xref: /openbmc/linux/drivers/net/phy/phy_device.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mdio.h>
23 #include <linux/mii.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/phy.h>
28 #include <linux/phy_led_triggers.h>
29 #include <linux/property.h>
30 #include <linux/sfp.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/uaccess.h>
35 #include <linux/unistd.h>
36 
37 MODULE_DESCRIPTION("PHY library");
38 MODULE_AUTHOR("Andy Fleming");
39 MODULE_LICENSE("GPL");
40 
41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
42 EXPORT_SYMBOL_GPL(phy_basic_features);
43 
44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
45 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_gbit_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_10gbit_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
61 
62 const int phy_basic_ports_array[3] = {
63 	ETHTOOL_LINK_MODE_Autoneg_BIT,
64 	ETHTOOL_LINK_MODE_TP_BIT,
65 	ETHTOOL_LINK_MODE_MII_BIT,
66 };
67 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
68 
69 const int phy_fibre_port_array[1] = {
70 	ETHTOOL_LINK_MODE_FIBRE_BIT,
71 };
72 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
73 
74 const int phy_all_ports_features_array[7] = {
75 	ETHTOOL_LINK_MODE_Autoneg_BIT,
76 	ETHTOOL_LINK_MODE_TP_BIT,
77 	ETHTOOL_LINK_MODE_MII_BIT,
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 	ETHTOOL_LINK_MODE_AUI_BIT,
80 	ETHTOOL_LINK_MODE_BNC_BIT,
81 	ETHTOOL_LINK_MODE_Backplane_BIT,
82 };
83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
84 
85 const int phy_10_100_features_array[4] = {
86 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
87 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
88 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
89 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
92 
93 const int phy_basic_t1_features_array[2] = {
94 	ETHTOOL_LINK_MODE_TP_BIT,
95 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
96 };
97 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
98 
99 const int phy_gbit_features_array[2] = {
100 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
101 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
102 };
103 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
104 
105 const int phy_10gbit_features_array[1] = {
106 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
107 };
108 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
109 
110 static const int phy_10gbit_fec_features_array[1] = {
111 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
112 };
113 
114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
116 
117 static const int phy_10gbit_full_features_array[] = {
118 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
119 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
120 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 
124 static void features_init(void)
125 {
126 	/* 10/100 half/full*/
127 	linkmode_set_bit_array(phy_basic_ports_array,
128 			       ARRAY_SIZE(phy_basic_ports_array),
129 			       phy_basic_features);
130 	linkmode_set_bit_array(phy_10_100_features_array,
131 			       ARRAY_SIZE(phy_10_100_features_array),
132 			       phy_basic_features);
133 
134 	/* 100 full, TP */
135 	linkmode_set_bit_array(phy_basic_t1_features_array,
136 			       ARRAY_SIZE(phy_basic_t1_features_array),
137 			       phy_basic_t1_features);
138 
139 	/* 10/100 half/full + 1000 half/full */
140 	linkmode_set_bit_array(phy_basic_ports_array,
141 			       ARRAY_SIZE(phy_basic_ports_array),
142 			       phy_gbit_features);
143 	linkmode_set_bit_array(phy_10_100_features_array,
144 			       ARRAY_SIZE(phy_10_100_features_array),
145 			       phy_gbit_features);
146 	linkmode_set_bit_array(phy_gbit_features_array,
147 			       ARRAY_SIZE(phy_gbit_features_array),
148 			       phy_gbit_features);
149 
150 	/* 10/100 half/full + 1000 half/full + fibre*/
151 	linkmode_set_bit_array(phy_basic_ports_array,
152 			       ARRAY_SIZE(phy_basic_ports_array),
153 			       phy_gbit_fibre_features);
154 	linkmode_set_bit_array(phy_10_100_features_array,
155 			       ARRAY_SIZE(phy_10_100_features_array),
156 			       phy_gbit_fibre_features);
157 	linkmode_set_bit_array(phy_gbit_features_array,
158 			       ARRAY_SIZE(phy_gbit_features_array),
159 			       phy_gbit_fibre_features);
160 	linkmode_set_bit_array(phy_fibre_port_array,
161 			       ARRAY_SIZE(phy_fibre_port_array),
162 			       phy_gbit_fibre_features);
163 
164 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
165 	linkmode_set_bit_array(phy_all_ports_features_array,
166 			       ARRAY_SIZE(phy_all_ports_features_array),
167 			       phy_gbit_all_ports_features);
168 	linkmode_set_bit_array(phy_10_100_features_array,
169 			       ARRAY_SIZE(phy_10_100_features_array),
170 			       phy_gbit_all_ports_features);
171 	linkmode_set_bit_array(phy_gbit_features_array,
172 			       ARRAY_SIZE(phy_gbit_features_array),
173 			       phy_gbit_all_ports_features);
174 
175 	/* 10/100 half/full + 1000 half/full + 10G full*/
176 	linkmode_set_bit_array(phy_all_ports_features_array,
177 			       ARRAY_SIZE(phy_all_ports_features_array),
178 			       phy_10gbit_features);
179 	linkmode_set_bit_array(phy_10_100_features_array,
180 			       ARRAY_SIZE(phy_10_100_features_array),
181 			       phy_10gbit_features);
182 	linkmode_set_bit_array(phy_gbit_features_array,
183 			       ARRAY_SIZE(phy_gbit_features_array),
184 			       phy_10gbit_features);
185 	linkmode_set_bit_array(phy_10gbit_features_array,
186 			       ARRAY_SIZE(phy_10gbit_features_array),
187 			       phy_10gbit_features);
188 
189 	/* 10/100/1000/10G full */
190 	linkmode_set_bit_array(phy_all_ports_features_array,
191 			       ARRAY_SIZE(phy_all_ports_features_array),
192 			       phy_10gbit_full_features);
193 	linkmode_set_bit_array(phy_10gbit_full_features_array,
194 			       ARRAY_SIZE(phy_10gbit_full_features_array),
195 			       phy_10gbit_full_features);
196 	/* 10G FEC only */
197 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
198 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
199 			       phy_10gbit_fec_features);
200 }
201 
202 void phy_device_free(struct phy_device *phydev)
203 {
204 	put_device(&phydev->mdio.dev);
205 }
206 EXPORT_SYMBOL(phy_device_free);
207 
208 static void phy_mdio_device_free(struct mdio_device *mdiodev)
209 {
210 	struct phy_device *phydev;
211 
212 	phydev = container_of(mdiodev, struct phy_device, mdio);
213 	phy_device_free(phydev);
214 }
215 
216 static void phy_device_release(struct device *dev)
217 {
218 	kfree(to_phy_device(dev));
219 }
220 
221 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
222 {
223 	struct phy_device *phydev;
224 
225 	phydev = container_of(mdiodev, struct phy_device, mdio);
226 	phy_device_remove(phydev);
227 }
228 
229 static struct phy_driver genphy_driver;
230 
231 static LIST_HEAD(phy_fixup_list);
232 static DEFINE_MUTEX(phy_fixup_lock);
233 
234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
235 {
236 	struct net_device *netdev = phydev->attached_dev;
237 
238 	if (!phydev->drv->suspend)
239 		return false;
240 
241 	/* PHY not attached? May suspend if the PHY has not already been
242 	 * suspended as part of a prior call to phy_disconnect() ->
243 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
244 	 * MDIO bus driver and clock gated at this point.
245 	 */
246 	if (!netdev)
247 		goto out;
248 
249 	if (netdev->wol_enabled)
250 		return false;
251 
252 	/* As long as not all affected network drivers support the
253 	 * wol_enabled flag, let's check for hints that WoL is enabled.
254 	 * Don't suspend PHY if the attached netdev parent may wake up.
255 	 * The parent may point to a PCI device, as in tg3 driver.
256 	 */
257 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
258 		return false;
259 
260 	/* Also don't suspend PHY if the netdev itself may wakeup. This
261 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
262 	 * e.g. SoC devices.
263 	 */
264 	if (device_may_wakeup(&netdev->dev))
265 		return false;
266 
267 out:
268 	return !phydev->suspended;
269 }
270 
271 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
272 {
273 	struct phy_device *phydev = to_phy_device(dev);
274 
275 	if (phydev->mac_managed_pm)
276 		return 0;
277 
278 	/* We must stop the state machine manually, otherwise it stops out of
279 	 * control, possibly with the phydev->lock held. Upon resume, netdev
280 	 * may call phy routines that try to grab the same lock, and that may
281 	 * lead to a deadlock.
282 	 */
283 	if (phydev->attached_dev && phydev->adjust_link)
284 		phy_stop_machine(phydev);
285 
286 	if (!mdio_bus_phy_may_suspend(phydev))
287 		return 0;
288 
289 	phydev->suspended_by_mdio_bus = 1;
290 
291 	return phy_suspend(phydev);
292 }
293 
294 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
295 {
296 	struct phy_device *phydev = to_phy_device(dev);
297 	int ret;
298 
299 	if (phydev->mac_managed_pm)
300 		return 0;
301 
302 	if (!phydev->suspended_by_mdio_bus)
303 		goto no_resume;
304 
305 	phydev->suspended_by_mdio_bus = 0;
306 
307 	ret = phy_init_hw(phydev);
308 	if (ret < 0)
309 		return ret;
310 
311 	ret = phy_resume(phydev);
312 	if (ret < 0)
313 		return ret;
314 no_resume:
315 	if (phydev->attached_dev && phydev->adjust_link)
316 		phy_start_machine(phydev);
317 
318 	return 0;
319 }
320 
321 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
322 			 mdio_bus_phy_resume);
323 
324 /**
325  * phy_register_fixup - creates a new phy_fixup and adds it to the list
326  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
327  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
328  *	It can also be PHY_ANY_UID
329  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
330  *	comparison
331  * @run: The actual code to be run when a matching PHY is found
332  */
333 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
334 		       int (*run)(struct phy_device *))
335 {
336 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
337 
338 	if (!fixup)
339 		return -ENOMEM;
340 
341 	strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
342 	fixup->phy_uid = phy_uid;
343 	fixup->phy_uid_mask = phy_uid_mask;
344 	fixup->run = run;
345 
346 	mutex_lock(&phy_fixup_lock);
347 	list_add_tail(&fixup->list, &phy_fixup_list);
348 	mutex_unlock(&phy_fixup_lock);
349 
350 	return 0;
351 }
352 EXPORT_SYMBOL(phy_register_fixup);
353 
354 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
355 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
356 			       int (*run)(struct phy_device *))
357 {
358 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
359 }
360 EXPORT_SYMBOL(phy_register_fixup_for_uid);
361 
362 /* Registers a fixup to be run on the PHY with id string bus_id */
363 int phy_register_fixup_for_id(const char *bus_id,
364 			      int (*run)(struct phy_device *))
365 {
366 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
367 }
368 EXPORT_SYMBOL(phy_register_fixup_for_id);
369 
370 /**
371  * phy_unregister_fixup - remove a phy_fixup from the list
372  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
373  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
374  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
375  */
376 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
377 {
378 	struct list_head *pos, *n;
379 	struct phy_fixup *fixup;
380 	int ret;
381 
382 	ret = -ENODEV;
383 
384 	mutex_lock(&phy_fixup_lock);
385 	list_for_each_safe(pos, n, &phy_fixup_list) {
386 		fixup = list_entry(pos, struct phy_fixup, list);
387 
388 		if ((!strcmp(fixup->bus_id, bus_id)) &&
389 		    ((fixup->phy_uid & phy_uid_mask) ==
390 		     (phy_uid & phy_uid_mask))) {
391 			list_del(&fixup->list);
392 			kfree(fixup);
393 			ret = 0;
394 			break;
395 		}
396 	}
397 	mutex_unlock(&phy_fixup_lock);
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL(phy_unregister_fixup);
402 
403 /* Unregisters a fixup of any PHY with the UID in phy_uid */
404 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
405 {
406 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
407 }
408 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
409 
410 /* Unregisters a fixup of the PHY with id string bus_id */
411 int phy_unregister_fixup_for_id(const char *bus_id)
412 {
413 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
414 }
415 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
416 
417 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
418  * Fixups can be set to match any in one or more fields.
