1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[2] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 96 }; 97 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 98 99 const int phy_gbit_features_array[2] = { 100 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 101 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 102 }; 103 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 104 105 const int phy_10gbit_features_array[1] = { 106 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 107 }; 108 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 109 110 static const int phy_10gbit_fec_features_array[1] = { 111 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 112 }; 113 114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 116 117 static const int phy_10gbit_full_features_array[] = { 118 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 119 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 124 static void features_init(void) 125 { 126 /* 10/100 half/full*/ 127 linkmode_set_bit_array(phy_basic_ports_array, 128 ARRAY_SIZE(phy_basic_ports_array), 129 phy_basic_features); 130 linkmode_set_bit_array(phy_10_100_features_array, 131 ARRAY_SIZE(phy_10_100_features_array), 132 phy_basic_features); 133 134 /* 100 full, TP */ 135 linkmode_set_bit_array(phy_basic_t1_features_array, 136 ARRAY_SIZE(phy_basic_t1_features_array), 137 phy_basic_t1_features); 138 139 /* 10/100 half/full + 1000 half/full */ 140 linkmode_set_bit_array(phy_basic_ports_array, 141 ARRAY_SIZE(phy_basic_ports_array), 142 phy_gbit_features); 143 linkmode_set_bit_array(phy_10_100_features_array, 144 ARRAY_SIZE(phy_10_100_features_array), 145 phy_gbit_features); 146 linkmode_set_bit_array(phy_gbit_features_array, 147 ARRAY_SIZE(phy_gbit_features_array), 148 phy_gbit_features); 149 150 /* 10/100 half/full + 1000 half/full + fibre*/ 151 linkmode_set_bit_array(phy_basic_ports_array, 152 ARRAY_SIZE(phy_basic_ports_array), 153 phy_gbit_fibre_features); 154 linkmode_set_bit_array(phy_10_100_features_array, 155 ARRAY_SIZE(phy_10_100_features_array), 156 phy_gbit_fibre_features); 157 linkmode_set_bit_array(phy_gbit_features_array, 158 ARRAY_SIZE(phy_gbit_features_array), 159 phy_gbit_fibre_features); 160 linkmode_set_bit_array(phy_fibre_port_array, 161 ARRAY_SIZE(phy_fibre_port_array), 162 phy_gbit_fibre_features); 163 164 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 165 linkmode_set_bit_array(phy_all_ports_features_array, 166 ARRAY_SIZE(phy_all_ports_features_array), 167 phy_gbit_all_ports_features); 168 linkmode_set_bit_array(phy_10_100_features_array, 169 ARRAY_SIZE(phy_10_100_features_array), 170 phy_gbit_all_ports_features); 171 linkmode_set_bit_array(phy_gbit_features_array, 172 ARRAY_SIZE(phy_gbit_features_array), 173 phy_gbit_all_ports_features); 174 175 /* 10/100 half/full + 1000 half/full + 10G full*/ 176 linkmode_set_bit_array(phy_all_ports_features_array, 177 ARRAY_SIZE(phy_all_ports_features_array), 178 phy_10gbit_features); 179 linkmode_set_bit_array(phy_10_100_features_array, 180 ARRAY_SIZE(phy_10_100_features_array), 181 phy_10gbit_features); 182 linkmode_set_bit_array(phy_gbit_features_array, 183 ARRAY_SIZE(phy_gbit_features_array), 184 phy_10gbit_features); 185 linkmode_set_bit_array(phy_10gbit_features_array, 186 ARRAY_SIZE(phy_10gbit_features_array), 187 phy_10gbit_features); 188 189 /* 10/100/1000/10G full */ 190 linkmode_set_bit_array(phy_all_ports_features_array, 191 ARRAY_SIZE(phy_all_ports_features_array), 192 phy_10gbit_full_features); 193 linkmode_set_bit_array(phy_10gbit_full_features_array, 194 ARRAY_SIZE(phy_10gbit_full_features_array), 195 phy_10gbit_full_features); 196 /* 10G FEC only */ 197 linkmode_set_bit_array(phy_10gbit_fec_features_array, 198 ARRAY_SIZE(phy_10gbit_fec_features_array), 199 phy_10gbit_fec_features); 200 } 201 202 void phy_device_free(struct phy_device *phydev) 203 { 204 put_device(&phydev->mdio.dev); 205 } 206 EXPORT_SYMBOL(phy_device_free); 207 208 static void phy_mdio_device_free(struct mdio_device *mdiodev) 209 { 210 struct phy_device *phydev; 211 212 phydev = container_of(mdiodev, struct phy_device, mdio); 213 phy_device_free(phydev); 214 } 215 216 static void phy_device_release(struct device *dev) 217 { 218 kfree(to_phy_device(dev)); 219 } 220 221 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 222 { 223 struct phy_device *phydev; 224 225 phydev = container_of(mdiodev, struct phy_device, mdio); 226 phy_device_remove(phydev); 227 } 228 229 static struct phy_driver genphy_driver; 230 231 static LIST_HEAD(phy_fixup_list); 232 static DEFINE_MUTEX(phy_fixup_lock); 233 234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 235 { 236 struct device_driver *drv = phydev->mdio.dev.driver; 237 struct phy_driver *phydrv = to_phy_driver(drv); 238 struct net_device *netdev = phydev->attached_dev; 239 240 if (!drv || !phydrv->suspend) 241 return false; 242 243 /* PHY not attached? May suspend if the PHY has not already been 244 * suspended as part of a prior call to phy_disconnect() -> 245 * phy_detach() -> phy_suspend() because the parent netdev might be the 246 * MDIO bus driver and clock gated at this point. 247 */ 248 if (!netdev) 249 goto out; 250 251 if (netdev->wol_enabled) 252 return false; 253 254 /* As long as not all affected network drivers support the 255 * wol_enabled flag, let's check for hints that WoL is enabled. 256 * Don't suspend PHY if the attached netdev parent may wake up. 257 * The parent may point to a PCI device, as in tg3 driver. 258 */ 259 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 260 return false; 261 262 /* Also don't suspend PHY if the netdev itself may wakeup. This 263 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 264 * e.g. SoC devices. 265 */ 266 if (device_may_wakeup(&netdev->dev)) 267 return false; 268 269 out: 270 return !phydev->suspended; 271 } 272 273 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 274 { 275 struct phy_device *phydev = to_phy_device(dev); 276 277 if (phydev->mac_managed_pm) 278 return 0; 279 280 /* We must stop the state machine manually, otherwise it stops out of 281 * control, possibly with the phydev->lock held. Upon resume, netdev 282 * may call phy routines that try to grab the same lock, and that may 283 * lead to a deadlock. 284 */ 285 if (phydev->attached_dev && phydev->adjust_link) 286 phy_stop_machine(phydev); 287 288 if (!mdio_bus_phy_may_suspend(phydev)) 289 return 0; 290 291 phydev->suspended_by_mdio_bus = 1; 292 293 return phy_suspend(phydev); 294 } 295 296 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 297 { 298 struct phy_device *phydev = to_phy_device(dev); 299 int ret; 300 301 if (phydev->mac_managed_pm) 302 return 0; 303 304 if (!phydev->suspended_by_mdio_bus) 305 goto no_resume; 306 307 phydev->suspended_by_mdio_bus = 0; 308 309 ret = phy_init_hw(phydev); 310 if (ret < 0) 311 return ret; 312 313 ret = phy_resume(phydev); 314 if (ret < 0) 315 return ret; 316 no_resume: 317 if (phydev->attached_dev && phydev->adjust_link) 318 phy_start_machine(phydev); 319 320 return 0; 321 } 322 323 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 324 mdio_bus_phy_resume); 325 326 /** 327 * phy_register_fixup - creates a new phy_fixup and adds it to the list 328 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 329 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 330 * It can also be PHY_ANY_UID 331 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 332 * comparison 333 * @run: The actual code to be run when a matching PHY is found 334 */ 335 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 336 int (*run)(struct phy_device *)) 337 { 338 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 339 340 if (!fixup) 341 return -ENOMEM; 342 343 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 344 fixup->phy_uid = phy_uid; 345 fixup->phy_uid_mask = phy_uid_mask; 346 fixup->run = run; 347 348 mutex_lock(&phy_fixup_lock); 349 list_add_tail(&fixup->list, &phy_fixup_list); 350 mutex_unlock(&phy_fixup_lock); 351 352 return 0; 353 } 354 EXPORT_SYMBOL(phy_register_fixup); 355 356 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 357 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 358 int (*run)(struct phy_device *)) 359 { 360 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 361 } 362 EXPORT_SYMBOL(phy_register_fixup_for_uid); 363 364 /* Registers a fixup to be run on the PHY with id string bus_id */ 365 int phy_register_fixup_for_id(const char *bus_id, 366 int (*run)(struct phy_device *)) 367 { 368 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 369 } 370 EXPORT_SYMBOL(phy_register_fixup_for_id); 371 372 /** 373 * phy_unregister_fixup - remove a phy_fixup from the list 374 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 375 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 376 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 377 */ 378 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 379 { 380 struct list_head *pos, *n; 381 struct phy_fixup *fixup; 382 int ret; 383 384 ret = -ENODEV; 385 386 mutex_lock(&phy_fixup_lock); 387 list_for_each_safe(pos, n, &phy_fixup_list) { 388 fixup = list_entry(pos, struct phy_fixup, list); 389 390 if ((!strcmp(fixup->bus_id, bus_id)) && 391 ((fixup->phy_uid & phy_uid_mask) == 392 (phy_uid & phy_uid_mask))) { 393 list_del(&fixup->list); 394 kfree(fixup); 395 ret = 0; 396 break; 397 } 398 } 399 mutex_unlock(&phy_fixup_lock); 400 401 return ret; 402 } 403 EXPORT_SYMBOL(phy_unregister_fixup); 404 405 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 406 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 407 { 408 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 409 } 410 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 411 412 /* Unregisters a fixup of the PHY with id string bus_id */ 413 int phy_unregister_fixup_for_id(const char *bus_id) 414 { 415 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 416 } 417 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 418 419 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 420 * Fixups can be set to match any in one or more fields. 