xref: /openbmc/linux/drivers/net/phy/sfp-bus.c (revision 294299b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
10 
11 #include "sfp.h"
12 
13 struct sfp_quirk {
14 	const char *vendor;
15 	const char *part;
16 	void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
17 };
18 
19 /**
20  * struct sfp_bus - internal representation of a sfp bus
21  */
22 struct sfp_bus {
23 	/* private: */
24 	struct kref kref;
25 	struct list_head node;
26 	struct fwnode_handle *fwnode;
27 
28 	const struct sfp_socket_ops *socket_ops;
29 	struct device *sfp_dev;
30 	struct sfp *sfp;
31 	const struct sfp_quirk *sfp_quirk;
32 
33 	const struct sfp_upstream_ops *upstream_ops;
34 	void *upstream;
35 	struct phy_device *phydev;
36 
37 	bool registered;
38 	bool started;
39 };
40 
41 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 				unsigned long *modes)
43 {
44 	phylink_set(modes, 2500baseX_Full);
45 }
46 
47 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
48 				      unsigned long *modes)
49 {
50 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
51 	 * types including 10G Ethernet which is not truth. So clear all claimed
52 	 * modes and set only one mode which module supports: 1000baseX_Full.
53 	 */
54 	phylink_zero(modes);
55 	phylink_set(modes, 1000baseX_Full);
56 }
57 
58 static const struct sfp_quirk sfp_quirks[] = {
59 	{
60 		// Alcatel Lucent G-010S-P can operate at 2500base-X, but
61 		// incorrectly report 2500MBd NRZ in their EEPROM
62 		.vendor = "ALCATELLUCENT",
63 		.part = "G010SP",
64 		.modes = sfp_quirk_2500basex,
65 	}, {
66 		// Alcatel Lucent G-010S-A can operate at 2500base-X, but
67 		// report 3.2GBd NRZ in their EEPROM
68 		.vendor = "ALCATELLUCENT",
69 		.part = "3FE46541AA",
70 		.modes = sfp_quirk_2500basex,
71 	}, {
72 		// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
73 		// NRZ in their EEPROM
74 		.vendor = "HUAWEI",
75 		.part = "MA5671A",
76 		.modes = sfp_quirk_2500basex,
77 	}, {
78 		// Lantech 8330-262D-E can operate at 2500base-X, but
79 		// incorrectly report 2500MBd NRZ in their EEPROM
80 		.vendor = "Lantech",
81 		.part = "8330-262D-E",
82 		.modes = sfp_quirk_2500basex,
83 	}, {
84 		.vendor = "UBNT",
85 		.part = "UF-INSTANT",
86 		.modes = sfp_quirk_ubnt_uf_instant,
87 	},
88 };
89 
90 static size_t sfp_strlen(const char *str, size_t maxlen)
91 {
92 	size_t size, i;
93 
94 	/* Trailing characters should be filled with space chars */
95 	for (i = 0, size = 0; i < maxlen; i++)
96 		if (str[i] != ' ')
97 			size = i + 1;
98 
99 	return size;
100 }
101 
102 static bool sfp_match(const char *qs, const char *str, size_t len)
103 {
104 	if (!qs)
105 		return true;
106 	if (strlen(qs) != len)
107 		return false;
108 	return !strncmp(qs, str, len);
109 }
110 
111 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
112 {
113 	const struct sfp_quirk *q;
114 	unsigned int i;
115 	size_t vs, ps;
116 
117 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
118 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
119 
120 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
121 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
122 		    sfp_match(q->part, id->base.vendor_pn, ps))
123 			return q;
124 
125 	return NULL;
126 }
127 
128 /**
129  * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
130  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
131  * @id: a pointer to the module's &struct sfp_eeprom_id
132  * @support: optional pointer to an array of unsigned long for the
133  *   ethtool support mask
134  *
135  * Parse the EEPROM identification given in @id, and return one of
136  * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
137  * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
138  * the connector type.
139  *
140  * If the port type is not known, returns %PORT_OTHER.
