1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[2] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 96 }; 97 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 98 99 const int phy_gbit_features_array[2] = { 100 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 101 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 102 }; 103 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 104 105 const int phy_10gbit_features_array[1] = { 106 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 107 }; 108 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 109 110 static const int phy_10gbit_fec_features_array[1] = { 111 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 112 }; 113 114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 116 117 static const int phy_10gbit_full_features_array[] = { 118 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 119 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 124 static void features_init(void) 125 { 126 /* 10/100 half/full*/ 127 linkmode_set_bit_array(phy_basic_ports_array, 128 ARRAY_SIZE(phy_basic_ports_array), 129 phy_basic_features); 130 linkmode_set_bit_array(phy_10_100_features_array, 131 ARRAY_SIZE(phy_10_100_features_array), 132 phy_basic_features); 133 134 /* 100 full, TP */ 135 linkmode_set_bit_array(phy_basic_t1_features_array, 136 ARRAY_SIZE(phy_basic_t1_features_array), 137 phy_basic_t1_features); 138 139 /* 10/100 half/full + 1000 half/full */ 140 linkmode_set_bit_array(phy_basic_ports_array, 141 ARRAY_SIZE(phy_basic_ports_array), 142 phy_gbit_features); 143 linkmode_set_bit_array(phy_10_100_features_array, 144 ARRAY_SIZE(phy_10_100_features_array), 145 phy_gbit_features); 146 linkmode_set_bit_array(phy_gbit_features_array, 147 ARRAY_SIZE(phy_gbit_features_array), 148 phy_gbit_features); 149 150 /* 10/100 half/full + 1000 half/full + fibre*/ 151 linkmode_set_bit_array(phy_basic_ports_array, 152 ARRAY_SIZE(phy_basic_ports_array), 153 phy_gbit_fibre_features); 154 linkmode_set_bit_array(phy_10_100_features_array, 155 ARRAY_SIZE(phy_10_100_features_array), 156 phy_gbit_fibre_features); 157 linkmode_set_bit_array(phy_gbit_features_array, 158 ARRAY_SIZE(phy_gbit_features_array), 159 phy_gbit_fibre_features); 160 linkmode_set_bit_array(phy_fibre_port_array, 161 ARRAY_SIZE(phy_fibre_port_array), 162 phy_gbit_fibre_features); 163 164 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 165 linkmode_set_bit_array(phy_all_ports_features_array, 166 ARRAY_SIZE(phy_all_ports_features_array), 167 phy_gbit_all_ports_features); 168 linkmode_set_bit_array(phy_10_100_features_array, 169 ARRAY_SIZE(phy_10_100_features_array), 170 phy_gbit_all_ports_features); 171 linkmode_set_bit_array(phy_gbit_features_array, 172 ARRAY_SIZE(phy_gbit_features_array), 173 phy_gbit_all_ports_features); 174 175 /* 10/100 half/full + 1000 half/full + 10G full*/ 176 linkmode_set_bit_array(phy_all_ports_features_array, 177 ARRAY_SIZE(phy_all_ports_features_array), 178 phy_10gbit_features); 179 linkmode_set_bit_array(phy_10_100_features_array, 180 ARRAY_SIZE(phy_10_100_features_array), 181 phy_10gbit_features); 182 linkmode_set_bit_array(phy_gbit_features_array, 183 ARRAY_SIZE(phy_gbit_features_array), 184 phy_10gbit_features); 185 linkmode_set_bit_array(phy_10gbit_features_array, 186 ARRAY_SIZE(phy_10gbit_features_array), 187 phy_10gbit_features); 188 189 /* 10/100/1000/10G full */ 190 linkmode_set_bit_array(phy_all_ports_features_array, 191 ARRAY_SIZE(phy_all_ports_features_array), 192 phy_10gbit_full_features); 193 linkmode_set_bit_array(phy_10gbit_full_features_array, 194 ARRAY_SIZE(phy_10gbit_full_features_array), 195 phy_10gbit_full_features); 196 /* 10G FEC only */ 197 linkmode_set_bit_array(phy_10gbit_fec_features_array, 198 ARRAY_SIZE(phy_10gbit_fec_features_array), 199 phy_10gbit_fec_features); 200 } 201 202 void phy_device_free(struct phy_device *phydev) 203 { 204 put_device(&phydev->mdio.dev); 205 } 206 EXPORT_SYMBOL(phy_device_free); 207 208 static void phy_mdio_device_free(struct mdio_device *mdiodev) 209 { 210 struct phy_device *phydev; 211 212 phydev = container_of(mdiodev, struct phy_device, mdio); 213 phy_device_free(phydev); 214 } 215 216 static void phy_device_release(struct device *dev) 217 { 218 kfree(to_phy_device(dev)); 219 } 220 221 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 222 { 223 struct phy_device *phydev; 224 225 phydev = container_of(mdiodev, struct phy_device, mdio); 226 phy_device_remove(phydev); 227 } 228 229 static struct phy_driver genphy_driver; 230 231 static LIST_HEAD(phy_fixup_list); 232 static DEFINE_MUTEX(phy_fixup_lock); 233 234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 235 { 236 struct net_device *netdev = phydev->attached_dev; 237 238 if (!phydev->drv->suspend) 239 return false; 240 241 /* PHY not attached? May suspend if the PHY has not already been 242 * suspended as part of a prior call to phy_disconnect() -> 243 * phy_detach() -> phy_suspend() because the parent netdev might be the 244 * MDIO bus driver and clock gated at this point. 245 */ 246 if (!netdev) 247 goto out; 248 249 if (netdev->wol_enabled) 250 return false; 251 252 /* As long as not all affected network drivers support the 253 * wol_enabled flag, let's check for hints that WoL is enabled. 254 * Don't suspend PHY if the attached netdev parent may wake up. 255 * The parent may point to a PCI device, as in tg3 driver. 256 */ 257 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 258 return false; 259 260 /* Also don't suspend PHY if the netdev itself may wakeup. This 261 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 262 * e.g. SoC devices. 263 */ 264 if (device_may_wakeup(&netdev->dev)) 265 return false; 266 267 out: 268 return !phydev->suspended; 269 } 270 271 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 272 { 273 struct phy_device *phydev = to_phy_device(dev); 274 275 if (phydev->mac_managed_pm) 276 return 0; 277 278 /* We must stop the state machine manually, otherwise it stops out of 279 * control, possibly with the phydev->lock held. Upon resume, netdev 280 * may call phy routines that try to grab the same lock, and that may 281 * lead to a deadlock. 282 */ 283 if (phydev->attached_dev && phydev->adjust_link) 284 phy_stop_machine(phydev); 285 286 if (!mdio_bus_phy_may_suspend(phydev)) 287 return 0; 288 289 phydev->suspended_by_mdio_bus = 1; 290 291 return phy_suspend(phydev); 292 } 293 294 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 295 { 296 struct phy_device *phydev = to_phy_device(dev); 297 int ret; 298 299 if (phydev->mac_managed_pm) 300 return 0; 301 302 if (!phydev->suspended_by_mdio_bus) 303 goto no_resume; 304 305 phydev->suspended_by_mdio_bus = 0; 306 307 ret = phy_init_hw(phydev); 308 if (ret < 0) 309 return ret; 310 311 ret = phy_resume(phydev); 312 if (ret < 0) 313 return ret; 314 no_resume: 315 if (phydev->attached_dev && phydev->adjust_link) 316 phy_start_machine(phydev); 317 318 return 0; 319 } 320 321 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 322 mdio_bus_phy_resume); 323 324 /** 325 * phy_register_fixup - creates a new phy_fixup and adds it to the list 326 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 327 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 328 * It can also be PHY_ANY_UID 329 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 330 * comparison 331 * @run: The actual code to be run when a matching PHY is found 332 */ 333 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 334 int (*run)(struct phy_device *)) 335 { 336 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 337 338 if (!fixup) 339 return -ENOMEM; 340 341 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 342 fixup->phy_uid = phy_uid; 343 fixup->phy_uid_mask = phy_uid_mask; 344 fixup->run = run; 345 346 mutex_lock(&phy_fixup_lock); 347 list_add_tail(&fixup->list, &phy_fixup_list); 348 mutex_unlock(&phy_fixup_lock); 349 350 return 0; 351 } 352 EXPORT_SYMBOL(phy_register_fixup); 353 354 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 355 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 356 int (*run)(struct phy_device *)) 357 { 358 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 359 } 360 EXPORT_SYMBOL(phy_register_fixup_for_uid); 361 362 /* Registers a fixup to be run on the PHY with id string bus_id */ 363 int phy_register_fixup_for_id(const char *bus_id, 364 int (*run)(struct phy_device *)) 365 { 366 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 367 } 368 EXPORT_SYMBOL(phy_register_fixup_for_id); 369 370 /** 371 * phy_unregister_fixup - remove a phy_fixup from the list 372 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 373 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 374 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 375 */ 376 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 377 { 378 struct list_head *pos, *n; 379 struct phy_fixup *fixup; 380 int ret; 381 382 ret = -ENODEV; 383 384 mutex_lock(&phy_fixup_lock); 385 list_for_each_safe(pos, n, &phy_fixup_list) { 386 fixup = list_entry(pos, struct phy_fixup, list); 387 388 if ((!strcmp(fixup->bus_id, bus_id)) && 389 ((fixup->phy_uid & phy_uid_mask) == 390 (phy_uid & phy_uid_mask))) { 391 list_del(&fixup->list); 392 kfree(fixup); 393 ret = 0; 394 break; 395 } 396 } 397 mutex_unlock(&phy_fixup_lock); 398 399 return ret; 400 } 401 EXPORT_SYMBOL(phy_unregister_fixup); 402 403 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 404 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 405 { 406 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 407 } 408 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 409 410 /* Unregisters a fixup of the PHY with id string bus_id */ 411 int phy_unregister_fixup_for_id(const char *bus_id) 412 { 413 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 414 } 415 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 416 417 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 418 * Fixups can be set to match any in one or more fields. 