421 */ 422 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 423 { 424 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 425 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 426 return 0; 427 428 if ((fixup->phy_uid & fixup->phy_uid_mask) != 429 (phydev->phy_id & fixup->phy_uid_mask)) 430 if (fixup->phy_uid != PHY_ANY_UID) 431 return 0; 432 433 return 1; 434 } 435 436 /* Runs any matching fixups for this phydev */ 437 static int phy_scan_fixups(struct phy_device *phydev) 438 { 439 struct phy_fixup *fixup; 440 441 mutex_lock(&phy_fixup_lock); 442 list_for_each_entry(fixup, &phy_fixup_list, list) { 443 if (phy_needs_fixup(phydev, fixup)) { 444 int err = fixup->run(phydev); 445 446 if (err < 0) { 447 mutex_unlock(&phy_fixup_lock); 448 return err; 449 } 450 phydev->has_fixups = true; 451 } 452 } 453 mutex_unlock(&phy_fixup_lock); 454 455 return 0; 456 } 457 458 static int phy_bus_match(struct device *dev, struct device_driver *drv) 459 { 460 struct phy_device *phydev = to_phy_device(dev); 461 struct phy_driver *phydrv = to_phy_driver(drv); 462 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 463 int i; 464 465 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 466 return 0; 467 468 if (phydrv->match_phy_device) 469 return phydrv->match_phy_device(phydev); 470 471 if (phydev->is_c45) { 472 for (i = 1; i < num_ids; i++) { 473 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 474 continue; 475 476 if ((phydrv->phy_id & phydrv->phy_id_mask) == 477 (phydev->c45_ids.device_ids[i] & 478 phydrv->phy_id_mask)) 479 return 1; 480 } 481 return 0; 482 } else { 483 return (phydrv->phy_id & phydrv->phy_id_mask) == 484 (phydev->phy_id & phydrv->phy_id_mask); 485 } 486 } 487 488 static ssize_t 489 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 490 { 491 struct phy_device *phydev = to_phy_device(dev); 492 493 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 494 } 495 static DEVICE_ATTR_RO(phy_id); 496 497 static ssize_t 498 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 499 { 500 struct phy_device *phydev = to_phy_device(dev); 501 const char *mode = NULL; 502 503 if (phy_is_internal(phydev)) 504 mode = "internal"; 505 else 506 mode = phy_modes(phydev->interface); 507 508 return sprintf(buf, "%s\n", mode); 509 } 510 static DEVICE_ATTR_RO(phy_interface); 511 512 static ssize_t 513 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 514 char *buf) 515 { 516 struct phy_device *phydev = to_phy_device(dev); 517 518 return sprintf(buf, "%d\n", phydev->has_fixups); 519 } 520 static DEVICE_ATTR_RO(phy_has_fixups); 521 522 static ssize_t phy_dev_flags_show(struct device *dev, 523 struct device_attribute *attr, 524 char *buf) 525 { 526 struct phy_device *phydev = to_phy_device(dev); 527 528 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 529 } 530 static DEVICE_ATTR_RO(phy_dev_flags); 531 532 static struct attribute *phy_dev_attrs[] = { 533 &dev_attr_phy_id.attr, 534 &dev_attr_phy_interface.attr, 535 &dev_attr_phy_has_fixups.attr, 536 &dev_attr_phy_dev_flags.attr, 537 NULL, 538 }; 539 ATTRIBUTE_GROUPS(phy_dev); 540 541 static const struct device_type mdio_bus_phy_type = { 542 .name = "PHY", 543 .groups = phy_dev_groups, 544 .release = phy_device_release, 545 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 546 }; 547 548 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 549 { 550 int ret; 551 552 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 553 MDIO_ID_ARGS(phy_id)); 554 /* We only check for failures in executing the usermode binary, 555 * not whether a PHY driver module exists for the PHY ID. 556 * Accept -ENOENT because this may occur in case no initramfs exists, 557 * then modprobe isn't available. 558 */ 559 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 560 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 561 ret, (unsigned long)phy_id); 562 return ret; 563 } 564 565 return 0; 566 } 567 568 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 569 bool is_c45, 570 struct phy_c45_device_ids *c45_ids) 571 { 572 struct phy_device *dev; 573 struct mdio_device *mdiodev; 574 int ret = 0; 575 576 /* We allocate the device, and initialize the default values */ 577 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 578 if (!dev) 579 return ERR_PTR(-ENOMEM); 580 581 mdiodev = &dev->mdio; 582 mdiodev->dev.parent = &bus->dev; 583 mdiodev->dev.bus = &mdio_bus_type; 584 mdiodev->dev.type = &mdio_bus_phy_type; 585 mdiodev->bus = bus; 586 mdiodev->bus_match = phy_bus_match; 587 mdiodev->addr = addr; 588 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 589 mdiodev->device_free = phy_mdio_device_free; 590 mdiodev->device_remove = phy_mdio_device_remove; 591 592 dev->speed = SPEED_UNKNOWN; 593 dev->duplex = DUPLEX_UNKNOWN; 594 dev->pause = 0; 595 dev->asym_pause = 0; 596 dev->link = 0; 597 dev->port = PORT_TP; 598 dev->interface = PHY_INTERFACE_MODE_GMII; 599 600 dev->autoneg = AUTONEG_ENABLE; 601 602 dev->is_c45 = is_c45; 603 dev->phy_id = phy_id; 604 if (c45_ids) 605 dev->c45_ids = *c45_ids; 606 dev->irq = bus->irq[addr]; 607 608 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 609 device_initialize(&mdiodev->dev); 610 611 dev->state = PHY_DOWN; 612 613 mutex_init(&dev->lock); 614 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 615 616 /* Request the appropriate module unconditionally; don't 617 * bother trying to do so only if it isn't already loaded, 618 * because that gets complicated. A hotplug event would have 619 * done an unconditional modprobe anyway. 620 * We don't do normal hotplug because it won't work for MDIO 621 * -- because it relies on the device staying around for long 622 * enough for the driver to get loaded. With MDIO, the NIC 623 * driver will get bored and give up as soon as it finds that 624 * there's no driver _already_ loaded. 625 */ 626 if (is_c45 && c45_ids) { 627 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 628 int i; 629 630 for (i = 1; i < num_ids; i++) { 631 if (c45_ids->device_ids[i] == 0xffffffff) 632 continue; 633 634 ret = phy_request_driver_module(dev, 635 c45_ids->device_ids[i]); 636 if (ret) 637 break; 638 } 639 } else { 640 ret = phy_request_driver_module(dev, phy_id); 641 } 642 643 if (ret) { 644 put_device(&mdiodev->dev); 645 dev = ERR_PTR(ret); 646 } 647 648 return dev; 649 } 650 EXPORT_SYMBOL(phy_device_create); 651 652 /* phy_c45_probe_present - checks to see if a MMD is present in the package 653 * @bus: the target MII bus 654 * @prtad: PHY package address on the MII bus 655 * @devad: PHY device (MMD) address 656 * 657 * Read the MDIO_STAT2 register, and check whether a device is responding 658 * at this address. 659 * 660 * Returns: negative error number on bus access error, zero if no device 661 * is responding, or positive if a device is present. 662 */ 663 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 664 { 665 int stat2; 666 667 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 668 if (stat2 < 0) 669 return stat2; 670 671 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 672 } 673 674 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 675 * @bus: the target MII bus 676 * @addr: PHY address on the MII bus 677 * @dev_addr: MMD address in the PHY. 678 * @devices_in_package: where to store the devices in package information. 679 * 680 * Description: reads devices in package registers of a MMD at @dev_addr 681 * from PHY at @addr on @bus. 682 * 683 * Returns: 0 on success, -EIO on failure. 684 */ 685 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 686 u32 *devices_in_package) 687 { 688 int phy_reg; 689 690 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 691 if (phy_reg < 0) 692 return -EIO; 693 *devices_in_package = phy_reg << 16; 694 695 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 696 if (phy_reg < 0) 697 return -EIO; 698 *devices_in_package |= phy_reg; 699 700 return 0; 701 } 702 703 /** 704 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 705 * @bus: the target MII bus 706 * @addr: PHY address on the MII bus 707 * @c45_ids: where to store the c45 ID information. 708 * 709 * Read the PHY "devices in package". If this appears to be valid, read 710 * the PHY identifiers for each device. Return the "devices in package" 711 * and identifiers in @c45_ids. 712 * 713 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 714 * the "devices in package" is invalid. 715 */ 716 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 717 struct phy_c45_device_ids *c45_ids) 718 { 719 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 720 u32 devs_in_pkg = 0; 721 int i, ret, phy_reg; 722 723 /* Find first non-zero Devices In package. Device zero is reserved 724 * for 802.3 c45 complied PHYs, so don't probe it at first. 725 */ 726 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 727 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 728 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 729 /* Check that there is a device present at this 730 * address before reading the devices-in-package 731 * register to avoid reading garbage from the PHY. 732 * Some PHYs (88x3310) vendor space is not IEEE802.3 733 * compliant. 734 */ 735 ret = phy_c45_probe_present(bus, addr, i); 736 if (ret < 0) 737 return -EIO; 738 739 if (!ret) 740 continue; 741 } 742 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 743 if (phy_reg < 0) 744 return -EIO; 745 } 746 747 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 748 /* If mostly Fs, there is no device there, then let's probe 749 * MMD 0, as some 10G PHYs have zero Devices In package, 750 * e.g. Cortina CS4315/CS4340 PHY. 751 */ 752 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 753 if (phy_reg < 0) 754 return -EIO; 755 756 /* no device there, let's get out of here */ 757 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 758 return -ENODEV; 759 } 760 761 /* Now probe Device Identifiers for each device present. */ 762 for (i = 1; i < num_ids; i++) { 763 if (!(devs_in_pkg & (1 << i))) 764 continue; 765 766 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 767 /* Probe the "Device Present" bits for the vendor MMDs 768 * to ignore these if they do not contain IEEE 802.3 769 * registers. 770 */ 771 ret = phy_c45_probe_present(bus, addr, i); 772 if (ret < 0) 773 return ret; 774 775 if (!ret) 776 continue; 777 } 778 779 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 780 if (phy_reg < 0) 781 return -EIO; 782 c45_ids->device_ids[i] = phy_reg << 16; 783 784 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 785 if (phy_reg < 0) 786 return -EIO; 787 c45_ids->device_ids[i] |= phy_reg; 788 } 789 790 c45_ids->devices_in_package = devs_in_pkg; 791 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 792 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 793 794 return 0; 795 } 796 797 /** 798 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 799 * @bus: the target MII bus 800 * @addr: PHY address on the MII bus 801 * @phy_id: where to store the ID retrieved. 802 * 803 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 804 * placing it in @phy_id. Return zero on successful read and the ID is 805 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 806 * or invalid ID. 807 */ 808 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 809 { 810 int phy_reg; 811 812 /* Grab the bits from PHYIR1, and put them in the upper half */ 813 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 814 if (phy_reg < 0) { 815 /* returning -ENODEV doesn't stop bus scanning */ 816 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 817 } 818 819 *phy_id = phy_reg << 16; 820 821 /* Grab the bits from PHYIR2, and put them in the lower half */ 822 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 823 if (phy_reg < 0) { 824 /* returning -ENODEV doesn't stop bus scanning */ 825 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 826 } 827 828 *phy_id |= phy_reg; 829 830 /* If the phy_id is mostly Fs, there is no device there */ 831 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 832 return -ENODEV; 833 834 return 0; 835 } 836 837 /* Extract the phy ID from the compatible string of the form 838 * ethernet-phy-idAAAA.BBBB. 839 */ 840 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 841 { 842 unsigned int upper, lower; 843 const char *cp; 844 int ret; 845 846 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 847 if (ret) 848 return ret; 849 850 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 851 return -EINVAL; 852 853 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 854 return 0; 855 } 856 EXPORT_SYMBOL(fwnode_get_phy_id); 857 858 /** 859 * get_phy_device - reads the specified PHY device and returns its @phy_device 860 * struct 861 * @bus: the target MII bus 862 * @addr: PHY address on the MII bus 863 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 864 * 865 * Probe for a PHY at @addr on @bus. 866 * 867 * When probing for a clause 22 PHY, then read the ID registers. If we find 868 * a valid ID, allocate and return a &struct phy_device. 