1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/pse-pd/pse.h> 30 #include <linux/property.h> 31 #include <linux/sfp.h> 32 #include <linux/skbuff.h> 33 #include <linux/slab.h> 34 #include <linux/string.h> 35 #include <linux/uaccess.h> 36 #include <linux/unistd.h> 37 38 MODULE_DESCRIPTION("PHY library"); 39 MODULE_AUTHOR("Andy Fleming"); 40 MODULE_LICENSE("GPL"); 41 42 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 43 EXPORT_SYMBOL_GPL(phy_basic_features); 44 45 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 46 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 47 48 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 49 EXPORT_SYMBOL_GPL(phy_gbit_features); 50 51 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 52 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 53 54 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 55 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 56 57 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 58 EXPORT_SYMBOL_GPL(phy_10gbit_features); 59 60 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 61 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 62 63 const int phy_basic_ports_array[3] = { 64 ETHTOOL_LINK_MODE_Autoneg_BIT, 65 ETHTOOL_LINK_MODE_TP_BIT, 66 ETHTOOL_LINK_MODE_MII_BIT, 67 }; 68 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 69 70 const int phy_fibre_port_array[1] = { 71 ETHTOOL_LINK_MODE_FIBRE_BIT, 72 }; 73 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 74 75 const int phy_all_ports_features_array[7] = { 76 ETHTOOL_LINK_MODE_Autoneg_BIT, 77 ETHTOOL_LINK_MODE_TP_BIT, 78 ETHTOOL_LINK_MODE_MII_BIT, 79 ETHTOOL_LINK_MODE_FIBRE_BIT, 80 ETHTOOL_LINK_MODE_AUI_BIT, 81 ETHTOOL_LINK_MODE_BNC_BIT, 82 ETHTOOL_LINK_MODE_Backplane_BIT, 83 }; 84 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 85 86 const int phy_10_100_features_array[4] = { 87 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 88 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 90 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 91 }; 92 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 93 94 const int phy_basic_t1_features_array[3] = { 95 ETHTOOL_LINK_MODE_TP_BIT, 96 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 97 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 100 101 const int phy_gbit_features_array[2] = { 102 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 103 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 104 }; 105 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 106 107 const int phy_10gbit_features_array[1] = { 108 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 109 }; 110 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 111 112 static const int phy_10gbit_fec_features_array[1] = { 113 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 114 }; 115 116 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 117 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 118 119 static const int phy_10gbit_full_features_array[] = { 120 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 122 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 123 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 124 }; 125 126 static void features_init(void) 127 { 128 /* 10/100 half/full*/ 129 linkmode_set_bit_array(phy_basic_ports_array, 130 ARRAY_SIZE(phy_basic_ports_array), 131 phy_basic_features); 132 linkmode_set_bit_array(phy_10_100_features_array, 133 ARRAY_SIZE(phy_10_100_features_array), 134 phy_basic_features); 135 136 /* 100 full, TP */ 137 linkmode_set_bit_array(phy_basic_t1_features_array, 138 ARRAY_SIZE(phy_basic_t1_features_array), 139 phy_basic_t1_features); 140 141 /* 10/100 half/full + 1000 half/full */ 142 linkmode_set_bit_array(phy_basic_ports_array, 143 ARRAY_SIZE(phy_basic_ports_array), 144 phy_gbit_features); 145 linkmode_set_bit_array(phy_10_100_features_array, 146 ARRAY_SIZE(phy_10_100_features_array), 147 phy_gbit_features); 148 linkmode_set_bit_array(phy_gbit_features_array, 149 ARRAY_SIZE(phy_gbit_features_array), 150 phy_gbit_features); 151 152 /* 10/100 half/full + 1000 half/full + fibre*/ 153 linkmode_set_bit_array(phy_basic_ports_array, 154 ARRAY_SIZE(phy_basic_ports_array), 155 phy_gbit_fibre_features); 156 linkmode_set_bit_array(phy_10_100_features_array, 157 ARRAY_SIZE(phy_10_100_features_array), 158 phy_gbit_fibre_features); 159 linkmode_set_bit_array(phy_gbit_features_array, 160 ARRAY_SIZE(phy_gbit_features_array), 161 phy_gbit_fibre_features); 162 linkmode_set_bit_array(phy_fibre_port_array, 163 ARRAY_SIZE(phy_fibre_port_array), 164 phy_gbit_fibre_features); 165 166 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 167 linkmode_set_bit_array(phy_all_ports_features_array, 168 ARRAY_SIZE(phy_all_ports_features_array), 169 phy_gbit_all_ports_features); 170 linkmode_set_bit_array(phy_10_100_features_array, 171 ARRAY_SIZE(phy_10_100_features_array), 172 phy_gbit_all_ports_features); 173 linkmode_set_bit_array(phy_gbit_features_array, 174 ARRAY_SIZE(phy_gbit_features_array), 175 phy_gbit_all_ports_features); 176 177 /* 10/100 half/full + 1000 half/full + 10G full*/ 178 linkmode_set_bit_array(phy_all_ports_features_array, 179 ARRAY_SIZE(phy_all_ports_features_array), 180 phy_10gbit_features); 181 linkmode_set_bit_array(phy_10_100_features_array, 182 ARRAY_SIZE(phy_10_100_features_array), 183 phy_10gbit_features); 184 linkmode_set_bit_array(phy_gbit_features_array, 185 ARRAY_SIZE(phy_gbit_features_array), 186 phy_10gbit_features); 187 linkmode_set_bit_array(phy_10gbit_features_array, 188 ARRAY_SIZE(phy_10gbit_features_array), 189 phy_10gbit_features); 190 191 /* 10/100/1000/10G full */ 192 linkmode_set_bit_array(phy_all_ports_features_array, 193 ARRAY_SIZE(phy_all_ports_features_array), 194 phy_10gbit_full_features); 195 linkmode_set_bit_array(phy_10gbit_full_features_array, 196 ARRAY_SIZE(phy_10gbit_full_features_array), 197 phy_10gbit_full_features); 198 /* 10G FEC only */ 199 linkmode_set_bit_array(phy_10gbit_fec_features_array, 200 ARRAY_SIZE(phy_10gbit_fec_features_array), 201 phy_10gbit_fec_features); 202 } 203 204 void phy_device_free(struct phy_device *phydev) 205 { 206 put_device(&phydev->mdio.dev); 207 } 208 EXPORT_SYMBOL(phy_device_free); 209 210 static void phy_mdio_device_free(struct mdio_device *mdiodev) 211 { 212 struct phy_device *phydev; 213 214 phydev = container_of(mdiodev, struct phy_device, mdio); 215 phy_device_free(phydev); 216 } 217 218 static void phy_device_release(struct device *dev) 219 { 220 fwnode_handle_put(dev->fwnode); 221 kfree(to_phy_device(dev)); 222 } 223 224 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 225 { 226 struct phy_device *phydev; 227 228 phydev = container_of(mdiodev, struct phy_device, mdio); 229 phy_device_remove(phydev); 230 } 231 232 static struct phy_driver genphy_driver; 233 234 static LIST_HEAD(phy_fixup_list); 235 static DEFINE_MUTEX(phy_fixup_lock); 236 237 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 238 { 239 struct device_driver *drv = phydev->mdio.dev.driver; 240 struct phy_driver *phydrv = to_phy_driver(drv); 241 struct net_device *netdev = phydev->attached_dev; 242 243 if (!drv || !phydrv->suspend) 244 return false; 245 246 /* PHY not attached? May suspend if the PHY has not already been 247 * suspended as part of a prior call to phy_disconnect() -> 248 * phy_detach() -> phy_suspend() because the parent netdev might be the 249 * MDIO bus driver and clock gated at this point. 250 */ 251 if (!netdev) 252 goto out; 253 254 if (netdev->wol_enabled) 255 return false; 256 257 /* As long as not all affected network drivers support the 258 * wol_enabled flag, let's check for hints that WoL is enabled. 259 * Don't suspend PHY if the attached netdev parent may wake up. 260 * The parent may point to a PCI device, as in tg3 driver. 