419 */ 420 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 421 { 422 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 423 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 424 return 0; 425 426 if ((fixup->phy_uid & fixup->phy_uid_mask) != 427 (phydev->phy_id & fixup->phy_uid_mask)) 428 if (fixup->phy_uid != PHY_ANY_UID) 429 return 0; 430 431 return 1; 432 } 433 434 /* Runs any matching fixups for this phydev */ 435 static int phy_scan_fixups(struct phy_device *phydev) 436 { 437 struct phy_fixup *fixup; 438 439 mutex_lock(&phy_fixup_lock); 440 list_for_each_entry(fixup, &phy_fixup_list, list) { 441 if (phy_needs_fixup(phydev, fixup)) { 442 int err = fixup->run(phydev); 443 444 if (err < 0) { 445 mutex_unlock(&phy_fixup_lock); 446 return err; 447 } 448 phydev->has_fixups = true; 449 } 450 } 451 mutex_unlock(&phy_fixup_lock); 452 453 return 0; 454 } 455 456 static int phy_bus_match(struct device *dev, struct device_driver *drv) 457 { 458 struct phy_device *phydev = to_phy_device(dev); 459 struct phy_driver *phydrv = to_phy_driver(drv); 460 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 461 int i; 462 463 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 464 return 0; 465 466 if (phydrv->match_phy_device) 467 return phydrv->match_phy_device(phydev); 468 469 if (phydev->is_c45) { 470 for (i = 1; i < num_ids; i++) { 471 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 472 continue; 473 474 if ((phydrv->phy_id & phydrv->phy_id_mask) == 475 (phydev->c45_ids.device_ids[i] & 476 phydrv->phy_id_mask)) 477 return 1; 478 } 479 return 0; 480 } else { 481 return (phydrv->phy_id & phydrv->phy_id_mask) == 482 (phydev->phy_id & phydrv->phy_id_mask); 483 } 484 } 485 486 static ssize_t 487 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 488 { 489 struct phy_device *phydev = to_phy_device(dev); 490 491 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 492 } 493 static DEVICE_ATTR_RO(phy_id); 494 495 static ssize_t 496 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 497 { 498 struct phy_device *phydev = to_phy_device(dev); 499 const char *mode = NULL; 500 501 if (phy_is_internal(phydev)) 502 mode = "internal"; 503 else 504 mode = phy_modes(phydev->interface); 505 506 return sprintf(buf, "%s\n", mode); 507 } 508 static DEVICE_ATTR_RO(phy_interface); 509 510 static ssize_t 511 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 512 char *buf) 513 { 514 struct phy_device *phydev = to_phy_device(dev); 515 516 return sprintf(buf, "%d\n", phydev->has_fixups); 517 } 518 static DEVICE_ATTR_RO(phy_has_fixups); 519 520 static ssize_t phy_dev_flags_show(struct device *dev, 521 struct device_attribute *attr, 522 char *buf) 523 { 524 struct phy_device *phydev = to_phy_device(dev); 525 526 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 527 } 528 static DEVICE_ATTR_RO(phy_dev_flags); 529 530 static struct attribute *phy_dev_attrs[] = { 531 &dev_attr_phy_id.attr, 532 &dev_attr_phy_interface.attr, 533 &dev_attr_phy_has_fixups.attr, 534 &dev_attr_phy_dev_flags.attr, 535 NULL, 536 }; 537 ATTRIBUTE_GROUPS(phy_dev); 538 539 static const struct device_type mdio_bus_phy_type = { 540 .name = "PHY", 541 .groups = phy_dev_groups, 542 .release = phy_device_release, 543 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 544 }; 545 546 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 547 { 548 int ret; 549 550 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 551 MDIO_ID_ARGS(phy_id)); 552 /* We only check for failures in executing the usermode binary, 553 * not whether a PHY driver module exists for the PHY ID. 554 * Accept -ENOENT because this may occur in case no initramfs exists, 555 * then modprobe isn't available. 556 */ 557 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 558 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 559 ret, (unsigned long)phy_id); 560 return ret; 561 } 562 563 return 0; 564 } 565 566 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 567 bool is_c45, 568 struct phy_c45_device_ids *c45_ids) 569 { 570 struct phy_device *dev; 571 struct mdio_device *mdiodev; 572 int ret = 0; 573 574 /* We allocate the device, and initialize the default values */ 575 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 576 if (!dev) 577 return ERR_PTR(-ENOMEM); 578 579 mdiodev = &dev->mdio; 580 mdiodev->dev.parent = &bus->dev; 581 mdiodev->dev.bus = &mdio_bus_type; 582 mdiodev->dev.type = &mdio_bus_phy_type; 583 mdiodev->bus = bus; 584 mdiodev->bus_match = phy_bus_match; 585 mdiodev->addr = addr; 586 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 587 mdiodev->device_free = phy_mdio_device_free; 588 mdiodev->device_remove = phy_mdio_device_remove; 589 590 dev->speed = SPEED_UNKNOWN; 591 dev->duplex = DUPLEX_UNKNOWN; 592 dev->pause = 0; 593 dev->asym_pause = 0; 594 dev->link = 0; 595 dev->port = PORT_TP; 596 dev->interface = PHY_INTERFACE_MODE_GMII; 597 598 dev->autoneg = AUTONEG_ENABLE; 599 600 dev->is_c45 = is_c45; 601 dev->phy_id = phy_id; 602 if (c45_ids) 603 dev->c45_ids = *c45_ids; 604 dev->irq = bus->irq[addr]; 605 606 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 607 device_initialize(&mdiodev->dev); 608 609 dev->state = PHY_DOWN; 610 611 mutex_init(&dev->lock); 612 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 613 614 /* Request the appropriate module unconditionally; don't 615 * bother trying to do so only if it isn't already loaded, 616 * because that gets complicated. A hotplug event would have 617 * done an unconditional modprobe anyway. 618 * We don't do normal hotplug because it won't work for MDIO 619 * -- because it relies on the device staying around for long 620 * enough for the driver to get loaded. With MDIO, the NIC 621 * driver will get bored and give up as soon as it finds that 622 * there's no driver _already_ loaded. 623 */ 624 if (is_c45 && c45_ids) { 625 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 626 int i; 627 628 for (i = 1; i < num_ids; i++) { 629 if (c45_ids->device_ids[i] == 0xffffffff) 630 continue; 631 632 ret = phy_request_driver_module(dev, 633 c45_ids->device_ids[i]); 634 if (ret) 635 break; 636 } 637 } else { 638 ret = phy_request_driver_module(dev, phy_id); 639 } 640 641 if (ret) { 642 put_device(&mdiodev->dev); 643 dev = ERR_PTR(ret); 644 } 645 646 return dev; 647 } 648 EXPORT_SYMBOL(phy_device_create); 649 650 /* phy_c45_probe_present - checks to see if a MMD is present in the package 651 * @bus: the target MII bus 652 * @prtad: PHY package address on the MII bus 653 * @devad: PHY device (MMD) address 654 * 655 * Read the MDIO_STAT2 register, and check whether a device is responding 656 * at this address. 657 * 658 * Returns: negative error number on bus access error, zero if no device 659 * is responding, or positive if a device is present. 660 */ 661 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 662 { 663 int stat2; 664 665 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 666 if (stat2 < 0) 667 return stat2; 668 669 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 670 } 671 672 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 673 * @bus: the target MII bus 674 * @addr: PHY address on the MII bus 675 * @dev_addr: MMD address in the PHY. 676 * @devices_in_package: where to store the devices in package information. 677 * 678 * Description: reads devices in package registers of a MMD at @dev_addr 679 * from PHY at @addr on @bus. 680 * 681 * Returns: 0 on success, -EIO on failure. 682 */ 683 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 684 u32 *devices_in_package) 685 { 686 int phy_reg; 687 688 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 689 if (phy_reg < 0) 690 return -EIO; 691 *devices_in_package = phy_reg << 16; 692 693 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 694 if (phy_reg < 0) 695 return -EIO; 696 *devices_in_package |= phy_reg; 697 698 return 0; 699 } 700 701 /** 702 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 703 * @bus: the target MII bus 704 * @addr: PHY address on the MII bus 705 * @c45_ids: where to store the c45 ID information. 706 * 707 * Read the PHY "devices in package". If this appears to be valid, read 708 * the PHY identifiers for each device. Return the "devices in package" 709 * and identifiers in @c45_ids. 710 * 711 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 712 * the "devices in package" is invalid. 713 */ 714 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 715 struct phy_c45_device_ids *c45_ids) 716 { 717 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 718 u32 devs_in_pkg = 0; 719 int i, ret, phy_reg; 720 721 /* Find first non-zero Devices In package. Device zero is reserved 722 * for 802.3 c45 complied PHYs, so don't probe it at first. 723 */ 724 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 725 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 726 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 727 /* Check that there is a device present at this 728 * address before reading the devices-in-package 729 * register to avoid reading garbage from the PHY. 730 * Some PHYs (88x3310) vendor space is not IEEE802.3 731 * compliant. 732 */ 733 ret = phy_c45_probe_present(bus, addr, i); 734 if (ret < 0) 735 return -EIO; 736 737 if (!ret) 738 continue; 739 } 740 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 741 if (phy_reg < 0) 742 return -EIO; 743 } 744 745 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 746 /* If mostly Fs, there is no device there, then let's probe 747 * MMD 0, as some 10G PHYs have zero Devices In package, 748 * e.g. Cortina CS4315/CS4340 PHY. 749 */ 750 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 751 if (phy_reg < 0) 752 return -EIO; 753 754 /* no device there, let's get out of here */ 755 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 756 return -ENODEV; 757 } 758 759 /* Now probe Device Identifiers for each device present. */ 760 for (i = 1; i < num_ids; i++) { 761 if (!(devs_in_pkg & (1 << i))) 762 continue; 763 764 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 765 /* Probe the "Device Present" bits for the vendor MMDs 766 * to ignore these if they do not contain IEEE 802.3 767 * registers. 768 */ 769 ret = phy_c45_probe_present(bus, addr, i); 770 if (ret < 0) 771 return ret; 772 773 if (!ret) 774 continue; 775 } 776 777 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 778 if (phy_reg < 0) 779 return -EIO; 780 c45_ids->device_ids[i] = phy_reg << 16; 781 782 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 783 if (phy_reg < 0) 784 return -EIO; 785 c45_ids->device_ids[i] |= phy_reg; 786 } 787 788 c45_ids->devices_in_package = devs_in_pkg; 789 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 790 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 791 792 return 0; 793 } 794 795 /** 796 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 797 * @bus: the target MII bus 798 * @addr: PHY address on the MII bus 799 * @phy_id: where to store the ID retrieved. 800 * 801 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 802 * placing it in @phy_id. Return zero on successful read and the ID is 803 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 804 * or invalid ID. 805 */ 806 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 807 { 808 int phy_reg; 809 810 /* Grab the bits from PHYIR1, and put them in the upper half */ 811 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 812 if (phy_reg < 0) { 813 /* returning -ENODEV doesn't stop bus scanning */ 814 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 815 } 816 817 *phy_id = phy_reg << 16; 818 819 /* Grab the bits from PHYIR2, and put them in the lower half */ 820 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 821 if (phy_reg < 0) { 822 /* returning -ENODEV doesn't stop bus scanning */ 823 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 824 } 825 826 *phy_id |= phy_reg; 827 828 /* If the phy_id is mostly Fs, there is no device there */ 829 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 830 return -ENODEV; 831 832 return 0; 833 } 834 835 /* Extract the phy ID from the compatible string of the form 836 * ethernet-phy-idAAAA.BBBB. 837 */ 838 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 839 { 840 unsigned int upper, lower; 841 const char *cp; 842 int ret; 843 844 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 845 if (ret) 846 return ret; 847 848 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 849 return -EINVAL; 850 851 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 852 return 0; 853 } 854 EXPORT_SYMBOL(fwnode_get_phy_id); 855 856 /** 857 * get_phy_device - reads the specified PHY device and returns its @phy_device 858 * struct 859 * @bus: the target MII bus 860 * @addr: PHY address on the MII bus 861 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 862 * 863 * Probe for a PHY at @addr on @bus. 864 * 865 * When probing for a clause 22 PHY, then read the ID registers. If we find 866 * a valid ID, allocate and return a &struct phy_device. 867 * 868 * When probing for a clause 45 PHY, read the "devices in package" registers. 869 * If the "devices in package" appears valid, read the ID registers for each 870 * MMD, allocate and return a &struct phy_device. 