869 * 870 * When probing for a clause 45 PHY, read the "devices in package" registers. 871 * If the "devices in package" appears valid, read the ID registers for each 872 * MMD, allocate and return a &struct phy_device. 873 * 874 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 875 * no PHY present, or %-EIO on bus access error. 876 */ 877 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 878 { 879 struct phy_c45_device_ids c45_ids; 880 u32 phy_id = 0; 881 int r; 882 883 c45_ids.devices_in_package = 0; 884 c45_ids.mmds_present = 0; 885 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 886 887 if (is_c45) 888 r = get_phy_c45_ids(bus, addr, &c45_ids); 889 else 890 r = get_phy_c22_id(bus, addr, &phy_id); 891 892 if (r) 893 return ERR_PTR(r); 894 895 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 896 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 897 * probe with C45 to see if we're able to get a valid PHY ID in the C45 898 * space, if successful, create the C45 PHY device. 899 */ 900 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 901 r = get_phy_c45_ids(bus, addr, &c45_ids); 902 if (!r) 903 return phy_device_create(bus, addr, phy_id, 904 true, &c45_ids); 905 } 906 907 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 908 } 909 EXPORT_SYMBOL(get_phy_device); 910 911 /** 912 * phy_device_register - Register the phy device on the MDIO bus 913 * @phydev: phy_device structure to be added to the MDIO bus 914 */ 915 int phy_device_register(struct phy_device *phydev) 916 { 917 int err; 918 919 err = mdiobus_register_device(&phydev->mdio); 920 if (err) 921 return err; 922 923 /* Deassert the reset signal */ 924 phy_device_reset(phydev, 0); 925 926 /* Run all of the fixups for this PHY */ 927 err = phy_scan_fixups(phydev); 928 if (err) { 929 phydev_err(phydev, "failed to initialize\n"); 930 goto out; 931 } 932 933 err = device_add(&phydev->mdio.dev); 934 if (err) { 935 phydev_err(phydev, "failed to add\n"); 936 goto out; 937 } 938 939 return 0; 940 941 out: 942 /* Assert the reset signal */ 943 phy_device_reset(phydev, 1); 944 945 mdiobus_unregister_device(&phydev->mdio); 946 return err; 947 } 948 EXPORT_SYMBOL(phy_device_register); 949 950 /** 951 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 952 * @phydev: phy_device structure to remove 953 * 954 * This doesn't free the phy_device itself, it merely reverses the effects 955 * of phy_device_register(). Use phy_device_free() to free the device 956 * after calling this function. 957 */ 958 void phy_device_remove(struct phy_device *phydev) 959 { 960 unregister_mii_timestamper(phydev->mii_ts); 961 962 device_del(&phydev->mdio.dev); 963 964 /* Assert the reset signal */ 965 phy_device_reset(phydev, 1); 966 967 mdiobus_unregister_device(&phydev->mdio); 968 } 969 EXPORT_SYMBOL(phy_device_remove); 970 971 /** 972 * phy_find_first - finds the first PHY device on the bus 973 * @bus: the target MII bus 974 */ 975 struct phy_device *phy_find_first(struct mii_bus *bus) 976 { 977 struct phy_device *phydev; 978 int addr; 979 980 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 981 phydev = mdiobus_get_phy(bus, addr); 982 if (phydev) 983 return phydev; 984 } 985 return NULL; 986 } 987 EXPORT_SYMBOL(phy_find_first); 988 989 static void phy_link_change(struct phy_device *phydev, bool up) 990 { 991 struct net_device *netdev = phydev->attached_dev; 992 993 if (up) 994 netif_carrier_on(netdev); 995 else 996 netif_carrier_off(netdev); 997 phydev->adjust_link(netdev); 998 if (phydev->mii_ts && phydev->mii_ts->link_state) 999 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1000 } 1001 1002 /** 1003 * phy_prepare_link - prepares the PHY layer to monitor link status 1004 * @phydev: target phy_device struct 1005 * @handler: callback function for link status change notifications 1006 * 1007 * Description: Tells the PHY infrastructure to handle the 1008 * gory details on monitoring link status (whether through 1009 * polling or an interrupt), and to call back to the 1010 * connected device driver when the link status changes. 1011 * If you want to monitor your own link state, don't call 1012 * this function. 1013 */ 1014 static void phy_prepare_link(struct phy_device *phydev, 1015 void (*handler)(struct net_device *)) 1016 { 1017 phydev->adjust_link = handler; 1018 } 1019 1020 /** 1021 * phy_connect_direct - connect an ethernet device to a specific phy_device 1022 * @dev: the network device to connect 1023 * @phydev: the pointer to the phy device 1024 * @handler: callback function for state change notifications 1025 * @interface: PHY device's interface 1026 */ 1027 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1028 void (*handler)(struct net_device *), 1029 phy_interface_t interface) 1030 { 1031 int rc; 1032 1033 if (!dev) 1034 return -EINVAL; 1035 1036 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1037 if (rc) 1038 return rc; 1039 1040 phy_prepare_link(phydev, handler); 1041 if (phy_interrupt_is_valid(phydev)) 1042 phy_request_interrupt(phydev); 1043 1044 return 0; 1045 } 1046 EXPORT_SYMBOL(phy_connect_direct); 1047 1048 /** 1049 * phy_connect - connect an ethernet device to a PHY device 1050 * @dev: the network device to connect 1051 * @bus_id: the id string of the PHY device to connect 1052 * @handler: callback function for state change notifications 1053 * @interface: PHY device's interface 1054 * 1055 * Description: Convenience function for connecting ethernet 1056 * devices to PHY devices. The default behavior is for 1057 * the PHY infrastructure to handle everything, and only notify 1058 * the connected driver when the link status changes. If you 1059 * don't want, or can't use the provided functionality, you may 1060 * choose to call only the subset of functions which provide 1061 * the desired functionality. 1062 */ 1063 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1064 void (*handler)(struct net_device *), 1065 phy_interface_t interface) 1066 { 1067 struct phy_device *phydev; 1068 struct device *d; 1069 int rc; 1070 1071 /* Search the list of PHY devices on the mdio bus for the 1072 * PHY with the requested name 1073 */ 1074 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1075 if (!d) { 1076 pr_err("PHY %s not found\n", bus_id); 1077 return ERR_PTR(-ENODEV); 1078 } 1079 phydev = to_phy_device(d); 1080 1081 rc = phy_connect_direct(dev, phydev, handler, interface); 1082 put_device(d); 1083 if (rc) 1084 return ERR_PTR(rc); 1085 1086 return phydev; 1087 } 1088 EXPORT_SYMBOL(phy_connect); 1089 1090 /** 1091 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1092 * device 1093 * @phydev: target phy_device struct 1094 */ 1095 void phy_disconnect(struct phy_device *phydev) 1096 { 1097 if (phy_is_started(phydev)) 1098 phy_stop(phydev); 1099 1100 if (phy_interrupt_is_valid(phydev)) 1101 phy_free_interrupt(phydev); 1102 1103 phydev->adjust_link = NULL; 1104 1105 phy_detach(phydev); 1106 } 1107 EXPORT_SYMBOL(phy_disconnect); 1108 1109 /** 1110 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1111 * @phydev: The PHY device to poll 1112 * 1113 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1114 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1115 * register must be polled until the BMCR_RESET bit clears. 1116 * 1117 * Furthermore, any attempts to write to PHY registers may have no effect 1118 * or even generate MDIO bus errors until this is complete. 1119 * 1120 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1121 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1122 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1123 * effort to support such broken PHYs, this function is separate from the 1124 * standard phy_init_hw() which will zero all the other bits in the BMCR 1125 * and reapply all driver-specific and board-specific fixups. 1126 */ 1127 static int phy_poll_reset(struct phy_device *phydev) 1128 { 1129 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1130 int ret, val; 1131 1132 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1133 50000, 600000, true); 1134 if (ret) 1135 return ret; 1136 /* Some chips (smsc911x) may still need up to another 1ms after the 1137 * BMCR_RESET bit is cleared before they are usable. 1138 */ 1139 msleep(1); 1140 return 0; 1141 } 1142 1143 int phy_init_hw(struct phy_device *phydev) 1144 { 1145 int ret = 0; 1146 1147 /* Deassert the reset signal */ 1148 phy_device_reset(phydev, 0); 1149 1150 if (!phydev->drv) 1151 return 0; 1152 1153 if (phydev->drv->soft_reset) { 1154 ret = phydev->drv->soft_reset(phydev); 1155 /* see comment in genphy_soft_reset for an explanation */ 1156 if (!ret) 1157 phydev->suspended = 0; 1158 } 1159 1160 if (ret < 0) 1161 return ret; 1162 1163 ret = phy_scan_fixups(phydev); 1164 if (ret < 0) 1165 return ret; 1166 1167 if (phydev->drv->config_init) { 1168 ret = phydev->drv->config_init(phydev); 1169 if (ret < 0) 1170 return ret; 1171 } 1172 1173 if (phydev->drv->config_intr) { 1174 ret = phydev->drv->config_intr(phydev); 1175 if (ret < 0) 1176 return ret; 1177 } 1178 1179 return 0; 1180 } 1181 EXPORT_SYMBOL(phy_init_hw); 1182 1183 void phy_attached_info(struct phy_device *phydev) 1184 { 1185 phy_attached_print(phydev, NULL); 1186 } 1187 EXPORT_SYMBOL(phy_attached_info); 1188 1189 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1190 char *phy_attached_info_irq(struct phy_device *phydev) 1191 { 1192 char *irq_str; 1193 char irq_num[8]; 1194 1195 switch(phydev->irq) { 1196 case PHY_POLL: 1197 irq_str = "POLL"; 1198 break; 1199 case PHY_MAC_INTERRUPT: 1200 irq_str = "MAC"; 1201 break; 1202 default: 1203 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1204 irq_str = irq_num; 1205 break; 1206 } 1207 1208 return kasprintf(GFP_KERNEL, "%s", irq_str); 1209 } 1210 EXPORT_SYMBOL(phy_attached_info_irq); 1211 1212 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1213 { 1214 const char *unbound = phydev->drv ? "" : "[unbound] "; 1215 char *irq_str = phy_attached_info_irq(phydev); 1216 1217 if (!fmt) { 1218 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1219 phydev_name(phydev), irq_str); 1220 } else { 1221 va_list ap; 1222 1223 phydev_info(phydev, ATTACHED_FMT, unbound, 1224 phydev_name(phydev), irq_str); 1225 1226 va_start(ap, fmt); 1227 vprintk(fmt, ap); 1228 va_end(ap); 1229 } 1230 kfree(irq_str); 1231 } 1232 EXPORT_SYMBOL(phy_attached_print); 1233 1234 static void phy_sysfs_create_links(struct phy_device *phydev) 1235 { 1236 struct net_device *dev = phydev->attached_dev; 1237 int err; 1238 1239 if (!dev) 1240 return; 1241 1242 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1243 "attached_dev"); 1244 if (err) 1245 return; 1246 1247 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1248 &phydev->mdio.dev.kobj, 1249 "phydev"); 1250 if (err) { 1251 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1252 kobject_name(&phydev->mdio.dev.kobj), 1253 err); 1254 /* non-fatal - some net drivers can use one netdevice 1255 * with more then one phy 1256 */ 1257 } 1258 1259 phydev->sysfs_links = true; 1260 } 1261 1262 static ssize_t 1263 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1264 char *buf) 1265 { 1266 struct phy_device *phydev = to_phy_device(dev); 1267 1268 return sprintf(buf, "%d\n", !phydev->attached_dev); 1269 } 1270 static DEVICE_ATTR_RO(phy_standalone); 1271 1272 /** 1273 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1274 * @upstream: pointer to the phy device 1275 * @bus: sfp bus representing cage being attached 1276 * 1277 * This is used to fill in the sfp_upstream_ops .attach member. 