419  */
420 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
421 {
422 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
423 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
424 			return 0;
425 
426 	if ((fixup->phy_uid & fixup->phy_uid_mask) !=
427 	    (phydev->phy_id & fixup->phy_uid_mask))
428 		if (fixup->phy_uid != PHY_ANY_UID)
429 			return 0;
430 
431 	return 1;
432 }
433 
434 /* Runs any matching fixups for this phydev */
435 static int phy_scan_fixups(struct phy_device *phydev)
436 {
437 	struct phy_fixup *fixup;
438 
439 	mutex_lock(&phy_fixup_lock);
440 	list_for_each_entry(fixup, &phy_fixup_list, list) {
441 		if (phy_needs_fixup(phydev, fixup)) {
442 			int err = fixup->run(phydev);
443 
444 			if (err < 0) {
445 				mutex_unlock(&phy_fixup_lock);
446 				return err;
447 			}
448 			phydev->has_fixups = true;
449 		}
450 	}
451 	mutex_unlock(&phy_fixup_lock);
452 
453 	return 0;
454 }
455 
456 static int phy_bus_match(struct device *dev, struct device_driver *drv)
457 {
458 	struct phy_device *phydev = to_phy_device(dev);
459 	struct phy_driver *phydrv = to_phy_driver(drv);
460 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
461 	int i;
462 
463 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
464 		return 0;
465 
466 	if (phydrv->match_phy_device)
467 		return phydrv->match_phy_device(phydev);
468 
469 	if (phydev->is_c45) {
470 		for (i = 1; i < num_ids; i++) {
471 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
472 				continue;
473 
474 			if ((phydrv->phy_id & phydrv->phy_id_mask) ==
475 			    (phydev->c45_ids.device_ids[i] &
476 			     phydrv->phy_id_mask))
477 				return 1;
478 		}
479 		return 0;
480 	} else {
481 		return (phydrv->phy_id & phydrv->phy_id_mask) ==
482 			(phydev->phy_id & phydrv->phy_id_mask);
483 	}
484 }
485 
486 static ssize_t
487 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
488 {
489 	struct phy_device *phydev = to_phy_device(dev);
490 
491 	return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
492 }
493 static DEVICE_ATTR_RO(phy_id);
494 
495 static ssize_t
496 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
497 {
498 	struct phy_device *phydev = to_phy_device(dev);
499 	const char *mode = NULL;
500 
501 	if (phy_is_internal(phydev))
502 		mode = "internal";
503 	else
504 		mode = phy_modes(phydev->interface);
505 
506 	return sprintf(buf, "%s\n", mode);
507 }
508 static DEVICE_ATTR_RO(phy_interface);
509 
510 static ssize_t
511 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
512 		    char *buf)
513 {
514 	struct phy_device *phydev = to_phy_device(dev);
515 
516 	return sprintf(buf, "%d\n", phydev->has_fixups);
517 }
518 static DEVICE_ATTR_RO(phy_has_fixups);
519 
520 static ssize_t phy_dev_flags_show(struct device *dev,
521 				  struct device_attribute *attr,
522 				  char *buf)
523 {
524 	struct phy_device *phydev = to_phy_device(dev);
525 
526 	return sprintf(buf, "0x%08x\n", phydev->dev_flags);
527 }
528 static DEVICE_ATTR_RO(phy_dev_flags);
529 
530 static struct attribute *phy_dev_attrs[] = {
531 	&dev_attr_phy_id.attr,
532 	&dev_attr_phy_interface.attr,
533 	&dev_attr_phy_has_fixups.attr,
534 	&dev_attr_phy_dev_flags.attr,
535 	NULL,
536 };
537 ATTRIBUTE_GROUPS(phy_dev);
538 
539 static const struct device_type mdio_bus_phy_type = {
540 	.name = "PHY",
541 	.groups = phy_dev_groups,
542 	.release = phy_device_release,
543 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
544 };
545 
546 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
547 {
548 	int ret;
549 
550 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
551 			     MDIO_ID_ARGS(phy_id));
552 	/* We only check for failures in executing the usermode binary,
553 	 * not whether a PHY driver module exists for the PHY ID.
554 	 * Accept -ENOENT because this may occur in case no initramfs exists,
555 	 * then modprobe isn't available.
556 	 */
557 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
558 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
559 			   ret, (unsigned long)phy_id);
560 		return ret;
561 	}
562 
563 	return 0;
564 }
565 
566 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
567 				     bool is_c45,
568 				     struct phy_c45_device_ids *c45_ids)
569 {
570 	struct phy_device *dev;
571 	struct mdio_device *mdiodev;
572 	int ret = 0;
573 
574 	/* We allocate the device, and initialize the default values */
575 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
576 	if (!dev)
577 		return ERR_PTR(-ENOMEM);
578 
579 	mdiodev = &dev->mdio;
580 	mdiodev->dev.parent = &bus->dev;
581 	mdiodev->dev.bus = &mdio_bus_type;
582 	mdiodev->dev.type = &mdio_bus_phy_type;
583 	mdiodev->bus = bus;
584 	mdiodev->bus_match = phy_bus_match;
585 	mdiodev->addr = addr;
586 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
587 	mdiodev->device_free = phy_mdio_device_free;
588 	mdiodev->device_remove = phy_mdio_device_remove;
589 
590 	dev->speed = SPEED_UNKNOWN;
591 	dev->duplex = DUPLEX_UNKNOWN;
592 	dev->pause = 0;
593 	dev->asym_pause = 0;
594 	dev->link = 0;
595 	dev->port = PORT_TP;
596 	dev->interface = PHY_INTERFACE_MODE_GMII;
597 
598 	dev->autoneg = AUTONEG_ENABLE;
599 
600 	dev->is_c45 = is_c45;
601 	dev->phy_id = phy_id;
602 	if (c45_ids)
603 		dev->c45_ids = *c45_ids;
604 	dev->irq = bus->irq[addr];
605 
606 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
607 	device_initialize(&mdiodev->dev);
608 
609 	dev->state = PHY_DOWN;
610 
611 	mutex_init(&dev->lock);
612 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
613 
614 	/* Request the appropriate module unconditionally; don't
615 	 * bother trying to do so only if it isn't already loaded,
616 	 * because that gets complicated. A hotplug event would have
617 	 * done an unconditional modprobe anyway.
618 	 * We don't do normal hotplug because it won't work for MDIO
619 	 * -- because it relies on the device staying around for long
620 	 * enough for the driver to get loaded. With MDIO, the NIC
621 	 * driver will get bored and give up as soon as it finds that
622 	 * there's no driver _already_ loaded.
623 	 */
624 	if (is_c45 && c45_ids) {
625 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
626 		int i;
627 
628 		for (i = 1; i < num_ids; i++) {
629 			if (c45_ids->device_ids[i] == 0xffffffff)
630 				continue;
631 
632 			ret = phy_request_driver_module(dev,
633 						c45_ids->device_ids[i]);
634 			if (ret)
635 				break;
636 		}
637 	} else {
638 		ret = phy_request_driver_module(dev, phy_id);
639 	}
640 
641 	if (ret) {
642 		put_device(&mdiodev->dev);
643 		dev = ERR_PTR(ret);
644 	}
645 
646 	return dev;
647 }
648 EXPORT_SYMBOL(phy_device_create);
649 
650 /* phy_c45_probe_present - checks to see if a MMD is present in the package
651  * @bus: the target MII bus
652  * @prtad: PHY package address on the MII bus
653  * @devad: PHY device (MMD) address
654  *
655  * Read the MDIO_STAT2 register, and check whether a device is responding
656  * at this address.
657  *
658  * Returns: negative error number on bus access error, zero if no device
659  * is responding, or positive if a device is present.
660  */
661 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
662 {
663 	int stat2;
664 
665 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
666 	if (stat2 < 0)
667 		return stat2;
668 
669 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
670 }
671 
672 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
673  * @bus: the target MII bus
674  * @addr: PHY address on the MII bus
675  * @dev_addr: MMD address in the PHY.
676  * @devices_in_package: where to store the devices in package information.
677  *
678  * Description: reads devices in package registers of a MMD at @dev_addr
679  * from PHY at @addr on @bus.
680  *
681  * Returns: 0 on success, -EIO on failure.
682  */
683 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
684 				   u32 *devices_in_package)
685 {
686 	int phy_reg;
687 
688 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
689 	if (phy_reg < 0)
690 		return -EIO;
691 	*devices_in_package = phy_reg << 16;
692 
693 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
694 	if (phy_reg < 0)
695 		return -EIO;
696 	*devices_in_package |= phy_reg;
697 
698 	return 0;
699 }
700 
701 /**
702  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
703  * @bus: the target MII bus
704  * @addr: PHY address on the MII bus
705  * @c45_ids: where to store the c45 ID information.
706  *
707  * Read the PHY "devices in package". If this appears to be valid, read
708  * the PHY identifiers for each device. Return the "devices in package"
709  * and identifiers in @c45_ids.
710  *
711  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
712  * the "devices in package" is invalid.
713  */
714 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
715 			   struct phy_c45_device_ids *c45_ids)
716 {
717 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
718 	u32 devs_in_pkg = 0;
719 	int i, ret, phy_reg;
720 
721 	/* Find first non-zero Devices In package. Device zero is reserved
722 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
723 	 */
724 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
725 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
726 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
727 			/* Check that there is a device present at this
728 			 * address before reading the devices-in-package
729 			 * register to avoid reading garbage from the PHY.
730 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
731 			 * compliant.
732 			 */
733 			ret = phy_c45_probe_present(bus, addr, i);
734 			if (ret < 0)
735 				return -EIO;
736 
737 			if (!ret)
738 				continue;
739 		}
740 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
741 		if (phy_reg < 0)
742 			return -EIO;
743 	}
744 
745 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
746 		/* If mostly Fs, there is no device there, then let's probe
747 		 * MMD 0, as some 10G PHYs have zero Devices In package,
748 		 * e.g. Cortina CS4315/CS4340 PHY.
749 		 */
750 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
751 		if (phy_reg < 0)
752 			return -EIO;
753 
754 		/* no device there, let's get out of here */
755 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
756 			return -ENODEV;
757 	}
758 
759 	/* Now probe Device Identifiers for each device present. */
760 	for (i = 1; i < num_ids; i++) {
761 		if (!(devs_in_pkg & (1 << i)))
762 			continue;
763 
764 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
765 			/* Probe the "Device Present" bits for the vendor MMDs
766 			 * to ignore these if they do not contain IEEE 802.3
767 			 * registers.
768 			 */
769 			ret = phy_c45_probe_present(bus, addr, i);
770 			if (ret < 0)
771 				return ret;
772 
773 			if (!ret)
774 				continue;
775 		}
776 
777 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
778 		if (phy_reg < 0)
779 			return -EIO;
780 		c45_ids->device_ids[i] = phy_reg << 16;
781 
782 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
783 		if (phy_reg < 0)
784 			return -EIO;
785 		c45_ids->device_ids[i] |= phy_reg;
786 	}
787 
788 	c45_ids->devices_in_package = devs_in_pkg;
789 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
790 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
791 
792 	return 0;
793 }
794 
795 /**
796  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
797  * @bus: the target MII bus
798  * @addr: PHY address on the MII bus
799  * @phy_id: where to store the ID retrieved.
800  *
801  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
802  * placing it in @phy_id. Return zero on successful read and the ID is
803  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
804  * or invalid ID.
805  */
806 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
807 {
808 	int phy_reg;
809 
810 	/* Grab the bits from PHYIR1, and put them in the upper half */
811 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
812 	if (phy_reg < 0) {
813 		/* returning -ENODEV doesn't stop bus scanning */
814 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
815 	}
816 
817 	*phy_id = phy_reg << 16;
818 
819 	/* Grab the bits from PHYIR2, and put them in the lower half */
820 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
821 	if (phy_reg < 0) {
822 		/* returning -ENODEV doesn't stop bus scanning */
823 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
824 	}
825 
826 	*phy_id |= phy_reg;
827 
828 	/* If the phy_id is mostly Fs, there is no device there */
829 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
830 		return -ENODEV;
831 
832 	return 0;
833 }
834 
835 /* Extract the phy ID from the compatible string of the form
836  * ethernet-phy-idAAAA.BBBB.
837  */
838 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
839 {
840 	unsigned int upper, lower;
841 	const char *cp;
842 	int ret;
843 
844 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
845 	if (ret)
846 		return ret;
847 
848 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
849 		return -EINVAL;
850 
851 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
852 	return 0;
853 }
854 EXPORT_SYMBOL(fwnode_get_phy_id);
855 
856 /**
857  * get_phy_device - reads the specified PHY device and returns its @phy_device
858  *		    struct
859  * @bus: the target MII bus
860  * @addr: PHY address on the MII bus
861  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
862  *
863  * Probe for a PHY at @addr on @bus.