261 */ 262 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 263 return false; 264 265 /* Also don't suspend PHY if the netdev itself may wakeup. This 266 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 267 * e.g. SoC devices. 268 */ 269 if (device_may_wakeup(&netdev->dev)) 270 return false; 271 272 out: 273 return !phydev->suspended; 274 } 275 276 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 277 { 278 struct phy_device *phydev = to_phy_device(dev); 279 280 if (phydev->mac_managed_pm) 281 return 0; 282 283 /* Wakeup interrupts may occur during the system sleep transition when 284 * the PHY is inaccessible. Set flag to postpone handling until the PHY 285 * has resumed. Wait for concurrent interrupt handler to complete. 286 */ 287 if (phy_interrupt_is_valid(phydev)) { 288 phydev->irq_suspended = 1; 289 synchronize_irq(phydev->irq); 290 } 291 292 /* We must stop the state machine manually, otherwise it stops out of 293 * control, possibly with the phydev->lock held. Upon resume, netdev 294 * may call phy routines that try to grab the same lock, and that may 295 * lead to a deadlock. 296 */ 297 if (phydev->attached_dev && phydev->adjust_link) 298 phy_stop_machine(phydev); 299 300 if (!mdio_bus_phy_may_suspend(phydev)) 301 return 0; 302 303 phydev->suspended_by_mdio_bus = 1; 304 305 return phy_suspend(phydev); 306 } 307 308 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 309 { 310 struct phy_device *phydev = to_phy_device(dev); 311 int ret; 312 313 if (phydev->mac_managed_pm) 314 return 0; 315 316 if (!phydev->suspended_by_mdio_bus) 317 goto no_resume; 318 319 phydev->suspended_by_mdio_bus = 0; 320 321 /* If we managed to get here with the PHY state machine in a state 322 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 323 * that something went wrong and we should most likely be using 324 * MAC managed PM, but we are not. 325 */ 326 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 327 phydev->state != PHY_UP); 328 329 ret = phy_init_hw(phydev); 330 if (ret < 0) 331 return ret; 332 333 ret = phy_resume(phydev); 334 if (ret < 0) 335 return ret; 336 no_resume: 337 if (phy_interrupt_is_valid(phydev)) { 338 phydev->irq_suspended = 0; 339 synchronize_irq(phydev->irq); 340 341 /* Rerun interrupts which were postponed by phy_interrupt() 342 * because they occurred during the system sleep transition. 343 */ 344 if (phydev->irq_rerun) { 345 phydev->irq_rerun = 0; 346 enable_irq(phydev->irq); 347 irq_wake_thread(phydev->irq, phydev); 348 } 349 } 350 351 if (phydev->attached_dev && phydev->adjust_link) 352 phy_start_machine(phydev); 353 354 return 0; 355 } 356 357 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 358 mdio_bus_phy_resume); 359 360 /** 361 * phy_register_fixup - creates a new phy_fixup and adds it to the list 362 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 363 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 364 * It can also be PHY_ANY_UID 365 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 366 * comparison 367 * @run: The actual code to be run when a matching PHY is found 368 */ 369 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 370 int (*run)(struct phy_device *)) 371 { 372 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 373 374 if (!fixup) 375 return -ENOMEM; 376 377 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 378 fixup->phy_uid = phy_uid; 379 fixup->phy_uid_mask = phy_uid_mask; 380 fixup->run = run; 381 382 mutex_lock(&phy_fixup_lock); 383 list_add_tail(&fixup->list, &phy_fixup_list); 384 mutex_unlock(&phy_fixup_lock); 385 386 return 0; 387 } 388 EXPORT_SYMBOL(phy_register_fixup); 389 390 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 391 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 392 int (*run)(struct phy_device *)) 393 { 394 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 395 } 396 EXPORT_SYMBOL(phy_register_fixup_for_uid); 397 398 /* Registers a fixup to be run on the PHY with id string bus_id */ 399 int phy_register_fixup_for_id(const char *bus_id, 400 int (*run)(struct phy_device *)) 401 { 402 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 403 } 404 EXPORT_SYMBOL(phy_register_fixup_for_id); 405 406 /** 407 * phy_unregister_fixup - remove a phy_fixup from the list 408 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 409 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 410 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 411 */ 412 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 413 { 414 struct list_head *pos, *n; 415 struct phy_fixup *fixup; 416 int ret; 417 418 ret = -ENODEV; 419 420 mutex_lock(&phy_fixup_lock); 421 list_for_each_safe(pos, n, &phy_fixup_list) { 422 fixup = list_entry(pos, struct phy_fixup, list); 423 424 if ((!strcmp(fixup->bus_id, bus_id)) && 425 ((fixup->phy_uid & phy_uid_mask) == 426 (phy_uid & phy_uid_mask))) { 427 list_del(&fixup->list); 428 kfree(fixup); 429 ret = 0; 430 break; 431 } 432 } 433 mutex_unlock(&phy_fixup_lock); 434 435 return ret; 436 } 437 EXPORT_SYMBOL(phy_unregister_fixup); 438 439 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 440 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 441 { 442 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 443 } 444 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 445 446 /* Unregisters a fixup of the PHY with id string bus_id */ 447 int phy_unregister_fixup_for_id(const char *bus_id) 448 { 449 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 450 } 451 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 452 453 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 454 * Fixups can be set to match any in one or more fields. 455 */ 456 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 457 { 458 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 459 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 460 return 0; 461 462 if ((fixup->phy_uid & fixup->phy_uid_mask) != 463 (phydev->phy_id & fixup->phy_uid_mask)) 464 if (fixup->phy_uid != PHY_ANY_UID) 465 return 0; 466 467 return 1; 468 } 469 470 /* Runs any matching fixups for this phydev */ 471 static int phy_scan_fixups(struct phy_device *phydev) 472 { 473 struct phy_fixup *fixup; 474 475 mutex_lock(&phy_fixup_lock); 476 list_for_each_entry(fixup, &phy_fixup_list, list) { 477 if (phy_needs_fixup(phydev, fixup)) { 478 int err = fixup->run(phydev); 479 480 if (err < 0) { 481 mutex_unlock(&phy_fixup_lock); 482 return err; 483 } 484 phydev->has_fixups = true; 485 } 486 } 487 mutex_unlock(&phy_fixup_lock); 488 489 return 0; 490 } 491 492 static int phy_bus_match(struct device *dev, struct device_driver *drv) 493 { 494 struct phy_device *phydev = to_phy_device(dev); 495 struct phy_driver *phydrv = to_phy_driver(drv); 496 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 497 int i; 498 499 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 500 return 0; 501 502 if (phydrv->match_phy_device) 503 return phydrv->match_phy_device(phydev); 504 505 if (phydev->is_c45) { 506 for (i = 1; i < num_ids; i++) { 507 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 508 continue; 509 510 if ((phydrv->phy_id & phydrv->phy_id_mask) == 511 (phydev->c45_ids.device_ids[i] & 512 phydrv->phy_id_mask)) 513 return 1; 514 } 515 return 0; 516 } else { 517 return (phydrv->phy_id & phydrv->phy_id_mask) == 518 (phydev->phy_id & phydrv->phy_id_mask); 519 } 520 } 521 522 static ssize_t 523 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct phy_device *phydev = to_phy_device(dev); 526 527 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 528 } 529 static DEVICE_ATTR_RO(phy_id); 530 531 static ssize_t 532 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct phy_device *phydev = to_phy_device(dev); 535 const char *mode = NULL; 536 537 if (phy_is_internal(phydev)) 538 mode = "internal"; 539 else 540 mode = phy_modes(phydev->interface); 541 542 return sysfs_emit(buf, "%s\n", mode); 543 } 544 static DEVICE_ATTR_RO(phy_interface); 545 546 static ssize_t 547 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 548 char *buf) 549 { 550 struct phy_device *phydev = to_phy_device(dev); 551 552 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 553 } 554 static DEVICE_ATTR_RO(phy_has_fixups); 555 556 static ssize_t phy_dev_flags_show(struct device *dev, 557 struct device_attribute *attr, 558 char *buf) 559 { 560 struct phy_device *phydev = to_phy_device(dev); 561 562 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 563 } 564 static DEVICE_ATTR_RO(phy_dev_flags); 565 566 static struct attribute *phy_dev_attrs[] = { 567 &dev_attr_phy_id.attr, 568 &dev_attr_phy_interface.attr, 569 &dev_attr_phy_has_fixups.attr, 570 &dev_attr_phy_dev_flags.attr, 571 NULL, 572 }; 573 ATTRIBUTE_GROUPS(phy_dev); 574 575 static const struct device_type mdio_bus_phy_type = { 576 .name = "PHY", 577 .groups = phy_dev_groups, 578 .release = phy_device_release, 579 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 580 }; 581 582 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 583 { 584 int ret; 585 586 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 587 MDIO_ID_ARGS(phy_id)); 588 /* We only check for failures in executing the usermode binary, 589 * not whether a PHY driver module exists for the PHY ID. 590 * Accept -ENOENT because this may occur in case no initramfs exists, 591 * then modprobe isn't available. 592 */ 593 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 594 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 595 ret, (unsigned long)phy_id); 596 return ret; 597 } 598 599 return 0; 600 } 601 602 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 603 bool is_c45, 604 struct phy_c45_device_ids *c45_ids) 605 { 606 struct phy_device *dev; 607 struct mdio_device *mdiodev; 608 int ret = 0; 609 610 /* We allocate the device, and initialize the default values */ 611 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 612 if (!dev) 613 return ERR_PTR(-ENOMEM); 614 615 mdiodev = &dev->mdio; 616 mdiodev->dev.parent = &bus->dev; 617 mdiodev->dev.bus = &mdio_bus_type; 618 mdiodev->dev.type = &mdio_bus_phy_type; 619 mdiodev->bus = bus; 620 mdiodev->bus_match = phy_bus_match; 621 mdiodev->addr = addr; 622 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 623 mdiodev->device_free = phy_mdio_device_free; 624 mdiodev->device_remove = phy_mdio_device_remove; 625 626 dev->speed = SPEED_UNKNOWN; 627 dev->duplex = DUPLEX_UNKNOWN; 628 dev->pause = 0; 629 dev->asym_pause = 0; 630 dev->link = 0; 631 dev->port = PORT_TP; 632 dev->interface = PHY_INTERFACE_MODE_GMII; 633 634 dev->autoneg = AUTONEG_ENABLE; 635 636 dev->pma_extable = -ENODATA; 637 dev->is_c45 = is_c45; 638 dev->phy_id = phy_id; 639 if (c45_ids) 640 dev->c45_ids = *c45_ids; 641 dev->irq = bus->irq[addr]; 642 643 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 644 device_initialize(&mdiodev->dev); 645 646 dev->state = PHY_DOWN; 647 648 mutex_init(&dev->lock); 649 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 650 651 /* Request the appropriate module unconditionally; don't 652 * bother trying to do so only if it isn't already loaded, 653 * because that gets complicated. A hotplug event would have 654 * done an unconditional modprobe anyway. 655 * We don't do normal hotplug because it won't work for MDIO 656 * -- because it relies on the device staying around for long 657 * enough for the driver to get loaded. With MDIO, the NIC 658 * driver will get bored and give up as soon as it finds that 659 * there's no driver _already_ loaded. 660 */ 661 if (is_c45 && c45_ids) { 662 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 663 int i; 664 665 for (i = 1; i < num_ids; i++) { 666 if (c45_ids->device_ids[i] == 0xffffffff) 667 continue; 668 669 ret = phy_request_driver_module(dev, 670 c45_ids->device_ids[i]); 671 if (ret) 672 break; 673 } 674 } else { 675 ret = phy_request_driver_module(dev, phy_id); 676 } 677 678 if (ret) { 679 put_device(&mdiodev->dev); 680 dev = ERR_PTR(ret); 681 } 682 683 return dev; 684 } 685 EXPORT_SYMBOL(phy_device_create); 686 687 /* phy_c45_probe_present - checks to see if a MMD is present in the package 688 * @bus: the target MII bus 689 * @prtad: PHY package address on the MII bus 690 * @devad: PHY device (MMD) address 691 * 692 * Read the MDIO_STAT2 register, and check whether a device is responding 693 * at this address. 694 * 695 * Returns: negative error number on bus access error, zero if no device 696 * is responding, or positive if a device is present. 697 */ 698 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 699 { 700 int stat2; 701 702 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 703 if (stat2 < 0) 704 return stat2; 705 706 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 707 } 708 709 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 710 * @bus: the target MII bus 711 * @addr: PHY address on the MII bus 712 * @dev_addr: MMD address in the PHY. 713 * @devices_in_package: where to store the devices in package information. 714 * 715 * Description: reads devices in package registers of a MMD at @dev_addr 716 * from PHY at @addr on @bus. 717 * 718 * Returns: 0 on success, -EIO on failure. 719 */ 720 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 721 u32 *devices_in_package) 722 { 723 int phy_reg; 724 725 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 726 if (phy_reg < 0) 727 return -EIO; 728 *devices_in_package = phy_reg << 16; 729 730 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 731 if (phy_reg < 0) 732 return -EIO; 733 *devices_in_package |= phy_reg; 734 735 return 0; 736 } 737 738 /** 739 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 740 * @bus: the target MII bus 741 * @addr: PHY address on the MII bus 742 * @c45_ids: where to store the c45 ID information. 743 * 744 * Read the PHY "devices in package". If this appears to be valid, read 745 * the PHY identifiers for each device. Return the "devices in package" 746 * and identifiers in @c45_ids. 747 * 748 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 749 * the "devices in package" is invalid. 750 */ 751 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 752 struct phy_c45_device_ids *c45_ids) 753 { 754 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 755 u32 devs_in_pkg = 0; 756 int i, ret, phy_reg; 757 758 /* Find first non-zero Devices In package. Device zero is reserved 759 * for 802.3 c45 complied PHYs, so don't probe it at first. 760 */ 761 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 762 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 763 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 764 /* Check that there is a device present at this 765 * address before reading the devices-in-package 766 * register to avoid reading garbage from the PHY. 767 * Some PHYs (88x3310) vendor space is not IEEE802.3 768 * compliant. 769 */ 770 ret = phy_c45_probe_present(bus, addr, i); 771 if (ret < 0) 772 return -EIO; 773 774 if (!ret) 775 continue; 776 } 777 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 778 if (phy_reg < 0) 779 return -EIO; 780 } 781 782 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 783 /* If mostly Fs, there is no device there, then let's probe 784 * MMD 0, as some 10G PHYs have zero Devices In package, 785 * e.g. Cortina CS4315/CS4340 PHY. 786 */ 787 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 788 if (phy_reg < 0) 789 return -EIO; 790 791 /* no device there, let's get out of here */ 792 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 793 return -ENODEV; 794 } 795 796 /* Now probe Device Identifiers for each device present. */ 797 for (i = 1; i < num_ids; i++) { 798 if (!