141  */
142 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
143 		   unsigned long *support)
144 {
145 	int port;
146 
147 	/* port is the physical connector, set this from the connector field. */
148 	switch (id->base.connector) {
149 	case SFF8024_CONNECTOR_SC:
150 	case SFF8024_CONNECTOR_FIBERJACK:
151 	case SFF8024_CONNECTOR_LC:
152 	case SFF8024_CONNECTOR_MT_RJ:
153 	case SFF8024_CONNECTOR_MU:
154 	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
155 	case SFF8024_CONNECTOR_MPO_1X12:
156 	case SFF8024_CONNECTOR_MPO_2X16:
157 		port = PORT_FIBRE;
158 		break;
159 
160 	case SFF8024_CONNECTOR_RJ45:
161 		port = PORT_TP;
162 		break;
163 
164 	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
165 		port = PORT_DA;
166 		break;
167 
168 	case SFF8024_CONNECTOR_UNSPEC:
169 		if (id->base.e1000_base_t) {
170 			port = PORT_TP;
171 			break;
172 		}
173 		fallthrough;
174 	case SFF8024_CONNECTOR_SG: /* guess */
175 	case SFF8024_CONNECTOR_HSSDC_II:
176 	case SFF8024_CONNECTOR_NOSEPARATE:
177 	case SFF8024_CONNECTOR_MXC_2X16:
178 		port = PORT_OTHER;
179 		break;
180 	default:
181 		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
182 			 id->base.connector);
183 		port = PORT_OTHER;
184 		break;
185 	}
186 
187 	if (support) {
188 		switch (port) {
189 		case PORT_FIBRE:
190 			phylink_set(support, FIBRE);
191 			break;
192 
193 		case PORT_TP:
194 			phylink_set(support, TP);
195 			break;
196 		}
197 	}
198 
199 	return port;
200 }
201 EXPORT_SYMBOL_GPL(sfp_parse_port);
202 
203 /**
204  * sfp_may_have_phy() - indicate whether the module may have a PHY
205  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
206  * @id: a pointer to the module's &struct sfp_eeprom_id
207  *
208  * Parse the EEPROM identification given in @id, and return whether
209  * this module may have a PHY.
210  */
211 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
212 {
213 	if (id->base.e1000_base_t)
214 		return true;
215 
216 	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
217 		switch (id->base.extended_cc) {
218 		case SFF8024_ECC_10GBASE_T_SFI:
219 		case SFF8024_ECC_10GBASE_T_SR:
220 		case SFF8024_ECC_5GBASE_T:
221 		case SFF8024_ECC_2_5GBASE_T:
222 			return true;
223 		}
224 	}
225 
226 	return false;
227 }
228 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
229 
230 /**
231  * sfp_parse_support() - Parse the eeprom id for supported link modes
232  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
233  * @id: a pointer to the module's &struct sfp_eeprom_id
234  * @support: pointer to an array of unsigned long for the ethtool support mask
235  *
236  * Parse the EEPROM identification information and derive the supported
237  * ethtool link modes for the module.
238  */
239 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
240 		       unsigned long *support)
241 {
242 	unsigned int br_min, br_nom, br_max;
243 	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
244 
245 	/* Decode the bitrate information to MBd */
246 	br_min = br_nom = br_max = 0;
247 	if (id->base.br_nominal) {
248 		if (id->base.br_nominal != 255) {
249 			br_nom = id->base.br_nominal * 100;
250 			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
251 			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
252 		} else if (id->ext.br_max) {
253 			br_nom = 250 * id->ext.br_max;
254 			br_max = br_nom + br_nom * id->ext.br_min / 100;
255 			br_min = br_nom - br_nom * id->ext.br_min / 100;
256 		}
257 
258 		/* When using passive cables, in case neither BR,min nor BR,max
259 		 * are specified, set br_min to 0 as the nominal value is then
260 		 * used as the maximum.