864  *
865  * When probing for a clause 22 PHY, then read the ID registers. If we find
866  * a valid ID, allocate and return a &struct phy_device.
867  *
868  * When probing for a clause 45 PHY, read the "devices in package" registers.
869  * If the "devices in package" appears valid, read the ID registers for each
870  * MMD, allocate and return a &struct phy_device.
871  *
872  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
873  * no PHY present, or %-EIO on bus access error.
874  */
875 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
876 {
877 	struct phy_c45_device_ids c45_ids;
878 	u32 phy_id = 0;
879 	int r;
880 
881 	c45_ids.devices_in_package = 0;
882 	c45_ids.mmds_present = 0;
883 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
884 
885 	if (is_c45)
886 		r = get_phy_c45_ids(bus, addr, &c45_ids);
887 	else
888 		r = get_phy_c22_id(bus, addr, &phy_id);
889 
890 	if (r)
891 		return ERR_PTR(r);
892 
893 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
894 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
895 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
896 	 * space, if successful, create the C45 PHY device.
897 	 */
898 	if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) {
899 		r = get_phy_c45_ids(bus, addr, &c45_ids);
900 		if (!r)
901 			return phy_device_create(bus, addr, phy_id,
902 						 true, &c45_ids);
903 	}
904 
905 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
906 }
907 EXPORT_SYMBOL(get_phy_device);
908 
909 /**
910  * phy_device_register - Register the phy device on the MDIO bus
911  * @phydev: phy_device structure to be added to the MDIO bus
912  */
913 int phy_device_register(struct phy_device *phydev)
914 {
915 	int err;
916 
917 	err = mdiobus_register_device(&phydev->mdio);
918 	if (err)
919 		return err;
920 
921 	/* Deassert the reset signal */
922 	phy_device_reset(phydev, 0);
923 
924 	/* Run all of the fixups for this PHY */
925 	err = phy_scan_fixups(phydev);
926 	if (err) {
927 		phydev_err(phydev, "failed to initialize\n");
928 		goto out;
929 	}
930 
931 	err = device_add(&phydev->mdio.dev);
932 	if (err) {
933 		phydev_err(phydev, "failed to add\n");
934 		goto out;
935 	}
936 
937 	return 0;
938 
939  out:
940 	/* Assert the reset signal */
941 	phy_device_reset(phydev, 1);
942 
943 	mdiobus_unregister_device(&phydev->mdio);
944 	return err;
945 }
946 EXPORT_SYMBOL(phy_device_register);
947 
948 /**
949  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
950  * @phydev: phy_device structure to remove
951  *
952  * This doesn't free the phy_device itself, it merely reverses the effects
953  * of phy_device_register(). Use phy_device_free() to free the device
954  * after calling this function.
955  */
956 void phy_device_remove(struct phy_device *phydev)
957 {
958 	unregister_mii_timestamper(phydev->mii_ts);
959 
960 	device_del(&phydev->mdio.dev);
961 
962 	/* Assert the reset signal */
963 	phy_device_reset(phydev, 1);
964 
965 	mdiobus_unregister_device(&phydev->mdio);
966 }
967 EXPORT_SYMBOL(phy_device_remove);
968 
969 /**
970  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
971  * @phydev: phy_device structure to read 802.3-c45 IDs
972  *
973  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
974  * the "devices in package" is invalid.
975  */
976 int phy_get_c45_ids(struct phy_device *phydev)
977 {
978 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
979 			       &phydev->c45_ids);
980 }
981 EXPORT_SYMBOL(phy_get_c45_ids);
982 
983 /**
984  * phy_find_first - finds the first PHY device on the bus
985  * @bus: the target MII bus
986  */
987 struct phy_device *phy_find_first(struct mii_bus *bus)
988 {
989 	struct phy_device *phydev;
990 	int addr;
991 
992 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
993 		phydev = mdiobus_get_phy(bus, addr);
994 		if (phydev)
995 			return phydev;
996 	}
997 	return NULL;
998 }
999 EXPORT_SYMBOL(phy_find_first);
1000 
1001 static void phy_link_change(struct phy_device *phydev, bool up)
1002 {
1003 	struct net_device *netdev = phydev->attached_dev;
1004 
1005 	if (up)
1006 		netif_carrier_on(netdev);
1007 	else
1008 		netif_carrier_off(netdev);
1009 	phydev->adjust_link(netdev);
1010 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1011 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1012 }
1013 
1014 /**
1015  * phy_prepare_link - prepares the PHY layer to monitor link status
1016  * @phydev: target phy_device struct
1017  * @handler: callback function for link status change notifications
1018  *
1019  * Description: Tells the PHY infrastructure to handle the
1020  *   gory details on monitoring link status (whether through
1021  *   polling or an interrupt), and to call back to the
1022  *   connected device driver when the link status changes.
1023  *   If you want to monitor your own link state, don't call
1024  *   this function.
1025  */
1026 static void phy_prepare_link(struct phy_device *phydev,
1027 			     void (*handler)(struct net_device *))
1028 {
1029 	phydev->adjust_link = handler;
1030 }
1031 
1032 /**
1033  * phy_connect_direct - connect an ethernet device to a specific phy_device
1034  * @dev: the network device to connect
1035  * @phydev: the pointer to the phy device
1036  * @handler: callback function for state change notifications
1037  * @interface: PHY device's interface
1038  */
1039 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1040 		       void (*handler)(struct net_device *),
1041 		       phy_interface_t interface)
1042 {
1043 	int rc;
1044 
1045 	if (!dev)
1046 		return -EINVAL;
1047 
1048 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1049 	if (rc)
1050 		return rc;
1051 
1052 	phy_prepare_link(phydev, handler);
1053 	if (phy_interrupt_is_valid(phydev))
1054 		phy_request_interrupt(phydev);
1055 
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL(phy_connect_direct);
1059 
1060 /**
1061  * phy_connect - connect an ethernet device to a PHY device
1062  * @dev: the network device to connect
1063  * @bus_id: the id string of the PHY device to connect
1064  * @handler: callback function for state change notifications
1065  * @interface: PHY device's interface
1066  *
1067  * Description: Convenience function for connecting ethernet
1068  *   devices to PHY devices.  The default behavior is for
1069  *   the PHY infrastructure to handle everything, and only notify
1070  *   the connected driver when the link status changes.  If you
1071  *   don't want, or can't use the provided functionality, you may
1072  *   choose to call only the subset of functions which provide
1073  *   the desired functionality.
1074  */
1075 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1076 			       void (*handler)(struct net_device *),
1077 			       phy_interface_t interface)
1078 {
1079 	struct phy_device *phydev;
1080 	struct device *d;
1081 	int rc;
1082 
1083 	/* Search the list of PHY devices on the mdio bus for the
1084 	 * PHY with the requested name
1085 	 */
1086 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1087 	if (!d) {
1088 		pr_err("PHY %s not found\n", bus_id);
1089 		return ERR_PTR(-ENODEV);
1090 	}
1091 	phydev = to_phy_device(d);
1092 
1093 	rc = phy_connect_direct(dev, phydev, handler, interface);
1094 	put_device(d);
1095 	if (rc)
1096 		return ERR_PTR(rc);
1097 
1098 	return phydev;
1099 }
1100 EXPORT_SYMBOL(phy_connect);
1101 
1102 /**
1103  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1104  *		    device
1105  * @phydev: target phy_device struct
1106  */
1107 void phy_disconnect(struct phy_device *phydev)
1108 {
1109 	if (phy_is_started(phydev))
1110 		phy_stop(phydev);
1111 
1112 	if (phy_interrupt_is_valid(phydev))
1113 		phy_free_interrupt(phydev);
1114 
1115 	phydev->adjust_link = NULL;
1116 
1117 	phy_detach(phydev);
1118 }
1119 EXPORT_SYMBOL(phy_disconnect);
1120 
1121 /**
1122  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1123  * @phydev: The PHY device to poll
1124  *
1125  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1126  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1127  *   register must be polled until the BMCR_RESET bit clears.
1128  *
1129  *   Furthermore, any attempts to write to PHY registers may have no effect
1130  *   or even generate MDIO bus errors until this is complete.
1131  *
1132  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1133  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1134  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1135  *   effort to support such broken PHYs, this function is separate from the
1136  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1137  *   and reapply all driver-specific and board-specific fixups.
1138  */
1139 static int phy_poll_reset(struct phy_device *phydev)
1140 {
1141 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1142 	int ret, val;
1143 
1144 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1145 				    50000, 600000, true);
1146 	if (ret)
1147 		return ret;
1148 	/* Some chips (smsc911x) may still need up to another 1ms after the
1149 	 * BMCR_RESET bit is cleared before they are usable.
1150 	 */
1151 	msleep(1);
1152 	return 0;
1153 }
1154 
1155 int phy_init_hw(struct phy_device *phydev)
1156 {
1157 	int ret = 0;
1158 
1159 	/* Deassert the reset signal */
1160 	phy_device_reset(phydev, 0);
1161 
1162 	if (!phydev->drv)
1163 		return 0;
1164 
1165 	if (phydev->drv->soft_reset) {
1166 		ret = phydev->drv->soft_reset(phydev);
1167 		/* see comment in genphy_soft_reset for an explanation */
1168 		if (!ret)
1169 			phydev->suspended = 0;
1170 	}
1171 
1172 	if (ret < 0)
1173 		return ret;
1174 
1175 	ret = phy_scan_fixups(phydev);
1176 	if (ret < 0)
1177 		return ret;
1178 
1179 	if (phydev->drv->config_init) {
1180 		ret = phydev->drv->config_init(phydev);
1181 		if (ret < 0)
1182 			return ret;
1183 	}
1184 
1185 	if (phydev->drv->config_intr) {
1186 		ret = phydev->drv->config_intr(phydev);
1187 		if (ret < 0)
1188 			return ret;
1189 	}
1190 
1191 	return 0;
1192 }
1193 EXPORT_SYMBOL(phy_init_hw);
1194 
1195 void phy_attached_info(struct phy_device *phydev)
1196 {
1197 	phy_attached_print(phydev, NULL);
1198 }
1199 EXPORT_SYMBOL(phy_attached_info);
1200 
1201 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1202 char *phy_attached_info_irq(struct phy_device *phydev)
1203 {
1204 	char *irq_str;
1205 	char irq_num[8];
1206 
1207 	switch(phydev->irq) {
1208 	case PHY_POLL:
1209 		irq_str = "POLL";
1210 		break;
1211 	case PHY_MAC_INTERRUPT:
1212 		irq_str = "MAC";
1213 		break;
1214 	default:
1215 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1216 		irq_str = irq_num;
1217 		break;
1218 	}
1219 
1220 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1221 }
1222 EXPORT_SYMBOL(phy_attached_info_irq);
1223 
1224 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1225 {
1226 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1227 	char *irq_str = phy_attached_info_irq(phydev);
1228 
1229 	if (!fmt) {
1230 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1231 			    phydev_name(phydev), irq_str);
1232 	} else {
1233 		va_list ap;
1234 
1235 		phydev_info(phydev, ATTACHED_FMT, unbound,
1236 			    phydev_name(phydev), irq_str);
1237 
1238 		va_start(ap, fmt);
1239 		vprintk(fmt, ap);
1240 		va_end(ap);
1241 	}
1242 	kfree(irq_str);
1243 }
1244 EXPORT_SYMBOL(phy_attached_print);
1245 
1246 static void phy_sysfs_create_links(struct phy_device *phydev)
1247 {
1248 	struct net_device *dev = phydev->attached_dev;
1249 	int err;
1250 
1251 	if (!dev)
1252 		return;
1253 
1254 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1255 				"attached_dev");
1256 	if (err)
1257 		return;
1258 
1259 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1260 				       &phydev->mdio.dev.kobj,
1261 				       "phydev");
1262 	if (err) {
1263 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1264 			kobject_name(&phydev->mdio.dev.kobj),
1265 			err);
1266 		/* non-fatal - some net drivers can use one netdevice
1267 		 * with more then one phy
1268 		 */
1269 	}
1270 
1271 	phydev->sysfs_links = true;
1272 }
1273 
1274 static ssize_t
1275 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1276 		    char *buf)
1277 {
1278 	struct phy_device *phydev = to_phy_device(dev);
1279 
1280 	return sprintf(buf, "%d\n", !phydev->attached_dev);
1281 }
1282 static DEVICE_ATTR_RO(phy_standalone);
1283 
1284 /**
1285  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1286  * @upstream: pointer to the phy device
1287  * @bus: sfp bus representing cage being attached
1288  *
1289  * This is used to fill in the sfp_upstream_ops .attach member.