(devs_in_pkg & (1 << i))) 799 continue; 800 801 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 802 /* Probe the "Device Present" bits for the vendor MMDs 803 * to ignore these if they do not contain IEEE 802.3 804 * registers. 805 */ 806 ret = phy_c45_probe_present(bus, addr, i); 807 if (ret < 0) 808 return ret; 809 810 if (!ret) 811 continue; 812 } 813 814 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 815 if (phy_reg < 0) 816 return -EIO; 817 c45_ids->device_ids[i] = phy_reg << 16; 818 819 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 820 if (phy_reg < 0) 821 return -EIO; 822 c45_ids->device_ids[i] |= phy_reg; 823 } 824 825 c45_ids->devices_in_package = devs_in_pkg; 826 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 827 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 828 829 return 0; 830 } 831 832 /** 833 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 834 * @bus: the target MII bus 835 * @addr: PHY address on the MII bus 836 * @phy_id: where to store the ID retrieved. 837 * 838 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 839 * placing it in @phy_id. Return zero on successful read and the ID is 840 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 841 * or invalid ID. 842 */ 843 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 844 { 845 int phy_reg; 846 847 /* Grab the bits from PHYIR1, and put them in the upper half */ 848 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 849 if (phy_reg < 0) { 850 /* returning -ENODEV doesn't stop bus scanning */ 851 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 852 } 853 854 *phy_id = phy_reg << 16; 855 856 /* Grab the bits from PHYIR2, and put them in the lower half */ 857 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 858 if (phy_reg < 0) { 859 /* returning -ENODEV doesn't stop bus scanning */ 860 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 861 } 862 863 *phy_id |= phy_reg; 864 865 /* If the phy_id is mostly Fs, there is no device there */ 866 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 867 return -ENODEV; 868 869 return 0; 870 } 871 872 /* Extract the phy ID from the compatible string of the form 873 * ethernet-phy-idAAAA.BBBB. 874 */ 875 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 876 { 877 unsigned int upper, lower; 878 const char *cp; 879 int ret; 880 881 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 882 if (ret) 883 return ret; 884 885 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 886 return -EINVAL; 887 888 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 889 return 0; 890 } 891 EXPORT_SYMBOL(fwnode_get_phy_id); 892 893 /** 894 * get_phy_device - reads the specified PHY device and returns its @phy_device 895 * struct 896 * @bus: the target MII bus 897 * @addr: PHY address on the MII bus 898 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 899 * 900 * Probe for a PHY at @addr on @bus. 901 * 902 * When probing for a clause 22 PHY, then read the ID registers. If we find 903 * a valid ID, allocate and return a &struct phy_device. 904 * 905 * When probing for a clause 45 PHY, read the "devices in package" registers. 906 * If the "devices in package" appears valid, read the ID registers for each 907 * MMD, allocate and return a &struct phy_device. 908 * 909 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 910 * no PHY present, or %-EIO on bus access error. 911 */ 912 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 913 { 914 struct phy_c45_device_ids c45_ids; 915 u32 phy_id = 0; 916 int r; 917 918 c45_ids.devices_in_package = 0; 919 c45_ids.mmds_present = 0; 920 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 921 922 if (is_c45) 923 r = get_phy_c45_ids(bus, addr, &c45_ids); 924 else 925 r = get_phy_c22_id(bus, addr, &phy_id); 926 927 if (r) 928 return ERR_PTR(r); 929 930 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 931 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 932 * probe with C45 to see if we're able to get a valid PHY ID in the C45 933 * space, if successful, create the C45 PHY device. 934 */ 935 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 936 r = get_phy_c45_ids(bus, addr, &c45_ids); 937 if (!r) 938 return phy_device_create(bus, addr, phy_id, 939 true, &c45_ids); 940 } 941 942 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 943 } 944 EXPORT_SYMBOL(get_phy_device); 945 946 /** 947 * phy_device_register - Register the phy device on the MDIO bus 948 * @phydev: phy_device structure to be added to the MDIO bus 949 */ 950 int phy_device_register(struct phy_device *phydev) 951 { 952 int err; 953 954 err = mdiobus_register_device(&phydev->mdio); 955 if (err) 956 return err; 957 958 /* Deassert the reset signal */ 959 phy_device_reset(phydev, 0); 960 961 /* Run all of the fixups for this PHY */ 962 err = phy_scan_fixups(phydev); 963 if (err) { 964 phydev_err(phydev, "failed to initialize\n"); 965 goto out; 966 } 967 968 err = device_add(&phydev->mdio.dev); 969 if (err) { 970 phydev_err(phydev, "failed to add\n"); 971 goto out; 972 } 973 974 return 0; 975 976 out: 977 /* Assert the reset signal */ 978 phy_device_reset(phydev, 1); 979 980 mdiobus_unregister_device(&phydev->mdio); 981 return err; 982 } 983 EXPORT_SYMBOL(phy_device_register); 984 985 /** 986 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 987 * @phydev: phy_device structure to remove 988 * 989 * This doesn't free the phy_device itself, it merely reverses the effects 990 * of phy_device_register(). Use phy_device_free() to free the device 991 * after calling this function. 992 */ 993 void phy_device_remove(struct phy_device *phydev) 994 { 995 unregister_mii_timestamper(phydev->mii_ts); 996 pse_control_put(phydev->psec); 997 998 device_del(&phydev->mdio.dev); 999 1000 /* Assert the reset signal */ 1001 phy_device_reset(phydev, 1); 1002 1003 mdiobus_unregister_device(&phydev->mdio); 1004 } 1005 EXPORT_SYMBOL(phy_device_remove); 1006 1007 /** 1008 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1009 * @phydev: phy_device structure to read 802.3-c45 IDs 1010 * 1011 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1012 * the "devices in package" is invalid. 1013 */ 1014 int phy_get_c45_ids(struct phy_device *phydev) 1015 { 1016 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1017 &phydev->c45_ids); 1018 } 1019 EXPORT_SYMBOL(phy_get_c45_ids); 1020 1021 /** 1022 * phy_find_first - finds the first PHY device on the bus 1023 * @bus: the target MII bus 1024 */ 1025 struct phy_device *phy_find_first(struct mii_bus *bus) 1026 { 1027 struct phy_device *phydev; 1028 int addr; 1029 1030 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1031 phydev = mdiobus_get_phy(bus, addr); 1032 if (phydev) 1033 return phydev; 1034 } 1035 return NULL; 1036 } 1037 EXPORT_SYMBOL(phy_find_first); 1038 1039 static void phy_link_change(struct phy_device *phydev, bool up) 1040 { 1041 struct net_device *netdev = phydev->attached_dev; 1042 1043 if (up) 1044 netif_carrier_on(netdev); 1045 else 1046 netif_carrier_off(netdev); 1047 phydev->adjust_link(netdev); 1048 if (phydev->mii_ts && phydev->mii_ts->link_state) 1049 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1050 } 1051 1052 /** 1053 * phy_prepare_link - prepares the PHY layer to monitor link status 1054 * @phydev: target phy_device struct 1055 * @handler: callback function for link status change notifications 1056 * 1057 * Description: Tells the PHY infrastructure to handle the 1058 * gory details on monitoring link status (whether through 1059 * polling or an interrupt), and to call back to the 1060 * connected device driver when the link status changes. 1061 * If you want to monitor your own link state, don't call 1062 * this function. 