1278 */ 1279 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1280 { 1281 struct phy_device *phydev = upstream; 1282 1283 if (phydev->attached_dev) 1284 phydev->attached_dev->sfp_bus = bus; 1285 phydev->sfp_bus_attached = true; 1286 } 1287 EXPORT_SYMBOL(phy_sfp_attach); 1288 1289 /** 1290 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1291 * @upstream: pointer to the phy device 1292 * @bus: sfp bus representing cage being attached 1293 * 1294 * This is used to fill in the sfp_upstream_ops .detach member. 1295 */ 1296 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1297 { 1298 struct phy_device *phydev = upstream; 1299 1300 if (phydev->attached_dev) 1301 phydev->attached_dev->sfp_bus = NULL; 1302 phydev->sfp_bus_attached = false; 1303 } 1304 EXPORT_SYMBOL(phy_sfp_detach); 1305 1306 /** 1307 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1308 * @phydev: Pointer to phy_device 1309 * @ops: SFP's upstream operations 1310 */ 1311 int phy_sfp_probe(struct phy_device *phydev, 1312 const struct sfp_upstream_ops *ops) 1313 { 1314 struct sfp_bus *bus; 1315 int ret = 0; 1316 1317 if (phydev->mdio.dev.fwnode) { 1318 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1319 if (IS_ERR(bus)) 1320 return PTR_ERR(bus); 1321 1322 phydev->sfp_bus = bus; 1323 1324 ret = sfp_bus_add_upstream(bus, phydev, ops); 1325 sfp_bus_put(bus); 1326 } 1327 return ret; 1328 } 1329 EXPORT_SYMBOL(phy_sfp_probe); 1330 1331 /** 1332 * phy_attach_direct - attach a network device to a given PHY device pointer 1333 * @dev: network device to attach 1334 * @phydev: Pointer to phy_device to attach 1335 * @flags: PHY device's dev_flags 1336 * @interface: PHY device's interface 1337 * 1338 * Description: Called by drivers to attach to a particular PHY 1339 * device. The phy_device is found, and properly hooked up 1340 * to the phy_driver. If no driver is attached, then a 1341 * generic driver is used. The phy_device is given a ptr to 1342 * the attaching device, and given a callback for link status 1343 * change. The phy_device is returned to the attaching driver. 1344 * This function takes a reference on the phy device. 1345 */ 1346 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1347 u32 flags, phy_interface_t interface) 1348 { 1349 struct mii_bus *bus = phydev->mdio.bus; 1350 struct device *d = &phydev->mdio.dev; 1351 struct module *ndev_owner = NULL; 1352 bool using_genphy = false; 1353 int err; 1354 1355 /* For Ethernet device drivers that register their own MDIO bus, we 1356 * will have bus->owner match ndev_mod, so we do not want to increment 1357 * our own module->refcnt here, otherwise we would not be able to 1358 * unload later on. 1359 */ 1360 if (dev) 1361 ndev_owner = dev->dev.parent->driver->owner; 1362 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1363 phydev_err(phydev, "failed to get the bus module\n"); 1364 return -EIO; 1365 } 1366 1367 get_device(d); 1368 1369 /* Assume that if there is no driver, that it doesn't 1370 * exist, and we should use the genphy driver. 1371 */ 1372 if (!d->driver) { 1373 if (phydev->is_c45) 1374 d->driver = &genphy_c45_driver.mdiodrv.driver; 1375 else 1376 d->driver = &genphy_driver.mdiodrv.driver; 1377 1378 using_genphy = true; 1379 } 1380 1381 if (!try_module_get(d->driver->owner)) { 1382 phydev_err(phydev, "failed to get the device driver module\n"); 1383 err = -EIO; 1384 goto error_put_device; 1385 } 1386 1387 if (using_genphy) { 1388 err = d->driver->probe(d); 1389 if (err >= 0) 1390 err = device_bind_driver(d); 1391 1392 if (err) 1393 goto error_module_put; 1394 } 1395 1396 if (phydev->attached_dev) { 1397 dev_err(&dev->dev, "PHY already attached\n"); 1398 err = -EBUSY; 1399 goto error; 1400 } 1401 1402 phydev->phy_link_change = phy_link_change; 1403 if (dev) { 1404 phydev->attached_dev = dev; 1405 dev->phydev = phydev; 1406 1407 if (phydev->sfp_bus_attached) 1408 dev->sfp_bus = phydev->sfp_bus; 1409 else if (dev->sfp_bus) 1410 phydev->is_on_sfp_module = true; 1411 } 1412 1413 /* Some Ethernet drivers try to connect to a PHY device before 1414 * calling register_netdevice() -> netdev_register_kobject() and 1415 * does the dev->dev.kobj initialization. Here we only check for 1416 * success which indicates that the network device kobject is 1417 * ready. Once we do that we still need to keep track of whether 1418 * links were successfully set up or not for phy_detach() to 1419 * remove them accordingly. 1420 */ 1421 phydev->sysfs_links = false; 1422 1423 phy_sysfs_create_links(phydev); 1424 1425 if (!phydev->attached_dev) { 1426 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1427 &dev_attr_phy_standalone.attr); 1428 if (err) 1429 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1430 } 1431 1432 phydev->dev_flags |= flags; 1433 1434 phydev->interface = interface; 1435 1436 phydev->state = PHY_READY; 1437 1438 /* Port is set to PORT_TP by default and the actual PHY driver will set 1439 * it to different value depending on the PHY configuration. If we have 1440 * the generic PHY driver we can't figure it out, thus set the old 1441 * legacy PORT_MII value. 1442 */ 1443 if (using_genphy) 1444 phydev->port = PORT_MII; 1445 1446 /* Initial carrier state is off as the phy is about to be 1447 * (re)initialized. 1448 */ 1449 if (dev) 1450 netif_carrier_off(phydev->attached_dev); 1451 1452 /* Do initial configuration here, now that 1453 * we have certain key parameters 1454 * (dev_flags and interface) 1455 */ 1456 err = phy_init_hw(phydev); 1457 if (err) 1458 goto error; 1459 1460 err = phy_disable_interrupts(phydev); 1461 if (err) 1462 return err; 1463 1464 phy_resume(phydev); 1465 phy_led_triggers_register(phydev); 1466 1467 return err; 1468 1469 error: 1470 /* phy_detach() does all of the cleanup below */ 1471 phy_detach(phydev); 1472 return err; 1473 1474 error_module_put: 1475 module_put(d->driver->owner); 1476 error_put_device: 1477 put_device(d); 1478 if (ndev_owner != bus->owner) 1479 module_put(bus->owner); 1480 return err; 1481 } 1482 EXPORT_SYMBOL(phy_attach_direct); 1483 1484 /** 1485 * phy_attach - attach a network device to a particular PHY device 1486 * @dev: network device to attach 1487 * @bus_id: Bus ID of PHY device to attach 1488 * @interface: PHY device's interface 1489 * 1490 * Description: Same as phy_attach_direct() except that a PHY bus_id 1491 * string is passed instead of a pointer to a struct phy_device. 1492 */ 1493 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1494 phy_interface_t interface) 1495 { 1496 struct bus_type *bus = &mdio_bus_type; 1497 struct phy_device *phydev; 1498 struct device *d; 1499 int rc; 1500 1501 if (!dev) 1502 return ERR_PTR(-EINVAL); 1503 1504 /* Search the list of PHY devices on the mdio bus for the 1505 * PHY with the requested name 1506 */ 1507 d = bus_find_device_by_name(bus, NULL, bus_id); 1508 if (!d) { 1509 pr_err("PHY %s not found\n", bus_id); 1510 return ERR_PTR(-ENODEV); 1511 } 1512 phydev = to_phy_device(d); 1513 1514 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1515 put_device(d); 1516 if (rc) 1517 return ERR_PTR(rc); 1518 1519 return phydev; 1520 } 1521 EXPORT_SYMBOL(phy_attach); 1522 1523 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1524 struct device_driver *driver) 1525 { 1526 struct device *d = &phydev->mdio.dev; 1527 bool ret = false; 1528 1529 if (!phydev->drv) 1530 return ret; 1531 1532 get_device(d); 1533 ret = d->driver == driver; 1534 put_device(d); 1535 1536 return ret; 1537 } 1538 1539 bool phy_driver_is_genphy(struct phy_device *phydev) 1540 { 1541 return phy_driver_is_genphy_kind(phydev, 1542 &genphy_driver.mdiodrv.driver); 1543 } 1544 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1545 1546 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1547 { 1548 return phy_driver_is_genphy_kind(phydev, 1549 &genphy_c45_driver.mdiodrv.driver); 1550 } 1551 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1552 1553 /** 1554 * phy_package_join - join a common PHY group 1555 * @phydev: target phy_device struct 1556 * @addr: cookie and PHY address for global register access 1557 * @priv_size: if non-zero allocate this amount of bytes for private data 1558 * 1559 * This joins a PHY group and provides a shared storage for all phydevs in 1560 * this group. This is intended to be used for packages which contain 1561 * more than one PHY, for example a quad PHY transceiver. 1562 * 1563 * The addr parameter serves as a cookie which has to have the same value 1564 * for all members of one group and as a PHY address to access generic 1565 * registers of a PHY package. Usually, one of the PHY addresses of the 1566 * different PHYs in the package provides access to these global registers. 1567 * The address which is given here, will be used in the phy_package_read() 1568 * and phy_package_write() convenience functions. If your PHY doesn't have 1569 * global registers you can just pick any of the PHY addresses. 1570 * 1571 * This will set the shared pointer of the phydev to the shared storage. 1572 * If this is the first call for a this cookie the shared storage will be 1573 * allocated. If priv_size is non-zero, the given amount of bytes are 1574 * allocated for the priv member. 1575 * 1576 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1577 * with the same cookie but a different priv_size is an error. 1578 */ 1579 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1580 { 1581 struct mii_bus *bus = phydev->mdio.bus; 1582 struct phy_package_shared *shared; 1583 int ret; 1584 1585 if (addr < 0 || addr >= PHY_MAX_ADDR) 1586 return -EINVAL; 1587 1588 mutex_lock(&bus->shared_lock); 1589 shared = bus->shared[addr]; 1590 if (!shared) { 1591 ret = -ENOMEM; 1592 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1593 if (!shared) 1594 goto err_unlock; 1595 if (priv_size) { 1596 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1597 if (!shared->priv) 1598 goto err_free; 1599 shared->priv_size = priv_size; 1600 } 1601 shared->addr = addr; 1602 refcount_set(&shared->refcnt, 1); 1603 bus->shared[addr] = shared; 1604 } else { 1605 ret = -EINVAL; 1606 if (priv_size && priv_size != shared->priv_size) 1607 goto err_unlock; 1608 refcount_inc(&shared->refcnt); 1609 } 1610 mutex_unlock(&bus->shared_lock); 1611 1612 phydev->shared = shared; 1613 1614 return 0; 1615 1616 err_free: 1617 kfree(shared); 1618 err_unlock: 1619 mutex_unlock(&bus->shared_lock); 1620 return ret; 1621 } 1622 EXPORT_SYMBOL_GPL(phy_package_join); 1623 1624 /** 1625 * phy_package_leave - leave a common PHY group 1626 * @phydev: target phy_device struct 1627 * 1628 * This leaves a PHY group created by phy_package_join(). If this phydev 1629 * was the last user of the shared data between the group, this data is 1630 * freed. Resets the phydev->shared pointer to NULL. 1631 */ 1632 void phy_package_leave(struct phy_device *phydev) 1633 { 1634 struct phy_package_shared *shared = phydev->shared; 1635 struct mii_bus *bus = phydev->mdio.bus; 1636 1637 if (!shared) 1638 return; 1639 1640 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1641 bus->shared[shared->addr] = NULL; 1642 mutex_unlock(&bus->shared_lock); 1643 kfree(shared->priv); 1644 kfree(shared); 1645 } 1646 1647 phydev->shared = NULL; 1648 } 1649 EXPORT_SYMBOL_GPL(phy_package_leave); 1650 1651 static void devm_phy_package_leave(struct device *dev, void *res) 1652 { 1653 phy_package_leave(*(struct phy_device **)res); 1654 } 1655 1656 /** 1657 * devm_phy_package_join - resource managed phy_package_join() 1658 * @dev: device that is registering this PHY package 1659 * @phydev: target phy_device struct 1660 * @addr: cookie and PHY address for global register access 1661 * @priv_size: if non-zero allocate this amount of bytes for private data 1662 * 1663 * Managed phy_package_join(). Shared storage fetched by this function, 1664 * phy_package_leave() is automatically called on driver detach. See 1665 * phy_package_join() for more information. 