1290  */
1291 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1292 {
1293 	struct phy_device *phydev = upstream;
1294 
1295 	if (phydev->attached_dev)
1296 		phydev->attached_dev->sfp_bus = bus;
1297 	phydev->sfp_bus_attached = true;
1298 }
1299 EXPORT_SYMBOL(phy_sfp_attach);
1300 
1301 /**
1302  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1303  * @upstream: pointer to the phy device
1304  * @bus: sfp bus representing cage being attached
1305  *
1306  * This is used to fill in the sfp_upstream_ops .detach member.
1307  */
1308 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1309 {
1310 	struct phy_device *phydev = upstream;
1311 
1312 	if (phydev->attached_dev)
1313 		phydev->attached_dev->sfp_bus = NULL;
1314 	phydev->sfp_bus_attached = false;
1315 }
1316 EXPORT_SYMBOL(phy_sfp_detach);
1317 
1318 /**
1319  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1320  * @phydev: Pointer to phy_device
1321  * @ops: SFP's upstream operations
1322  */
1323 int phy_sfp_probe(struct phy_device *phydev,
1324 		  const struct sfp_upstream_ops *ops)
1325 {
1326 	struct sfp_bus *bus;
1327 	int ret = 0;
1328 
1329 	if (phydev->mdio.dev.fwnode) {
1330 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1331 		if (IS_ERR(bus))
1332 			return PTR_ERR(bus);
1333 
1334 		phydev->sfp_bus = bus;
1335 
1336 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1337 		sfp_bus_put(bus);
1338 	}
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(phy_sfp_probe);
1342 
1343 /**
1344  * phy_attach_direct - attach a network device to a given PHY device pointer
1345  * @dev: network device to attach
1346  * @phydev: Pointer to phy_device to attach
1347  * @flags: PHY device's dev_flags
1348  * @interface: PHY device's interface
1349  *
1350  * Description: Called by drivers to attach to a particular PHY
1351  *     device. The phy_device is found, and properly hooked up
1352  *     to the phy_driver.  If no driver is attached, then a
1353  *     generic driver is used.  The phy_device is given a ptr to
1354  *     the attaching device, and given a callback for link status
1355  *     change.  The phy_device is returned to the attaching driver.
1356  *     This function takes a reference on the phy device.
1357  */
1358 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1359 		      u32 flags, phy_interface_t interface)
1360 {
1361 	struct mii_bus *bus = phydev->mdio.bus;
1362 	struct device *d = &phydev->mdio.dev;
1363 	struct module *ndev_owner = NULL;
1364 	bool using_genphy = false;
1365 	int err;
1366 
1367 	/* For Ethernet device drivers that register their own MDIO bus, we
1368 	 * will have bus->owner match ndev_mod, so we do not want to increment
1369 	 * our own module->refcnt here, otherwise we would not be able to
1370 	 * unload later on.
1371 	 */
1372 	if (dev)
1373 		ndev_owner = dev->dev.parent->driver->owner;
1374 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1375 		phydev_err(phydev, "failed to get the bus module\n");
1376 		return -EIO;
1377 	}
1378 
1379 	get_device(d);
1380 
1381 	/* Assume that if there is no driver, that it doesn't
1382 	 * exist, and we should use the genphy driver.
1383 	 */
1384 	if (!d->driver) {
1385 		if (phydev->is_c45)
1386 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1387 		else
1388 			d->driver = &genphy_driver.mdiodrv.driver;
1389 
1390 		using_genphy = true;
1391 	}
1392 
1393 	if (!try_module_get(d->driver->owner)) {
1394 		phydev_err(phydev, "failed to get the device driver module\n");
1395 		err = -EIO;
1396 		goto error_put_device;
1397 	}
1398 
1399 	if (using_genphy) {
1400 		err = d->driver->probe(d);
1401 		if (err >= 0)
1402 			err = device_bind_driver(d);
1403 
1404 		if (err)
1405 			goto error_module_put;
1406 	}
1407 
1408 	if (phydev->attached_dev) {
1409 		dev_err(&dev->dev, "PHY already attached\n");
1410 		err = -EBUSY;
1411 		goto error;
1412 	}
1413 
1414 	phydev->phy_link_change = phy_link_change;
1415 	if (dev) {
1416 		phydev->attached_dev = dev;
1417 		dev->phydev = phydev;
1418 
1419 		if (phydev->sfp_bus_attached)
1420 			dev->sfp_bus = phydev->sfp_bus;
1421 		else if (dev->sfp_bus)
1422 			phydev->is_on_sfp_module = true;
1423 	}
1424 
1425 	/* Some Ethernet drivers try to connect to a PHY device before
1426 	 * calling register_netdevice() -> netdev_register_kobject() and
1427 	 * does the dev->dev.kobj initialization. Here we only check for
1428 	 * success which indicates that the network device kobject is
1429 	 * ready. Once we do that we still need to keep track of whether
1430 	 * links were successfully set up or not for phy_detach() to
1431 	 * remove them accordingly.
1432 	 */
1433 	phydev->sysfs_links = false;
1434 
1435 	phy_sysfs_create_links(phydev);
1436 
1437 	if (!phydev->attached_dev) {
1438 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1439 					&dev_attr_phy_standalone.attr);
1440 		if (err)
1441 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1442 	}
1443 
1444 	phydev->dev_flags |= flags;
1445 
1446 	phydev->interface = interface;
1447 
1448 	phydev->state = PHY_READY;
1449 
1450 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1451 	 * it to different value depending on the PHY configuration. If we have
1452 	 * the generic PHY driver we can't figure it out, thus set the old
1453 	 * legacy PORT_MII value.
1454 	 */
1455 	if (using_genphy)
1456 		phydev->port = PORT_MII;
1457 
1458 	/* Initial carrier state is off as the phy is about to be
1459 	 * (re)initialized.
1460 	 */
1461 	if (dev)
1462 		netif_carrier_off(phydev->attached_dev);
1463 
1464 	/* Do initial configuration here, now that
1465 	 * we have certain key parameters
1466 	 * (dev_flags and interface)
1467 	 */
1468 	err = phy_init_hw(phydev);
1469 	if (err)
1470 		goto error;
1471 
1472 	err = phy_disable_interrupts(phydev);
1473 	if (err)
1474 		return err;
1475 
1476 	phy_resume(phydev);
1477 	phy_led_triggers_register(phydev);
1478 
1479 	return err;
1480 
1481 error:
1482 	/* phy_detach() does all of the cleanup below */
1483 	phy_detach(phydev);
1484 	return err;
1485 
1486 error_module_put:
1487 	module_put(d->driver->owner);
1488 error_put_device:
1489 	put_device(d);
1490 	if (ndev_owner != bus->owner)
1491 		module_put(bus->owner);
1492 	return err;
1493 }
1494 EXPORT_SYMBOL(phy_attach_direct);
1495 
1496 /**
1497  * phy_attach - attach a network device to a particular PHY device
1498  * @dev: network device to attach
1499  * @bus_id: Bus ID of PHY device to attach
1500  * @interface: PHY device's interface
1501  *
1502  * Description: Same as phy_attach_direct() except that a PHY bus_id
1503  *     string is passed instead of a pointer to a struct phy_device.
1504  */
1505 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1506 			      phy_interface_t interface)
1507 {
1508 	struct bus_type *bus = &mdio_bus_type;
1509 	struct phy_device *phydev;
1510 	struct device *d;
1511 	int rc;
1512 
1513 	if (!dev)
1514 		return ERR_PTR(-EINVAL);
1515 
1516 	/* Search the list of PHY devices on the mdio bus for the
1517 	 * PHY with the requested name
1518 	 */
1519 	d = bus_find_device_by_name(bus, NULL, bus_id);
1520 	if (!d) {
1521 		pr_err("PHY %s not found\n", bus_id);
1522 		return ERR_PTR(-ENODEV);
1523 	}
1524 	phydev = to_phy_device(d);
1525 
1526 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1527 	put_device(d);
1528 	if (rc)
1529 		return ERR_PTR(rc);
1530 
1531 	return phydev;
1532 }
1533 EXPORT_SYMBOL(phy_attach);
1534 
1535 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1536 				      struct device_driver *driver)
1537 {
1538 	struct device *d = &phydev->mdio.dev;
1539 	bool ret = false;
1540 
1541 	if (!phydev->drv)
1542 		return ret;
1543 
1544 	get_device(d);
1545 	ret = d->driver == driver;
1546 	put_device(d);
1547 
1548 	return ret;
1549 }
1550 
1551 bool phy_driver_is_genphy(struct phy_device *phydev)
1552 {
1553 	return phy_driver_is_genphy_kind(phydev,
1554 					 &genphy_driver.mdiodrv.driver);
1555 }
1556 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1557 
1558 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1559 {
1560 	return phy_driver_is_genphy_kind(phydev,
1561 					 &genphy_c45_driver.mdiodrv.driver);
1562 }
1563 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1564 
1565 /**
1566  * phy_package_join - join a common PHY group
1567  * @phydev: target phy_device struct
1568  * @addr: cookie and PHY address for global register access
1569  * @priv_size: if non-zero allocate this amount of bytes for private data
1570  *
1571  * This joins a PHY group and provides a shared storage for all phydevs in
1572  * this group. This is intended to be used for packages which contain
1573  * more than one PHY, for example a quad PHY transceiver.
1574  *
1575  * The addr parameter serves as a cookie which has to have the same value
1576  * for all members of one group and as a PHY address to access generic
1577  * registers of a PHY package. Usually, one of the PHY addresses of the
1578  * different PHYs in the package provides access to these global registers.
1579  * The address which is given here, will be used in the phy_package_read()
1580  * and phy_package_write() convenience functions. If your PHY doesn't have
1581  * global registers you can just pick any of the PHY addresses.
1582  *
1583  * This will set the shared pointer of the phydev to the shared storage.
1584  * If this is the first call for a this cookie the shared storage will be
1585  * allocated. If priv_size is non-zero, the given amount of bytes are
1586  * allocated for the priv member.
1587  *
1588  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1589  * with the same cookie but a different priv_size is an error.
1590  */
1591 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1592 {
1593 	struct mii_bus *bus = phydev->mdio.bus;
1594 	struct phy_package_shared *shared;
1595 	int ret;
1596 
1597 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1598 		return -EINVAL;
1599 
1600 	mutex_lock(&bus->shared_lock);
1601 	shared = bus->shared[addr];
1602 	if (!shared) {
1603 		ret = -ENOMEM;
1604 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1605 		if (!shared)
1606 			goto err_unlock;
1607 		if (priv_size) {
1608 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1609 			if (!shared->priv)
1610 				goto err_free;
1611 			shared->priv_size = priv_size;
1612 		}
1613 		shared->addr = addr;
1614 		refcount_set(&shared->refcnt, 1);
1615 		bus->shared[addr] = shared;
1616 	} else {
1617 		ret = -EINVAL;
1618 		if (priv_size && priv_size != shared->priv_size)
1619 			goto err_unlock;
1620 		refcount_inc(&shared->refcnt);
1621 	}
1622 	mutex_unlock(&bus->shared_lock);
1623 
1624 	phydev->shared = shared;
1625 
1626 	return 0;
1627 
1628 err_free:
1629 	kfree(shared);
1630 err_unlock:
1631 	mutex_unlock(&bus->shared_lock);
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(phy_package_join);
1635 
1636 /**
1637  * phy_package_leave - leave a common PHY group
1638  * @phydev: target phy_device struct
1639  *
1640  * This leaves a PHY group created by phy_package_join(). If this phydev
1641  * was the last user of the shared data between the group, this data is
1642  * freed. Resets the phydev->shared pointer to NULL.