871 * 872 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 873 * no PHY present, or %-EIO on bus access error. 874 */ 875 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 876 { 877 struct phy_c45_device_ids c45_ids; 878 u32 phy_id = 0; 879 int r; 880 881 c45_ids.devices_in_package = 0; 882 c45_ids.mmds_present = 0; 883 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 884 885 if (is_c45) 886 r = get_phy_c45_ids(bus, addr, &c45_ids); 887 else 888 r = get_phy_c22_id(bus, addr, &phy_id); 889 890 if (r) 891 return ERR_PTR(r); 892 893 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 894 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 895 * probe with C45 to see if we're able to get a valid PHY ID in the C45 896 * space, if successful, create the C45 PHY device. 897 */ 898 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 899 r = get_phy_c45_ids(bus, addr, &c45_ids); 900 if (!r) 901 return phy_device_create(bus, addr, phy_id, 902 true, &c45_ids); 903 } 904 905 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 906 } 907 EXPORT_SYMBOL(get_phy_device); 908 909 /** 910 * phy_device_register - Register the phy device on the MDIO bus 911 * @phydev: phy_device structure to be added to the MDIO bus 912 */ 913 int phy_device_register(struct phy_device *phydev) 914 { 915 int err; 916 917 err = mdiobus_register_device(&phydev->mdio); 918 if (err) 919 return err; 920 921 /* Deassert the reset signal */ 922 phy_device_reset(phydev, 0); 923 924 /* Run all of the fixups for this PHY */ 925 err = phy_scan_fixups(phydev); 926 if (err) { 927 phydev_err(phydev, "failed to initialize\n"); 928 goto out; 929 } 930 931 err = device_add(&phydev->mdio.dev); 932 if (err) { 933 phydev_err(phydev, "failed to add\n"); 934 goto out; 935 } 936 937 return 0; 938 939 out: 940 /* Assert the reset signal */ 941 phy_device_reset(phydev, 1); 942 943 mdiobus_unregister_device(&phydev->mdio); 944 return err; 945 } 946 EXPORT_SYMBOL(phy_device_register); 947 948 /** 949 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 950 * @phydev: phy_device structure to remove 951 * 952 * This doesn't free the phy_device itself, it merely reverses the effects 953 * of phy_device_register(). Use phy_device_free() to free the device 954 * after calling this function. 955 */ 956 void phy_device_remove(struct phy_device *phydev) 957 { 958 unregister_mii_timestamper(phydev->mii_ts); 959 960 device_del(&phydev->mdio.dev); 961 962 /* Assert the reset signal */ 963 phy_device_reset(phydev, 1); 964 965 mdiobus_unregister_device(&phydev->mdio); 966 } 967 EXPORT_SYMBOL(phy_device_remove); 968 969 /** 970 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 971 * @phydev: phy_device structure to read 802.3-c45 IDs 972 * 973 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 974 * the "devices in package" is invalid. 975 */ 976 int phy_get_c45_ids(struct phy_device *phydev) 977 { 978 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 979 &phydev->c45_ids); 980 } 981 EXPORT_SYMBOL(phy_get_c45_ids); 982 983 /** 984 * phy_find_first - finds the first PHY device on the bus 985 * @bus: the target MII bus 986 */ 987 struct phy_device *phy_find_first(struct mii_bus *bus) 988 { 989 struct phy_device *phydev; 990 int addr; 991 992 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 993 phydev = mdiobus_get_phy(bus, addr); 994 if (phydev) 995 return phydev; 996 } 997 return NULL; 998 } 999 EXPORT_SYMBOL(phy_find_first); 1000 1001 static void phy_link_change(struct phy_device *phydev, bool up) 1002 { 1003 struct net_device *netdev = phydev->attached_dev; 1004 1005 if (up) 1006 netif_carrier_on(netdev); 1007 else 1008 netif_carrier_off(netdev); 1009 phydev->adjust_link(netdev); 1010 if (phydev->mii_ts && phydev->mii_ts->link_state) 1011 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1012 } 1013 1014 /** 1015 * phy_prepare_link - prepares the PHY layer to monitor link status 1016 * @phydev: target phy_device struct 1017 * @handler: callback function for link status change notifications 1018 * 1019 * Description: Tells the PHY infrastructure to handle the 1020 * gory details on monitoring link status (whether through 1021 * polling or an interrupt), and to call back to the 1022 * connected device driver when the link status changes. 1023 * If you want to monitor your own link state, don't call 1024 * this function. 1025 */ 1026 static void phy_prepare_link(struct phy_device *phydev, 1027 void (*handler)(struct net_device *)) 1028 { 1029 phydev->adjust_link = handler; 1030 } 1031 1032 /** 1033 * phy_connect_direct - connect an ethernet device to a specific phy_device 1034 * @dev: the network device to connect 1035 * @phydev: the pointer to the phy device 1036 * @handler: callback function for state change notifications 1037 * @interface: PHY device's interface 1038 */ 1039 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1040 void (*handler)(struct net_device *), 1041 phy_interface_t interface) 1042 { 1043 int rc; 1044 1045 if (!dev) 1046 return -EINVAL; 1047 1048 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1049 if (rc) 1050 return rc; 1051 1052 phy_prepare_link(phydev, handler); 1053 if (phy_interrupt_is_valid(phydev)) 1054 phy_request_interrupt(phydev); 1055 1056 return 0; 1057 } 1058 EXPORT_SYMBOL(phy_connect_direct); 1059 1060 /** 1061 * phy_connect - connect an ethernet device to a PHY device 1062 * @dev: the network device to connect 1063 * @bus_id: the id string of the PHY device to connect 1064 * @handler: callback function for state change notifications 1065 * @interface: PHY device's interface 1066 * 1067 * Description: Convenience function for connecting ethernet 1068 * devices to PHY devices. The default behavior is for 1069 * the PHY infrastructure to handle everything, and only notify 1070 * the connected driver when the link status changes. If you 1071 * don't want, or can't use the provided functionality, you may 1072 * choose to call only the subset of functions which provide 1073 * the desired functionality. 1074 */ 1075 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1076 void (*handler)(struct net_device *), 1077 phy_interface_t interface) 1078 { 1079 struct phy_device *phydev; 1080 struct device *d; 1081 int rc; 1082 1083 /* Search the list of PHY devices on the mdio bus for the 1084 * PHY with the requested name 1085 */ 1086 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1087 if (!d) { 1088 pr_err("PHY %s not found\n", bus_id); 1089 return ERR_PTR(-ENODEV); 1090 } 1091 phydev = to_phy_device(d); 1092 1093 rc = phy_connect_direct(dev, phydev, handler, interface); 1094 put_device(d); 1095 if (rc) 1096 return ERR_PTR(rc); 1097 1098 return phydev; 1099 } 1100 EXPORT_SYMBOL(phy_connect); 1101 1102 /** 1103 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1104 * device 1105 * @phydev: target phy_device struct 1106 */ 1107 void phy_disconnect(struct phy_device *phydev) 1108 { 1109 if (phy_is_started(phydev)) 1110 phy_stop(phydev); 1111 1112 if (phy_interrupt_is_valid(phydev)) 1113 phy_free_interrupt(phydev); 1114 1115 phydev->adjust_link = NULL; 1116 1117 phy_detach(phydev); 1118 } 1119 EXPORT_SYMBOL(phy_disconnect); 1120 1121 /** 1122 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1123 * @phydev: The PHY device to poll 1124 * 1125 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1126 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1127 * register must be polled until the BMCR_RESET bit clears. 1128 * 1129 * Furthermore, any attempts to write to PHY registers may have no effect 1130 * or even generate MDIO bus errors until this is complete. 1131 * 1132 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1133 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1134 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1135 * effort to support such broken PHYs, this function is separate from the 1136 * standard phy_init_hw() which will zero all the other bits in the BMCR 1137 * and reapply all driver-specific and board-specific fixups. 1138 */ 1139 static int phy_poll_reset(struct phy_device *phydev) 1140 { 1141 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1142 int ret, val; 1143 1144 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1145 50000, 600000, true); 1146 if (ret) 1147 return ret; 1148 /* Some chips (smsc911x) may still need up to another 1ms after the 1149 * BMCR_RESET bit is cleared before they are usable. 1150 */ 1151 msleep(1); 1152 return 0; 1153 } 1154 1155 int phy_init_hw(struct phy_device *phydev) 1156 { 1157 int ret = 0; 1158 1159 /* Deassert the reset signal */ 1160 phy_device_reset(phydev, 0); 1161 1162 if (!phydev->drv) 1163 return 0; 1164 1165 if (phydev->drv->soft_reset) { 1166 ret = phydev->drv->soft_reset(phydev); 1167 /* see comment in genphy_soft_reset for an explanation */ 1168 if (!ret) 1169 phydev->suspended = 0; 1170 } 1171 1172 if (ret < 0) 1173 return ret; 1174 1175 ret = phy_scan_fixups(phydev); 1176 if (ret < 0) 1177 return ret; 1178 1179 if (phydev->drv->config_init) { 1180 ret = phydev->drv->config_init(phydev); 1181 if (ret < 0) 1182 return ret; 1183 } 1184 1185 if (phydev->drv->config_intr) { 1186 ret = phydev->drv->config_intr(phydev); 1187 if (ret < 0) 1188 return ret; 1189 } 1190 1191 return 0; 1192 } 1193 EXPORT_SYMBOL(phy_init_hw); 1194 1195 void phy_attached_info(struct phy_device *phydev) 1196 { 1197 phy_attached_print(phydev, NULL); 1198 } 1199 EXPORT_SYMBOL(phy_attached_info); 1200 1201 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1202 char *phy_attached_info_irq(struct phy_device *phydev) 1203 { 1204 char *irq_str; 1205 char irq_num[8]; 1206 1207 switch(phydev->irq) { 1208 case PHY_POLL: 1209 irq_str = "POLL"; 1210 break; 1211 case PHY_MAC_INTERRUPT: 1212 irq_str = "MAC"; 1213 break; 1214 default: 1215 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1216 irq_str = irq_num; 1217 break; 1218 } 1219 1220 return kasprintf(GFP_KERNEL, "%s", irq_str); 1221 } 1222 EXPORT_SYMBOL(phy_attached_info_irq); 1223 1224 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1225 { 1226 const char *unbound = phydev->drv ? "" : "[unbound] "; 1227 char *irq_str = phy_attached_info_irq(phydev); 1228 1229 if (!fmt) { 1230 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1231 phydev_name(phydev), irq_str); 1232 } else { 1233 va_list ap; 1234 1235 phydev_info(phydev, ATTACHED_FMT, unbound, 1236 phydev_name(phydev), irq_str); 1237 1238 va_start(ap, fmt); 1239 vprintk(fmt, ap); 1240 va_end(ap); 1241 } 1242 kfree(irq_str); 1243 } 1244 EXPORT_SYMBOL(phy_attached_print); 1245 1246 static void phy_sysfs_create_links(struct phy_device *phydev) 1247 { 1248 struct net_device *dev = phydev->attached_dev; 1249 int err; 1250 1251 if (!dev) 1252 return; 1253 1254 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1255 "attached_dev"); 1256 if (err) 1257 return; 1258 1259 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1260 &phydev->mdio.dev.kobj, 1261 "phydev"); 1262 if (err) { 1263 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1264 kobject_name(&phydev->mdio.dev.kobj), 1265 err); 1266 /* non-fatal - some net drivers can use one netdevice 1267 * with more then one phy 1268 */ 1269 } 1270 1271 phydev->sysfs_links = true; 1272 } 1273 1274 static ssize_t 1275 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1276 char *buf) 1277 { 1278 struct phy_device *phydev = to_phy_device(dev); 1279 1280 return sprintf(buf, "%d\n", !phydev->attached_dev); 1281 } 1282 static DEVICE_ATTR_RO(phy_standalone); 1283 1284 /** 1285 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1286 * @upstream: pointer to the phy device 1287 * @bus: sfp bus representing cage being attached 1288 * 1289 * This is used to fill in the sfp_upstream_ops .attach member. 