1063 */ 1064 static void phy_prepare_link(struct phy_device *phydev, 1065 void (*handler)(struct net_device *)) 1066 { 1067 phydev->adjust_link = handler; 1068 } 1069 1070 /** 1071 * phy_connect_direct - connect an ethernet device to a specific phy_device 1072 * @dev: the network device to connect 1073 * @phydev: the pointer to the phy device 1074 * @handler: callback function for state change notifications 1075 * @interface: PHY device's interface 1076 */ 1077 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1078 void (*handler)(struct net_device *), 1079 phy_interface_t interface) 1080 { 1081 int rc; 1082 1083 if (!dev) 1084 return -EINVAL; 1085 1086 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1087 if (rc) 1088 return rc; 1089 1090 phy_prepare_link(phydev, handler); 1091 if (phy_interrupt_is_valid(phydev)) 1092 phy_request_interrupt(phydev); 1093 1094 return 0; 1095 } 1096 EXPORT_SYMBOL(phy_connect_direct); 1097 1098 /** 1099 * phy_connect - connect an ethernet device to a PHY device 1100 * @dev: the network device to connect 1101 * @bus_id: the id string of the PHY device to connect 1102 * @handler: callback function for state change notifications 1103 * @interface: PHY device's interface 1104 * 1105 * Description: Convenience function for connecting ethernet 1106 * devices to PHY devices. The default behavior is for 1107 * the PHY infrastructure to handle everything, and only notify 1108 * the connected driver when the link status changes. If you 1109 * don't want, or can't use the provided functionality, you may 1110 * choose to call only the subset of functions which provide 1111 * the desired functionality. 1112 */ 1113 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1114 void (*handler)(struct net_device *), 1115 phy_interface_t interface) 1116 { 1117 struct phy_device *phydev; 1118 struct device *d; 1119 int rc; 1120 1121 /* Search the list of PHY devices on the mdio bus for the 1122 * PHY with the requested name 1123 */ 1124 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1125 if (!d) { 1126 pr_err("PHY %s not found\n", bus_id); 1127 return ERR_PTR(-ENODEV); 1128 } 1129 phydev = to_phy_device(d); 1130 1131 rc = phy_connect_direct(dev, phydev, handler, interface); 1132 put_device(d); 1133 if (rc) 1134 return ERR_PTR(rc); 1135 1136 return phydev; 1137 } 1138 EXPORT_SYMBOL(phy_connect); 1139 1140 /** 1141 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1142 * device 1143 * @phydev: target phy_device struct 1144 */ 1145 void phy_disconnect(struct phy_device *phydev) 1146 { 1147 if (phy_is_started(phydev)) 1148 phy_stop(phydev); 1149 1150 if (phy_interrupt_is_valid(phydev)) 1151 phy_free_interrupt(phydev); 1152 1153 phydev->adjust_link = NULL; 1154 1155 phy_detach(phydev); 1156 } 1157 EXPORT_SYMBOL(phy_disconnect); 1158 1159 /** 1160 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1161 * @phydev: The PHY device to poll 1162 * 1163 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1164 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1165 * register must be polled until the BMCR_RESET bit clears. 1166 * 1167 * Furthermore, any attempts to write to PHY registers may have no effect 1168 * or even generate MDIO bus errors until this is complete. 1169 * 1170 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1171 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1172 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1173 * effort to support such broken PHYs, this function is separate from the 1174 * standard phy_init_hw() which will zero all the other bits in the BMCR 1175 * and reapply all driver-specific and board-specific fixups. 1176 */ 1177 static int phy_poll_reset(struct phy_device *phydev) 1178 { 1179 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1180 int ret, val; 1181 1182 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1183 50000, 600000, true); 1184 if (ret) 1185 return ret; 1186 /* Some chips (smsc911x) may still need up to another 1ms after the 1187 * BMCR_RESET bit is cleared before they are usable. 1188 */ 1189 msleep(1); 1190 return 0; 1191 } 1192 1193 int phy_init_hw(struct phy_device *phydev) 1194 { 1195 int ret = 0; 1196 1197 /* Deassert the reset signal */ 1198 phy_device_reset(phydev, 0); 1199 1200 if (!phydev->drv) 1201 return 0; 1202 1203 if (phydev->drv->soft_reset) { 1204 ret = phydev->drv->soft_reset(phydev); 1205 /* see comment in genphy_soft_reset for an explanation */ 1206 if (!ret) 1207 phydev->suspended = 0; 1208 } 1209 1210 if (ret < 0) 1211 return ret; 1212 1213 ret = phy_scan_fixups(phydev); 1214 if (ret < 0) 1215 return ret; 1216 1217 if (phydev->drv->config_init) { 1218 ret = phydev->drv->config_init(phydev); 1219 if (ret < 0) 1220 return ret; 1221 } 1222 1223 if (phydev->drv->config_intr) { 1224 ret = phydev->drv->config_intr(phydev); 1225 if (ret < 0) 1226 return ret; 1227 } 1228 1229 return 0; 1230 } 1231 EXPORT_SYMBOL(phy_init_hw); 1232 1233 void phy_attached_info(struct phy_device *phydev) 1234 { 1235 phy_attached_print(phydev, NULL); 1236 } 1237 EXPORT_SYMBOL(phy_attached_info); 1238 1239 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1240 char *phy_attached_info_irq(struct phy_device *phydev) 1241 { 1242 char *irq_str; 1243 char irq_num[8]; 1244 1245 switch(phydev->irq) { 1246 case PHY_POLL: 1247 irq_str = "POLL"; 1248 break; 1249 case PHY_MAC_INTERRUPT: 1250 irq_str = "MAC"; 1251 break; 1252 default: 1253 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1254 irq_str = irq_num; 1255 break; 1256 } 1257 1258 return kasprintf(GFP_KERNEL, "%s", irq_str); 1259 } 1260 EXPORT_SYMBOL(phy_attached_info_irq); 1261 1262 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1263 { 1264 const char *unbound = phydev->drv ? "" : "[unbound] "; 1265 char *irq_str = phy_attached_info_irq(phydev); 1266 1267 if (!fmt) { 1268 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1269 phydev_name(phydev), irq_str); 1270 } else { 1271 va_list ap; 1272 1273 phydev_info(phydev, ATTACHED_FMT, unbound, 1274 phydev_name(phydev), irq_str); 1275 1276 va_start(ap, fmt); 1277 vprintk(fmt, ap); 1278 va_end(ap); 1279 } 1280 kfree(irq_str); 1281 } 1282 EXPORT_SYMBOL(phy_attached_print); 1283 1284 static void phy_sysfs_create_links(struct phy_device *phydev) 1285 { 1286 struct net_device *dev = phydev->attached_dev; 1287 int err; 1288 1289 if (!dev) 1290 return; 1291 1292 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1293 "attached_dev"); 1294 if (err) 1295 return; 1296 1297 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1298 &phydev->mdio.dev.kobj, 1299 "phydev"); 1300 if (err) { 1301 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1302 kobject_name(&phydev->mdio.dev.kobj), 1303 err); 1304 /* non-fatal - some net drivers can use one netdevice 1305 * with more then one phy 1306 */ 1307 } 1308 1309 phydev->sysfs_links = true; 1310 } 1311 1312 static ssize_t 1313 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1314 char *buf) 1315 { 1316 struct phy_device *phydev = to_phy_device(dev); 1317 1318 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1319 } 1320 static DEVICE_ATTR_RO(phy_standalone); 1321 1322 /** 1323 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1324 * @upstream: pointer to the phy device 1325 * @bus: sfp bus representing cage being attached 1326 * 1327 * This is used to fill in the sfp_upstream_ops .attach member. 1328 */ 1329 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1330 { 1331 struct phy_device *phydev = upstream; 1332 1333 if (phydev->attached_dev) 1334 phydev->attached_dev->sfp_bus = bus; 1335 phydev->sfp_bus_attached = true; 1336 } 1337 EXPORT_SYMBOL(phy_sfp_attach); 1338 1339 /** 1340 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1341 * @upstream: pointer to the phy device 1342 * @bus: sfp bus representing cage being attached 1343 * 1344 * This is used to fill in the sfp_upstream_ops .detach member. 