1643  */
1644 void phy_package_leave(struct phy_device *phydev)
1645 {
1646 	struct phy_package_shared *shared = phydev->shared;
1647 	struct mii_bus *bus = phydev->mdio.bus;
1648 
1649 	if (!shared)
1650 		return;
1651 
1652 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1653 		bus->shared[shared->addr] = NULL;
1654 		mutex_unlock(&bus->shared_lock);
1655 		kfree(shared->priv);
1656 		kfree(shared);
1657 	}
1658 
1659 	phydev->shared = NULL;
1660 }
1661 EXPORT_SYMBOL_GPL(phy_package_leave);
1662 
1663 static void devm_phy_package_leave(struct device *dev, void *res)
1664 {
1665 	phy_package_leave(*(struct phy_device **)res);
1666 }
1667 
1668 /**
1669  * devm_phy_package_join - resource managed phy_package_join()
1670  * @dev: device that is registering this PHY package
1671  * @phydev: target phy_device struct
1672  * @addr: cookie and PHY address for global register access
1673  * @priv_size: if non-zero allocate this amount of bytes for private data
1674  *
1675  * Managed phy_package_join(). Shared storage fetched by this function,
1676  * phy_package_leave() is automatically called on driver detach. See
1677  * phy_package_join() for more information.
1678  */
1679 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1680 			  int addr, size_t priv_size)
1681 {
1682 	struct phy_device **ptr;
1683 	int ret;
1684 
1685 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1686 			   GFP_KERNEL);
1687 	if (!ptr)
1688 		return -ENOMEM;
1689 
1690 	ret = phy_package_join(phydev, addr, priv_size);
1691 
1692 	if (!ret) {
1693 		*ptr = phydev;
1694 		devres_add(dev, ptr);
1695 	} else {
1696 		devres_free(ptr);
1697 	}
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1702 
1703 /**
1704  * phy_detach - detach a PHY device from its network device
1705  * @phydev: target phy_device struct
1706  *
1707  * This detaches the phy device from its network device and the phy
1708  * driver, and drops the reference count taken in phy_attach_direct().
1709  */
1710 void phy_detach(struct phy_device *phydev)
1711 {
1712 	struct net_device *dev = phydev->attached_dev;
1713 	struct module *ndev_owner = NULL;
1714 	struct mii_bus *bus;
1715 
1716 	if (phydev->sysfs_links) {
1717 		if (dev)
1718 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1719 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1720 	}
1721 
1722 	if (!phydev->attached_dev)
1723 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1724 				  &dev_attr_phy_standalone.attr);
1725 
1726 	phy_suspend(phydev);
1727 	if (dev) {
1728 		phydev->attached_dev->phydev = NULL;
1729 		phydev->attached_dev = NULL;
1730 	}
1731 	phydev->phylink = NULL;
1732 
1733 	phy_led_triggers_unregister(phydev);
1734 
1735 	if (phydev->mdio.dev.driver)
1736 		module_put(phydev->mdio.dev.driver->owner);
1737 
1738 	/* If the device had no specific driver before (i.e. - it
1739 	 * was using the generic driver), we unbind the device
1740 	 * from the generic driver so that there's a chance a
1741 	 * real driver could be loaded
1742 	 */
1743 	if (phy_driver_is_genphy(phydev) ||
1744 	    phy_driver_is_genphy_10g(phydev))
1745 		device_release_driver(&phydev->mdio.dev);
1746 
1747 	/*
1748 	 * The phydev might go away on the put_device() below, so avoid
1749 	 * a use-after-free bug by reading the underlying bus first.
1750 	 */
1751 	bus = phydev->mdio.bus;
1752 
1753 	put_device(&phydev->mdio.dev);
1754 	if (dev)
1755 		ndev_owner = dev->dev.parent->driver->owner;
1756 	if (ndev_owner != bus->owner)
1757 		module_put(bus->owner);
1758 
1759 	/* Assert the reset signal */
1760 	phy_device_reset(phydev, 1);
1761 }
1762 EXPORT_SYMBOL(phy_detach);
1763 
1764 int phy_suspend(struct phy_device *phydev)
1765 {
1766 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1767 	struct net_device *netdev = phydev->attached_dev;
1768 	struct phy_driver *phydrv = phydev->drv;
1769 	int ret;
1770 
1771 	if (phydev->suspended)
1772 		return 0;
1773 
1774 	/* If the device has WOL enabled, we cannot suspend the PHY */
1775 	phy_ethtool_get_wol(phydev, &wol);
1776 	if (wol.wolopts || (netdev && netdev->wol_enabled))
1777 		return -EBUSY;
1778 
1779 	if (!phydrv || !phydrv->suspend)
1780 		return 0;
1781 
1782 	ret = phydrv->suspend(phydev);
1783 	if (!ret)
1784 		phydev->suspended = true;
1785 
1786 	return ret;
1787 }
1788 EXPORT_SYMBOL(phy_suspend);
1789 
1790 int __phy_resume(struct phy_device *phydev)
1791 {
1792 	struct phy_driver *phydrv = phydev->drv;
1793 	int ret;
1794 
1795 	lockdep_assert_held(&phydev->lock);
1796 
1797 	if (!phydrv || !phydrv->resume)
1798 		return 0;
1799 
1800 	ret = phydrv->resume(phydev);
1801 	if (!ret)
1802 		phydev->suspended = false;
1803 
1804 	return ret;
1805 }
1806 EXPORT_SYMBOL(__phy_resume);
1807 
1808 int phy_resume(struct phy_device *phydev)
1809 {
1810 	int ret;
1811 
1812 	mutex_lock(&phydev->lock);
1813 	ret = __phy_resume(phydev);
1814 	mutex_unlock(&phydev->lock);
1815 
1816 	return ret;
1817 }
1818 EXPORT_SYMBOL(phy_resume);
1819 
1820 int phy_loopback(struct phy_device *phydev, bool enable)
1821 {
1822 	int ret = 0;
1823 
1824 	if (!phydev->drv)
1825 		return -EIO;
1826 
1827 	mutex_lock(&phydev->lock);
1828 
1829 	if (enable && phydev->loopback_enabled) {
1830 		ret = -EBUSY;
1831 		goto out;
1832 	}
1833 
1834 	if (!enable && !phydev->loopback_enabled) {
1835 		ret = -EINVAL;
1836 		goto out;
1837 	}
1838 
1839 	if (phydev->drv->set_loopback)
1840 		ret = phydev->drv->set_loopback(phydev, enable);
1841 	else
1842 		ret = genphy_loopback(phydev, enable);
1843 
1844 	if (ret)
1845 		goto out;
1846 
1847 	phydev->loopback_enabled = enable;
1848 
1849 out:
1850 	mutex_unlock(&phydev->lock);
1851 	return ret;
1852 }
1853 EXPORT_SYMBOL(phy_loopback);
1854 
1855 /**
1856  * phy_reset_after_clk_enable - perform a PHY reset if needed
1857  * @phydev: target phy_device struct
1858  *
1859  * Description: Some PHYs are known to need a reset after their refclk was
1860  *   enabled. This function evaluates the flags and perform the reset if it's
1861  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1862  *   was reset.
1863  */
1864 int phy_reset_after_clk_enable(struct phy_device *phydev)
1865 {
1866 	if (!phydev || !phydev->drv)
1867 		return -ENODEV;
1868 
1869 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1870 		phy_device_reset(phydev, 1);
1871 		phy_device_reset(phydev, 0);
1872 		return 1;
1873 	}
1874 
1875 	return 0;
1876 }
1877 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1878 
1879 /* Generic PHY support and helper functions */
1880 
1881 /**
1882  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1883  * @phydev: target phy_device struct
1884  *
1885  * Description: Writes MII_ADVERTISE with the appropriate values,
1886  *   after sanitizing the values to make sure we only advertise
1887  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1888  *   hasn't changed, and > 0 if it has changed.
1889  */
1890 static int genphy_config_advert(struct phy_device *phydev)
1891 {
1892 	int err, bmsr, changed = 0;
1893 	u32 adv;
1894 
1895 	/* Only allow advertising what this PHY supports */
1896 	linkmode_and(phydev->advertising, phydev->advertising,
1897 		     phydev->supported);
1898 
1899 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1900 
1901 	/* Setup standard advertisement */
1902 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1903 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1904 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1905 				 adv);
1906 	if (err < 0)
1907 		return err;
1908 	if (err > 0)
1909 		changed = 1;
1910 
1911 	bmsr = phy_read(phydev, MII_BMSR);
1912 	if (bmsr < 0)
1913 		return bmsr;
1914 
1915 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1916 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1917 	 * logical 1.
1918 	 */
1919 	if (!(bmsr & BMSR_ESTATEN))
1920 		return changed;
1921 
1922 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1923 
1924 	err = phy_modify_changed(phydev, MII_CTRL1000,
1925 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1926 				 adv);
1927 	if (err < 0)
1928 		return err;
1929 	if (err > 0)
1930 		changed = 1;
1931 
1932 	return changed;
1933 }
1934 
1935 /**
1936  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1937  * @phydev: target phy_device struct
1938  *
1939  * Description: Writes MII_ADVERTISE with the appropriate values,
1940  *   after sanitizing the values to make sure we only advertise
1941  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1942  *   hasn't changed, and > 0 if it has changed. This function is intended
1943  *   for Clause 37 1000Base-X mode.
1944  */
1945 static int genphy_c37_config_advert(struct phy_device *phydev)
1946 {
1947 	u16 adv = 0;
1948 
1949 	/* Only allow advertising what this PHY supports */
1950 	linkmode_and(phydev->advertising, phydev->advertising,
1951 		     phydev->supported);
1952 
1953 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1954 			      phydev->advertising))
1955 		adv |= ADVERTISE_1000XFULL;
1956 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1957 			      phydev->advertising))
1958 		adv |= ADVERTISE_1000XPAUSE;
1959 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1960 			      phydev->advertising))
1961 		adv |= ADVERTISE_1000XPSE_ASYM;
1962 
1963 	return phy_modify_changed(phydev, MII_ADVERTISE,
1964 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1965 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1966 				  adv);
1967 }
1968 
1969 /**
1970  * genphy_config_eee_advert - disable unwanted eee mode advertisement
1971  * @phydev: target phy_device struct
1972  *
1973  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
1974  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
1975  *   changed, and 1 if it has changed.
1976  */
1977 int genphy_config_eee_advert(struct phy_device *phydev)
1978 {
1979 	int err;
1980 
1981 	/* Nothing to disable */
1982 	if (!phydev->eee_broken_modes)
1983 		return 0;
1984 
1985 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
1986 				     phydev->eee_broken_modes, 0);
1987 	/* If the call failed, we assume that EEE is not supported */
1988 	return err < 0 ? 0 : err;
1989 }
1990 EXPORT_SYMBOL(genphy_config_eee_advert);
1991 
1992 /**
1993  * genphy_setup_forced - configures/forces speed/duplex from @phydev
1994  * @phydev: target phy_device struct
1995  *
1996  * Description: Configures MII_BMCR to force speed/duplex
1997  *   to the values in phydev. Assumes that the values are valid.
1998  *   Please see phy_sanitize_settings().