1290 */ 1291 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1292 { 1293 struct phy_device *phydev = upstream; 1294 1295 if (phydev->attached_dev) 1296 phydev->attached_dev->sfp_bus = bus; 1297 phydev->sfp_bus_attached = true; 1298 } 1299 EXPORT_SYMBOL(phy_sfp_attach); 1300 1301 /** 1302 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1303 * @upstream: pointer to the phy device 1304 * @bus: sfp bus representing cage being attached 1305 * 1306 * This is used to fill in the sfp_upstream_ops .detach member. 1307 */ 1308 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1309 { 1310 struct phy_device *phydev = upstream; 1311 1312 if (phydev->attached_dev) 1313 phydev->attached_dev->sfp_bus = NULL; 1314 phydev->sfp_bus_attached = false; 1315 } 1316 EXPORT_SYMBOL(phy_sfp_detach); 1317 1318 /** 1319 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1320 * @phydev: Pointer to phy_device 1321 * @ops: SFP's upstream operations 1322 */ 1323 int phy_sfp_probe(struct phy_device *phydev, 1324 const struct sfp_upstream_ops *ops) 1325 { 1326 struct sfp_bus *bus; 1327 int ret = 0; 1328 1329 if (phydev->mdio.dev.fwnode) { 1330 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1331 if (IS_ERR(bus)) 1332 return PTR_ERR(bus); 1333 1334 phydev->sfp_bus = bus; 1335 1336 ret = sfp_bus_add_upstream(bus, phydev, ops); 1337 sfp_bus_put(bus); 1338 } 1339 return ret; 1340 } 1341 EXPORT_SYMBOL(phy_sfp_probe); 1342 1343 /** 1344 * phy_attach_direct - attach a network device to a given PHY device pointer 1345 * @dev: network device to attach 1346 * @phydev: Pointer to phy_device to attach 1347 * @flags: PHY device's dev_flags 1348 * @interface: PHY device's interface 1349 * 1350 * Description: Called by drivers to attach to a particular PHY 1351 * device. The phy_device is found, and properly hooked up 1352 * to the phy_driver. If no driver is attached, then a 1353 * generic driver is used. The phy_device is given a ptr to 1354 * the attaching device, and given a callback for link status 1355 * change. The phy_device is returned to the attaching driver. 1356 * This function takes a reference on the phy device. 1357 */ 1358 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1359 u32 flags, phy_interface_t interface) 1360 { 1361 struct mii_bus *bus = phydev->mdio.bus; 1362 struct device *d = &phydev->mdio.dev; 1363 struct module *ndev_owner = NULL; 1364 bool using_genphy = false; 1365 int err; 1366 1367 /* For Ethernet device drivers that register their own MDIO bus, we 1368 * will have bus->owner match ndev_mod, so we do not want to increment 1369 * our own module->refcnt here, otherwise we would not be able to 1370 * unload later on. 1371 */ 1372 if (dev) 1373 ndev_owner = dev->dev.parent->driver->owner; 1374 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1375 phydev_err(phydev, "failed to get the bus module\n"); 1376 return -EIO; 1377 } 1378 1379 get_device(d); 1380 1381 /* Assume that if there is no driver, that it doesn't 1382 * exist, and we should use the genphy driver. 1383 */ 1384 if (!d->driver) { 1385 if (phydev->is_c45) 1386 d->driver = &genphy_c45_driver.mdiodrv.driver; 1387 else 1388 d->driver = &genphy_driver.mdiodrv.driver; 1389 1390 using_genphy = true; 1391 } 1392 1393 if (!try_module_get(d->driver->owner)) { 1394 phydev_err(phydev, "failed to get the device driver module\n"); 1395 err = -EIO; 1396 goto error_put_device; 1397 } 1398 1399 if (using_genphy) { 1400 err = d->driver->probe(d); 1401 if (err >= 0) 1402 err = device_bind_driver(d); 1403 1404 if (err) 1405 goto error_module_put; 1406 } 1407 1408 if (phydev->attached_dev) { 1409 dev_err(&dev->dev, "PHY already attached\n"); 1410 err = -EBUSY; 1411 goto error; 1412 } 1413 1414 phydev->phy_link_change = phy_link_change; 1415 if (dev) { 1416 phydev->attached_dev = dev; 1417 dev->phydev = phydev; 1418 1419 if (phydev->sfp_bus_attached) 1420 dev->sfp_bus = phydev->sfp_bus; 1421 else if (dev->sfp_bus) 1422 phydev->is_on_sfp_module = true; 1423 } 1424 1425 /* Some Ethernet drivers try to connect to a PHY device before 1426 * calling register_netdevice() -> netdev_register_kobject() and 1427 * does the dev->dev.kobj initialization. Here we only check for 1428 * success which indicates that the network device kobject is 1429 * ready. Once we do that we still need to keep track of whether 1430 * links were successfully set up or not for phy_detach() to 1431 * remove them accordingly. 1432 */ 1433 phydev->sysfs_links = false; 1434 1435 phy_sysfs_create_links(phydev); 1436 1437 if (!phydev->attached_dev) { 1438 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1439 &dev_attr_phy_standalone.attr); 1440 if (err) 1441 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1442 } 1443 1444 phydev->dev_flags |= flags; 1445 1446 phydev->interface = interface; 1447 1448 phydev->state = PHY_READY; 1449 1450 /* Port is set to PORT_TP by default and the actual PHY driver will set 1451 * it to different value depending on the PHY configuration. If we have 1452 * the generic PHY driver we can't figure it out, thus set the old 1453 * legacy PORT_MII value. 1454 */ 1455 if (using_genphy) 1456 phydev->port = PORT_MII; 1457 1458 /* Initial carrier state is off as the phy is about to be 1459 * (re)initialized. 1460 */ 1461 if (dev) 1462 netif_carrier_off(phydev->attached_dev); 1463 1464 /* Do initial configuration here, now that 1465 * we have certain key parameters 1466 * (dev_flags and interface) 1467 */ 1468 err = phy_init_hw(phydev); 1469 if (err) 1470 goto error; 1471 1472 err = phy_disable_interrupts(phydev); 1473 if (err) 1474 return err; 1475 1476 phy_resume(phydev); 1477 phy_led_triggers_register(phydev); 1478 1479 return err; 1480 1481 error: 1482 /* phy_detach() does all of the cleanup below */ 1483 phy_detach(phydev); 1484 return err; 1485 1486 error_module_put: 1487 module_put(d->driver->owner); 1488 error_put_device: 1489 put_device(d); 1490 if (ndev_owner != bus->owner) 1491 module_put(bus->owner); 1492 return err; 1493 } 1494 EXPORT_SYMBOL(phy_attach_direct); 1495 1496 /** 1497 * phy_attach - attach a network device to a particular PHY device 1498 * @dev: network device to attach 1499 * @bus_id: Bus ID of PHY device to attach 1500 * @interface: PHY device's interface 1501 * 1502 * Description: Same as phy_attach_direct() except that a PHY bus_id 1503 * string is passed instead of a pointer to a struct phy_device. 1504 */ 1505 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1506 phy_interface_t interface) 1507 { 1508 struct bus_type *bus = &mdio_bus_type; 1509 struct phy_device *phydev; 1510 struct device *d; 1511 int rc; 1512 1513 if (!dev) 1514 return ERR_PTR(-EINVAL); 1515 1516 /* Search the list of PHY devices on the mdio bus for the 1517 * PHY with the requested name 1518 */ 1519 d = bus_find_device_by_name(bus, NULL, bus_id); 1520 if (!d) { 1521 pr_err("PHY %s not found\n", bus_id); 1522 return ERR_PTR(-ENODEV); 1523 } 1524 phydev = to_phy_device(d); 1525 1526 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1527 put_device(d); 1528 if (rc) 1529 return ERR_PTR(rc); 1530 1531 return phydev; 1532 } 1533 EXPORT_SYMBOL(phy_attach); 1534 1535 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1536 struct device_driver *driver) 1537 { 1538 struct device *d = &phydev->mdio.dev; 1539 bool ret = false; 1540 1541 if (!phydev->drv) 1542 return ret; 1543 1544 get_device(d); 1545 ret = d->driver == driver; 1546 put_device(d); 1547 1548 return ret; 1549 } 1550 1551 bool phy_driver_is_genphy(struct phy_device *phydev) 1552 { 1553 return phy_driver_is_genphy_kind(phydev, 1554 &genphy_driver.mdiodrv.driver); 1555 } 1556 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1557 1558 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1559 { 1560 return phy_driver_is_genphy_kind(phydev, 1561 &genphy_c45_driver.mdiodrv.driver); 1562 } 1563 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1564 1565 /** 1566 * phy_package_join - join a common PHY group 1567 * @phydev: target phy_device struct 1568 * @addr: cookie and PHY address for global register access 1569 * @priv_size: if non-zero allocate this amount of bytes for private data 1570 * 1571 * This joins a PHY group and provides a shared storage for all phydevs in 1572 * this group. This is intended to be used for packages which contain 1573 * more than one PHY, for example a quad PHY transceiver. 1574 * 1575 * The addr parameter serves as a cookie which has to have the same value 1576 * for all members of one group and as a PHY address to access generic 1577 * registers of a PHY package. Usually, one of the PHY addresses of the 1578 * different PHYs in the package provides access to these global registers. 1579 * The address which is given here, will be used in the phy_package_read() 1580 * and phy_package_write() convenience functions. If your PHY doesn't have 1581 * global registers you can just pick any of the PHY addresses. 1582 * 1583 * This will set the shared pointer of the phydev to the shared storage. 1584 * If this is the first call for a this cookie the shared storage will be 1585 * allocated. If priv_size is non-zero, the given amount of bytes are 1586 * allocated for the priv member. 1587 * 1588 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1589 * with the same cookie but a different priv_size is an error. 1590 */ 1591 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1592 { 1593 struct mii_bus *bus = phydev->mdio.bus; 1594 struct phy_package_shared *shared; 1595 int ret; 1596 1597 if (addr < 0 || addr >= PHY_MAX_ADDR) 1598 return -EINVAL; 1599 1600 mutex_lock(&bus->shared_lock); 1601 shared = bus->shared[addr]; 1602 if (!shared) { 1603 ret = -ENOMEM; 1604 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1605 if (!shared) 1606 goto err_unlock; 1607 if (priv_size) { 1608 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1609 if (!shared->priv) 1610 goto err_free; 1611 shared->priv_size = priv_size; 1612 } 1613 shared->addr = addr; 1614 refcount_set(&shared->refcnt, 1); 1615 bus->shared[addr] = shared; 1616 } else { 1617 ret = -EINVAL; 1618 if (priv_size && priv_size != shared->priv_size) 1619 goto err_unlock; 1620 refcount_inc(&shared->refcnt); 1621 } 1622 mutex_unlock(&bus->shared_lock); 1623 1624 phydev->shared = shared; 1625 1626 return 0; 1627 1628 err_free: 1629 kfree(shared); 1630 err_unlock: 1631 mutex_unlock(&bus->shared_lock); 1632 return ret; 1633 } 1634 EXPORT_SYMBOL_GPL(phy_package_join); 1635 1636 /** 1637 * phy_package_leave - leave a common PHY group 1638 * @phydev: target phy_device struct 1639 * 1640 * This leaves a PHY group created by phy_package_join(). If this phydev 1641 * was the last user of the shared data between the group, this data is 1642 * freed. Resets the phydev->shared pointer to NULL. 1643 */ 1644 void phy_package_leave(struct phy_device *phydev) 1645 { 1646 struct phy_package_shared *shared = phydev->shared; 1647 struct mii_bus *bus = phydev->mdio.bus; 1648 1649 if (!shared) 1650 return; 1651 1652 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1653 bus->shared[shared->addr] = NULL; 1654 mutex_unlock(&bus->shared_lock); 1655 kfree(shared->priv); 1656 kfree(shared); 1657 } 1658 1659 phydev->shared = NULL; 1660 } 1661 EXPORT_SYMBOL_GPL(phy_package_leave); 1662 1663 static void devm_phy_package_leave(struct device *dev, void *res) 1664 { 1665 phy_package_leave(*(struct phy_device **)res); 1666 } 1667 1668 /** 1669 * devm_phy_package_join - resource managed phy_package_join() 1670 * @dev: device that is registering this PHY package 1671 * @phydev: target phy_device struct 1672 * @addr: cookie and PHY address for global register access 1673 * @priv_size: if non-zero allocate this amount of bytes for private data 1674 * 1675 * Managed phy_package_join(). Shared storage fetched by this function, 1676 * phy_package_leave() is automatically called on driver detach. See 1677 * phy_package_join() for more information. 