1345 */ 1346 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1347 { 1348 struct phy_device *phydev = upstream; 1349 1350 if (phydev->attached_dev) 1351 phydev->attached_dev->sfp_bus = NULL; 1352 phydev->sfp_bus_attached = false; 1353 } 1354 EXPORT_SYMBOL(phy_sfp_detach); 1355 1356 /** 1357 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1358 * @phydev: Pointer to phy_device 1359 * @ops: SFP's upstream operations 1360 */ 1361 int phy_sfp_probe(struct phy_device *phydev, 1362 const struct sfp_upstream_ops *ops) 1363 { 1364 struct sfp_bus *bus; 1365 int ret = 0; 1366 1367 if (phydev->mdio.dev.fwnode) { 1368 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1369 if (IS_ERR(bus)) 1370 return PTR_ERR(bus); 1371 1372 phydev->sfp_bus = bus; 1373 1374 ret = sfp_bus_add_upstream(bus, phydev, ops); 1375 sfp_bus_put(bus); 1376 } 1377 return ret; 1378 } 1379 EXPORT_SYMBOL(phy_sfp_probe); 1380 1381 /** 1382 * phy_attach_direct - attach a network device to a given PHY device pointer 1383 * @dev: network device to attach 1384 * @phydev: Pointer to phy_device to attach 1385 * @flags: PHY device's dev_flags 1386 * @interface: PHY device's interface 1387 * 1388 * Description: Called by drivers to attach to a particular PHY 1389 * device. The phy_device is found, and properly hooked up 1390 * to the phy_driver. If no driver is attached, then a 1391 * generic driver is used. The phy_device is given a ptr to 1392 * the attaching device, and given a callback for link status 1393 * change. The phy_device is returned to the attaching driver. 1394 * This function takes a reference on the phy device. 1395 */ 1396 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1397 u32 flags, phy_interface_t interface) 1398 { 1399 struct mii_bus *bus = phydev->mdio.bus; 1400 struct device *d = &phydev->mdio.dev; 1401 struct module *ndev_owner = NULL; 1402 bool using_genphy = false; 1403 int err; 1404 1405 /* For Ethernet device drivers that register their own MDIO bus, we 1406 * will have bus->owner match ndev_mod, so we do not want to increment 1407 * our own module->refcnt here, otherwise we would not be able to 1408 * unload later on. 1409 */ 1410 if (dev) 1411 ndev_owner = dev->dev.parent->driver->owner; 1412 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1413 phydev_err(phydev, "failed to get the bus module\n"); 1414 return -EIO; 1415 } 1416 1417 get_device(d); 1418 1419 /* Assume that if there is no driver, that it doesn't 1420 * exist, and we should use the genphy driver. 1421 */ 1422 if (!d->driver) { 1423 if (phydev->is_c45) 1424 d->driver = &genphy_c45_driver.mdiodrv.driver; 1425 else 1426 d->driver = &genphy_driver.mdiodrv.driver; 1427 1428 using_genphy = true; 1429 } 1430 1431 if (!try_module_get(d->driver->owner)) { 1432 phydev_err(phydev, "failed to get the device driver module\n"); 1433 err = -EIO; 1434 goto error_put_device; 1435 } 1436 1437 if (using_genphy) { 1438 err = d->driver->probe(d); 1439 if (err >= 0) 1440 err = device_bind_driver(d); 1441 1442 if (err) 1443 goto error_module_put; 1444 } 1445 1446 if (phydev->attached_dev) { 1447 dev_err(&dev->dev, "PHY already attached\n"); 1448 err = -EBUSY; 1449 goto error; 1450 } 1451 1452 phydev->phy_link_change = phy_link_change; 1453 if (dev) { 1454 phydev->attached_dev = dev; 1455 dev->phydev = phydev; 1456 1457 if (phydev->sfp_bus_attached) 1458 dev->sfp_bus = phydev->sfp_bus; 1459 else if (dev->sfp_bus) 1460 phydev->is_on_sfp_module = true; 1461 } 1462 1463 /* Some Ethernet drivers try to connect to a PHY device before 1464 * calling register_netdevice() -> netdev_register_kobject() and 1465 * does the dev->dev.kobj initialization. Here we only check for 1466 * success which indicates that the network device kobject is 1467 * ready. Once we do that we still need to keep track of whether 1468 * links were successfully set up or not for phy_detach() to 1469 * remove them accordingly. 1470 */ 1471 phydev->sysfs_links = false; 1472 1473 phy_sysfs_create_links(phydev); 1474 1475 if (!phydev->attached_dev) { 1476 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1477 &dev_attr_phy_standalone.attr); 1478 if (err) 1479 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1480 } 1481 1482 phydev->dev_flags |= flags; 1483 1484 phydev->interface = interface; 1485 1486 phydev->state = PHY_READY; 1487 1488 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1489 1490 /* Port is set to PORT_TP by default and the actual PHY driver will set 1491 * it to different value depending on the PHY configuration. If we have 1492 * the generic PHY driver we can't figure it out, thus set the old 1493 * legacy PORT_MII value. 1494 */ 1495 if (using_genphy) 1496 phydev->port = PORT_MII; 1497 1498 /* Initial carrier state is off as the phy is about to be 1499 * (re)initialized. 1500 */ 1501 if (dev) 1502 netif_carrier_off(phydev->attached_dev); 1503 1504 /* Do initial configuration here, now that 1505 * we have certain key parameters 1506 * (dev_flags and interface) 1507 */ 1508 err = phy_init_hw(phydev); 1509 if (err) 1510 goto error; 1511 1512 phy_resume(phydev); 1513 phy_led_triggers_register(phydev); 1514 1515 /** 1516 * If the external phy used by current mac interface is managed by 1517 * another mac interface, so we should create a device link between 1518 * phy dev and mac dev. 1519 */ 1520 if (phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1521 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1522 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1523 1524 return err; 1525 1526 error: 1527 /* phy_detach() does all of the cleanup below */ 1528 phy_detach(phydev); 1529 return err; 1530 1531 error_module_put: 1532 module_put(d->driver->owner); 1533 d->driver = NULL; 1534 error_put_device: 1535 put_device(d); 1536 if (ndev_owner != bus->owner) 1537 module_put(bus->owner); 1538 return err; 1539 } 1540 EXPORT_SYMBOL(phy_attach_direct); 1541 1542 /** 1543 * phy_attach - attach a network device to a particular PHY device 1544 * @dev: network device to attach 1545 * @bus_id: Bus ID of PHY device to attach 1546 * @interface: PHY device's interface 1547 * 1548 * Description: Same as phy_attach_direct() except that a PHY bus_id 1549 * string is passed instead of a pointer to a struct phy_device. 1550 */ 1551 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1552 phy_interface_t interface) 1553 { 1554 struct bus_type *bus = &mdio_bus_type; 1555 struct phy_device *phydev; 1556 struct device *d; 1557 int rc; 1558 1559 if (!dev) 1560 return ERR_PTR(-EINVAL); 1561 1562 /* Search the list of PHY devices on the mdio bus for the 1563 * PHY with the requested name 1564 */ 1565 d = bus_find_device_by_name(bus, NULL, bus_id); 1566 if (!d) { 1567 pr_err("PHY %s not found\n", bus_id); 1568 return ERR_PTR(-ENODEV); 1569 } 1570 phydev = to_phy_device(d); 1571 1572 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1573 put_device(d); 1574 if (rc) 1575 return ERR_PTR(rc); 1576 1577 return phydev; 1578 } 1579 EXPORT_SYMBOL(phy_attach); 1580 1581 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1582 struct device_driver *driver) 1583 { 1584 struct device *d = &phydev->mdio.dev; 1585 bool ret = false; 1586 1587 if (!phydev->drv) 1588 return ret; 1589 1590 get_device(d); 1591 ret = d->driver == driver; 1592 put_device(d); 1593 1594 return ret; 1595 } 1596 1597 bool phy_driver_is_genphy(struct phy_device *phydev) 1598 { 1599 return phy_driver_is_genphy_kind(phydev, 1600 &genphy_driver.mdiodrv.driver); 1601 } 1602 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1603 1604 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1605 { 1606 return phy_driver_is_genphy_kind(phydev, 1607 &genphy_c45_driver.mdiodrv.driver); 1608 } 1609 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1610 1611 /** 1612 * phy_package_join - join a common PHY group 1613 * @phydev: target phy_device struct 1614 * @addr: cookie and PHY address for global register access 1615 * @priv_size: if non-zero allocate this amount of bytes for private data 1616 * 1617 * This joins a PHY group and provides a shared storage for all phydevs in 1618 * this group. This is intended to be used for packages which contain 1619 * more than one PHY, for example a quad PHY transceiver. 