1999  */
2000 int genphy_setup_forced(struct phy_device *phydev)
2001 {
2002 	u16 ctl = 0;
2003 
2004 	phydev->pause = 0;
2005 	phydev->asym_pause = 0;
2006 
2007 	if (SPEED_1000 == phydev->speed)
2008 		ctl |= BMCR_SPEED1000;
2009 	else if (SPEED_100 == phydev->speed)
2010 		ctl |= BMCR_SPEED100;
2011 
2012 	if (DUPLEX_FULL == phydev->duplex)
2013 		ctl |= BMCR_FULLDPLX;
2014 
2015 	return phy_modify(phydev, MII_BMCR,
2016 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2017 }
2018 EXPORT_SYMBOL(genphy_setup_forced);
2019 
2020 static int genphy_setup_master_slave(struct phy_device *phydev)
2021 {
2022 	u16 ctl = 0;
2023 
2024 	if (!phydev->is_gigabit_capable)
2025 		return 0;
2026 
2027 	switch (phydev->master_slave_set) {
2028 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2029 		ctl |= CTL1000_PREFER_MASTER;
2030 		break;
2031 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2032 		break;
2033 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2034 		ctl |= CTL1000_AS_MASTER;
2035 		fallthrough;
2036 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2037 		ctl |= CTL1000_ENABLE_MASTER;
2038 		break;
2039 	case MASTER_SLAVE_CFG_UNKNOWN:
2040 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2041 		return 0;
2042 	default:
2043 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2044 		return -EOPNOTSUPP;
2045 	}
2046 
2047 	return phy_modify_changed(phydev, MII_CTRL1000,
2048 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2049 				   CTL1000_PREFER_MASTER), ctl);
2050 }
2051 
2052 static int genphy_read_master_slave(struct phy_device *phydev)
2053 {
2054 	int cfg, state;
2055 	int val;
2056 
2057 	if (!phydev->is_gigabit_capable) {
2058 		phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2059 		phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2060 		return 0;
2061 	}
2062 
2063 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2064 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2065 
2066 	val = phy_read(phydev, MII_CTRL1000);
2067 	if (val < 0)
2068 		return val;
2069 
2070 	if (val & CTL1000_ENABLE_MASTER) {
2071 		if (val & CTL1000_AS_MASTER)
2072 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2073 		else
2074 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2075 	} else {
2076 		if (val & CTL1000_PREFER_MASTER)
2077 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2078 		else
2079 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2080 	}
2081 
2082 	val = phy_read(phydev, MII_STAT1000);
2083 	if (val < 0)
2084 		return val;
2085 
2086 	if (val & LPA_1000MSFAIL) {
2087 		state = MASTER_SLAVE_STATE_ERR;
2088 	} else if (phydev->link) {
2089 		/* this bits are valid only for active link */
2090 		if (val & LPA_1000MSRES)
2091 			state = MASTER_SLAVE_STATE_MASTER;
2092 		else
2093 			state = MASTER_SLAVE_STATE_SLAVE;
2094 	} else {
2095 		state = MASTER_SLAVE_STATE_UNKNOWN;
2096 	}
2097 
2098 	phydev->master_slave_get = cfg;
2099 	phydev->master_slave_state = state;
2100 
2101 	return 0;
2102 }
2103 
2104 /**
2105  * genphy_restart_aneg - Enable and Restart Autonegotiation
2106  * @phydev: target phy_device struct
2107  */
2108 int genphy_restart_aneg(struct phy_device *phydev)
2109 {
2110 	/* Don't isolate the PHY if we're negotiating */
2111 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2112 			  BMCR_ANENABLE | BMCR_ANRESTART);
2113 }
2114 EXPORT_SYMBOL(genphy_restart_aneg);
2115 
2116 /**
2117  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2118  * @phydev: target phy_device struct
2119  * @restart: whether aneg restart is requested
2120  *
2121  * Check, and restart auto-negotiation if needed.
2122  */
2123 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2124 {
2125 	int ret;
2126 
2127 	if (!restart) {
2128 		/* Advertisement hasn't changed, but maybe aneg was never on to
2129 		 * begin with?  Or maybe phy was isolated?
2130 		 */
2131 		ret = phy_read(phydev, MII_BMCR);
2132 		if (ret < 0)
2133 			return ret;
2134 
2135 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2136 			restart = true;
2137 	}
2138 
2139 	if (restart)
2140 		return genphy_restart_aneg(phydev);
2141 
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2145 
2146 /**
2147  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2148  * @phydev: target phy_device struct
2149  * @changed: whether autoneg is requested
2150  *
2151  * Description: If auto-negotiation is enabled, we configure the
2152  *   advertising, and then restart auto-negotiation.  If it is not
2153  *   enabled, then we write the BMCR.
2154  */
2155 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2156 {
2157 	int err;
2158 
2159 	if (genphy_config_eee_advert(phydev))
2160 		changed = true;
2161 
2162 	err = genphy_setup_master_slave(phydev);
2163 	if (err < 0)
2164 		return err;
2165 	else if (err)
2166 		changed = true;
2167 
2168 	if (AUTONEG_ENABLE != phydev->autoneg)
2169 		return genphy_setup_forced(phydev);
2170 
2171 	err = genphy_config_advert(phydev);
2172 	if (err < 0) /* error */
2173 		return err;
2174 	else if (err)
2175 		changed = true;
2176 
2177 	return genphy_check_and_restart_aneg(phydev, changed);
2178 }
2179 EXPORT_SYMBOL(__genphy_config_aneg);
2180 
2181 /**
2182  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2183  * @phydev: target phy_device struct
2184  *
2185  * Description: If auto-negotiation is enabled, we configure the
2186  *   advertising, and then restart auto-negotiation.  If it is not
2187  *   enabled, then we write the BMCR. This function is intended
2188  *   for use with Clause 37 1000Base-X mode.
2189  */
2190 int genphy_c37_config_aneg(struct phy_device *phydev)
2191 {
2192 	int err, changed;
2193 
2194 	if (phydev->autoneg != AUTONEG_ENABLE)
2195 		return genphy_setup_forced(phydev);
2196 
2197 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2198 			 BMCR_SPEED1000);
2199 	if (err)
2200 		return err;
2201 
2202 	changed = genphy_c37_config_advert(phydev);
2203 	if (changed < 0) /* error */
2204 		return changed;
2205 
2206 	if (!changed) {
2207 		/* Advertisement hasn't changed, but maybe aneg was never on to
2208 		 * begin with?  Or maybe phy was isolated?
2209 		 */
2210 		int ctl = phy_read(phydev, MII_BMCR);
2211 
2212 		if (ctl < 0)
2213 			return ctl;
2214 
2215 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2216 			changed = 1; /* do restart aneg */
2217 	}
2218 
2219 	/* Only restart aneg if we are advertising something different
2220 	 * than we were before.
2221 	 */
2222 	if (changed > 0)
2223 		return genphy_restart_aneg(phydev);
2224 
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL(genphy_c37_config_aneg);
2228 
2229 /**
2230  * genphy_aneg_done - return auto-negotiation status
2231  * @phydev: target phy_device struct
2232  *
2233  * Description: Reads the status register and returns 0 either if
2234  *   auto-negotiation is incomplete, or if there was an error.
2235  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2236  */
2237 int genphy_aneg_done(struct phy_device *phydev)
2238 {
2239 	int retval = phy_read(phydev, MII_BMSR);
2240 
2241 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2242 }
2243 EXPORT_SYMBOL(genphy_aneg_done);
2244 
2245 /**
2246  * genphy_update_link - update link status in @phydev
2247  * @phydev: target phy_device struct
2248  *
2249  * Description: Update the value in phydev->link to reflect the
2250  *   current link value.  In order to do this, we need to read
2251  *   the status register twice, keeping the second value.
2252  */
2253 int genphy_update_link(struct phy_device *phydev)
2254 {
2255 	int status = 0, bmcr;
2256 
2257 	bmcr = phy_read(phydev, MII_BMCR);
2258 	if (bmcr < 0)
2259 		return bmcr;
2260 
2261 	/* Autoneg is being started, therefore disregard BMSR value and
2262 	 * report link as down.
2263 	 */
2264 	if (bmcr & BMCR_ANRESTART)
2265 		goto done;
2266 
2267 	/* The link state is latched low so that momentary link
2268 	 * drops can be detected. Do not double-read the status
2269 	 * in polling mode to detect such short link drops except
2270 	 * the link was already down.
2271 	 */
2272 	if (!phy_polling_mode(phydev) || !phydev->link) {
2273 		status = phy_read(phydev, MII_BMSR);
2274 		if (status < 0)
2275 			return status;
2276 		else if (status & BMSR_LSTATUS)
2277 			goto done;
2278 	}
2279 
2280 	/* Read link and autonegotiation status */
2281 	status = phy_read(phydev, MII_BMSR);
2282 	if (status < 0)
2283 		return status;
2284 done:
2285 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2286 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2287 
2288 	/* Consider the case that autoneg was started and "aneg complete"
2289 	 * bit has been reset, but "link up" bit not yet.
2290 	 */
2291 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2292 		phydev->link = 0;
2293 
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL(genphy_update_link);
2297 
2298 int genphy_read_lpa(struct phy_device *phydev)
2299 {
2300 	int lpa, lpagb;
2301 
2302 	if (phydev->autoneg == AUTONEG_ENABLE) {
2303 		if (!phydev->autoneg_complete) {
2304 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2305 							0);
2306 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2307 			return 0;
2308 		}
2309 
2310 		if (phydev->is_gigabit_capable) {
2311 			lpagb = phy_read(phydev, MII_STAT1000);
2312 			if (lpagb < 0)
2313 				return lpagb;
2314 
2315 			if (lpagb & LPA_1000MSFAIL) {
2316 				int adv = phy_read(phydev, MII_CTRL1000);
2317 
2318 				if (adv < 0)
2319 					return adv;
2320 
2321 				if (adv & CTL1000_ENABLE_MASTER)
2322 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2323 				else
2324 					phydev_err(phydev, "Master/Slave resolution failed\n");
2325 				return -ENOLINK;
2326 			}
2327 
2328 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2329 							lpagb);
2330 		}
2331 
2332 		lpa = phy_read(phydev, MII_LPA);
2333 		if (lpa < 0)
2334 			return lpa;
2335 
2336 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2337 	} else {
2338 		linkmode_zero(phydev->lp_advertising);
2339 	}
2340 
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL(genphy_read_lpa);
2344 
2345 /**
2346  * genphy_read_status_fixed - read the link parameters for !aneg mode
2347  * @phydev: target phy_device struct
2348  *
2349  * Read the current duplex and speed state for a PHY operating with
2350  * autonegotiation disabled.
2351  */
2352 int genphy_read_status_fixed(struct phy_device *phydev)
2353 {
2354 	int bmcr = phy_read(phydev, MII_BMCR);
2355 
2356 	if (bmcr < 0)
2357 		return bmcr;
2358 
2359 	if (bmcr & BMCR_FULLDPLX)
2360 		phydev->duplex = DUPLEX_FULL;
2361 	else
2362 		phydev->duplex = DUPLEX_HALF;
2363 
2364 	if (bmcr & BMCR_SPEED1000)
2365 		phydev->speed = SPEED_1000;
2366 	else if (bmcr & BMCR_SPEED100)
2367 		phydev->speed = SPEED_100;
2368 	else
2369 		phydev->speed = SPEED_10;
2370 
2371 	return 0;
2372 }
2373 EXPORT_SYMBOL(genphy_read_status_fixed);
2374 
2375 /**
2376  * genphy_read_status - check the link status and update current link state
2377  * @phydev: target phy_device struct
2378  *
2379  * Description: Check the link, then figure out the current state
2380  *   by comparing what we advertise with what the link partner
2381  *   advertises.  Start by checking the gigabit possibilities,
2382  *   then move on to 10/100.
2383  */
2384 int genphy_read_status(struct phy_device *phydev)
2385 {
2386 	int err, old_link = phydev->link;
2387 
2388 	/* Update the link, but return if there was an error */
2389 	err = genphy_update_link(phydev);
2390 	if (err)
2391 		return err;
2392 
2393 	/* why bother the PHY if nothing can have changed */
2394 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2395 		return 0;
2396 
2397 	phydev->speed = SPEED_UNKNOWN;
2398 	phydev->duplex = DUPLEX_UNKNOWN;
2399 	phydev->pause = 0;
2400 	phydev->asym_pause = 0;
2401 
2402 	err = genphy_read_master_slave(phydev);
2403 	if (err < 0)
2404 		return err;
2405 
2406 	err = genphy_read_lpa(phydev);
2407 	if (err < 0)
2408 		return err;
2409 
2410 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2411 		phy_resolve_aneg_linkmode(phydev);
2412 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2413 		err = genphy_read_status_fixed(phydev);
2414 		if (err < 0)
2415 			return err;
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL(genphy_read_status);
2421 
2422 /**
2423  * genphy_c37_read_status - check the link status and update current link state
2424  * @phydev: target phy_device struct
2425  *
2426  * Description: Check the link, then figure out the current state
2427  *   by comparing what we advertise with what the link partner
2428  *   advertises. This function is for Clause 37 1000Base-X mode.