1678 */ 1679 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1680 int addr, size_t priv_size) 1681 { 1682 struct phy_device **ptr; 1683 int ret; 1684 1685 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1686 GFP_KERNEL); 1687 if (!ptr) 1688 return -ENOMEM; 1689 1690 ret = phy_package_join(phydev, addr, priv_size); 1691 1692 if (!ret) { 1693 *ptr = phydev; 1694 devres_add(dev, ptr); 1695 } else { 1696 devres_free(ptr); 1697 } 1698 1699 return ret; 1700 } 1701 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1702 1703 /** 1704 * phy_detach - detach a PHY device from its network device 1705 * @phydev: target phy_device struct 1706 * 1707 * This detaches the phy device from its network device and the phy 1708 * driver, and drops the reference count taken in phy_attach_direct(). 1709 */ 1710 void phy_detach(struct phy_device *phydev) 1711 { 1712 struct net_device *dev = phydev->attached_dev; 1713 struct module *ndev_owner = NULL; 1714 struct mii_bus *bus; 1715 1716 if (phydev->sysfs_links) { 1717 if (dev) 1718 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1719 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1720 } 1721 1722 if (!phydev->attached_dev) 1723 sysfs_remove_file(&phydev->mdio.dev.kobj, 1724 &dev_attr_phy_standalone.attr); 1725 1726 phy_suspend(phydev); 1727 if (dev) { 1728 phydev->attached_dev->phydev = NULL; 1729 phydev->attached_dev = NULL; 1730 } 1731 phydev->phylink = NULL; 1732 1733 phy_led_triggers_unregister(phydev); 1734 1735 if (phydev->mdio.dev.driver) 1736 module_put(phydev->mdio.dev.driver->owner); 1737 1738 /* If the device had no specific driver before (i.e. - it 1739 * was using the generic driver), we unbind the device 1740 * from the generic driver so that there's a chance a 1741 * real driver could be loaded 1742 */ 1743 if (phy_driver_is_genphy(phydev) || 1744 phy_driver_is_genphy_10g(phydev)) 1745 device_release_driver(&phydev->mdio.dev); 1746 1747 /* 1748 * The phydev might go away on the put_device() below, so avoid 1749 * a use-after-free bug by reading the underlying bus first. 1750 */ 1751 bus = phydev->mdio.bus; 1752 1753 put_device(&phydev->mdio.dev); 1754 if (dev) 1755 ndev_owner = dev->dev.parent->driver->owner; 1756 if (ndev_owner != bus->owner) 1757 module_put(bus->owner); 1758 1759 /* Assert the reset signal */ 1760 phy_device_reset(phydev, 1); 1761 } 1762 EXPORT_SYMBOL(phy_detach); 1763 1764 int phy_suspend(struct phy_device *phydev) 1765 { 1766 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1767 struct net_device *netdev = phydev->attached_dev; 1768 struct phy_driver *phydrv = phydev->drv; 1769 int ret; 1770 1771 if (phydev->suspended) 1772 return 0; 1773 1774 /* If the device has WOL enabled, we cannot suspend the PHY */ 1775 phy_ethtool_get_wol(phydev, &wol); 1776 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1777 return -EBUSY; 1778 1779 if (!phydrv || !phydrv->suspend) 1780 return 0; 1781 1782 ret = phydrv->suspend(phydev); 1783 if (!ret) 1784 phydev->suspended = true; 1785 1786 return ret; 1787 } 1788 EXPORT_SYMBOL(phy_suspend); 1789 1790 int __phy_resume(struct phy_device *phydev) 1791 { 1792 struct phy_driver *phydrv = phydev->drv; 1793 int ret; 1794 1795 lockdep_assert_held(&phydev->lock); 1796 1797 if (!phydrv || !phydrv->resume) 1798 return 0; 1799 1800 ret = phydrv->resume(phydev); 1801 if (!ret) 1802 phydev->suspended = false; 1803 1804 return ret; 1805 } 1806 EXPORT_SYMBOL(__phy_resume); 1807 1808 int phy_resume(struct phy_device *phydev) 1809 { 1810 int ret; 1811 1812 mutex_lock(&phydev->lock); 1813 ret = __phy_resume(phydev); 1814 mutex_unlock(&phydev->lock); 1815 1816 return ret; 1817 } 1818 EXPORT_SYMBOL(phy_resume); 1819 1820 int phy_loopback(struct phy_device *phydev, bool enable) 1821 { 1822 int ret = 0; 1823 1824 if (!phydev->drv) 1825 return -EIO; 1826 1827 mutex_lock(&phydev->lock); 1828 1829 if (enable && phydev->loopback_enabled) { 1830 ret = -EBUSY; 1831 goto out; 1832 } 1833 1834 if (!enable && !phydev->loopback_enabled) { 1835 ret = -EINVAL; 1836 goto out; 1837 } 1838 1839 if (phydev->drv->set_loopback) 1840 ret = phydev->drv->set_loopback(phydev, enable); 1841 else 1842 ret = genphy_loopback(phydev, enable); 1843 1844 if (ret) 1845 goto out; 1846 1847 phydev->loopback_enabled = enable; 1848 1849 out: 1850 mutex_unlock(&phydev->lock); 1851 return ret; 1852 } 1853 EXPORT_SYMBOL(phy_loopback); 1854 1855 /** 1856 * phy_reset_after_clk_enable - perform a PHY reset if needed 1857 * @phydev: target phy_device struct 1858 * 1859 * Description: Some PHYs are known to need a reset after their refclk was 1860 * enabled. This function evaluates the flags and perform the reset if it's 1861 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1862 * was reset. 1863 */ 1864 int phy_reset_after_clk_enable(struct phy_device *phydev) 1865 { 1866 if (!phydev || !phydev->drv) 1867 return -ENODEV; 1868 1869 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1870 phy_device_reset(phydev, 1); 1871 phy_device_reset(phydev, 0); 1872 return 1; 1873 } 1874 1875 return 0; 1876 } 1877 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1878 1879 /* Generic PHY support and helper functions */ 1880 1881 /** 1882 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1883 * @phydev: target phy_device struct 1884 * 1885 * Description: Writes MII_ADVERTISE with the appropriate values, 1886 * after sanitizing the values to make sure we only advertise 1887 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1888 * hasn't changed, and > 0 if it has changed. 1889 */ 1890 static int genphy_config_advert(struct phy_device *phydev) 1891 { 1892 int err, bmsr, changed = 0; 1893 u32 adv; 1894 1895 /* Only allow advertising what this PHY supports */ 1896 linkmode_and(phydev->advertising, phydev->advertising, 1897 phydev->supported); 1898 1899 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1900 1901 /* Setup standard advertisement */ 1902 err = phy_modify_changed(phydev, MII_ADVERTISE, 1903 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1904 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1905 adv); 1906 if (err < 0) 1907 return err; 1908 if (err > 0) 1909 changed = 1; 1910 1911 bmsr = phy_read(phydev, MII_BMSR); 1912 if (bmsr < 0) 1913 return bmsr; 1914 1915 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1916 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1917 * logical 1. 1918 */ 1919 if (!(bmsr & BMSR_ESTATEN)) 1920 return changed; 1921 1922 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1923 1924 err = phy_modify_changed(phydev, MII_CTRL1000, 1925 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1926 adv); 1927 if (err < 0) 1928 return err; 1929 if (err > 0) 1930 changed = 1; 1931 1932 return changed; 1933 } 1934 1935 /** 1936 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1937 * @phydev: target phy_device struct 1938 * 1939 * Description: Writes MII_ADVERTISE with the appropriate values, 1940 * after sanitizing the values to make sure we only advertise 1941 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1942 * hasn't changed, and > 0 if it has changed. This function is intended 1943 * for Clause 37 1000Base-X mode. 1944 */ 1945 static int genphy_c37_config_advert(struct phy_device *phydev) 1946 { 1947 u16 adv = 0; 1948 1949 /* Only allow advertising what this PHY supports */ 1950 linkmode_and(phydev->advertising, phydev->advertising, 1951 phydev->supported); 1952 1953 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1954 phydev->advertising)) 1955 adv |= ADVERTISE_1000XFULL; 1956 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1957 phydev->advertising)) 1958 adv |= ADVERTISE_1000XPAUSE; 1959 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1960 phydev->advertising)) 1961 adv |= ADVERTISE_1000XPSE_ASYM; 1962 1963 return phy_modify_changed(phydev, MII_ADVERTISE, 1964 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1965 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1966 adv); 1967 } 1968 1969 /** 1970 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1971 * @phydev: target phy_device struct 1972 * 1973 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1974 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1975 * changed, and 1 if it has changed. 1976 */ 1977 int genphy_config_eee_advert(struct phy_device *phydev) 1978 { 1979 int err; 1980 1981 /* Nothing to disable */ 1982 if (!phydev->eee_broken_modes) 1983 return 0; 1984 1985 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1986 phydev->eee_broken_modes, 0); 1987 /* If the call failed, we assume that EEE is not supported */ 1988 return err < 0 ? 0 : err; 1989 } 1990 EXPORT_SYMBOL(genphy_config_eee_advert); 1991 1992 /** 1993 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1994 * @phydev: target phy_device struct 1995 * 1996 * Description: Configures MII_BMCR to force speed/duplex 1997 * to the values in phydev. Assumes that the values are valid. 1998 * Please see phy_sanitize_settings(). 1999 */ 2000 int genphy_setup_forced(struct phy_device *phydev) 2001 { 2002 u16 ctl = 0; 2003 2004 phydev->pause = 0; 2005 phydev->asym_pause = 0; 2006 2007 if (SPEED_1000 == phydev->speed) 2008 ctl |= BMCR_SPEED1000; 2009 else if (SPEED_100 == phydev->speed) 2010 ctl |= BMCR_SPEED100; 2011 2012 if (DUPLEX_FULL == phydev->duplex) 2013 ctl |= BMCR_FULLDPLX; 2014 2015 return phy_modify(phydev, MII_BMCR, 2016 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2017 } 2018 EXPORT_SYMBOL(genphy_setup_forced); 2019 2020 static int genphy_setup_master_slave(struct phy_device *phydev) 2021 { 2022 u16 ctl = 0; 2023 2024 if (!phydev->is_gigabit_capable) 2025 return 0; 2026 2027 switch (phydev->master_slave_set) { 2028 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2029 ctl |= CTL1000_PREFER_MASTER; 2030 break; 2031 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2032 break; 2033 case MASTER_SLAVE_CFG_MASTER_FORCE: 2034 ctl |= CTL1000_AS_MASTER; 2035 fallthrough; 2036 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2037 ctl |= CTL1000_ENABLE_MASTER; 2038 break; 2039 case MASTER_SLAVE_CFG_UNKNOWN: 2040 case MASTER_SLAVE_CFG_UNSUPPORTED: 2041 return 0; 2042 default: 2043 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2044 return -EOPNOTSUPP; 2045 } 2046 2047 return phy_modify_changed(phydev, MII_CTRL1000, 2048 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2049 CTL1000_PREFER_MASTER), ctl); 2050 } 2051 2052 static int genphy_read_master_slave(struct phy_device *phydev) 2053 { 2054 int cfg, state; 2055 int val; 2056 2057 if (!phydev->is_gigabit_capable) { 2058 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2059 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2060 return 0; 2061 } 2062 2063 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2064 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2065 2066 val = phy_read(phydev, MII_CTRL1000); 2067 if (val < 0) 2068 return val; 2069 2070 if (val & CTL1000_ENABLE_MASTER) { 2071 if (val & CTL1000_AS_MASTER) 2072 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2073 else 2074 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2075 } else { 2076 if (val & CTL1000_PREFER_MASTER) 2077 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2078 else 2079 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2080 } 2081 2082 val = phy_read(phydev, MII_STAT1000); 2083 if (val < 0) 2084 return val; 2085 2086 if (val & LPA_1000MSFAIL) { 2087 state = MASTER_SLAVE_STATE_ERR; 2088 } else if (phydev->link) { 2089 /* this bits are valid only for active link */ 2090 if (val & LPA_1000MSRES) 2091 state = MASTER_SLAVE_STATE_MASTER; 2092 else 2093 state = MASTER_SLAVE_STATE_SLAVE; 2094 } else { 2095 state = MASTER_SLAVE_STATE_UNKNOWN; 2096 } 2097 2098 phydev->master_slave_get = cfg; 2099 phydev->master_slave_state = state; 2100 2101 return 0; 2102 } 2103 2104 /** 2105 * genphy_restart_aneg - Enable and Restart Autonegotiation 2106 * @phydev: target phy_device struct 2107 */ 2108 int genphy_restart_aneg(struct phy_device *phydev) 2109 { 2110 /* Don't isolate the PHY if we're negotiating */ 2111 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2112 BMCR_ANENABLE | BMCR_ANRESTART); 2113 } 2114 EXPORT_SYMBOL(genphy_restart_aneg); 2115 2116 /** 2117 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2118 * @phydev: target phy_device struct 2119 * @restart: whether aneg restart is requested 2120 * 2121 * Check, and restart auto-negotiation if needed. 