseX_Full); 237 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 238 } 239 if (br_min <= 1300 && br_max >= 1200) { 240 phylink_set(modes, 1000baseX_Full); 241 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 242 } 243 } 244 if (id->base.sfp_ct_passive) { 245 if (id->base.passive.sff8431_app_e) { 246 phylink_set(modes, 10000baseCR_Full); 247 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 248 } 249 } 250 if (id->base.sfp_ct_active) { 251 if (id->base.active.sff8431_app_e || 252 id->base.active.sff8431_lim) { 253 phylink_set(modes, 10000baseCR_Full); 254 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 255 } 256 } 257 258 switch (id->base.extended_cc) { 259 case SFF8024_ECC_UNSPEC: 260 break; 261 case SFF8024_ECC_100G_25GAUI_C2M_AOC: 262 if (br_min <= 28000 && br_max >= 25000) { 263 /* 25GBASE-R, possibly with FEC */ 264 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces); 265 /* There is currently no link mode for 25000base 266 * with unspecified range, reuse SR. 267 */ 268 phylink_set(modes, 25000baseSR_Full); 269 } 270 break; 271 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR: 272 phylink_set(modes, 100000baseSR4_Full); 273 phylink_set(modes, 25000baseSR_Full); 274 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces); 275 break; 276 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR: 277 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER: 278 phylink_set(modes, 100000baseLR4_ER4_Full); 279 break; 280 case SFF8024_ECC_100GBASE_CR4: 281 phylink_set(modes, 100000baseCR4_Full); 282 fallthrough; 283 case SFF8024_ECC_25GBASE_CR_S: 284 case SFF8024_ECC_25GBASE_CR_N: 285 phylink_set(modes, 25000baseCR_Full); 286 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces); 287 break; 288 case SFF8024_ECC_10GBASE_T_SFI: 289 case SFF8024_ECC_10GBASE_T_SR: 290 phylink_set(modes, 10000baseT_Full); 291 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces); 292 break; 293 case SFF8024_ECC_5GBASE_T: 294 phylink_set(modes, 5000baseT_Full); 295 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces); 296 break; 297 case SFF8024_ECC_2_5GBASE_T: 298 phylink_set(modes, 2500baseT_Full); 299 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 300 break; 301 default: 302 dev_warn(bus->sfp_dev, 303 "Unknown/unsupported extended compliance code: 0x%02x\n", 304 id->base.extended_cc); 305 break; 306 } 307 308 /* For fibre channel SFP, derive possible BaseX modes */ 309 if (id->base.fc_speed_100 || 310 id->base.fc_speed_200 || 311 id->base.fc_speed_400) { 312 if (id->base.br_nominal >= 31) { 313 phylink_set(modes, 2500baseX_Full); 314 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 315 } 316 if (id->base.br_nominal >= 12) { 317 phylink_set(modes, 1000baseX_Full); 318 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 319 } 320 } 321 322 /* If we haven't discovered any modes that this module supports, try 323 * the bitrate to determine supported modes. Some BiDi modules (eg, 324 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing 325 * wavelengths, so do not set any transceiver bits. 326 * 327 * Do the same for modules supporting 2500BASE-X. Note that some 328 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for 329 * 2500BASE-X, so we allow some slack here. 330 */ 331 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) { 332 if (br_min <= 1300 && br_max >= 1200) { 333 phylink_set(modes, 1000baseX_Full); 334 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces); 335 } 336 if (br_min <= 3200 && br_max >= 2500) { 337 phylink_set(modes, 2500baseX_Full); 338 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 339 } 340 } 341 342 if (bus->sfp_quirk && bus->sfp_quirk->modes) 