261 		 */
262 		if (br_min == br_max && id->base.sfp_ct_passive)
263 			br_min = 0;
264 	}
265 
266 	/* Set ethtool support from the compliance fields. */
267 	if (id->base.e10g_base_sr)
268 		phylink_set(modes, 10000baseSR_Full);
269 	if (id->base.e10g_base_lr)
270 		phylink_set(modes, 10000baseLR_Full);
271 	if (id->base.e10g_base_lrm)
272 		phylink_set(modes, 10000baseLRM_Full);
273 	if (id->base.e10g_base_er)
274 		phylink_set(modes, 10000baseER_Full);
275 	if (id->base.e1000_base_sx ||
276 	    id->base.e1000_base_lx ||
277 	    id->base.e1000_base_cx)
278 		phylink_set(modes, 1000baseX_Full);
279 	if (id->base.e1000_base_t) {
280 		phylink_set(modes, 1000baseT_Half);
281 		phylink_set(modes, 1000baseT_Full);
282 	}
283 
284 	/* 1000Base-PX or 1000Base-BX10 */
285 	if ((id->base.e_base_px || id->base.e_base_bx10) &&
286 	    br_min <= 1300 && br_max >= 1200)
287 		phylink_set(modes, 1000baseX_Full);
288 
289 	/* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
290 	if (id->base.e100_base_fx || id->base.e100_base_lx)
291 		phylink_set(modes, 100baseFX_Full);
292 	if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100)
293 		phylink_set(modes, 100baseFX_Full);
294 
295 	/* For active or passive cables, select the link modes
296 	 * based on the bit rates and the cable compliance bytes.
297 	 */
298 	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
299 		/* This may look odd, but some manufacturers use 12000MBd */
300 		if (br_min <= 12000 && br_max >= 10300)
301 			phylink_set(modes, 10000baseCR_Full);
302 		if (br_min <= 3200 && br_max >= 3100)
303 			phylink_set(modes, 2500baseX_Full);
304 		if (br_min <= 1300 && br_max >= 1200)
305 			phylink_set(modes, 1000baseX_Full);
306 	}
307 	if (id->base.sfp_ct_passive) {
308 		if (id->base.passive.sff8431_app_e)
309 			phylink_set(modes, 10000baseCR_Full);
310 	}
311 	if (id->base.sfp_ct_active) {
312 		if (id->base.active.sff8431_app_e ||
313 		    id->base.active.sff8431_lim) {
314 			phylink_set(modes, 10000baseCR_Full);
315 		}
316 	}
317 
318 	switch (id->base.extended_cc) {
319 	case SFF8024_ECC_UNSPEC:
320 		break;
321 	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
322 		phylink_set(modes, 100000baseSR4_Full);
323 		phylink_set(modes, 25000baseSR_Full);
324 		break;
325 	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
326 	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
327 		phylink_set(modes, 100000baseLR4_ER4_Full);
328 		break;
329 	case SFF8024_ECC_100GBASE_CR4:
330 		phylink_set(modes, 100000baseCR4_Full);
331 		fallthrough;
332 	case SFF8024_ECC_25GBASE_CR_S:
333 	case SFF8024_ECC_25GBASE_CR_N:
334 		phylink_set(modes, 25000baseCR_Full);
335 		break;
336 	case SFF8024_ECC_10GBASE_T_SFI:
337 	case SFF8024_ECC_10GBASE_T_SR:
338 		phylink_set(modes, 10000baseT_Full);
339 		break;
340 	case SFF8024_ECC_5GBASE_T:
341 		phylink_set(modes, 5000baseT_Full);
342 		break;
343 	case SFF8024_ECC_2_5GBASE_T:
344 		phylink_set(modes, 2500baseT_Full);
345 		break;
346 	default:
347 		dev_warn(bus->sfp_dev,
348 			 "Unknown/unsupported extended compliance code: 0x%02x\n",
349 			 id->base.extended_cc);
350 		break;
351 	}
352 
353 	/* For fibre channel SFP, derive possible BaseX modes */
354 	if (id->base.fc_speed_100 ||
355 	    id->base.fc_speed_200 ||
356 	    id->base.fc_speed_400) {
357 		if (id->base.br_nominal >= 31)
358 			phylink_set(modes, 2500baseX_Full);
359 		if (id->base.br_nominal >= 12)
360 			phylink_set(modes, 1000baseX_Full);
361 	}
362 
363 	/* If we haven't discovered any modes that this module supports, try
364 	 * the bitrate to determine supported modes. Some BiDi modules (eg,
365 	 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
366 	 * wavelengths, so do not set any transceiver bits.