2122 */ 2123 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2124 { 2125 int ret; 2126 2127 if (!restart) { 2128 /* Advertisement hasn't changed, but maybe aneg was never on to 2129 * begin with? Or maybe phy was isolated? 2130 */ 2131 ret = phy_read(phydev, MII_BMCR); 2132 if (ret < 0) 2133 return ret; 2134 2135 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2136 restart = true; 2137 } 2138 2139 if (restart) 2140 return genphy_restart_aneg(phydev); 2141 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2145 2146 /** 2147 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2148 * @phydev: target phy_device struct 2149 * @changed: whether autoneg is requested 2150 * 2151 * Description: If auto-negotiation is enabled, we configure the 2152 * advertising, and then restart auto-negotiation. If it is not 2153 * enabled, then we write the BMCR. 2154 */ 2155 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2156 { 2157 int err; 2158 2159 if (genphy_config_eee_advert(phydev)) 2160 changed = true; 2161 2162 err = genphy_setup_master_slave(phydev); 2163 if (err < 0) 2164 return err; 2165 else if (err) 2166 changed = true; 2167 2168 if (AUTONEG_ENABLE != phydev->autoneg) 2169 return genphy_setup_forced(phydev); 2170 2171 err = genphy_config_advert(phydev); 2172 if (err < 0) /* error */ 2173 return err; 2174 else if (err) 2175 changed = true; 2176 2177 return genphy_check_and_restart_aneg(phydev, changed); 2178 } 2179 EXPORT_SYMBOL(__genphy_config_aneg); 2180 2181 /** 2182 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2183 * @phydev: target phy_device struct 2184 * 2185 * Description: If auto-negotiation is enabled, we configure the 2186 * advertising, and then restart auto-negotiation. If it is not 2187 * enabled, then we write the BMCR. This function is intended 2188 * for use with Clause 37 1000Base-X mode. 2189 */ 2190 int genphy_c37_config_aneg(struct phy_device *phydev) 2191 { 2192 int err, changed; 2193 2194 if (phydev->autoneg != AUTONEG_ENABLE) 2195 return genphy_setup_forced(phydev); 2196 2197 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2198 BMCR_SPEED1000); 2199 if (err) 2200 return err; 2201 2202 changed = genphy_c37_config_advert(phydev); 2203 if (changed < 0) /* error */ 2204 return changed; 2205 2206 if (!changed) { 2207 /* Advertisement hasn't changed, but maybe aneg was never on to 2208 * begin with? Or maybe phy was isolated? 2209 */ 2210 int ctl = phy_read(phydev, MII_BMCR); 2211 2212 if (ctl < 0) 2213 return ctl; 2214 2215 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2216 changed = 1; /* do restart aneg */ 2217 } 2218 2219 /* Only restart aneg if we are advertising something different 2220 * than we were before. 2221 */ 2222 if (changed > 0) 2223 return genphy_restart_aneg(phydev); 2224 2225 return 0; 2226 } 2227 EXPORT_SYMBOL(genphy_c37_config_aneg); 2228 2229 /** 2230 * genphy_aneg_done - return auto-negotiation status 2231 * @phydev: target phy_device struct 2232 * 2233 * Description: Reads the status register and returns 0 either if 2234 * auto-negotiation is incomplete, or if there was an error. 2235 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2236 */ 2237 int genphy_aneg_done(struct phy_device *phydev) 2238 { 2239 int retval = phy_read(phydev, MII_BMSR); 2240 2241 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2242 } 2243 EXPORT_SYMBOL(genphy_aneg_done); 2244 2245 /** 2246 * genphy_update_link - update link status in @phydev 2247 * @phydev: target phy_device struct 2248 * 2249 * Description: Update the value in phydev->link to reflect the 2250 * current link value. In order to do this, we need to read 2251 * the status register twice, keeping the second value. 2252 */ 2253 int genphy_update_link(struct phy_device *phydev) 2254 { 2255 int status = 0, bmcr; 2256 2257 bmcr = phy_read(phydev, MII_BMCR); 2258 if (bmcr < 0) 2259 return bmcr; 2260 2261 /* Autoneg is being started, therefore disregard BMSR value and 2262 * report link as down. 2263 */ 2264 if (bmcr & BMCR_ANRESTART) 2265 goto done; 2266 2267 /* The link state is latched low so that momentary link 2268 * drops can be detected. Do not double-read the status 2269 * in polling mode to detect such short link drops except 2270 * the link was already down. 2271 */ 2272 if (!phy_polling_mode(phydev) || !phydev->link) { 2273 status = phy_read(phydev, MII_BMSR); 2274 if (status < 0) 2275 return status; 2276 else if (status & BMSR_LSTATUS) 2277 goto done; 2278 } 2279 2280 /* Read link and autonegotiation status */ 2281 status = phy_read(phydev, MII_BMSR); 2282 if (status < 0) 2283 return status; 2284 done: 2285 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2286 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2287 2288 /* Consider the case that autoneg was started and "aneg complete" 2289 * bit has been reset, but "link up" bit not yet. 2290 */ 2291 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2292 phydev->link = 0; 2293 2294 return 0; 2295 } 2296 EXPORT_SYMBOL(genphy_update_link); 2297 2298 int genphy_read_lpa(struct phy_device *phydev) 2299 { 2300 int lpa, lpagb; 2301 2302 if (phydev->autoneg == AUTONEG_ENABLE) { 2303 if (!phydev->autoneg_complete) { 2304 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2305 0); 2306 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2307 return 0; 2308 } 2309 2310 if (phydev->is_gigabit_capable) { 2311 lpagb = phy_read(phydev, MII_STAT1000); 2312 if (lpagb < 0) 2313 return lpagb; 2314 2315 if (lpagb & LPA_1000MSFAIL) { 2316 int adv = phy_read(phydev, MII_CTRL1000); 2317 2318 if (adv < 0) 2319 return adv; 2320 2321 if (adv & CTL1000_ENABLE_MASTER) 2322 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2323 else 2324 phydev_err(phydev, "Master/Slave resolution failed\n"); 2325 return -ENOLINK; 2326 } 2327 2328 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2329 lpagb); 2330 } 2331 2332 lpa = phy_read(phydev, MII_LPA); 2333 if (lpa < 0) 2334 return lpa; 2335 2336 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2337 } else { 2338 linkmode_zero(phydev->lp_advertising); 2339 } 2340 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(genphy_read_lpa); 2344 2345 /** 2346 * genphy_read_status_fixed - read the link parameters for !aneg mode 2347 * @phydev: target phy_device struct 2348 * 2349 * Read the current duplex and speed state for a PHY operating with 2350 * autonegotiation disabled. 2351 */ 2352 int genphy_read_status_fixed(struct phy_device *phydev) 2353 { 2354 int bmcr = phy_read(phydev, MII_BMCR); 2355 2356 if (bmcr < 0) 2357 return bmcr; 2358 2359 if (bmcr & BMCR_FULLDPLX) 2360 phydev->duplex = DUPLEX_FULL; 2361 else 2362 phydev->duplex = DUPLEX_HALF; 2363 2364 if (bmcr & BMCR_SPEED1000) 2365 phydev->speed = SPEED_1000; 2366 else if (bmcr & BMCR_SPEED100) 2367 phydev->speed = SPEED_100; 2368 else 2369 phydev->speed = SPEED_10; 2370 2371 return 0; 2372 } 2373 EXPORT_SYMBOL(genphy_read_status_fixed); 2374 2375 /** 2376 * genphy_read_status - check the link status and update current link state 2377 * @phydev: target phy_device struct 2378 * 2379 * Description: Check the link, then figure out the current state 2380 * by comparing what we advertise with what the link partner 2381 * advertises. Start by checking the gigabit possibilities, 2382 * then move on to 10/100. 2383 */ 2384 int genphy_read_status(struct phy_device *phydev) 2385 { 2386 int err, old_link = phydev->link; 2387 2388 /* Update the link, but return if there was an error */ 2389 err = genphy_update_link(phydev); 2390 if (err) 2391 return err; 2392 2393 /* why bother the PHY if nothing can have changed */ 2394 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2395 return 0; 2396 2397 phydev->speed = SPEED_UNKNOWN; 2398 phydev->duplex = DUPLEX_UNKNOWN; 2399 phydev->pause = 0; 2400 phydev->asym_pause = 0; 2401 2402 err = genphy_read_master_slave(phydev); 2403 if (err < 0) 2404 return err; 2405 2406 err = genphy_read_lpa(phydev); 2407 if (err < 0) 2408 return err; 2409 2410 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2411 phy_resolve_aneg_linkmode(phydev); 2412 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2413 err = genphy_read_status_fixed(phydev); 2414 if (err < 0) 2415 return err; 2416 } 2417 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(genphy_read_status); 2421 2422 /** 2423 * genphy_c37_read_status - check the link status and update current link state 2424 * @phydev: target phy_device struct 2425 * 2426 * Description: Check the link, then figure out the current state 2427 * by comparing what we advertise with what the link partner 2428 * advertises. This function is for Clause 37 1000Base-X mode. 2429 */ 2430 int genphy_c37_read_status(struct phy_device *phydev) 2431 { 2432 int lpa, err, old_link = phydev->link; 2433 2434 /* Update the link, but return if there was an error */ 2435 err = genphy_update_link(phydev); 2436 if (err) 2437 return err; 2438 2439 /* why bother the PHY if nothing can have changed */ 2440 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2441 return 0; 2442 2443 phydev->duplex = DUPLEX_UNKNOWN; 2444 phydev->pause = 0; 2445 phydev->asym_pause = 0; 2446 2447 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2448 lpa = phy_read(phydev, MII_LPA); 2449 if (lpa < 0) 2450 return lpa; 2451 2452 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2453 phydev->lp_advertising, lpa & LPA_LPACK); 2454 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2455 phydev->lp_advertising, lpa & LPA_1000XFULL); 2456 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2457 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2458 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2459 phydev->lp_advertising, 2460 lpa & LPA_1000XPAUSE_ASYM); 2461 2462 phy_resolve_aneg_linkmode(phydev); 2463 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2464 int bmcr = phy_read(phydev, MII_BMCR); 2465 2466 if (bmcr < 0) 2467 return bmcr; 2468 2469 if (bmcr & BMCR_FULLDPLX) 2470 phydev->duplex = DUPLEX_FULL; 2471 else 2472 phydev->duplex = DUPLEX_HALF; 2473 } 2474 2475 return 0; 2476 } 2477 EXPORT_SYMBOL(genphy_c37_read_status); 2478 2479 /** 2480 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2481 * @phydev: target phy_device struct 2482 * 2483 * Description: Perform a software PHY reset using the standard 2484 * BMCR_RESET bit and poll for the reset bit to be cleared. 