343 bus->sfp_quirk->modes(id, modes, interfaces); 344 345 linkmode_or(support, support, modes); 346 } 347 EXPORT_SYMBOL_GPL(sfp_parse_support); 348 349 /** 350 * sfp_select_interface() - Select appropriate phy_interface_t mode 351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 352 * @link_modes: ethtool link modes mask 353 * 354 * Derive the phy_interface_t mode for the SFP module from the link 355 * modes mask. 356 */ 357 phy_interface_t sfp_select_interface(struct sfp_bus *bus, 358 unsigned long *link_modes) 359 { 360 if (phylink_test(link_modes, 25000baseCR_Full) || 361 phylink_test(link_modes, 25000baseKR_Full) || 362 phylink_test(link_modes, 25000baseSR_Full)) 363 return PHY_INTERFACE_MODE_25GBASER; 364 365 if (phylink_test(link_modes, 10000baseCR_Full) || 366 phylink_test(link_modes, 10000baseSR_Full) || 367 phylink_test(link_modes, 10000baseLR_Full) || 368 phylink_test(link_modes, 10000baseLRM_Full) || 369 phylink_test(link_modes, 10000baseER_Full) || 370 phylink_test(link_modes, 10000baseT_Full)) 371 return PHY_INTERFACE_MODE_10GBASER; 372 373 if (phylink_test(link_modes, 5000baseT_Full)) 374 return PHY_INTERFACE_MODE_5GBASER; 375 376 if (phylink_test(link_modes, 2500baseX_Full)) 377 return PHY_INTERFACE_MODE_2500BASEX; 378 379 if (phylink_test(link_modes, 1000baseT_Half) || 380 phylink_test(link_modes, 1000baseT_Full)) 381 return PHY_INTERFACE_MODE_SGMII; 382 383 if (phylink_test(link_modes, 1000baseX_Full)) 384 return PHY_INTERFACE_MODE_1000BASEX; 385 386 if (phylink_test(link_modes, 100baseFX_Full)) 387 return PHY_INTERFACE_MODE_100BASEX; 388 389 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n"); 390 391 return PHY_INTERFACE_MODE_NA; 392 } 393 EXPORT_SYMBOL_GPL(sfp_select_interface); 394 395 static LIST_HEAD(sfp_buses); 396 static DEFINE_MUTEX(sfp_mutex); 397 398 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus) 399 { 400 return bus->registered ? bus->upstream_ops : NULL; 401 } 402 403 static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode) 404 { 405 struct sfp_bus *sfp, *new, *found = NULL; 406 407 new = kzalloc(sizeof(*new), GFP_KERNEL); 408 409 mutex_lock(&sfp_mutex); 410 411 list_for_each_entry(sfp, &sfp_buses, node) { 412 if (sfp->fwnode == fwnode) { 413 kref_get(&sfp->kref); 414 found = sfp; 415 break; 416 } 417 } 418 419 if (!found && new) { 420 kref_init(&new->kref); 421 new->fwnode = fwnode; 422 list_add(&new->node, &sfp_buses); 423 found = new; 424 new = NULL; 425 } 426 427 mutex_unlock(&sfp_mutex); 428 429 kfree(new); 430 431 return found; 432 } 433 434 static void sfp_bus_release(struct kref *kref) 435 { 436 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref); 437 438 list_del(&bus->node); 439 mutex_unlock(&sfp_mutex); 440 kfree(bus); 441 } 442 443 /** 444 * sfp_bus_put() - put a reference on the &struct sfp_bus 445 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() 446 * 447 * Put a reference on the &struct sfp_bus and free the underlying structure 448 * if this was the last reference. 449 */ 450 void sfp_bus_put(struct sfp_bus *bus) 451 { 452 if (bus) 453 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex); 454 } 455 EXPORT_SYMBOL_GPL(sfp_bus_put); 456 457 static int sfp_register_bus(struct sfp_bus *bus) 458 { 459 const struct sfp_upstream_ops *ops = bus->upstream_ops; 460 int ret; 461 462 if (ops) { 463 if (ops->link_down) 464 ops->link_down(bus->upstream); 465 if (ops->connect_phy && bus->phydev) { 466 ret = ops->connect_phy(bus->upstream, bus->phydev); 467 if (ret) 468 return ret; 469 } 470 } 471 bus->registered = true; 472 bus->socket_ops->attach(bus->sfp); 473 if (bus->started) 474 bus->socket_ops->start(bus->sfp); 475 