367 	 *
368 	 * Do the same for modules supporting 2500BASE-X. Note that some
369 	 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
370 	 * 2500BASE-X, so we allow some slack here.
371 	 */
372 	if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
373 		if (br_min <= 1300 && br_max >= 1200)
374 			phylink_set(modes, 1000baseX_Full);
375 		if (br_min <= 3200 && br_max >= 2500)
376 			phylink_set(modes, 2500baseX_Full);
377 	}
378 
379 	if (bus->sfp_quirk)
380 		bus->sfp_quirk->modes(id, modes);
381 
382 	linkmode_or(support, support, modes);
383 
384 	phylink_set(support, Autoneg);
385 	phylink_set(support, Pause);
386 	phylink_set(support, Asym_Pause);
387 }
388 EXPORT_SYMBOL_GPL(sfp_parse_support);
389 
390 /**
391  * sfp_select_interface() - Select appropriate phy_interface_t mode
392  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
393  * @link_modes: ethtool link modes mask
394  *
395  * Derive the phy_interface_t mode for the SFP module from the link
396  * modes mask.
397  */
398 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
399 				     unsigned long *link_modes)
400 {
401 	if (phylink_test(link_modes, 25000baseCR_Full) ||
402 	    phylink_test(link_modes, 25000baseKR_Full) ||
403 	    phylink_test(link_modes, 25000baseSR_Full))
404 		return PHY_INTERFACE_MODE_25GBASER;
405 
406 	if (phylink_test(link_modes, 10000baseCR_Full) ||
407 	    phylink_test(link_modes, 10000baseSR_Full) ||
408 	    phylink_test(link_modes, 10000baseLR_Full) ||
409 	    phylink_test(link_modes, 10000baseLRM_Full) ||
410 	    phylink_test(link_modes, 10000baseER_Full) ||
411 	    phylink_test(link_modes, 10000baseT_Full))
412 		return PHY_INTERFACE_MODE_10GBASER;
413 
414 	if (phylink_test(link_modes, 5000baseT_Full))
415 		return PHY_INTERFACE_MODE_5GBASER;
416 
417 	if (phylink_test(link_modes, 2500baseX_Full))
418 		return PHY_INTERFACE_MODE_2500BASEX;
419 
420 	if (phylink_test(link_modes, 1000baseT_Half) ||
421 	    phylink_test(link_modes, 1000baseT_Full))
422 		return PHY_INTERFACE_MODE_SGMII;
423 
424 	if (phylink_test(link_modes, 1000baseX_Full))
425 		return PHY_INTERFACE_MODE_1000BASEX;
426 
427 	if (phylink_test(link_modes, 100baseFX_Full))
428 		return PHY_INTERFACE_MODE_100BASEX;
429 
430 	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
431 
432 	return PHY_INTERFACE_MODE_NA;
433 }
434 EXPORT_SYMBOL_GPL(sfp_select_interface);
435 
436 static LIST_HEAD(sfp_buses);
437 static DEFINE_MUTEX(sfp_mutex);
438 
439 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
440 {
441 	return bus->registered ? bus->upstream_ops : NULL;
442 }
443 
444 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
445 {
446 	struct sfp_bus *sfp, *new, *found = NULL;
447 
448 	new = kzalloc(sizeof(*new), GFP_KERNEL);
449 
450 	mutex_lock(&sfp_mutex);
451 
452 	list_for_each_entry(sfp, &sfp_buses, node) {
453 		if (sfp->fwnode == fwnode) {
454 			kref_get(&sfp->kref);
455 			found = sfp;
456 			break;
457 		}
458 	}
459 
460 	if (!found && new) {
461 		kref_init(&new->kref);
462 		new->fwnode = fwnode;
463 		list_add(&new->node, &sfp_buses);
464 		found = new;
465 		new = NULL;
466 	}
467 
468 	mutex_unlock(&sfp_mutex);
469 
470 	kfree(new);
471 
472 	return found;
473 }
474 
475 static void sfp_bus_release(struct kref *kref)
476 {
477 	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
478 
479 	list_del(&bus->node);
480 	mutex_unlock(&sfp_mutex);
481 	kfree(bus);
482 }
483 
484 /**
485  * sfp_bus_put() - put a reference on the &struct sfp_bus
486  * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
487  *
488  * Put a reference on the &struct sfp_bus and free the underlying structure
489  * if this was the last reference.