1666 */ 1667 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1668 int addr, size_t priv_size) 1669 { 1670 struct phy_device **ptr; 1671 int ret; 1672 1673 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1674 GFP_KERNEL); 1675 if (!ptr) 1676 return -ENOMEM; 1677 1678 ret = phy_package_join(phydev, addr, priv_size); 1679 1680 if (!ret) { 1681 *ptr = phydev; 1682 devres_add(dev, ptr); 1683 } else { 1684 devres_free(ptr); 1685 } 1686 1687 return ret; 1688 } 1689 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1690 1691 /** 1692 * phy_detach - detach a PHY device from its network device 1693 * @phydev: target phy_device struct 1694 * 1695 * This detaches the phy device from its network device and the phy 1696 * driver, and drops the reference count taken in phy_attach_direct(). 1697 */ 1698 void phy_detach(struct phy_device *phydev) 1699 { 1700 struct net_device *dev = phydev->attached_dev; 1701 struct module *ndev_owner = NULL; 1702 struct mii_bus *bus; 1703 1704 if (phydev->sysfs_links) { 1705 if (dev) 1706 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1707 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1708 } 1709 1710 if (!phydev->attached_dev) 1711 sysfs_remove_file(&phydev->mdio.dev.kobj, 1712 &dev_attr_phy_standalone.attr); 1713 1714 phy_suspend(phydev); 1715 if (dev) { 1716 phydev->attached_dev->phydev = NULL; 1717 phydev->attached_dev = NULL; 1718 } 1719 phydev->phylink = NULL; 1720 1721 phy_led_triggers_unregister(phydev); 1722 1723 if (phydev->mdio.dev.driver) 1724 module_put(phydev->mdio.dev.driver->owner); 1725 1726 /* If the device had no specific driver before (i.e. - it 1727 * was using the generic driver), we unbind the device 1728 * from the generic driver so that there's a chance a 1729 * real driver could be loaded 1730 */ 1731 if (phy_driver_is_genphy(phydev) || 1732 phy_driver_is_genphy_10g(phydev)) 1733 device_release_driver(&phydev->mdio.dev); 1734 1735 /* 1736 * The phydev might go away on the put_device() below, so avoid 1737 * a use-after-free bug by reading the underlying bus first. 1738 */ 1739 bus = phydev->mdio.bus; 1740 1741 put_device(&phydev->mdio.dev); 1742 if (dev) 1743 ndev_owner = dev->dev.parent->driver->owner; 1744 if (ndev_owner != bus->owner) 1745 module_put(bus->owner); 1746 1747 /* Assert the reset signal */ 1748 phy_device_reset(phydev, 1); 1749 } 1750 EXPORT_SYMBOL(phy_detach); 1751 1752 int phy_suspend(struct phy_device *phydev) 1753 { 1754 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1755 struct net_device *netdev = phydev->attached_dev; 1756 struct phy_driver *phydrv = phydev->drv; 1757 int ret; 1758 1759 if (phydev->suspended) 1760 return 0; 1761 1762 /* If the device has WOL enabled, we cannot suspend the PHY */ 1763 phy_ethtool_get_wol(phydev, &wol); 1764 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1765 return -EBUSY; 1766 1767 if (!phydrv || !phydrv->suspend) 1768 return 0; 1769 1770 ret = phydrv->suspend(phydev); 1771 if (!ret) 1772 phydev->suspended = true; 1773 1774 return ret; 1775 } 1776 EXPORT_SYMBOL(phy_suspend); 1777 1778 int __phy_resume(struct phy_device *phydev) 1779 { 1780 struct phy_driver *phydrv = phydev->drv; 1781 int ret; 1782 1783 lockdep_assert_held(&phydev->lock); 1784 1785 if (!phydrv || !phydrv->resume) 1786 return 0; 1787 1788 ret = phydrv->resume(phydev); 1789 if (!ret) 1790 phydev->suspended = false; 1791 1792 return ret; 1793 } 1794 EXPORT_SYMBOL(__phy_resume); 1795 1796 int phy_resume(struct phy_device *phydev) 1797 { 1798 int ret; 1799 1800 mutex_lock(&phydev->lock); 1801 ret = __phy_resume(phydev); 1802 mutex_unlock(&phydev->lock); 1803 1804 return ret; 1805 } 1806 EXPORT_SYMBOL(phy_resume); 1807 1808 int phy_loopback(struct phy_device *phydev, bool enable) 1809 { 1810 struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver); 1811 int ret = 0; 1812 1813 if (!phydrv) 1814 return -ENODEV; 1815 1816 mutex_lock(&phydev->lock); 1817 1818 if (enable && phydev->loopback_enabled) { 1819 ret = -EBUSY; 1820 goto out; 1821 } 1822 1823 if (!enable && !phydev->loopback_enabled) { 1824 ret = -EINVAL; 1825 goto out; 1826 } 1827 1828 if (phydrv->set_loopback) 1829 ret = phydrv->set_loopback(phydev, enable); 1830 else 1831 ret = genphy_loopback(phydev, enable); 1832 1833 if (ret) 1834 goto out; 1835 1836 phydev->loopback_enabled = enable; 1837 1838 out: 1839 mutex_unlock(&phydev->lock); 1840 return ret; 1841 } 1842 EXPORT_SYMBOL(phy_loopback); 1843 1844 /** 1845 * phy_reset_after_clk_enable - perform a PHY reset if needed 1846 * @phydev: target phy_device struct 1847 * 1848 * Description: Some PHYs are known to need a reset after their refclk was 1849 * enabled. This function evaluates the flags and perform the reset if it's 1850 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1851 * was reset. 1852 */ 1853 int phy_reset_after_clk_enable(struct phy_device *phydev) 1854 { 1855 if (!phydev || !phydev->drv) 1856 return -ENODEV; 1857 1858 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1859 phy_device_reset(phydev, 1); 1860 phy_device_reset(phydev, 0); 1861 return 1; 1862 } 1863 1864 return 0; 1865 } 1866 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1867 1868 /* Generic PHY support and helper functions */ 1869 1870 /** 1871 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1872 * @phydev: target phy_device struct 1873 * 1874 * Description: Writes MII_ADVERTISE with the appropriate values, 1875 * after sanitizing the values to make sure we only advertise 1876 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1877 * hasn't changed, and > 0 if it has changed. 1878 */ 1879 static int genphy_config_advert(struct phy_device *phydev) 1880 { 1881 int err, bmsr, changed = 0; 1882 u32 adv; 1883 1884 /* Only allow advertising what this PHY supports */ 1885 linkmode_and(phydev->advertising, phydev->advertising, 1886 phydev->supported); 1887 1888 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1889 1890 /* Setup standard advertisement */ 1891 err = phy_modify_changed(phydev, MII_ADVERTISE, 1892 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1893 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1894 adv); 1895 if (err < 0) 1896 return err; 1897 if (err > 0) 1898 changed = 1; 1899 1900 bmsr = phy_read(phydev, MII_BMSR); 1901 if (bmsr < 0) 1902 return bmsr; 1903 1904 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1905 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1906 * logical 1. 1907 */ 1908 if (!(bmsr & BMSR_ESTATEN)) 1909 return changed; 1910 1911 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1912 1913 err = phy_modify_changed(phydev, MII_CTRL1000, 1914 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1915 adv); 1916 if (err < 0) 1917 return err; 1918 if (err > 0) 1919 changed = 1; 1920 1921 return changed; 1922 } 1923 1924 /** 1925 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1926 * @phydev: target phy_device struct 1927 * 1928 * Description: Writes MII_ADVERTISE with the appropriate values, 1929 * after sanitizing the values to make sure we only advertise 1930 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1931 * hasn't changed, and > 0 if it has changed. This function is intended 1932 * for Clause 37 1000Base-X mode. 1933 */ 1934 static int genphy_c37_config_advert(struct phy_device *phydev) 1935 { 1936 u16 adv = 0; 1937 1938 /* Only allow advertising what this PHY supports */ 1939 linkmode_and(phydev->advertising, phydev->advertising, 1940 phydev->supported); 1941 1942 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1943 phydev->advertising)) 1944 adv |= ADVERTISE_1000XFULL; 1945 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1946 phydev->advertising)) 1947 adv |= ADVERTISE_1000XPAUSE; 1948 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1949 phydev->advertising)) 1950 adv |= ADVERTISE_1000XPSE_ASYM; 1951 1952 return phy_modify_changed(phydev, MII_ADVERTISE, 1953 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1954 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1955 adv); 1956 } 1957 1958 /** 1959 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1960 * @phydev: target phy_device struct 1961 * 1962 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1963 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1964 * changed, and 1 if it has changed. 1965 */ 1966 int genphy_config_eee_advert(struct phy_device *phydev) 1967 { 1968 int err; 1969 1970 /* Nothing to disable */ 1971 if (!phydev->eee_broken_modes) 1972 return 0; 1973 1974 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1975 phydev->eee_broken_modes, 0); 1976 /* If the call failed, we assume that EEE is not supported */ 1977 return err < 0 ? 0 : err; 1978 } 1979 EXPORT_SYMBOL(genphy_config_eee_advert); 1980 1981 /** 1982 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1983 * @phydev: target phy_device struct 1984 * 1985 * Description: Configures MII_BMCR to force speed/duplex 1986 * to the values in phydev. Assumes that the values are valid. 1987 * Please see phy_sanitize_settings(). 1988 */ 1989 int genphy_setup_forced(struct phy_device *phydev) 1990 { 1991 u16 ctl = 0; 1992 1993 phydev->pause = 0; 1994 phydev->asym_pause = 0; 1995 1996 if (SPEED_1000 == phydev->speed) 1997 ctl |= BMCR_SPEED1000; 1998 else if (SPEED_100 == phydev->speed) 1999 ctl |= BMCR_SPEED100; 2000 2001 if (DUPLEX_FULL == phydev->duplex) 2002 ctl |= BMCR_FULLDPLX; 2003 2004 return phy_modify(phydev, MII_BMCR, 2005 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2006 } 2007 EXPORT_SYMBOL(genphy_setup_forced); 2008 2009 static int genphy_setup_master_slave(struct phy_device *phydev) 2010 { 2011 u16 ctl = 0; 2012 2013 if (!phydev->is_gigabit_capable) 2014 return 0; 2015 2016 switch (phydev->master_slave_set) { 2017 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2018 ctl |= CTL1000_PREFER_MASTER; 2019 break; 2020 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2021 break; 2022 case MASTER_SLAVE_CFG_MASTER_FORCE: 2023 ctl |= CTL1000_AS_MASTER; 2024 fallthrough; 2025 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2026 ctl |= CTL1000_ENABLE_MASTER; 2027 break; 2028 case MASTER_SLAVE_CFG_UNKNOWN: 2029 case MASTER_SLAVE_CFG_UNSUPPORTED: 2030 return 0; 2031 default: 2032 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2033 return -EOPNOTSUPP; 2034 } 2035 2036 return phy_modify_changed(phydev, MII_CTRL1000, 2037 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2038 CTL1000_PREFER_MASTER), ctl); 2039 } 2040 2041 static int genphy_read_master_slave(struct phy_device *phydev) 2042 { 2043 int cfg, state; 2044 int val; 2045 2046 if (!phydev->is_gigabit_capable) { 2047 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2048 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2049 return 0; 2050 } 2051 2052 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2053 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2054 2055 val = phy_read(phydev, MII_CTRL1000); 2056 if (val < 0) 2057 return val; 2058 2059 if (val & CTL1000_ENABLE_MASTER) { 2060 if (val & CTL1000_AS_MASTER) 2061 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2062 else 2063 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2064 } else { 2065 if (val & CTL1000_PREFER_MASTER) 2066 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2067 else 2068 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2069 } 2070 2071 val = phy_read(phydev, MII_STAT1000); 2072 if (val < 0) 2073 return val; 2074 2075 if (val & LPA_1000MSFAIL) { 2076 state = MASTER_SLAVE_STATE_ERR; 2077 } else if (phydev->link) { 2078 /* this bits are valid only for active link */ 2079 if (val & LPA_1000MSRES) 2080 state = MASTER_SLAVE_STATE_MASTER; 2081 else 2082 state = MASTER_SLAVE_STATE_SLAVE; 2083 } else { 2084 state = MASTER_SLAVE_STATE_UNKNOWN; 2085 } 2086 2087 phydev->master_slave_get = cfg; 2088 phydev->master_slave_state = state; 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * genphy_restart_aneg - Enable and Restart Autonegotiation 2095 * @phydev: target phy_device struct 2096 */ 2097 int genphy_restart_aneg(struct phy_device *phydev) 2098 { 2099 /* Don't isolate the PHY if we're negotiating */ 2100 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2101 BMCR_ANENABLE | BMCR_ANRESTART); 2102 } 2103 EXPORT_SYMBOL(genphy_restart_aneg); 2104 2105 /** 2106 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2107 * @phydev: target phy_device struct 2108 * @restart: whether aneg restart is requested 2109 * 2110 * Check, and restart auto-negotiation if needed. 