2485 * 2486 * Returns: 0 on success, < 0 on failure 2487 */ 2488 int genphy_soft_reset(struct phy_device *phydev) 2489 { 2490 u16 res = BMCR_RESET; 2491 int ret; 2492 2493 if (phydev->autoneg == AUTONEG_ENABLE) 2494 res |= BMCR_ANRESTART; 2495 2496 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2497 if (ret < 0) 2498 return ret; 2499 2500 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2501 * to their default value. Therefore the POWER DOWN bit is supposed to 2502 * be cleared after soft reset. 2503 */ 2504 phydev->suspended = 0; 2505 2506 ret = phy_poll_reset(phydev); 2507 if (ret) 2508 return ret; 2509 2510 /* BMCR may be reset to defaults */ 2511 if (phydev->autoneg == AUTONEG_DISABLE) 2512 ret = genphy_setup_forced(phydev); 2513 2514 return ret; 2515 } 2516 EXPORT_SYMBOL(genphy_soft_reset); 2517 2518 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2519 { 2520 /* It seems there are cases where the interrupts are handled by another 2521 * entity (ie an IRQ controller embedded inside the PHY) and do not 2522 * need any other interraction from phylib. In this case, just trigger 2523 * the state machine directly. 2524 */ 2525 phy_trigger_machine(phydev); 2526 2527 return 0; 2528 } 2529 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2530 2531 /** 2532 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2533 * @phydev: target phy_device struct 2534 * 2535 * Description: Reads the PHY's abilities and populates 2536 * phydev->supported accordingly. 2537 * 2538 * Returns: 0 on success, < 0 on failure 2539 */ 2540 int genphy_read_abilities(struct phy_device *phydev) 2541 { 2542 int val; 2543 2544 linkmode_set_bit_array(phy_basic_ports_array, 2545 ARRAY_SIZE(phy_basic_ports_array), 2546 phydev->supported); 2547 2548 val = phy_read(phydev, MII_BMSR); 2549 if (val < 0) 2550 return val; 2551 2552 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2553 val & BMSR_ANEGCAPABLE); 2554 2555 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2556 val & BMSR_100FULL); 2557 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2558 val & BMSR_100HALF); 2559 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2560 val & BMSR_10FULL); 2561 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2562 val & BMSR_10HALF); 2563 2564 if (val & BMSR_ESTATEN) { 2565 val = phy_read(phydev, MII_ESTATUS); 2566 if (val < 0) 2567 return val; 2568 2569 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2570 phydev->supported, val & ESTATUS_1000_TFULL); 2571 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2572 phydev->supported, val & ESTATUS_1000_THALF); 2573 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2574 phydev->supported, val & ESTATUS_1000_XFULL); 2575 } 2576 2577 return 0; 2578 } 2579 EXPORT_SYMBOL(genphy_read_abilities); 2580 2581 /* This is used for the phy device which doesn't support the MMD extended 2582 * register access, but it does have side effect when we are trying to access 2583 * the MMD register via indirect method. 2584 */ 2585 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2586 { 2587 return -EOPNOTSUPP; 2588 } 2589 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2590 2591 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2592 u16 regnum, u16 val) 2593 { 2594 return -EOPNOTSUPP; 2595 } 2596 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2597 2598 int genphy_suspend(struct phy_device *phydev) 2599 { 2600 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2601 } 2602 EXPORT_SYMBOL(genphy_suspend); 2603 2604 int genphy_resume(struct phy_device *phydev) 2605 { 2606 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2607 } 2608 EXPORT_SYMBOL(genphy_resume); 2609 2610 int genphy_loopback(struct phy_device *phydev, bool enable) 2611 { 2612 if (enable) { 2613 u16 val, ctl = BMCR_LOOPBACK; 2614 int ret; 2615 2616 if (phydev->speed == SPEED_1000) 2617 ctl |= BMCR_SPEED1000; 2618 else if (phydev->speed == SPEED_100) 2619 ctl |= BMCR_SPEED100; 2620 2621 if (phydev->duplex == DUPLEX_FULL) 2622 ctl |= BMCR_FULLDPLX; 2623 2624 phy_modify(phydev, MII_BMCR, ~0, ctl); 2625 2626 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2627 val & BMSR_LSTATUS, 2628 5000, 500000, true); 2629 if (ret) 2630 return ret; 2631 } else { 2632 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2633 2634 phy_config_aneg(phydev); 2635 } 2636 2637 return 0; 2638 } 2639 EXPORT_SYMBOL(genphy_loopback); 2640 2641 /** 2642 * phy_remove_link_mode - Remove a supported link mode 2643 * @phydev: phy_device structure to remove link mode from 2644 * @link_mode: Link mode to be removed 2645 * 2646 * Description: Some MACs don't support all link modes which the PHY 2647 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2648 * to remove a link mode. 2649 */ 2650 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2651 { 2652 linkmode_clear_bit(link_mode, phydev->supported); 2653 phy_advertise_supported(phydev); 2654 } 2655 EXPORT_SYMBOL(phy_remove_link_mode); 2656 2657 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2658 { 2659 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2660 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2661 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2662 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2663 } 2664 2665 /** 2666 * phy_advertise_supported - Advertise all supported modes 2667 * @phydev: target phy_device struct 2668 * 2669 * Description: Called to advertise all supported modes, doesn't touch 2670 * pause mode advertising. 2671 */ 2672 void phy_advertise_supported(struct phy_device *phydev) 2673 { 2674 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2675 2676 linkmode_copy(new, phydev->supported); 2677 phy_copy_pause_bits(new, phydev->advertising); 2678 linkmode_copy(phydev->advertising, new); 2679 } 2680 EXPORT_SYMBOL(phy_advertise_supported); 2681 2682 /** 2683 * phy_support_sym_pause - Enable support of symmetrical pause 2684 * @phydev: target phy_device struct 2685 * 2686 * Description: Called by the MAC to indicate is supports symmetrical 2687 * Pause, but not asym pause. 2688 */ 2689 void phy_support_sym_pause(struct phy_device *phydev) 2690 { 2691 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2692 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2693 } 2694 EXPORT_SYMBOL(phy_support_sym_pause); 2695 2696 /** 2697 * phy_support_asym_pause - Enable support of asym pause 2698 * @phydev: target phy_device struct 2699 * 2700 * Description: Called by the MAC to indicate is supports Asym Pause. 2701 */ 2702 void phy_support_asym_pause(struct phy_device *phydev) 2703 { 2704 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2705 } 2706 EXPORT_SYMBOL(phy_support_asym_pause); 2707 2708 /** 2709 * phy_set_sym_pause - Configure symmetric Pause 2710 * @phydev: target phy_device struct 2711 * @rx: Receiver Pause is supported 2712 * @tx: Transmit Pause is supported 2713 * @autoneg: Auto neg should be used 2714 * 2715 * Description: Configure advertised Pause support depending on if 2716 * receiver pause and pause auto neg is supported. Generally called 2717 * from the set_pauseparam .ndo. 2718 */ 2719 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2720 bool autoneg) 2721 { 2722 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2723 2724 if (rx && tx && autoneg) 2725 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2726 phydev->supported); 2727 2728 linkmode_copy(phydev->advertising, phydev->supported); 2729 } 2730 EXPORT_SYMBOL(phy_set_sym_pause); 2731 2732 /** 2733 * phy_set_asym_pause - Configure Pause and Asym Pause 2734 * @phydev: target phy_device struct 2735 * @rx: Receiver Pause is supported 2736 * @tx: Transmit Pause is supported 2737 * 2738 * Description: Configure advertised Pause support depending on if 2739 * transmit and receiver pause is supported. If there has been a 2740 * change in adverting, trigger a new autoneg. Generally called from 2741 * the set_pauseparam .ndo. 2742 */ 2743 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2744 { 2745 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2746 2747 linkmode_copy(oldadv, phydev->advertising); 2748 linkmode_set_pause(phydev->advertising, tx, rx); 2749 2750 if (!linkmode_equal(oldadv, phydev->advertising) && 2751 phydev->autoneg) 2752 phy_start_aneg(phydev); 2753 } 2754 EXPORT_SYMBOL(phy_set_asym_pause); 2755 2756 /** 2757 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2758 * @phydev: phy_device struct 2759 * @pp: requested pause configuration 2760 * 2761 * Description: Test if the PHY/MAC combination supports the Pause 2762 * configuration the user is requesting. Returns True if it is 2763 * supported, false otherwise. 2764 */ 2765 bool phy_validate_pause(struct phy_device *phydev, 2766 struct ethtool_pauseparam *pp) 2767 { 2768 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2769 phydev->supported) && pp->rx_pause) 2770 return false; 2771 2772 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2773 phydev->supported) && 2774 pp->rx_pause != pp->tx_pause) 2775 return false; 2776 2777 return true; 2778 } 2779 EXPORT_SYMBOL(phy_validate_pause); 2780 2781 /** 2782 * phy_get_pause - resolve negotiated pause modes 2783 * @phydev: phy_device struct 2784 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2785 * enabled. 2786 * @rx_pause: pointer to bool to indicate whether receive pause should be 2787 * enabled. 2788 * 2789 * Resolve and return the flow control modes according to the negotiation 2790 * result. This includes checking that we are operating in full duplex mode. 2791 * See linkmode_resolve_pause() for further details. 2792 */ 2793 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2794 { 2795 if (phydev->duplex != DUPLEX_FULL) { 2796 *tx_pause = false; 2797 *rx_pause = false; 2798 return; 2799 } 2800 2801 return linkmode_resolve_pause(phydev->advertising, 2802 phydev->lp_advertising, 2803 tx_pause, rx_pause); 2804 } 2805 EXPORT_SYMBOL(phy_get_pause); 2806 2807 #if IS_ENABLED(CONFIG_OF_MDIO) 2808 static int phy_get_int_delay_property(struct device *dev, const char *name) 2809 { 2810 s32 int_delay; 2811 int ret; 2812 2813 ret = device_property_read_u32(dev, name, &int_delay); 2814 if (ret) 2815 return ret; 2816 2817 return int_delay; 2818 } 2819 #else 2820 static int phy_get_int_delay_property(struct device *dev, const char *name) 2821 { 2822 return -EINVAL; 2823 } 2824 #endif 2825 2826 /** 2827 * phy_get_internal_delay - returns the index of the internal delay 2828 * @phydev: phy_device struct 2829 * @dev: pointer to the devices device struct 2830 * @delay_values: array of delays the PHY supports 2831 * @size: the size of the delay array 2832 * @is_rx: boolean to indicate to get the rx internal delay 2833 * 2834 * Returns the index within the array of internal delay passed in. 2835 * If the device property is not present then the interface type is checked 2836 * if the interface defines use of internal delay then a 1 is returned otherwise 2837 * a 0 is returned. 2838 * The array must be in ascending order. If PHY does not have an ascending order 2839 * array then size = 0 and the value of the delay property is returned. 2840 * Return -EINVAL if the delay is invalid or cannot be found. 