490  */
491 void sfp_bus_put(struct sfp_bus *bus)
492 {
493 	if (bus)
494 		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
495 }
496 EXPORT_SYMBOL_GPL(sfp_bus_put);
497 
498 static int sfp_register_bus(struct sfp_bus *bus)
499 {
500 	const struct sfp_upstream_ops *ops = bus->upstream_ops;
501 	int ret;
502 
503 	if (ops) {
504 		if (ops->link_down)
505 			ops->link_down(bus->upstream);
506 		if (ops->connect_phy && bus->phydev) {
507 			ret = ops->connect_phy(bus->upstream, bus->phydev);
508 			if (ret)
509 				return ret;
510 		}
511 	}
512 	bus->registered = true;
513 	bus->socket_ops->attach(bus->sfp);
514 	if (bus->started)
515 		bus->socket_ops->start(bus->sfp);
516 	bus->upstream_ops->attach(bus->upstream, bus);
517 	return 0;
518 }
519 
520 static void sfp_unregister_bus(struct sfp_bus *bus)
521 {
522 	const struct sfp_upstream_ops *ops = bus->upstream_ops;
523 
524 	if (bus->registered) {
525 		bus->upstream_ops->detach(bus->upstream, bus);
526 		if (bus->started)
527 			bus->socket_ops->stop(bus->sfp);
528 		bus->socket_ops->detach(bus->sfp);
529 		if (bus->phydev && ops && ops->disconnect_phy)
530 			ops->disconnect_phy(bus->upstream);
531 	}
532 	bus->registered = false;
533 }
534 
535 /**
536  * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
537  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
538  * @modinfo: a &struct ethtool_modinfo
539  *
540  * Fill in the type and eeprom_len parameters in @modinfo for a module on
541  * the sfp bus specified by @bus.
542  *
543  * Returns 0 on success or a negative errno number.
544  */
545 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
546 {
547 	return bus->socket_ops->module_info(bus->sfp, modinfo);
548 }
549 EXPORT_SYMBOL_GPL(sfp_get_module_info);
550 
551 /**
552  * sfp_get_module_eeprom() - Read the SFP module EEPROM
553  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
554  * @ee: a &struct ethtool_eeprom
555  * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
556  *
557  * Read the EEPROM as specified by the supplied @ee. See the documentation
558  * for &struct ethtool_eeprom for the region to be read.
559  *
560  * Returns 0 on success or a negative errno number.
561  */
562 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
563 			  u8 *data)
564 {
565 	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
566 }
567 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
568 
569 /**
570  * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
571  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
572  * @page: a &struct ethtool_module_eeprom
573  * @extack: extack for reporting problems
574  *
575  * Read an EEPROM page as specified by the supplied @page. See the
576  * documentation for &struct ethtool_module_eeprom for the page to be read.
577  *
578  * Returns 0 on success or a negative errno number. More error
579  * information might be provided via extack
580  */
581 int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
582 				  const struct ethtool_module_eeprom *page,
583 				  struct netlink_ext_ack *extack)
584 {
585 	return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
586 }
587 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
588 
589 /**
590  * sfp_upstream_start() - Inform the SFP that the network device is up
591  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
592  *
593  * Inform the SFP socket that the network device is now up, so that the
594  * module can be enabled by allowing TX_DISABLE to be deasserted. This
595  * should be called from the network device driver's &struct net_device_ops
596  * ndo_open() method.