2429  */
2430 int genphy_c37_read_status(struct phy_device *phydev)
2431 {
2432 	int lpa, err, old_link = phydev->link;
2433 
2434 	/* Update the link, but return if there was an error */
2435 	err = genphy_update_link(phydev);
2436 	if (err)
2437 		return err;
2438 
2439 	/* why bother the PHY if nothing can have changed */
2440 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2441 		return 0;
2442 
2443 	phydev->duplex = DUPLEX_UNKNOWN;
2444 	phydev->pause = 0;
2445 	phydev->asym_pause = 0;
2446 
2447 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2448 		lpa = phy_read(phydev, MII_LPA);
2449 		if (lpa < 0)
2450 			return lpa;
2451 
2452 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2453 				 phydev->lp_advertising, lpa & LPA_LPACK);
2454 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2455 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2456 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2457 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2458 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2459 				 phydev->lp_advertising,
2460 				 lpa & LPA_1000XPAUSE_ASYM);
2461 
2462 		phy_resolve_aneg_linkmode(phydev);
2463 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2464 		int bmcr = phy_read(phydev, MII_BMCR);
2465 
2466 		if (bmcr < 0)
2467 			return bmcr;
2468 
2469 		if (bmcr & BMCR_FULLDPLX)
2470 			phydev->duplex = DUPLEX_FULL;
2471 		else
2472 			phydev->duplex = DUPLEX_HALF;
2473 	}
2474 
2475 	return 0;
2476 }
2477 EXPORT_SYMBOL(genphy_c37_read_status);
2478 
2479 /**
2480  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2481  * @phydev: target phy_device struct
2482  *
2483  * Description: Perform a software PHY reset using the standard
2484  * BMCR_RESET bit and poll for the reset bit to be cleared.
2485  *
2486  * Returns: 0 on success, < 0 on failure
2487  */
2488 int genphy_soft_reset(struct phy_device *phydev)
2489 {
2490 	u16 res = BMCR_RESET;
2491 	int ret;
2492 
2493 	if (phydev->autoneg == AUTONEG_ENABLE)
2494 		res |= BMCR_ANRESTART;
2495 
2496 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2497 	if (ret < 0)
2498 		return ret;
2499 
2500 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2501 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2502 	 * be cleared after soft reset.
2503 	 */
2504 	phydev->suspended = 0;
2505 
2506 	ret = phy_poll_reset(phydev);
2507 	if (ret)
2508 		return ret;
2509 
2510 	/* BMCR may be reset to defaults */
2511 	if (phydev->autoneg == AUTONEG_DISABLE)
2512 		ret = genphy_setup_forced(phydev);
2513 
2514 	return ret;
2515 }
2516 EXPORT_SYMBOL(genphy_soft_reset);
2517 
2518 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2519 {
2520 	/* It seems there are cases where the interrupts are handled by another
2521 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2522 	 * need any other interraction from phylib. In this case, just trigger
2523 	 * the state machine directly.
2524 	 */
2525 	phy_trigger_machine(phydev);
2526 
2527 	return 0;
2528 }
2529 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2530 
2531 /**
2532  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2533  * @phydev: target phy_device struct
2534  *
2535  * Description: Reads the PHY's abilities and populates
2536  * phydev->supported accordingly.
2537  *
2538  * Returns: 0 on success, < 0 on failure
2539  */
2540 int genphy_read_abilities(struct phy_device *phydev)
2541 {
2542 	int val;
2543 
2544 	linkmode_set_bit_array(phy_basic_ports_array,
2545 			       ARRAY_SIZE(phy_basic_ports_array),
2546 			       phydev->supported);
2547 
2548 	val = phy_read(phydev, MII_BMSR);
2549 	if (val < 0)
2550 		return val;
2551 
2552 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2553 			 val & BMSR_ANEGCAPABLE);
2554 
2555 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2556 			 val & BMSR_100FULL);
2557 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2558 			 val & BMSR_100HALF);
2559 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2560 			 val & BMSR_10FULL);
2561 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2562 			 val & BMSR_10HALF);
2563 
2564 	if (val & BMSR_ESTATEN) {
2565 		val = phy_read(phydev, MII_ESTATUS);
2566 		if (val < 0)
2567 			return val;
2568 
2569 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2570 				 phydev->supported, val & ESTATUS_1000_TFULL);
2571 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2572 				 phydev->supported, val & ESTATUS_1000_THALF);
2573 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2574 				 phydev->supported, val & ESTATUS_1000_XFULL);
2575 	}
2576 
2577 	return 0;
2578 }
2579 EXPORT_SYMBOL(genphy_read_abilities);
2580 
2581 /* This is used for the phy device which doesn't support the MMD extended
2582  * register access, but it does have side effect when we are trying to access
2583  * the MMD register via indirect method.
2584  */
2585 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2586 {
2587 	return -EOPNOTSUPP;
2588 }
2589 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2590 
2591 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2592 				 u16 regnum, u16 val)
2593 {
2594 	return -EOPNOTSUPP;
2595 }
2596 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2597 
2598 int genphy_suspend(struct phy_device *phydev)
2599 {
2600 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2601 }
2602 EXPORT_SYMBOL(genphy_suspend);
2603 
2604 int genphy_resume(struct phy_device *phydev)
2605 {
2606 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2607 }
2608 EXPORT_SYMBOL(genphy_resume);
2609 
2610 int genphy_loopback(struct phy_device *phydev, bool enable)
2611 {
2612 	if (enable) {
2613 		u16 val, ctl = BMCR_LOOPBACK;
2614 		int ret;
2615 
2616 		if (phydev->speed == SPEED_1000)
2617 			ctl |= BMCR_SPEED1000;
2618 		else if (phydev->speed == SPEED_100)
2619 			ctl |= BMCR_SPEED100;
2620 
2621 		if (phydev->duplex == DUPLEX_FULL)
2622 			ctl |= BMCR_FULLDPLX;
2623 
2624 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2625 
2626 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2627 					    val & BMSR_LSTATUS,
2628 				    5000, 500000, true);
2629 		if (ret)
2630 			return ret;
2631 	} else {
2632 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2633 
2634 		phy_config_aneg(phydev);
2635 	}
2636 
2637 	return 0;
2638 }
2639 EXPORT_SYMBOL(genphy_loopback);
2640 
2641 /**
2642  * phy_remove_link_mode - Remove a supported link mode
2643  * @phydev: phy_device structure to remove link mode from
2644  * @link_mode: Link mode to be removed
2645  *
2646  * Description: Some MACs don't support all link modes which the PHY
2647  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2648  * to remove a link mode.
2649  */
2650 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2651 {
2652 	linkmode_clear_bit(link_mode, phydev->supported);
2653 	phy_advertise_supported(phydev);
2654 }
2655 EXPORT_SYMBOL(phy_remove_link_mode);
2656 
2657 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2658 {
2659 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2660 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2661 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2662 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2663 }
2664 
2665 /**
2666  * phy_advertise_supported - Advertise all supported modes
2667  * @phydev: target phy_device struct
2668  *
2669  * Description: Called to advertise all supported modes, doesn't touch
2670  * pause mode advertising.
2671  */
2672 void phy_advertise_supported(struct phy_device *phydev)
2673 {
2674 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2675 
2676 	linkmode_copy(new, phydev->supported);
2677 	phy_copy_pause_bits(new, phydev->advertising);
2678 	linkmode_copy(phydev->advertising, new);
2679 }
2680 EXPORT_SYMBOL(phy_advertise_supported);
2681 
2682 /**
2683  * phy_support_sym_pause - Enable support of symmetrical pause
2684  * @phydev: target phy_device struct
2685  *
2686  * Description: Called by the MAC to indicate is supports symmetrical
2687  * Pause, but not asym pause.
2688  */
2689 void phy_support_sym_pause(struct phy_device *phydev)
2690 {
2691 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2692 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2693 }
2694 EXPORT_SYMBOL(phy_support_sym_pause);
2695 
2696 /**
2697  * phy_support_asym_pause - Enable support of asym pause
2698  * @phydev: target phy_device struct
2699  *
2700  * Description: Called by the MAC to indicate is supports Asym Pause.
2701  */
2702 void phy_support_asym_pause(struct phy_device *phydev)
2703 {
2704 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2705 }
2706 EXPORT_SYMBOL(phy_support_asym_pause);
2707 
2708 /**
2709  * phy_set_sym_pause - Configure symmetric Pause
2710  * @phydev: target phy_device struct
2711  * @rx: Receiver Pause is supported
2712  * @tx: Transmit Pause is supported
2713  * @autoneg: Auto neg should be used
2714  *
2715  * Description: Configure advertised Pause support depending on if
2716  * receiver pause and pause auto neg is supported. Generally called
2717  * from the set_pauseparam .ndo.
2718  */
2719 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2720 		       bool autoneg)
2721 {
2722 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2723 
2724 	if (rx && tx && autoneg)
2725 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2726 				 phydev->supported);
2727 
2728 	linkmode_copy(phydev->advertising, phydev->supported);
2729 }
2730 EXPORT_SYMBOL(phy_set_sym_pause);
2731 
2732 /**
2733  * phy_set_asym_pause - Configure Pause and Asym Pause
2734  * @phydev: target phy_device struct
2735  * @rx: Receiver Pause is supported
2736  * @tx: Transmit Pause is supported
2737  *
2738  * Description: Configure advertised Pause support depending on if
2739  * transmit and receiver pause is supported. If there has been a
2740  * change in adverting, trigger a new autoneg. Generally called from
2741  * the set_pauseparam .ndo.
2742  */
2743 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2744 {
2745 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2746 
2747 	linkmode_copy(oldadv, phydev->advertising);
2748 	linkmode_set_pause(phydev->advertising, tx, rx);
2749 
2750 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2751 	    phydev->autoneg)
2752 		phy_start_aneg(phydev);
2753 }
2754 EXPORT_SYMBOL(phy_set_asym_pause);
2755 
2756 /**
2757  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2758  * @phydev: phy_device struct
2759  * @pp: requested pause configuration
2760  *
2761  * Description: Test if the PHY/MAC combination supports the Pause
2762  * configuration the user is requesting. Returns True if it is
2763  * supported, false otherwise.
2764  */
2765 bool phy_validate_pause(struct phy_device *phydev,
2766 			struct ethtool_pauseparam *pp)
2767 {
2768 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2769 			       phydev->supported) && pp->rx_pause)
2770 		return false;
2771 
2772 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2773 			       phydev->supported) &&
2774 	    pp->rx_pause != pp->tx_pause)
2775 		return false;
2776 
2777 	return true;
2778 }
2779 EXPORT_SYMBOL(phy_validate_pause);
2780 
2781 /**
2782  * phy_get_pause - resolve negotiated pause modes
2783  * @phydev: phy_device struct
2784  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2785  * enabled.
2786  * @rx_pause: pointer to bool to indicate whether receive pause should be
2787  * enabled.
2788  *
2789  * Resolve and return the flow control modes according to the negotiation
2790  * result. This includes checking that we are operating in full duplex mode.
2791  * See linkmode_resolve_pause() for further details.
2792  */
2793 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2794 {
2795 	if (phydev->duplex != DUPLEX_FULL) {
2796 		*tx_pause = false;
2797 		*rx_pause = false;
2798 		return;
2799 	}
2800 
2801 	return linkmode_resolve_pause(phydev->advertising,
2802 				      phydev->lp_advertising,
2803 				      tx_pause, rx_pause);
2804 }
2805 EXPORT_SYMBOL(phy_get_pause);
2806 
2807 #if IS_ENABLED(CONFIG_OF_MDIO)
2808 static int phy_get_int_delay_property(struct device *dev, const char *name)
2809 {
2810 	s32 int_delay;
2811 	int ret;
2812 
2813 	ret = device_property_read_u32(dev, name, &int_delay);
2814 	if (ret)
2815 		return ret;
2816 
2817 	return int_delay;
2818 }
2819 #else
2820 static int phy_get_int_delay_property(struct device *dev, const char *name)
2821 {
2822 	return -EINVAL;
2823 }
2824 #endif
2825 
2826 /**
2827  * phy_get_internal_delay - returns the index of the internal delay
2828  * @phydev: phy_device struct
2829  * @dev: pointer to the devices device struct
2830  * @delay_values: array of delays the PHY supports
2831  * @size: the size of the delay array
2832  * @is_rx: boolean to indicate to get the rx internal delay
2833  *
2834  * Returns the index within the array of internal delay passed in.
2835  * If the device property is not present then the interface type is checked
2836  * if the interface defines use of internal delay then a 1 is returned otherwise
2837  * a 0 is returned.
2838  * The array must be in ascending order. If PHY does not have an ascending order
2839  * array then size = 0 and the value of the delay property is returned.
2840  * Return -EINVAL if the delay is invalid or cannot be found.