2111 */ 2112 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2113 { 2114 int ret; 2115 2116 if (!restart) { 2117 /* Advertisement hasn't changed, but maybe aneg was never on to 2118 * begin with? Or maybe phy was isolated? 2119 */ 2120 ret = phy_read(phydev, MII_BMCR); 2121 if (ret < 0) 2122 return ret; 2123 2124 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2125 restart = true; 2126 } 2127 2128 if (restart) 2129 return genphy_restart_aneg(phydev); 2130 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2134 2135 /** 2136 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2137 * @phydev: target phy_device struct 2138 * @changed: whether autoneg is requested 2139 * 2140 * Description: If auto-negotiation is enabled, we configure the 2141 * advertising, and then restart auto-negotiation. If it is not 2142 * enabled, then we write the BMCR. 2143 */ 2144 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2145 { 2146 int err; 2147 2148 if (genphy_config_eee_advert(phydev)) 2149 changed = true; 2150 2151 err = genphy_setup_master_slave(phydev); 2152 if (err < 0) 2153 return err; 2154 else if (err) 2155 changed = true; 2156 2157 if (AUTONEG_ENABLE != phydev->autoneg) 2158 return genphy_setup_forced(phydev); 2159 2160 err = genphy_config_advert(phydev); 2161 if (err < 0) /* error */ 2162 return err; 2163 else if (err) 2164 changed = true; 2165 2166 return genphy_check_and_restart_aneg(phydev, changed); 2167 } 2168 EXPORT_SYMBOL(__genphy_config_aneg); 2169 2170 /** 2171 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2172 * @phydev: target phy_device struct 2173 * 2174 * Description: If auto-negotiation is enabled, we configure the 2175 * advertising, and then restart auto-negotiation. If it is not 2176 * enabled, then we write the BMCR. This function is intended 2177 * for use with Clause 37 1000Base-X mode. 2178 */ 2179 int genphy_c37_config_aneg(struct phy_device *phydev) 2180 { 2181 int err, changed; 2182 2183 if (phydev->autoneg != AUTONEG_ENABLE) 2184 return genphy_setup_forced(phydev); 2185 2186 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2187 BMCR_SPEED1000); 2188 if (err) 2189 return err; 2190 2191 changed = genphy_c37_config_advert(phydev); 2192 if (changed < 0) /* error */ 2193 return changed; 2194 2195 if (!changed) { 2196 /* Advertisement hasn't changed, but maybe aneg was never on to 2197 * begin with? Or maybe phy was isolated? 2198 */ 2199 int ctl = phy_read(phydev, MII_BMCR); 2200 2201 if (ctl < 0) 2202 return ctl; 2203 2204 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2205 changed = 1; /* do restart aneg */ 2206 } 2207 2208 /* Only restart aneg if we are advertising something different 2209 * than we were before. 2210 */ 2211 if (changed > 0) 2212 return genphy_restart_aneg(phydev); 2213 2214 return 0; 2215 } 2216 EXPORT_SYMBOL(genphy_c37_config_aneg); 2217 2218 /** 2219 * genphy_aneg_done - return auto-negotiation status 2220 * @phydev: target phy_device struct 2221 * 2222 * Description: Reads the status register and returns 0 either if 2223 * auto-negotiation is incomplete, or if there was an error. 2224 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2225 */ 2226 int genphy_aneg_done(struct phy_device *phydev) 2227 { 2228 int retval = phy_read(phydev, MII_BMSR); 2229 2230 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2231 } 2232 EXPORT_SYMBOL(genphy_aneg_done); 2233 2234 /** 2235 * genphy_update_link - update link status in @phydev 2236 * @phydev: target phy_device struct 2237 * 2238 * Description: Update the value in phydev->link to reflect the 2239 * current link value. In order to do this, we need to read 2240 * the status register twice, keeping the second value. 2241 */ 2242 int genphy_update_link(struct phy_device *phydev) 2243 { 2244 int status = 0, bmcr; 2245 2246 bmcr = phy_read(phydev, MII_BMCR); 2247 if (bmcr < 0) 2248 return bmcr; 2249 2250 /* Autoneg is being started, therefore disregard BMSR value and 2251 * report link as down. 2252 */ 2253 if (bmcr & BMCR_ANRESTART) 2254 goto done; 2255 2256 /* The link state is latched low so that momentary link 2257 * drops can be detected. Do not double-read the status 2258 * in polling mode to detect such short link drops except 2259 * the link was already down. 2260 */ 2261 if (!phy_polling_mode(phydev) || !phydev->link) { 2262 status = phy_read(phydev, MII_BMSR); 2263 if (status < 0) 2264 return status; 2265 else if (status & BMSR_LSTATUS) 2266 goto done; 2267 } 2268 2269 /* Read link and autonegotiation status */ 2270 status = phy_read(phydev, MII_BMSR); 2271 if (status < 0) 2272 return status; 2273 done: 2274 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2275 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2276 2277 /* Consider the case that autoneg was started and "aneg complete" 2278 * bit has been reset, but "link up" bit not yet. 2279 */ 2280 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2281 phydev->link = 0; 2282 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(genphy_update_link); 2286 2287 int genphy_read_lpa(struct phy_device *phydev) 2288 { 2289 int lpa, lpagb; 2290 2291 if (phydev->autoneg == AUTONEG_ENABLE) { 2292 if (!phydev->autoneg_complete) { 2293 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2294 0); 2295 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2296 return 0; 2297 } 2298 2299 if (phydev->is_gigabit_capable) { 2300 lpagb = phy_read(phydev, MII_STAT1000); 2301 if (lpagb < 0) 2302 return lpagb; 2303 2304 if (lpagb & LPA_1000MSFAIL) { 2305 int adv = phy_read(phydev, MII_CTRL1000); 2306 2307 if (adv < 0) 2308 return adv; 2309 2310 if (adv & CTL1000_ENABLE_MASTER) 2311 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2312 else 2313 phydev_err(phydev, "Master/Slave resolution failed\n"); 2314 return -ENOLINK; 2315 } 2316 2317 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2318 lpagb); 2319 } 2320 2321 lpa = phy_read(phydev, MII_LPA); 2322 if (lpa < 0) 2323 return lpa; 2324 2325 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2326 } else { 2327 linkmode_zero(phydev->lp_advertising); 2328 } 2329 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(genphy_read_lpa); 2333 2334 /** 2335 * genphy_read_status_fixed - read the link parameters for !aneg mode 2336 * @phydev: target phy_device struct 2337 * 2338 * Read the current duplex and speed state for a PHY operating with 2339 * autonegotiation disabled. 2340 */ 2341 int genphy_read_status_fixed(struct phy_device *phydev) 2342 { 2343 int bmcr = phy_read(phydev, MII_BMCR); 2344 2345 if (bmcr < 0) 2346 return bmcr; 2347 2348 if (bmcr & BMCR_FULLDPLX) 2349 phydev->duplex = DUPLEX_FULL; 2350 else 2351 phydev->duplex = DUPLEX_HALF; 2352 2353 if (bmcr & BMCR_SPEED1000) 2354 phydev->speed = SPEED_1000; 2355 else if (bmcr & BMCR_SPEED100) 2356 phydev->speed = SPEED_100; 2357 else 2358 phydev->speed = SPEED_10; 2359 2360 return 0; 2361 } 2362 EXPORT_SYMBOL(genphy_read_status_fixed); 2363 2364 /** 2365 * genphy_read_status - check the link status and update current link state 2366 * @phydev: target phy_device struct 2367 * 2368 * Description: Check the link, then figure out the current state 2369 * by comparing what we advertise with what the link partner 2370 * advertises. Start by checking the gigabit possibilities, 2371 * then move on to 10/100. 2372 */ 2373 int genphy_read_status(struct phy_device *phydev) 2374 { 2375 int err, old_link = phydev->link; 2376 2377 /* Update the link, but return if there was an error */ 2378 err = genphy_update_link(phydev); 2379 if (err) 2380 return err; 2381 2382 /* why bother the PHY if nothing can have changed */ 2383 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2384 return 0; 2385 2386 phydev->speed = SPEED_UNKNOWN; 2387 phydev->duplex = DUPLEX_UNKNOWN; 2388 phydev->pause = 0; 2389 phydev->asym_pause = 0; 2390 2391 err = genphy_read_master_slave(phydev); 2392 if (err < 0) 2393 return err; 2394 2395 err = genphy_read_lpa(phydev); 2396 if (err < 0) 2397 return err; 2398 2399 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2400 phy_resolve_aneg_linkmode(phydev); 2401 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2402 err = genphy_read_status_fixed(phydev); 2403 if (err < 0) 2404 return err; 2405 } 2406 2407 return 0; 2408 } 2409 EXPORT_SYMBOL(genphy_read_status); 2410 2411 /** 2412 * genphy_c37_read_status - check the link status and update current link state 2413 * @phydev: target phy_device struct 2414 * 2415 * Description: Check the link, then figure out the current state 2416 * by comparing what we advertise with what the link partner 2417 * advertises. This function is for Clause 37 1000Base-X mode. 2418 */ 2419 int genphy_c37_read_status(struct phy_device *phydev) 2420 { 2421 int lpa, err, old_link = phydev->link; 2422 2423 /* Update the link, but return if there was an error */ 2424 err = genphy_update_link(phydev); 2425 if (err) 2426 return err; 2427 2428 /* why bother the PHY if nothing can have changed */ 2429 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2430 return 0; 2431 2432 phydev->duplex = DUPLEX_UNKNOWN; 2433 phydev->pause = 0; 2434 phydev->asym_pause = 0; 2435 2436 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2437 lpa = phy_read(phydev, MII_LPA); 2438 if (lpa < 0) 2439 return lpa; 2440 2441 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2442 phydev->lp_advertising, lpa & LPA_LPACK); 2443 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2444 phydev->lp_advertising, lpa & LPA_1000XFULL); 2445 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2446 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2447 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2448 phydev->lp_advertising, 2449 lpa & LPA_1000XPAUSE_ASYM); 2450 2451 phy_resolve_aneg_linkmode(phydev); 2452 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2453 int bmcr = phy_read(phydev, MII_BMCR); 2454 2455 if (bmcr < 0) 2456 return bmcr; 2457 2458 if (bmcr & BMCR_FULLDPLX) 2459 phydev->duplex = DUPLEX_FULL; 2460 else 2461 phydev->duplex = DUPLEX_HALF; 2462 } 2463 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(genphy_c37_read_status); 2467 2468 /** 2469 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2470 * @phydev: target phy_device struct 2471 * 2472 * Description: Perform a software PHY reset using the standard 2473 * BMCR_RESET bit and poll for the reset bit to be cleared. 