597  */
598 void sfp_upstream_start(struct sfp_bus *bus)
599 {
600 	if (bus->registered)
601 		bus->socket_ops->start(bus->sfp);
602 	bus->started = true;
603 }
604 EXPORT_SYMBOL_GPL(sfp_upstream_start);
605 
606 /**
607  * sfp_upstream_stop() - Inform the SFP that the network device is down
608  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
609  *
610  * Inform the SFP socket that the network device is now up, so that the
611  * module can be disabled by asserting TX_DISABLE, disabling the laser
612  * in optical modules. This should be called from the network device
613  * driver's &struct net_device_ops ndo_stop() method.
614  */
615 void sfp_upstream_stop(struct sfp_bus *bus)
616 {
617 	if (bus->registered)
618 		bus->socket_ops->stop(bus->sfp);
619 	bus->started = false;
620 }
621 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
622 
623 static void sfp_upstream_clear(struct sfp_bus *bus)
624 {
625 	bus->upstream_ops = NULL;
626 	bus->upstream = NULL;
627 }
628 
629 /**
630  * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
631  * @fwnode: firmware node for the parent device (MAC or PHY)
632  *
633  * Parse the parent device's firmware node for a SFP bus, and locate
634  * the sfp_bus structure, incrementing its reference count.  This must
635  * be put via sfp_bus_put() when done.
636  *
637  * Returns:
638  *	- on success, a pointer to the sfp_bus structure,
639  *	- %NULL if no SFP is specified,
640  *	- on failure, an error pointer value:
641  *
642  *	- corresponding to the errors detailed for
643  *	  fwnode_property_get_reference_args().
644  *	- %-ENOMEM if we failed to allocate the bus.
645  *	- an error from the upstream's connect_phy() method.
646  */
647 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
648 {
649 	struct fwnode_reference_args ref;
650 	struct sfp_bus *bus;
651 	int ret;
652 
653 	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
654 						 0, 0, &ref);
655 	if (ret == -ENOENT)
656 		return NULL;
657 	else if (ret < 0)
658 		return ERR_PTR(ret);
659 
660 	if (!fwnode_device_is_available(ref.fwnode)) {
661 		fwnode_handle_put(ref.fwnode);
662 		return NULL;
663 	}
664 
665 	bus = sfp_bus_get(ref.fwnode);
666 	fwnode_handle_put(ref.fwnode);
667 	if (!bus)
668 		return ERR_PTR(-ENOMEM);
669 
670 	return bus;
671 }
672 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
673 
674 /**
675  * sfp_bus_add_upstream() - parse and register the neighbouring device
676  * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
677  * @upstream: the upstream private data
678  * @ops: the upstream's &struct sfp_upstream_ops
679  *
680  * Add upstream driver for the SFP bus, and if the bus is complete, register
681  * the SFP bus using sfp_register_upstream().  This takes a reference on the
682  * bus, so it is safe to put the bus after this call.
683  *
684  * Returns:
685  *	- on success, a pointer to the sfp_bus structure,
686  *	- %NULL if no SFP is specified,
687  *	- on failure, an error pointer value:
688  *
689  *	- corresponding to the errors detailed for
690  *	  fwnode_property_get_reference_args().
691  *	- %-ENOMEM if we failed to allocate the bus.
692  *	- an error from the upstream's connect_phy() method.
693  */
694 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
695 			 const struct sfp_upstream_ops *ops)
696 {
697 	int ret;
698 
699 	/* If no bus, return success */
700 	if (!bus)
701 		return 0;
702 
703 	rtnl_lock();
704 	kref_get(&bus->kref);
705 	bus->upstream_ops = ops;
706 	bus->upstream = upstream;
707 
708 	if (bus->sfp) {
709 		ret = sfp_register_bus(bus);
710 		if (ret)
711 			sfp_upstream_clear(bus);
712 	} else {
713 		ret = 0;
714 	}
715 	rtnl_unlock();
716 
717 	if (ret)
718 		sfp_bus_put(bus);
719 
720 	return ret;
721 }
722 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
723 
724 /**
725  * sfp_bus_del_upstream() - Delete a sfp bus
726  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
727  *
728  * Delete a previously registered upstream connection for the SFP
729  * module. @bus should have been added by sfp_bus_add_upstream().