1620 * 1621 * The addr parameter serves as a cookie which has to have the same value 1622 * for all members of one group and as a PHY address to access generic 1623 * registers of a PHY package. Usually, one of the PHY addresses of the 1624 * different PHYs in the package provides access to these global registers. 1625 * The address which is given here, will be used in the phy_package_read() 1626 * and phy_package_write() convenience functions. If your PHY doesn't have 1627 * global registers you can just pick any of the PHY addresses. 1628 * 1629 * This will set the shared pointer of the phydev to the shared storage. 1630 * If this is the first call for a this cookie the shared storage will be 1631 * allocated. If priv_size is non-zero, the given amount of bytes are 1632 * allocated for the priv member. 1633 * 1634 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1635 * with the same cookie but a different priv_size is an error. 1636 */ 1637 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1638 { 1639 struct mii_bus *bus = phydev->mdio.bus; 1640 struct phy_package_shared *shared; 1641 int ret; 1642 1643 if (addr < 0 || addr >= PHY_MAX_ADDR) 1644 return -EINVAL; 1645 1646 mutex_lock(&bus->shared_lock); 1647 shared = bus->shared[addr]; 1648 if (!shared) { 1649 ret = -ENOMEM; 1650 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1651 if (!shared) 1652 goto err_unlock; 1653 if (priv_size) { 1654 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1655 if (!shared->priv) 1656 goto err_free; 1657 shared->priv_size = priv_size; 1658 } 1659 shared->addr = addr; 1660 refcount_set(&shared->refcnt, 1); 1661 bus->shared[addr] = shared; 1662 } else { 1663 ret = -EINVAL; 1664 if (priv_size && priv_size != shared->priv_size) 1665 goto err_unlock; 1666 refcount_inc(&shared->refcnt); 1667 } 1668 mutex_unlock(&bus->shared_lock); 1669 1670 phydev->shared = shared; 1671 1672 return 0; 1673 1674 err_free: 1675 kfree(shared); 1676 err_unlock: 1677 mutex_unlock(&bus->shared_lock); 1678 return ret; 1679 } 1680 EXPORT_SYMBOL_GPL(phy_package_join); 1681 1682 /** 1683 * phy_package_leave - leave a common PHY group 1684 * @phydev: target phy_device struct 1685 * 1686 * This leaves a PHY group created by phy_package_join(). If this phydev 1687 * was the last user of the shared data between the group, this data is 1688 * freed. Resets the phydev->shared pointer to NULL. 1689 */ 1690 void phy_package_leave(struct phy_device *phydev) 1691 { 1692 struct phy_package_shared *shared = phydev->shared; 1693 struct mii_bus *bus = phydev->mdio.bus; 1694 1695 if (!shared) 1696 return; 1697 1698 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1699 bus->shared[shared->addr] = NULL; 1700 mutex_unlock(&bus->shared_lock); 1701 kfree(shared->priv); 1702 kfree(shared); 1703 } 1704 1705 phydev->shared = NULL; 1706 } 1707 EXPORT_SYMBOL_GPL(phy_package_leave); 1708 1709 static void devm_phy_package_leave(struct device *dev, void *res) 1710 { 1711 phy_package_leave(*(struct phy_device **)res); 1712 } 1713 1714 /** 1715 * devm_phy_package_join - resource managed phy_package_join() 1716 * @dev: device that is registering this PHY package 1717 * @phydev: target phy_device struct 1718 * @addr: cookie and PHY address for global register access 1719 * @priv_size: if non-zero allocate this amount of bytes for private data 1720 * 1721 * Managed phy_package_join(). Shared storage fetched by this function, 1722 * phy_package_leave() is automatically called on driver detach. See 1723 * phy_package_join() for more information. 1724 */ 1725 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1726 int addr, size_t priv_size) 1727 { 1728 struct phy_device **ptr; 1729 int ret; 1730 1731 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1732 GFP_KERNEL); 1733 if (!ptr) 1734 return -ENOMEM; 1735 1736 ret = phy_package_join(phydev, addr, priv_size); 1737 1738 if (!ret) { 1739 *ptr = phydev; 1740 devres_add(dev, ptr); 1741 } else { 1742 devres_free(ptr); 1743 } 1744 1745 return ret; 1746 } 1747 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1748 1749 /** 1750 * phy_detach - detach a PHY device from its network device 1751 * @phydev: target phy_device struct 1752 * 1753 * This detaches the phy device from its network device and the phy 1754 * driver, and drops the reference count taken in phy_attach_direct(). 1755 */ 1756 void phy_detach(struct phy_device *phydev) 1757 { 1758 struct net_device *dev = phydev->attached_dev; 1759 struct module *ndev_owner = NULL; 1760 struct mii_bus *bus; 1761 1762 if (phydev->devlink) 1763 device_link_del(phydev->devlink); 1764 1765 if (phydev->sysfs_links) { 1766 if (dev) 1767 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1768 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1769 } 1770 1771 if (!phydev->attached_dev) 1772 sysfs_remove_file(&phydev->mdio.dev.kobj, 1773 &dev_attr_phy_standalone.attr); 1774 1775 phy_suspend(phydev); 1776 if (dev) { 1777 phydev->attached_dev->phydev = NULL; 1778 phydev->attached_dev = NULL; 1779 } 1780 phydev->phylink = NULL; 1781 1782 phy_led_triggers_unregister(phydev); 1783 1784 if (phydev->mdio.dev.driver) 1785 module_put(phydev->mdio.dev.driver->owner); 1786 1787 /* If the device had no specific driver before (i.e. - it 1788 * was using the generic driver), we unbind the device 1789 * from the generic driver so that there's a chance a 1790 * real driver could be loaded 1791 */ 1792 if (phy_driver_is_genphy(phydev) || 1793 phy_driver_is_genphy_10g(phydev)) 1794 device_release_driver(&phydev->mdio.dev); 1795 1796 /* Assert the reset signal */ 1797 phy_device_reset(phydev, 1); 1798 1799 /* 1800 * The phydev might go away on the put_device() below, so avoid 1801 * a use-after-free bug by reading the underlying bus first. 1802 */ 1803 bus = phydev->mdio.bus; 1804 1805 put_device(&phydev->mdio.dev); 1806 if (dev) 1807 ndev_owner = dev->dev.parent->driver->owner; 1808 if (ndev_owner != bus->owner) 1809 module_put(bus->owner); 1810 } 1811 EXPORT_SYMBOL(phy_detach); 1812 1813 int phy_suspend(struct phy_device *phydev) 1814 { 1815 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1816 struct net_device *netdev = phydev->attached_dev; 1817 struct phy_driver *phydrv = phydev->drv; 1818 int ret; 1819 1820 if (phydev->suspended) 1821 return 0; 1822 1823 /* If the device has WOL enabled, we cannot suspend the PHY */ 1824 phy_ethtool_get_wol(phydev, &wol); 1825 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1826 return -EBUSY; 1827 1828 if (!phydrv || !phydrv->suspend) 1829 return 0; 1830 1831 ret = phydrv->suspend(phydev); 1832 if (!ret) 1833 phydev->suspended = true; 1834 1835 return ret; 1836 } 1837 EXPORT_SYMBOL(phy_suspend); 1838 1839 int __phy_resume(struct phy_device *phydev) 1840 { 1841 struct phy_driver *phydrv = phydev->drv; 1842 int ret; 1843 1844 lockdep_assert_held(&phydev->lock); 1845 1846 if (!phydrv || !phydrv->resume) 1847 return 0; 1848 1849 ret = phydrv->resume(phydev); 1850 if (!ret) 1851 phydev->suspended = false; 1852 1853 return ret; 1854 } 1855 EXPORT_SYMBOL(__phy_resume); 1856 1857 int phy_resume(struct phy_device *phydev) 1858 { 1859 int ret; 1860 1861 mutex_lock(&phydev->lock); 1862 ret = __phy_resume(phydev); 1863 mutex_unlock(&phydev->lock); 1864 1865 return ret; 1866 } 1867 EXPORT_SYMBOL(phy_resume); 1868 1869 int phy_loopback(struct phy_device *phydev, bool enable) 1870 { 1871 int ret = 0; 1872 1873 if (!phydev->drv) 1874 return -EIO; 1875 1876 mutex_lock(&phydev->lock); 1877 1878 if (enable && phydev->loopback_enabled) { 1879 ret = -EBUSY; 1880 goto out; 1881 } 1882 1883 if (!enable && !phydev->loopback_enabled) { 1884 ret = -EINVAL; 1885 goto out; 1886 } 1887 1888 if (phydev->drv->set_loopback) 1889 ret = phydev->drv->set_loopback(phydev, enable); 1890 else 1891 ret = genphy_loopback(phydev, enable); 1892 1893 if (ret) 1894 goto out; 1895 1896 phydev->loopback_enabled = enable; 1897 1898 out: 1899 mutex_unlock(&phydev->lock); 1900 return ret; 1901 } 1902 EXPORT_SYMBOL(phy_loopback); 1903 1904 /** 1905 * phy_reset_after_clk_enable - perform a PHY reset if needed 1906 * @phydev: target phy_device struct 1907 * 1908 * Description: Some PHYs are known to need a reset after their refclk was 1909 * enabled. This function evaluates the flags and perform the reset if it's 1910 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1911 * was reset. 