2474 * 2475 * Returns: 0 on success, < 0 on failure 2476 */ 2477 int genphy_soft_reset(struct phy_device *phydev) 2478 { 2479 u16 res = BMCR_RESET; 2480 int ret; 2481 2482 if (phydev->autoneg == AUTONEG_ENABLE) 2483 res |= BMCR_ANRESTART; 2484 2485 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2486 if (ret < 0) 2487 return ret; 2488 2489 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2490 * to their default value. Therefore the POWER DOWN bit is supposed to 2491 * be cleared after soft reset. 2492 */ 2493 phydev->suspended = 0; 2494 2495 ret = phy_poll_reset(phydev); 2496 if (ret) 2497 return ret; 2498 2499 /* BMCR may be reset to defaults */ 2500 if (phydev->autoneg == AUTONEG_DISABLE) 2501 ret = genphy_setup_forced(phydev); 2502 2503 return ret; 2504 } 2505 EXPORT_SYMBOL(genphy_soft_reset); 2506 2507 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2508 { 2509 /* It seems there are cases where the interrupts are handled by another 2510 * entity (ie an IRQ controller embedded inside the PHY) and do not 2511 * need any other interraction from phylib. In this case, just trigger 2512 * the state machine directly. 2513 */ 2514 phy_trigger_machine(phydev); 2515 2516 return 0; 2517 } 2518 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2519 2520 /** 2521 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2522 * @phydev: target phy_device struct 2523 * 2524 * Description: Reads the PHY's abilities and populates 2525 * phydev->supported accordingly. 2526 * 2527 * Returns: 0 on success, < 0 on failure 2528 */ 2529 int genphy_read_abilities(struct phy_device *phydev) 2530 { 2531 int val; 2532 2533 linkmode_set_bit_array(phy_basic_ports_array, 2534 ARRAY_SIZE(phy_basic_ports_array), 2535 phydev->supported); 2536 2537 val = phy_read(phydev, MII_BMSR); 2538 if (val < 0) 2539 return val; 2540 2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2542 val & BMSR_ANEGCAPABLE); 2543 2544 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2545 val & BMSR_100FULL); 2546 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2547 val & BMSR_100HALF); 2548 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2549 val & BMSR_10FULL); 2550 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2551 val & BMSR_10HALF); 2552 2553 if (val & BMSR_ESTATEN) { 2554 val = phy_read(phydev, MII_ESTATUS); 2555 if (val < 0) 2556 return val; 2557 2558 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2559 phydev->supported, val & ESTATUS_1000_TFULL); 2560 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2561 phydev->supported, val & ESTATUS_1000_THALF); 2562 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2563 phydev->supported, val & ESTATUS_1000_XFULL); 2564 } 2565 2566 return 0; 2567 } 2568 EXPORT_SYMBOL(genphy_read_abilities); 2569 2570 /* This is used for the phy device which doesn't support the MMD extended 2571 * register access, but it does have side effect when we are trying to access 2572 * the MMD register via indirect method. 2573 */ 2574 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2575 { 2576 return -EOPNOTSUPP; 2577 } 2578 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2579 2580 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2581 u16 regnum, u16 val) 2582 { 2583 return -EOPNOTSUPP; 2584 } 2585 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2586 2587 int genphy_suspend(struct phy_device *phydev) 2588 { 2589 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2590 } 2591 EXPORT_SYMBOL(genphy_suspend); 2592 2593 int genphy_resume(struct phy_device *phydev) 2594 { 2595 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2596 } 2597 EXPORT_SYMBOL(genphy_resume); 2598 2599 int genphy_loopback(struct phy_device *phydev, bool enable) 2600 { 2601 if (enable) { 2602 u16 val, ctl = BMCR_LOOPBACK; 2603 int ret; 2604 2605 if (phydev->speed == SPEED_1000) 2606 ctl |= BMCR_SPEED1000; 2607 else if (phydev->speed == SPEED_100) 2608 ctl |= BMCR_SPEED100; 2609 2610 if (phydev->duplex == DUPLEX_FULL) 2611 ctl |= BMCR_FULLDPLX; 2612 2613 phy_modify(phydev, MII_BMCR, ~0, ctl); 2614 2615 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2616 val & BMSR_LSTATUS, 2617 5000, 500000, true); 2618 if (ret) 2619 return ret; 2620 } else { 2621 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2622 2623 phy_config_aneg(phydev); 2624 } 2625 2626 return 0; 2627 } 2628 EXPORT_SYMBOL(genphy_loopback); 2629 2630 /** 2631 * phy_remove_link_mode - Remove a supported link mode 2632 * @phydev: phy_device structure to remove link mode from 2633 * @link_mode: Link mode to be removed 2634 * 2635 * Description: Some MACs don't support all link modes which the PHY 2636 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2637 * to remove a link mode. 2638 */ 2639 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2640 { 2641 linkmode_clear_bit(link_mode, phydev->supported); 2642 phy_advertise_supported(phydev); 2643 } 2644 EXPORT_SYMBOL(phy_remove_link_mode); 2645 2646 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2647 { 2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2649 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2651 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2652 } 2653 2654 /** 2655 * phy_advertise_supported - Advertise all supported modes 2656 * @phydev: target phy_device struct 2657 * 2658 * Description: Called to advertise all supported modes, doesn't touch 2659 * pause mode advertising. 2660 */ 2661 void phy_advertise_supported(struct phy_device *phydev) 2662 { 2663 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2664 2665 linkmode_copy(new, phydev->supported); 2666 phy_copy_pause_bits(new, phydev->advertising); 2667 linkmode_copy(phydev->advertising, new); 2668 } 2669 EXPORT_SYMBOL(phy_advertise_supported); 2670 2671 /** 2672 * phy_support_sym_pause - Enable support of symmetrical pause 2673 * @phydev: target phy_device struct 2674 * 2675 * Description: Called by the MAC to indicate is supports symmetrical 2676 * Pause, but not asym pause. 2677 */ 2678 void phy_support_sym_pause(struct phy_device *phydev) 2679 { 2680 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2681 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2682 } 2683 EXPORT_SYMBOL(phy_support_sym_pause); 2684 2685 /** 2686 * phy_support_asym_pause - Enable support of asym pause 2687 * @phydev: target phy_device struct 2688 * 2689 * Description: Called by the MAC to indicate is supports Asym Pause. 2690 */ 2691 void phy_support_asym_pause(struct phy_device *phydev) 2692 { 2693 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2694 } 2695 EXPORT_SYMBOL(phy_support_asym_pause); 2696 2697 /** 2698 * phy_set_sym_pause - Configure symmetric Pause 2699 * @phydev: target phy_device struct 2700 * @rx: Receiver Pause is supported 2701 * @tx: Transmit Pause is supported 2702 * @autoneg: Auto neg should be used 2703 * 2704 * Description: Configure advertised Pause support depending on if 2705 * receiver pause and pause auto neg is supported. Generally called 2706 * from the set_pauseparam .ndo. 2707 */ 2708 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2709 bool autoneg) 2710 { 2711 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2712 2713 if (rx && tx && autoneg) 2714 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2715 phydev->supported); 2716 2717 linkmode_copy(phydev->advertising, phydev->supported); 2718 } 2719 EXPORT_SYMBOL(phy_set_sym_pause); 2720 2721 /** 2722 * phy_set_asym_pause - Configure Pause and Asym Pause 2723 * @phydev: target phy_device struct 2724 * @rx: Receiver Pause is supported 2725 * @tx: Transmit Pause is supported 2726 * 2727 * Description: Configure advertised Pause support depending on if 2728 * transmit and receiver pause is supported. If there has been a 2729 * change in adverting, trigger a new autoneg. Generally called from 2730 * the set_pauseparam .ndo. 2731 */ 2732 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2733 { 2734 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2735 2736 linkmode_copy(oldadv, phydev->advertising); 2737 linkmode_set_pause(phydev->advertising, tx, rx); 2738 2739 if (!linkmode_equal(oldadv, phydev->advertising) && 2740 phydev->autoneg) 2741 phy_start_aneg(phydev); 2742 } 2743 EXPORT_SYMBOL(phy_set_asym_pause); 2744 2745 /** 2746 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2747 * @phydev: phy_device struct 2748 * @pp: requested pause configuration 2749 * 2750 * Description: Test if the PHY/MAC combination supports the Pause 2751 * configuration the user is requesting. Returns True if it is 2752 * supported, false otherwise. 2753 */ 2754 bool phy_validate_pause(struct phy_device *phydev, 2755 struct ethtool_pauseparam *pp) 2756 { 2757 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2758 phydev->supported) && pp->rx_pause) 2759 return false; 2760 2761 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2762 phydev->supported) && 2763 pp->rx_pause != pp->tx_pause) 2764 return false; 2765 2766 return true; 2767 } 2768 EXPORT_SYMBOL(phy_validate_pause); 2769 2770 /** 2771 * phy_get_pause - resolve negotiated pause modes 2772 * @phydev: phy_device struct 2773 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2774 * enabled. 2775 * @rx_pause: pointer to bool to indicate whether receive pause should be 2776 * enabled. 2777 * 2778 * Resolve and return the flow control modes according to the negotiation 2779 * result. This includes checking that we are operating in full duplex mode. 2780 * See linkmode_resolve_pause() for further details. 2781 */ 2782 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2783 { 2784 if (phydev->duplex != DUPLEX_FULL) { 2785 *tx_pause = false; 2786 *rx_pause = false; 2787 return; 2788 } 2789 2790 return linkmode_resolve_pause(phydev->advertising, 2791 phydev->lp_advertising, 2792 tx_pause, rx_pause); 2793 } 2794 EXPORT_SYMBOL(phy_get_pause); 2795 2796 #if IS_ENABLED(CONFIG_OF_MDIO) 2797 static int phy_get_int_delay_property(struct device *dev, const char *name) 2798 { 2799 s32 int_delay; 2800 int ret; 2801 2802 ret = device_property_read_u32(dev, name, &int_delay); 2803 if (ret) 2804 return ret; 2805 2806 return int_delay; 2807 } 2808 #else 2809 static int phy_get_int_delay_property(struct device *dev, const char *name) 2810 { 2811 return -EINVAL; 2812 } 2813 #endif 2814 2815 /** 2816 * phy_get_internal_delay - returns the index of the internal delay 2817 * @phydev: phy_device struct 2818 * @dev: pointer to the devices device struct 2819 * @delay_values: array of delays the PHY supports 2820 * @size: the size of the delay array 2821 * @is_rx: boolean to indicate to get the rx internal delay 2822 * 2823 * Returns the index within the array of internal delay passed in. 2824 * If the device property is not present then the interface type is checked 2825 * if the interface defines use of internal delay then a 1 is returned otherwise 2826 * a 0 is returned. 2827 * The array must be in ascending order. If PHY does not have an ascending order 2828 * array then size = 0 and the value of the delay property is returned. 2829 * Return -EINVAL if the delay is invalid or cannot be found. 