bus->upstream_ops->attach(bus->upstream, bus); 476 return 0; 477 } 478 479 static void sfp_unregister_bus(struct sfp_bus *bus) 480 { 481 const struct sfp_upstream_ops *ops = bus->upstream_ops; 482 483 if (bus->registered) { 484 bus->upstream_ops->detach(bus->upstream, bus); 485 if (bus->started) 486 bus->socket_ops->stop(bus->sfp); 487 bus->socket_ops->detach(bus->sfp); 488 if (bus->phydev && ops && ops->disconnect_phy) 489 ops->disconnect_phy(bus->upstream); 490 } 491 bus->registered = false; 492 } 493 494 /** 495 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module 496 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 497 * @modinfo: a &struct ethtool_modinfo 498 * 499 * Fill in the type and eeprom_len parameters in @modinfo for a module on 500 * the sfp bus specified by @bus. 501 * 502 * Returns 0 on success or a negative errno number. 503 */ 504 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo) 505 { 506 return bus->socket_ops->module_info(bus->sfp, modinfo); 507 } 508 EXPORT_SYMBOL_GPL(sfp_get_module_info); 509 510 /** 511 * sfp_get_module_eeprom() - Read the SFP module EEPROM 512 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 513 * @ee: a &struct ethtool_eeprom 514 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes) 515 * 516 * Read the EEPROM as specified by the supplied @ee. See the documentation 517 * for &struct ethtool_eeprom for the region to be read. 518 * 519 * Returns 0 on success or a negative errno number. 520 */ 521 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee, 522 u8 *data) 523 { 524 return bus->socket_ops->module_eeprom(bus->sfp, ee, data); 525 } 526 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom); 527 528 /** 529 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM 530 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 531 * @page: a &struct ethtool_module_eeprom 532 * @extack: extack for reporting problems 533 * 534 * Read an EEPROM page as specified by the supplied @page. See the 535 * documentation for &struct ethtool_module_eeprom for the page to be read. 536 * 537 * Returns 0 on success or a negative errno number. More error 538 * information might be provided via extack 539 */ 540 int sfp_get_module_eeprom_by_page(struct sfp_bus *bus, 541 const struct ethtool_module_eeprom *page, 542 struct netlink_ext_ack *extack) 543 { 544 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack); 545 } 546 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page); 547 548 /** 549 * sfp_upstream_start() - Inform the SFP that the network device is up 550 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 551 * 552 * Inform the SFP socket that the network device is now up, so that the 553 * module can be enabled by allowing TX_DISABLE to be deasserted. This 554 * should be called from the network device driver's &struct net_device_ops 555 * ndo_open() method. 556 */ 557 void sfp_upstream_start(struct sfp_bus *bus) 558 { 559 if (bus->registered) 560 bus->socket_ops->start(bus->sfp); 561 bus->started = true; 562 } 563 EXPORT_SYMBOL_GPL(sfp_upstream_start); 564 565 /** 566 * sfp_upstream_stop() - Inform the SFP that the network device is down 567 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 568 * 569 * Inform the SFP socket that the network device is now up, so that the 570 * module can be disabled by asserting TX_DISABLE, disabling the laser 571 * in optical modules. This should be called from the network device 572 * driver's &struct net_device_ops ndo_stop() method. 