2841  */
2842 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2843 			   const int *delay_values, int size, bool is_rx)
2844 {
2845 	s32 delay;
2846 	int i;
2847 
2848 	if (is_rx) {
2849 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2850 		if (delay < 0 && size == 0) {
2851 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2852 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2853 				return 1;
2854 			else
2855 				return 0;
2856 		}
2857 
2858 	} else {
2859 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2860 		if (delay < 0 && size == 0) {
2861 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2862 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2863 				return 1;
2864 			else
2865 				return 0;
2866 		}
2867 	}
2868 
2869 	if (delay < 0)
2870 		return delay;
2871 
2872 	if (delay && size == 0)
2873 		return delay;
2874 
2875 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2876 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2877 		return -EINVAL;
2878 	}
2879 
2880 	if (delay == delay_values[0])
2881 		return 0;
2882 
2883 	for (i = 1; i < size; i++) {
2884 		if (delay == delay_values[i])
2885 			return i;
2886 
2887 		/* Find an approximate index by looking up the table */
2888 		if (delay > delay_values[i - 1] &&
2889 		    delay < delay_values[i]) {
2890 			if (delay - delay_values[i - 1] <
2891 			    delay_values[i] - delay)
2892 				return i - 1;
2893 			else
2894 				return i;
2895 		}
2896 	}
2897 
2898 	phydev_err(phydev, "error finding internal delay index for %d\n",
2899 		   delay);
2900 
2901 	return -EINVAL;
2902 }
2903 EXPORT_SYMBOL(phy_get_internal_delay);
2904 
2905 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2906 {
2907 	return phydrv->config_intr && phydrv->handle_interrupt;
2908 }
2909 
2910 /**
2911  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
2912  * @fwnode: pointer to the mdio_device's fwnode
2913  *
2914  * If successful, returns a pointer to the mdio_device with the embedded
2915  * struct device refcount incremented by one, or NULL on failure.
2916  * The caller should call put_device() on the mdio_device after its use.
2917  */
2918 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
2919 {
2920 	struct device *d;
2921 
2922 	if (!fwnode)
2923 		return NULL;
2924 
2925 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
2926 	if (!d)
2927 		return NULL;
2928 
2929 	return to_mdio_device(d);
2930 }
2931 EXPORT_SYMBOL(fwnode_mdio_find_device);
2932 
2933 /**
2934  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
2935  *
2936  * @phy_fwnode: Pointer to the phy's fwnode.
2937  *
2938  * If successful, returns a pointer to the phy_device with the embedded
2939  * struct device refcount incremented by one, or NULL on failure.
2940  */
2941 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
2942 {
2943 	struct mdio_device *mdiodev;
2944 
2945 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
2946 	if (!mdiodev)
2947 		return NULL;
2948 
2949 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
2950 		return to_phy_device(&mdiodev->dev);
2951 
2952 	put_device(&mdiodev->dev);
2953 
2954 	return NULL;
2955 }
2956 EXPORT_SYMBOL(fwnode_phy_find_device);
2957 
2958 /**
2959  * device_phy_find_device - For the given device, get the phy_device
2960  * @dev: Pointer to the given device
2961  *
2962  * Refer return conditions of fwnode_phy_find_device().
2963  */
2964 struct phy_device *device_phy_find_device(struct device *dev)
2965 {
2966 	return fwnode_phy_find_device(dev_fwnode(dev));
2967 }
2968 EXPORT_SYMBOL_GPL(device_phy_find_device);
2969 
2970 /**
2971  * fwnode_get_phy_node - Get the phy_node using the named reference.
2972  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
2973  *
2974  * Refer return conditions of fwnode_find_reference().
2975  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
2976  * and "phy-device" are not supported in ACPI. DT supports all the three
2977  * named references to the phy node.
2978  */
2979 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode)
2980 {
2981 	struct fwnode_handle *phy_node;
2982 
2983 	/* Only phy-handle is used for ACPI */
2984 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
2985 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
2986 		return phy_node;
2987 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
2988 	if (IS_ERR(phy_node))
2989 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
2990 	return phy_node;
2991 }
2992 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
2993 
2994 /**
2995  * phy_probe - probe and init a PHY device
2996  * @dev: device to probe and init
2997  *
2998  * Description: Take care of setting up the phy_device structure,
2999  *   set the state to READY (the driver's init function should
3000  *   set it to STARTING if needed).
3001  */
3002 static int phy_probe(struct device *dev)
3003 {
3004 	struct phy_device *phydev = to_phy_device(dev);
3005 	struct device_driver *drv = phydev->mdio.dev.driver;
3006 	struct phy_driver *phydrv = to_phy_driver(drv);
3007 	int err = 0;
3008 
3009 	phydev->drv = phydrv;
3010 
3011 	/* Disable the interrupt if the PHY doesn't support it
3012 	 * but the interrupt is still a valid one
3013 	 */
3014 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3015 		phydev->irq = PHY_POLL;
3016 
3017 	if (phydrv->flags & PHY_IS_INTERNAL)
3018 		phydev->is_internal = true;
3019 
3020 	mutex_lock(&phydev->lock);
3021 
3022 	/* Deassert the reset signal */
3023 	phy_device_reset(phydev, 0);
3024 
3025 	if (phydev->drv->probe) {
3026 		err = phydev->drv->probe(phydev);
3027 		if (err)
3028 			goto out;
3029 	}
3030 
3031 	/* Start out supporting everything. Eventually,
3032 	 * a controller will attach, and may modify one
3033 	 * or both of these values
3034 	 */
3035 	if (phydrv->features)
3036 		linkmode_copy(phydev->supported, phydrv->features);
3037 	else if (phydrv->get_features)
3038 		err = phydrv->get_features(phydev);
3039 	else if (phydev->is_c45)
3040 		err = genphy_c45_pma_read_abilities(phydev);
3041 	else
3042 		err = genphy_read_abilities(phydev);
3043 
3044 	if (err)
3045 		goto out;
3046 
3047 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3048 			       phydev->supported))
3049 		phydev->autoneg = 0;
3050 
3051 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3052 			      phydev->supported))
3053 		phydev->is_gigabit_capable = 1;
3054 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3055 			      phydev->supported))
3056 		phydev->is_gigabit_capable = 1;
3057 
3058 	of_set_phy_supported(phydev);
3059 	phy_advertise_supported(phydev);
3060 
3061 	/* Get the EEE modes we want to prohibit. We will ask
3062 	 * the PHY stop advertising these mode later on
3063 	 */
3064 	of_set_phy_eee_broken(phydev);
3065 
3066 	/* The Pause Frame bits indicate that the PHY can support passing
3067 	 * pause frames. During autonegotiation, the PHYs will determine if
3068 	 * they should allow pause frames to pass.  The MAC driver should then
3069 	 * use that result to determine whether to enable flow control via
3070 	 * pause frames.
3071 	 *
3072 	 * Normally, PHY drivers should not set the Pause bits, and instead
3073 	 * allow phylib to do that.  However, there may be some situations
3074 	 * (e.g. hardware erratum) where the driver wants to set only one
3075 	 * of these bits.
3076 	 */
3077 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3078 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3079 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3080 				 phydev->supported);
3081 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3082 				 phydev->supported);
3083 	}
3084 
3085 	/* Set the state to READY by default */
3086 	phydev->state = PHY_READY;
3087 
3088 out:
3089 	/* Assert the reset signal */
3090 	if (err)
3091 		phy_device_reset(phydev, 1);
3092 
3093 	mutex_unlock(&phydev->lock);
3094 
3095 	return err;
3096 }
3097 
3098 static int phy_remove(struct device *dev)
3099 {
3100 	struct phy_device *phydev = to_phy_device(dev);
3101 
3102 	cancel_delayed_work_sync(&phydev->state_queue);
3103 
3104 	mutex_lock(&phydev->lock);
3105 	phydev->state = PHY_DOWN;
3106 	mutex_unlock(&phydev->lock);
3107 
3108 	sfp_bus_del_upstream(phydev->sfp_bus);
3109 	phydev->sfp_bus = NULL;
3110 
3111 	if (phydev->drv && phydev->drv->remove)
3112 		phydev->drv->remove(phydev);
3113 
3114 	/* Assert the reset signal */
3115 	phy_device_reset(phydev, 1);
3116 
3117 	phydev->drv = NULL;
3118 
3119 	return 0;
3120 }
3121 
3122 static void phy_shutdown(struct device *dev)
3123 {
3124 	struct phy_device *phydev = to_phy_device(dev);
3125 
3126 	phy_disable_interrupts(phydev);
3127 }
3128 
3129 /**
3130  * phy_driver_register - register a phy_driver with the PHY layer
3131  * @new_driver: new phy_driver to register
3132  * @owner: module owning this PHY
3133  */
3134 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3135 {
3136 	int retval;
3137 
3138 	/* Either the features are hard coded, or dynamically
3139 	 * determined. It cannot be both.
3140 	 */
3141 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3142 		pr_err("%s: features and get_features must not both be set\n",
3143 		       new_driver->name);
3144 		return -EINVAL;
3145 	}
3146 
3147 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3148 	new_driver->mdiodrv.driver.name = new_driver->name;
3149 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3150 	new_driver->mdiodrv.driver.probe = phy_probe;
3151 	new_driver->mdiodrv.driver.remove = phy_remove;
3152 	new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3153 	new_driver->mdiodrv.driver.owner = owner;
3154 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3155 
3156 	retval = driver_register(&new_driver->mdiodrv.driver);
3157 	if (retval) {
3158 		pr_err("%s: Error %d in registering driver\n",
3159 		       new_driver->name, retval);
3160 
3161 		return retval;
3162 	}
3163 
3164 	pr_debug("%s: Registered new driver\n", new_driver->name);
3165 
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL(phy_driver_register);
3169 
3170 int phy_drivers_register(struct phy_driver *new_driver, int n,
3171 			 struct module *owner)
3172 {
3173 	int i, ret = 0;
3174 
3175 	for (i = 0; i < n; i++) {
3176 		ret = phy_driver_register(new_driver + i, owner);
3177 		if (ret) {
3178 			while (i-- > 0)
3179 				phy_driver_unregister(new_driver + i);
3180 			break;
3181 		}
3182 	}
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL(phy_drivers_register);
3186 
3187 void phy_driver_unregister(struct phy_driver *drv)
3188 {
3189 	driver_unregister(&drv->mdiodrv.driver);
3190 }
3191 EXPORT_SYMBOL(phy_driver_unregister);
3192 
3193 void phy_drivers_unregister(struct phy_driver *drv, int n)
3194 {
3195 	int i;
3196 
3197 	for (i = 0; i < n; i++)
3198 		phy_driver_unregister(drv + i);
3199 }
3200 EXPORT_SYMBOL(phy_drivers_unregister);
3201 
3202 static struct phy_driver genphy_driver = {
3203 	.phy_id		= 0xffffffff,
3204 	.phy_id_mask	= 0xffffffff,
3205 	.name		= "Generic PHY",
3206 	.get_features	= genphy_read_abilities,
3207 	.suspend	= genphy_suspend,
3208 	.resume		= genphy_resume,
3209 	.set_loopback   = genphy_loopback,
3210 };
3211 
3212 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3213 	.get_sset_count		= phy_ethtool_get_sset_count,
3214 	.get_strings		= phy_ethtool_get_strings,
3215 	.get_stats		= phy_ethtool_get_stats,
3216 	.start_cable_test	= phy_start_cable_test,
3217 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3218 };
3219 
3220 static int __init phy_init(void)
3221 {
3222 	int rc;
3223 
3224 	rc = mdio_bus_init();
3225 	if (rc)
3226 		return rc;
3227 
3228 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3229 	features_init();
3230 
3231 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3232 	if (rc)
3233 		goto err_c45;
3234 
3235 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3236 	if (rc) {
3237 		phy_driver_unregister(&genphy_c45_driver);
3238 err_c45:
3239 		mdio_bus_exit();
3240 	}
3241 
3242 	return rc;
3243 }
3244 
3245 static void __exit phy_exit(void)
3246 {
3247 	phy_driver_unregister(&genphy_c45_driver);
3248 	phy_driver_unregister(&genphy_driver);
3249 	mdio_bus_exit();
3250 	ethtool_set_ethtool_phy_ops(NULL);
3251 }
3252 
3253 subsys_initcall(phy_init);
3254 module_exit(phy_exit);
3255