2830 */ 2831 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2832 const int *delay_values, int size, bool is_rx) 2833 { 2834 s32 delay; 2835 int i; 2836 2837 if (is_rx) { 2838 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2839 if (delay < 0 && size == 0) { 2840 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2841 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2842 return 1; 2843 else 2844 return 0; 2845 } 2846 2847 } else { 2848 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2849 if (delay < 0 && size == 0) { 2850 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2851 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2852 return 1; 2853 else 2854 return 0; 2855 } 2856 } 2857 2858 if (delay < 0) 2859 return delay; 2860 2861 if (delay && size == 0) 2862 return delay; 2863 2864 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2865 phydev_err(phydev, "Delay %d is out of range\n", delay); 2866 return -EINVAL; 2867 } 2868 2869 if (delay == delay_values[0]) 2870 return 0; 2871 2872 for (i = 1; i < size; i++) { 2873 if (delay == delay_values[i]) 2874 return i; 2875 2876 /* Find an approximate index by looking up the table */ 2877 if (delay > delay_values[i - 1] && 2878 delay < delay_values[i]) { 2879 if (delay - delay_values[i - 1] < 2880 delay_values[i] - delay) 2881 return i - 1; 2882 else 2883 return i; 2884 } 2885 } 2886 2887 phydev_err(phydev, "error finding internal delay index for %d\n", 2888 delay); 2889 2890 return -EINVAL; 2891 } 2892 EXPORT_SYMBOL(phy_get_internal_delay); 2893 2894 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2895 { 2896 return phydrv->config_intr && phydrv->handle_interrupt; 2897 } 2898 2899 /** 2900 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2901 * @fwnode: pointer to the mdio_device's fwnode 2902 * 2903 * If successful, returns a pointer to the mdio_device with the embedded 2904 * struct device refcount incremented by one, or NULL on failure. 2905 * The caller should call put_device() on the mdio_device after its use. 2906 */ 2907 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2908 { 2909 struct device *d; 2910 2911 if (!fwnode) 2912 return NULL; 2913 2914 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2915 if (!d) 2916 return NULL; 2917 2918 return to_mdio_device(d); 2919 } 2920 EXPORT_SYMBOL(fwnode_mdio_find_device); 2921 2922 /** 2923 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2924 * 2925 * @phy_fwnode: Pointer to the phy's fwnode. 2926 * 2927 * If successful, returns a pointer to the phy_device with the embedded 2928 * struct device refcount incremented by one, or NULL on failure. 2929 */ 2930 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2931 { 2932 struct mdio_device *mdiodev; 2933 2934 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2935 if (!mdiodev) 2936 return NULL; 2937 2938 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2939 return to_phy_device(&mdiodev->dev); 2940 2941 put_device(&mdiodev->dev); 2942 2943 return NULL; 2944 } 2945 EXPORT_SYMBOL(fwnode_phy_find_device); 2946 2947 /** 2948 * device_phy_find_device - For the given device, get the phy_device 2949 * @dev: Pointer to the given device 2950 * 2951 * Refer return conditions of fwnode_phy_find_device(). 2952 */ 2953 struct phy_device *device_phy_find_device(struct device *dev) 2954 { 2955 return fwnode_phy_find_device(dev_fwnode(dev)); 2956 } 2957 EXPORT_SYMBOL_GPL(device_phy_find_device); 2958 2959 /** 2960 * fwnode_get_phy_node - Get the phy_node using the named reference. 2961 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2962 * 2963 * Refer return conditions of fwnode_find_reference(). 2964 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2965 * and "phy-device" are not supported in ACPI. DT supports all the three 2966 * named references to the phy node. 2967 */ 2968 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 2969 { 2970 struct fwnode_handle *phy_node; 2971 2972 /* Only phy-handle is used for ACPI */ 2973 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 2974 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 2975 return phy_node; 2976 phy_node = fwnode_find_reference(fwnode, "phy", 0); 2977 if (IS_ERR(phy_node)) 2978 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 2979 return phy_node; 2980 } 2981 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 2982 2983 /** 2984 * phy_probe - probe and init a PHY device 2985 * @dev: device to probe and init 2986 * 2987 * Description: Take care of setting up the phy_device structure, 2988 * set the state to READY (the driver's init function should 2989 * set it to STARTING if needed). 2990 */ 2991 static int phy_probe(struct device *dev) 2992 { 2993 struct phy_device *phydev = to_phy_device(dev); 2994 struct device_driver *drv = phydev->mdio.dev.driver; 2995 struct phy_driver *phydrv = to_phy_driver(drv); 2996 int err = 0; 2997 2998 phydev->drv = phydrv; 2999 3000 /* Disable the interrupt if the PHY doesn't support it 3001 * but the interrupt is still a valid one 3002 */ 3003 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3004 phydev->irq = PHY_POLL; 3005 3006 if (phydrv->flags & PHY_IS_INTERNAL) 3007 phydev->is_internal = true; 3008 3009 mutex_lock(&phydev->lock); 3010 3011 /* Deassert the reset signal */ 3012 phy_device_reset(phydev, 0); 3013 3014 if (phydev->drv->probe) { 3015 err = phydev->drv->probe(phydev); 3016 if (err) 3017 goto out; 3018 } 3019 3020 /* Start out supporting everything. Eventually, 3021 * a controller will attach, and may modify one 3022 * or both of these values 3023 */ 3024 if (phydrv->features) { 3025 linkmode_copy(phydev->supported, phydrv->features); 3026 } else if (phydrv->get_features) { 3027 err = phydrv->get_features(phydev); 3028 } else if (phydev->is_c45) { 3029 err = genphy_c45_pma_read_abilities(phydev); 3030 } else { 3031 err = genphy_read_abilities(phydev); 3032 } 3033 3034 if (err) 3035 goto out; 3036 3037 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3038 phydev->supported)) 3039 phydev->autoneg = 0; 3040 3041 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3042 phydev->supported)) 3043 phydev->is_gigabit_capable = 1; 3044 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3045 phydev->supported)) 3046 phydev->is_gigabit_capable = 1; 3047 3048 of_set_phy_supported(phydev); 3049 phy_advertise_supported(phydev); 3050 3051 /* Get the EEE modes we want to prohibit. We will ask 3052 * the PHY stop advertising these mode later on 3053 */ 3054 of_set_phy_eee_broken(phydev); 3055 3056 /* The Pause Frame bits indicate that the PHY can support passing 3057 * pause frames. During autonegotiation, the PHYs will determine if 3058 * they should allow pause frames to pass. The MAC driver should then 3059 * use that result to determine whether to enable flow control via 3060 * pause frames. 3061 * 3062 * Normally, PHY drivers should not set the Pause bits, and instead 3063 * allow phylib to do that. However, there may be some situations 3064 * (e.g. hardware erratum) where the driver wants to set only one 3065 * of these bits. 3066 */ 3067 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3068 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3069 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3070 phydev->supported); 3071 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3072 phydev->supported); 3073 } 3074 3075 /* Set the state to READY by default */ 3076 phydev->state = PHY_READY; 3077 3078 out: 3079 /* Assert the reset signal */ 3080 if (err) 3081 phy_device_reset(phydev, 1); 3082 3083 mutex_unlock(&phydev->lock); 3084 3085 return err; 3086 } 3087 3088 static int phy_remove(struct device *dev) 3089 { 3090 struct phy_device *phydev = to_phy_device(dev); 3091 3092 cancel_delayed_work_sync(&phydev->state_queue); 3093 3094 mutex_lock(&phydev->lock); 3095 phydev->state = PHY_DOWN; 3096 mutex_unlock(&phydev->lock); 3097 3098 sfp_bus_del_upstream(phydev->sfp_bus); 3099 phydev->sfp_bus = NULL; 3100 3101 if (phydev->drv && phydev->drv->remove) 3102 phydev->drv->remove(phydev); 3103 3104 /* Assert the reset signal */ 3105 phy_device_reset(phydev, 1); 3106 3107 phydev->drv = NULL; 3108 3109 return 0; 3110 } 3111 3112 static void phy_shutdown(struct device *dev) 3113 { 3114 struct phy_device *phydev = to_phy_device(dev); 3115 3116 phy_disable_interrupts(phydev); 3117 } 3118 3119 /** 3120 * phy_driver_register - register a phy_driver with the PHY layer 3121 * @new_driver: new phy_driver to register 3122 * @owner: module owning this PHY 3123 */ 3124 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3125 { 3126 int retval; 3127 3128 /* Either the features are hard coded, or dynamically 3129 * determined. It cannot be both. 3130 */ 3131 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3132 pr_err("%s: features and get_features must not both be set\n", 3133 new_driver->name); 3134 return -EINVAL; 3135 } 3136 3137 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3138 new_driver->mdiodrv.driver.name = new_driver->name; 3139 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3140 new_driver->mdiodrv.driver.probe = phy_probe; 3141 new_driver->mdiodrv.driver.remove = phy_remove; 3142 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3143 new_driver->mdiodrv.driver.owner = owner; 3144 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3145 3146 retval = driver_register(&new_driver->mdiodrv.driver); 3147 if (retval) { 3148 pr_err("%s: Error %d in registering driver\n", 3149 new_driver->name, retval); 3150 3151 return retval; 3152 } 3153 3154 pr_debug("%s: Registered new driver\n", new_driver->name); 3155 3156 return 0; 3157 } 3158 EXPORT_SYMBOL(phy_driver_register); 3159 3160 int phy_drivers_register(struct phy_driver *new_driver, int n, 3161 struct module *owner) 3162 { 3163 int i, ret = 0; 3164 3165 for (i = 0; i < n; i++) { 3166 ret = phy_driver_register(new_driver + i, owner); 3167 if (ret) { 3168 while (i-- > 0) 3169 phy_driver_unregister(new_driver + i); 3170 break; 3171 } 3172 } 3173 return ret; 3174 } 3175 EXPORT_SYMBOL(phy_drivers_register); 3176 3177 void phy_driver_unregister(struct phy_driver *drv) 3178 { 3179 driver_unregister(&drv->mdiodrv.driver); 3180 } 3181 EXPORT_SYMBOL(phy_driver_unregister); 3182 3183 void phy_drivers_unregister(struct phy_driver *drv, int n) 3184 { 3185 int i; 3186 3187 for (i = 0; i < n; i++) 3188 phy_driver_unregister(drv + i); 3189 } 3190 EXPORT_SYMBOL(phy_drivers_unregister); 3191 3192 static struct phy_driver genphy_driver = { 3193 .phy_id = 0xffffffff, 3194 .phy_id_mask = 0xffffffff, 3195 .name = "Generic PHY", 3196 .get_features = genphy_read_abilities, 3197 .suspend = genphy_suspend, 3198 .resume = genphy_resume, 3199 .set_loopback = genphy_loopback, 3200 }; 3201 3202 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3203 .get_sset_count = phy_ethtool_get_sset_count, 3204 .get_strings = phy_ethtool_get_strings, 3205 .get_stats = phy_ethtool_get_stats, 3206 .start_cable_test = phy_start_cable_test, 3207 .start_cable_test_tdr = phy_start_cable_test_tdr, 3208 }; 3209 3210 static int __init phy_init(void) 3211 { 3212 int rc; 3213 3214 rc = mdio_bus_init(); 3215 if (rc) 3216 return rc; 3217 3218 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3219 features_init(); 3220 3221 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3222 if (rc) 3223 goto err_c45; 3224 3225 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3226 if (rc) { 3227 phy_driver_unregister(&genphy_c45_driver); 3228 err_c45: 3229 mdio_bus_exit(); 3230 } 3231 3232 return rc; 3233 } 3234 3235 static void __exit phy_exit(void) 3236 { 3237 phy_driver_unregister(&genphy_c45_driver); 3238 phy_driver_unregister(&genphy_driver); 3239 mdio_bus_exit(); 3240 ethtool_set_ethtool_phy_ops(NULL); 3241 } 3242 3243 subsys_initcall(phy_init); 3244 module_exit(phy_exit); 3245