573 */ 574 void sfp_upstream_stop(struct sfp_bus *bus) 575 { 576 if (bus->registered) 577 bus->socket_ops->stop(bus->sfp); 578 bus->started = false; 579 } 580 EXPORT_SYMBOL_GPL(sfp_upstream_stop); 581 582 static void sfp_upstream_clear(struct sfp_bus *bus) 583 { 584 bus->upstream_ops = NULL; 585 bus->upstream = NULL; 586 } 587 588 /** 589 * sfp_upstream_set_signal_rate() - set data signalling rate 590 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 591 * @rate_kbd: signalling rate in units of 1000 baud 592 * 593 * Configure the rate select settings on the SFP module for the signalling 594 * rate (not the same as the data rate). 595 * 596 * Locks that may be held: 597 * Phylink's state_mutex 598 * rtnl lock 599 * SFP's sm_mutex 600 */ 601 void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd) 602 { 603 if (bus->registered) 604 bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd); 605 } 606 EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate); 607 608 /** 609 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode 610 * @fwnode: firmware node for the parent device (MAC or PHY) 611 * 612 * Parse the parent device's firmware node for a SFP bus, and locate 613 * the sfp_bus structure, incrementing its reference count. This must 614 * be put via sfp_bus_put() when done. 615 * 616 * Returns: 617 * - on success, a pointer to the sfp_bus structure, 618 * - %NULL if no SFP is specified, 619 * - on failure, an error pointer value: 620 * 621 * - corresponding to the errors detailed for 622 * fwnode_property_get_reference_args(). 623 * - %-ENOMEM if we failed to allocate the bus. 624 * - an error from the upstream's connect_phy() method. 625 */ 626 struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode) 627 { 628 struct fwnode_reference_args ref; 629 struct sfp_bus *bus; 630 int ret; 631 632 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL, 633 0, 0, &ref); 634 if (ret == -ENOENT) 635 return NULL; 636 else if (ret < 0) 637 return ERR_PTR(ret); 638 639 if (!fwnode_device_is_available(ref.fwnode)) { 640 fwnode_handle_put(ref.fwnode); 641 return NULL; 642 } 643 644 bus = sfp_bus_get(ref.fwnode); 645 fwnode_handle_put(ref.fwnode); 646 if (!bus) 647 return ERR_PTR(-ENOMEM); 648 649 return bus; 650 } 651 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode); 652 653 /** 654 * sfp_bus_add_upstream() - parse and register the neighbouring device 655 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() 656 * @upstream: the upstream private data 657 * @ops: the upstream's &struct sfp_upstream_ops 658 * 659 * Add upstream driver for the SFP bus, and if the bus is complete, register 660 * the SFP bus using sfp_register_upstream(). This takes a reference on the 661 * bus, so it is safe to put the bus after this call. 662 * 663 * Returns: 664 * - on success, a pointer to the sfp_bus structure, 665 * - %NULL if no SFP is specified, 666 * - on failure, an error pointer value: 667 * 668 * - corresponding to the errors detailed for 669 * fwnode_property_get_reference_args(). 670 * - %-ENOMEM if we failed to allocate the bus. 671 * - an error from the upstream's connect_phy() method. 672 */ 673 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream, 674 const struct sfp_upstream_ops *ops) 675 { 676 int ret; 677 678 /* If no bus, return success */ 679 if (!bus) 680 return 0; 681 682 rtnl_lock(); 683 kref_get(&bus->kref); 684 bus->upstream_ops = ops; 685 bus->upstream = upstream; 686 687 if (bus->sfp) { 688 ret = sfp_register_bus(bus); 689 if (ret) 690 sfp_upstream_clear(bus); 691 } else { 692 ret = 0; 693 } 694 rtnl_unlock(); 695 696 if (ret) 697 sfp_bus_put(bus); 698 699 return ret; 700 } 701 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream); 702 703 /** 704 * sfp_bus_del_upstream() - Delete a sfp bus 705 * @bus: a pointer to the &struct sfp_bus structure for the sfp module 706 * 707 * Delete a previously registered upstream connection for the SFP 708 * module. @bus should have been added by sfp_bus_add_upstream(). 