2841 */ 2842 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2843 const int *delay_values, int size, bool is_rx) 2844 { 2845 s32 delay; 2846 int i; 2847 2848 if (is_rx) { 2849 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2850 if (delay < 0 && size == 0) { 2851 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2852 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2853 return 1; 2854 else 2855 return 0; 2856 } 2857 2858 } else { 2859 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2860 if (delay < 0 && size == 0) { 2861 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2862 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2863 return 1; 2864 else 2865 return 0; 2866 } 2867 } 2868 2869 if (delay < 0) 2870 return delay; 2871 2872 if (delay && size == 0) 2873 return delay; 2874 2875 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2876 phydev_err(phydev, "Delay %d is out of range\n", delay); 2877 return -EINVAL; 2878 } 2879 2880 if (delay == delay_values[0]) 2881 return 0; 2882 2883 for (i = 1; i < size; i++) { 2884 if (delay == delay_values[i]) 2885 return i; 2886 2887 /* Find an approximate index by looking up the table */ 2888 if (delay > delay_values[i - 1] && 2889 delay < delay_values[i]) { 2890 if (delay - delay_values[i - 1] < 2891 delay_values[i] - delay) 2892 return i - 1; 2893 else 2894 return i; 2895 } 2896 } 2897 2898 phydev_err(phydev, "error finding internal delay index for %d\n", 2899 delay); 2900 2901 return -EINVAL; 2902 } 2903 EXPORT_SYMBOL(phy_get_internal_delay); 2904 2905 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2906 { 2907 return phydrv->config_intr && phydrv->handle_interrupt; 2908 } 2909 2910 /** 2911 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2912 * @fwnode: pointer to the mdio_device's fwnode 2913 * 2914 * If successful, returns a pointer to the mdio_device with the embedded 2915 * struct device refcount incremented by one, or NULL on failure. 2916 * The caller should call put_device() on the mdio_device after its use. 2917 */ 2918 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2919 { 2920 struct device *d; 2921 2922 if (!fwnode) 2923 return NULL; 2924 2925 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2926 if (!d) 2927 return NULL; 2928 2929 return to_mdio_device(d); 2930 } 2931 EXPORT_SYMBOL(fwnode_mdio_find_device); 2932 2933 /** 2934 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2935 * 2936 * @phy_fwnode: Pointer to the phy's fwnode. 2937 * 2938 * If successful, returns a pointer to the phy_device with the embedded 2939 * struct device refcount incremented by one, or NULL on failure. 2940 */ 2941 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2942 { 2943 struct mdio_device *mdiodev; 2944 2945 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2946 if (!mdiodev) 2947 return NULL; 2948 2949 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2950 return to_phy_device(&mdiodev->dev); 2951 2952 put_device(&mdiodev->dev); 2953 2954 return NULL; 2955 } 2956 EXPORT_SYMBOL(fwnode_phy_find_device); 2957 2958 /** 2959 * device_phy_find_device - For the given device, get the phy_device 2960 * @dev: Pointer to the given device 2961 * 2962 * Refer return conditions of fwnode_phy_find_device(). 2963 */ 2964 struct phy_device *device_phy_find_device(struct device *dev) 2965 { 2966 return fwnode_phy_find_device(dev_fwnode(dev)); 2967 } 2968 EXPORT_SYMBOL_GPL(device_phy_find_device); 2969 2970 /** 2971 * fwnode_get_phy_node - Get the phy_node using the named reference. 2972 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2973 * 2974 * Refer return conditions of fwnode_find_reference(). 2975 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2976 * and "phy-device" are not supported in ACPI. DT supports all the three 2977 * named references to the phy node. 2978 */ 2979 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 2980 { 2981 struct fwnode_handle *phy_node; 2982 2983 /* Only phy-handle is used for ACPI */ 2984 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 2985 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 2986 return phy_node; 2987 phy_node = fwnode_find_reference(fwnode, "phy", 0); 2988 if (IS_ERR(phy_node)) 2989 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 2990 return phy_node; 2991 } 2992 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 2993 2994 /** 2995 * phy_probe - probe and init a PHY device 2996 * @dev: device to probe and init 2997 * 2998 * Description: Take care of setting up the phy_device structure, 2999 * set the state to READY (the driver's init function should 3000 * set it to STARTING if needed). 3001 */ 3002 static int phy_probe(struct device *dev) 3003 { 3004 struct phy_device *phydev = to_phy_device(dev); 3005 struct device_driver *drv = phydev->mdio.dev.driver; 3006 struct phy_driver *phydrv = to_phy_driver(drv); 3007 int err = 0; 3008 3009 phydev->drv = phydrv; 3010 3011 /* Disable the interrupt if the PHY doesn't support it 3012 * but the interrupt is still a valid one 3013 */ 3014 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3015 phydev->irq = PHY_POLL; 3016 3017 if (phydrv->flags & PHY_IS_INTERNAL) 3018 phydev->is_internal = true; 3019 3020 mutex_lock(&phydev->lock); 3021 3022 /* Deassert the reset signal */ 3023 phy_device_reset(phydev, 0); 3024 3025 if (phydev->drv->probe) { 3026 err = phydev->drv->probe(phydev); 3027 if (err) 3028 goto out; 3029 } 3030 3031 /* Start out supporting everything. Eventually, 3032 * a controller will attach, and may modify one 3033 * or both of these values 3034 */ 3035 if (phydrv->features) 3036 linkmode_copy(phydev->supported, phydrv->features); 3037 else if (phydrv->get_features) 3038 err = phydrv->get_features(phydev); 3039 else if (phydev->is_c45) 3040 err = genphy_c45_pma_read_abilities(phydev); 3041 else 3042 err = genphy_read_abilities(phydev); 3043 3044 if (err) 3045 goto out; 3046 3047 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3048 phydev->supported)) 3049 phydev->autoneg = 0; 3050 3051 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3052 phydev->supported)) 3053 phydev->is_gigabit_capable = 1; 3054 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3055 phydev->supported)) 3056 phydev->is_gigabit_capable = 1; 3057 3058 of_set_phy_supported(phydev); 3059 phy_advertise_supported(phydev); 3060 3061 /* Get the EEE modes we want to prohibit. We will ask 3062 * the PHY stop advertising these mode later on 3063 */ 3064 of_set_phy_eee_broken(phydev); 3065 3066 /* The Pause Frame bits indicate that the PHY can support passing 3067 * pause frames. During autonegotiation, the PHYs will determine if 3068 * they should allow pause frames to pass. The MAC driver should then 3069 * use that result to determine whether to enable flow control via 3070 * pause frames. 3071 * 3072 * Normally, PHY drivers should not set the Pause bits, and instead 3073 * allow phylib to do that. However, there may be some situations 3074 * (e.g. hardware erratum) where the driver wants to set only one 3075 * of these bits. 3076 */ 3077 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3078 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3079 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3080 phydev->supported); 3081 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3082 phydev->supported); 3083 } 3084 3085 /* Set the state to READY by default */ 3086 phydev->state = PHY_READY; 3087 3088 out: 3089 /* Assert the reset signal */ 3090 if (err) 3091 phy_device_reset(phydev, 1); 3092 3093 mutex_unlock(&phydev->lock); 3094 3095 return err; 3096 } 3097 3098 static int phy_remove(struct device *dev) 3099 { 3100 struct phy_device *phydev = to_phy_device(dev); 3101 3102 cancel_delayed_work_sync(&phydev->state_queue); 3103 3104 mutex_lock(&phydev->lock); 3105 phydev->state = PHY_DOWN; 3106 mutex_unlock(&phydev->lock); 3107 3108 sfp_bus_del_upstream(phydev->sfp_bus); 3109 phydev->sfp_bus = NULL; 3110 3111 if (phydev->drv && phydev->drv->remove) 3112 phydev->drv->remove(phydev); 3113 3114 /* Assert the reset signal */ 3115 phy_device_reset(phydev, 1); 3116 3117 phydev->drv = NULL; 3118 3119 return 0; 3120 } 3121 3122 static void phy_shutdown(struct device *dev) 3123 { 3124 struct phy_device *phydev = to_phy_device(dev); 3125 3126 phy_disable_interrupts(phydev); 3127 } 3128 3129 /** 3130 * phy_driver_register - register a phy_driver with the PHY layer 3131 * @new_driver: new phy_driver to register 3132 * @owner: module owning this PHY 3133 */ 3134 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3135 { 3136 int retval; 3137 3138 /* Either the features are hard coded, or dynamically 3139 * determined. It cannot be both. 3140 */ 3141 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3142 pr_err("%s: features and get_features must not both be set\n", 3143 new_driver->name); 3144 return -EINVAL; 3145 } 3146 3147 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3148 new_driver->mdiodrv.driver.name = new_driver->name; 3149 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3150 new_driver->mdiodrv.driver.probe = phy_probe; 3151 new_driver->mdiodrv.driver.remove = phy_remove; 3152 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3153 new_driver->mdiodrv.driver.owner = owner; 3154 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3155 3156 retval = driver_register(&new_driver->mdiodrv.driver); 3157 if (retval) { 3158 pr_err("%s: Error %d in registering driver\n", 3159 new_driver->name, retval); 3160 3161 return retval; 3162 } 3163 3164 pr_debug("%s: Registered new driver\n", new_driver->name); 3165 3166 return 0; 3167 } 3168 EXPORT_SYMBOL(phy_driver_register); 3169 3170 int phy_drivers_register(struct phy_driver *new_driver, int n, 3171 struct module *owner) 3172 { 3173 int i, ret = 0; 3174 3175 for (i = 0; i < n; i++) { 3176 ret = phy_driver_register(new_driver + i, owner); 3177 if (ret) { 3178 while (i-- > 0) 3179 phy_driver_unregister(new_driver + i); 3180 break; 3181 } 3182 } 3183 return ret; 3184 } 3185 EXPORT_SYMBOL(phy_drivers_register); 3186 3187 void phy_driver_unregister(struct phy_driver *drv) 3188 { 3189 driver_unregister(&drv->mdiodrv.driver); 3190 } 3191 EXPORT_SYMBOL(phy_driver_unregister); 3192 3193 void phy_drivers_unregister(struct phy_driver *drv, int n) 3194 { 3195 int i; 3196 3197 for (i = 0; i < n; i++) 3198 phy_driver_unregister(drv + i); 3199 } 3200 EXPORT_SYMBOL(phy_drivers_unregister); 3201 3202 static struct phy_driver genphy_driver = { 3203 .phy_id = 0xffffffff, 3204 .phy_id_mask = 0xffffffff, 3205 .name = "Generic PHY", 3206 .get_features = genphy_read_abilities, 3207 .suspend = genphy_suspend, 3208 .resume = genphy_resume, 3209 .set_loopback = genphy_loopback, 3210 }; 3211 3212 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3213 .get_sset_count = phy_ethtool_get_sset_count, 3214 .get_strings = phy_ethtool_get_strings, 3215 .get_stats = phy_ethtool_get_stats, 3216 .start_cable_test = phy_start_cable_test, 3217 .start_cable_test_tdr = phy_start_cable_test_tdr, 3218 }; 3219 3220 static int __init phy_init(void) 3221 { 3222 int rc; 3223 3224 rc = mdio_bus_init(); 3225 if (rc) 3226 return rc; 3227 3228 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3229 features_init(); 3230 3231 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3232 if (rc) 3233 goto err_c45; 3234 3235 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3236 if (rc) { 3237 phy_driver_unregister(&genphy_c45_driver); 3238 err_c45: 3239 mdio_bus_exit(); 3240 } 3241 3242 return rc; 3243 } 3244 3245 static void __exit phy_exit(void) 3246 { 3247 phy_driver_unregister(&genphy_c45_driver); 3248 phy_driver_unregister(&genphy_driver); 3249 mdio_bus_exit(); 3250 ethtool_set_ethtool_phy_ops(NULL); 3251 } 3252 3253 subsys_initcall(phy_init); 3254 module_exit(phy_exit); 3255