730  */
731 void sfp_bus_del_upstream(struct sfp_bus *bus)
732 {
733 	if (bus) {
734 		rtnl_lock();
735 		if (bus->sfp)
736 			sfp_unregister_bus(bus);
737 		sfp_upstream_clear(bus);
738 		rtnl_unlock();
739 
740 		sfp_bus_put(bus);
741 	}
742 }
743 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
744 
745 /* Socket driver entry points */
746 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
747 {
748 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
749 	int ret = 0;
750 
751 	if (ops && ops->connect_phy)
752 		ret = ops->connect_phy(bus->upstream, phydev);
753 
754 	if (ret == 0)
755 		bus->phydev = phydev;
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL_GPL(sfp_add_phy);
760 
761 void sfp_remove_phy(struct sfp_bus *bus)
762 {
763 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
764 
765 	if (ops && ops->disconnect_phy)
766 		ops->disconnect_phy(bus->upstream);
767 	bus->phydev = NULL;
768 }
769 EXPORT_SYMBOL_GPL(sfp_remove_phy);
770 
771 void sfp_link_up(struct sfp_bus *bus)
772 {
773 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
774 
775 	if (ops && ops->link_up)
776 		ops->link_up(bus->upstream);
777 }
778 EXPORT_SYMBOL_GPL(sfp_link_up);
779 
780 void sfp_link_down(struct sfp_bus *bus)
781 {
782 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
783 
784 	if (ops && ops->link_down)
785 		ops->link_down(bus->upstream);
786 }
787 EXPORT_SYMBOL_GPL(sfp_link_down);
788 
789 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
790 {
791 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
792 	int ret = 0;
793 
794 	bus->sfp_quirk = sfp_lookup_quirk(id);
795 
796 	if (ops && ops->module_insert)
797 		ret = ops->module_insert(bus->upstream, id);
798 
799 	return ret;
800 }
801 EXPORT_SYMBOL_GPL(sfp_module_insert);
802 
803 void sfp_module_remove(struct sfp_bus *bus)
804 {
805 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
806 
807 	if (ops && ops->module_remove)
808 		ops->module_remove(bus->upstream);
809 
810 	bus->sfp_quirk = NULL;
811 }
812 EXPORT_SYMBOL_GPL(sfp_module_remove);
813 
814 int sfp_module_start(struct sfp_bus *bus)
815 {
816 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
817 	int ret = 0;
818 
819 	if (ops && ops->module_start)
820 		ret = ops->module_start(bus->upstream);
821 
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(sfp_module_start);
825 
826 void sfp_module_stop(struct sfp_bus *bus)
827 {
828 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
829 
830 	if (ops && ops->module_stop)
831 		ops->module_stop(bus->upstream);
832 }
833 EXPORT_SYMBOL_GPL(sfp_module_stop);
834 
835 static void sfp_socket_clear(struct sfp_bus *bus)
836 {
837 	bus->sfp_dev = NULL;
838 	bus->sfp = NULL;
839 	bus->socket_ops = NULL;
840 }
841 
842 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
843 				    const struct sfp_socket_ops *ops)
844 {
845 	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
846 	int ret = 0;
847 
848 	if (bus) {
849 		rtnl_lock();
850 		bus->sfp_dev = dev;
851 		bus->sfp = sfp;
852 		bus->socket_ops = ops;
853 
854 		if (bus->upstream_ops) {
855 			ret = sfp_register_bus(bus);
856 			if (ret)
857 				sfp_socket_clear(bus);
858 		}
859 		rtnl_unlock();
860 	}
861 
862 	if (ret) {
863 		sfp_bus_put(bus);
864 		bus = NULL;
865 	}
866 
867 	return bus;
868 }
869 EXPORT_SYMBOL_GPL(sfp_register_socket);
870 
871 void sfp_unregister_socket(struct sfp_bus *bus)
872 {
873 	rtnl_lock();
874 	if (bus->upstream_ops)
875 		sfp_unregister_bus(bus);
876 	sfp_socket_clear(bus);
877 	rtnl_unlock();
878 
879 	sfp_bus_put(bus);
880 }
881 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
882