709 */ 710 void sfp_bus_del_upstream(struct sfp_bus *bus) 711 { 712 if (bus) { 713 rtnl_lock(); 714 if (bus->sfp) 715 sfp_unregister_bus(bus); 716 sfp_upstream_clear(bus); 717 rtnl_unlock(); 718 719 sfp_bus_put(bus); 720 } 721 } 722 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream); 723 724 /* Socket driver entry points */ 725 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev) 726 { 727 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 728 int ret = 0; 729 730 if (ops && ops->connect_phy) 731 ret = ops->connect_phy(bus->upstream, phydev); 732 733 if (ret == 0) 734 bus->phydev = phydev; 735 736 return ret; 737 } 738 EXPORT_SYMBOL_GPL(sfp_add_phy); 739 740 void sfp_remove_phy(struct sfp_bus *bus) 741 { 742 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 743 744 if (ops && ops->disconnect_phy) 745 ops->disconnect_phy(bus->upstream); 746 bus->phydev = NULL; 747 } 748 EXPORT_SYMBOL_GPL(sfp_remove_phy); 749 750 void sfp_link_up(struct sfp_bus *bus) 751 { 752 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 753 754 if (ops && ops->link_up) 755 ops->link_up(bus->upstream); 756 } 757 EXPORT_SYMBOL_GPL(sfp_link_up); 758 759 void sfp_link_down(struct sfp_bus *bus) 760 { 761 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 762 763 if (ops && ops->link_down) 764 ops->link_down(bus->upstream); 765 } 766 EXPORT_SYMBOL_GPL(sfp_link_down); 767 768 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id, 769 const struct sfp_quirk *quirk) 770 { 771 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 772 int ret = 0; 773 774 bus->sfp_quirk = quirk; 775 776 if (ops && ops->module_insert) 777 ret = ops->module_insert(bus->upstream, id); 778 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(sfp_module_insert); 782 783 void sfp_module_remove(struct sfp_bus *bus) 784 { 785 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 786 787 if (ops && ops->module_remove) 788 ops->module_remove(bus->upstream); 789 790 bus->sfp_quirk = NULL; 791 } 792 EXPORT_SYMBOL_GPL(sfp_module_remove); 793 794 int sfp_module_start(struct sfp_bus *bus) 795 { 796 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 797 int ret = 0; 798 799 if (ops && ops->module_start) 800 ret = ops->module_start(bus->upstream); 801 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(sfp_module_start); 805 806 void sfp_module_stop(struct sfp_bus *bus) 807 { 808 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); 809 810 if (ops && ops->module_stop) 811 ops->module_stop(bus->upstream); 812 } 813 EXPORT_SYMBOL_GPL(sfp_module_stop); 814 815 static void sfp_socket_clear(struct sfp_bus *bus) 816 { 817 bus->sfp_dev = NULL; 818 bus->sfp = NULL; 819 bus->socket_ops = NULL; 820 } 821 822 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp, 823 const struct sfp_socket_ops *ops) 824 { 825 struct sfp_bus *bus = sfp_bus_get(dev->fwnode); 826 int ret = 0; 827 828 if (bus) { 829 rtnl_lock(); 830 bus->sfp_dev = dev; 831 bus->sfp = sfp; 832 bus->socket_ops = ops; 833 834 if (bus->upstream_ops) { 835 ret = sfp_register_bus(bus); 836 if (ret) 837 sfp_socket_clear(bus); 838 } 839 rtnl_unlock(); 840 } 841 842 if (ret) { 843 sfp_bus_put(bus); 844 bus = NULL; 845 } 846 847 return bus; 848 } 849 EXPORT_SYMBOL_GPL(sfp_register_socket); 850 851 void sfp_unregister_socket(struct sfp_bus *bus) 852 { 853 rtnl_lock(); 854 if (bus->upstream_ops) 855 sfp_unregister_bus(bus); 856 sfp_socket_clear(bus); 857 rtnl_unlock(); 858 859 sfp_bus_put(bus); 860 } 861 EXPORT_SYMBOL_GPL(sfp_unregister_socket); 862