1912 */ 1913 int phy_reset_after_clk_enable(struct phy_device *phydev) 1914 { 1915 if (!phydev || !phydev->drv) 1916 return -ENODEV; 1917 1918 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1919 phy_device_reset(phydev, 1); 1920 phy_device_reset(phydev, 0); 1921 return 1; 1922 } 1923 1924 return 0; 1925 } 1926 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1927 1928 /* Generic PHY support and helper functions */ 1929 1930 /** 1931 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1932 * @phydev: target phy_device struct 1933 * 1934 * Description: Writes MII_ADVERTISE with the appropriate values, 1935 * after sanitizing the values to make sure we only advertise 1936 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1937 * hasn't changed, and > 0 if it has changed. 1938 */ 1939 static int genphy_config_advert(struct phy_device *phydev) 1940 { 1941 int err, bmsr, changed = 0; 1942 u32 adv; 1943 1944 /* Only allow advertising what this PHY supports */ 1945 linkmode_and(phydev->advertising, phydev->advertising, 1946 phydev->supported); 1947 1948 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1949 1950 /* Setup standard advertisement */ 1951 err = phy_modify_changed(phydev, MII_ADVERTISE, 1952 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1953 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1954 adv); 1955 if (err < 0) 1956 return err; 1957 if (err > 0) 1958 changed = 1; 1959 1960 bmsr = phy_read(phydev, MII_BMSR); 1961 if (bmsr < 0) 1962 return bmsr; 1963 1964 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1965 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1966 * logical 1. 1967 */ 1968 if (!(bmsr & BMSR_ESTATEN)) 1969 return changed; 1970 1971 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1972 1973 err = phy_modify_changed(phydev, MII_CTRL1000, 1974 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1975 adv); 1976 if (err < 0) 1977 return err; 1978 if (err > 0) 1979 changed = 1; 1980 1981 return changed; 1982 } 1983 1984 /** 1985 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1986 * @phydev: target phy_device struct 1987 * 1988 * Description: Writes MII_ADVERTISE with the appropriate values, 1989 * after sanitizing the values to make sure we only advertise 1990 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1991 * hasn't changed, and > 0 if it has changed. This function is intended 1992 * for Clause 37 1000Base-X mode. 1993 */ 1994 static int genphy_c37_config_advert(struct phy_device *phydev) 1995 { 1996 u16 adv = 0; 1997 1998 /* Only allow advertising what this PHY supports */ 1999 linkmode_and(phydev->advertising, phydev->advertising, 2000 phydev->supported); 2001 2002 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2003 phydev->advertising)) 2004 adv |= ADVERTISE_1000XFULL; 2005 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2006 phydev->advertising)) 2007 adv |= ADVERTISE_1000XPAUSE; 2008 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2009 phydev->advertising)) 2010 adv |= ADVERTISE_1000XPSE_ASYM; 2011 2012 return phy_modify_changed(phydev, MII_ADVERTISE, 2013 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2014 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2015 adv); 2016 } 2017 2018 /** 2019 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2020 * @phydev: target phy_device struct 2021 * 2022 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2023 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2024 * changed, and 1 if it has changed. 2025 */ 2026 int genphy_config_eee_advert(struct phy_device *phydev) 2027 { 2028 int err; 2029 2030 /* Nothing to disable */ 2031 if (!phydev->eee_broken_modes) 2032 return 0; 2033 2034 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2035 phydev->eee_broken_modes, 0); 2036 /* If the call failed, we assume that EEE is not supported */ 2037 return err < 0 ? 0 : err; 2038 } 2039 EXPORT_SYMBOL(genphy_config_eee_advert); 2040 2041 /** 2042 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2043 * @phydev: target phy_device struct 2044 * 2045 * Description: Configures MII_BMCR to force speed/duplex 2046 * to the values in phydev. Assumes that the values are valid. 2047 * Please see phy_sanitize_settings(). 2048 */ 2049 int genphy_setup_forced(struct phy_device *phydev) 2050 { 2051 u16 ctl; 2052 2053 phydev->pause = 0; 2054 phydev->asym_pause = 0; 2055 2056 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2057 2058 return phy_modify(phydev, MII_BMCR, 2059 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2060 } 2061 EXPORT_SYMBOL(genphy_setup_forced); 2062 2063 static int genphy_setup_master_slave(struct phy_device *phydev) 2064 { 2065 u16 ctl = 0; 2066 2067 if (!phydev->is_gigabit_capable) 2068 return 0; 2069 2070 switch (phydev->master_slave_set) { 2071 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2072 ctl |= CTL1000_PREFER_MASTER; 2073 break; 2074 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2075 break; 2076 case MASTER_SLAVE_CFG_MASTER_FORCE: 2077 ctl |= CTL1000_AS_MASTER; 2078 fallthrough; 2079 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2080 ctl |= CTL1000_ENABLE_MASTER; 2081 break; 2082 case MASTER_SLAVE_CFG_UNKNOWN: 2083 case MASTER_SLAVE_CFG_UNSUPPORTED: 2084 return 0; 2085 default: 2086 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2087 return -EOPNOTSUPP; 2088 } 2089 2090 return phy_modify_changed(phydev, MII_CTRL1000, 2091 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2092 CTL1000_PREFER_MASTER), ctl); 2093 } 2094 2095 int genphy_read_master_slave(struct phy_device *phydev) 2096 { 2097 int cfg, state; 2098 int val; 2099 2100 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2101 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2102 2103 val = phy_read(phydev, MII_CTRL1000); 2104 if (val < 0) 2105 return val; 2106 2107 if (val & CTL1000_ENABLE_MASTER) { 2108 if (val & CTL1000_AS_MASTER) 2109 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2110 else 2111 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2112 } else { 2113 if (val & CTL1000_PREFER_MASTER) 2114 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2115 else 2116 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2117 } 2118 2119 val = phy_read(phydev, MII_STAT1000); 2120 if (val < 0) 2121 return val; 2122 2123 if (val & LPA_1000MSFAIL) { 2124 state = MASTER_SLAVE_STATE_ERR; 2125 } else if (phydev->link) { 2126 /* this bits are valid only for active link */ 2127 if (val & LPA_1000MSRES) 2128 state = MASTER_SLAVE_STATE_MASTER; 2129 else 2130 state = MASTER_SLAVE_STATE_SLAVE; 2131 } else { 2132 state = MASTER_SLAVE_STATE_UNKNOWN; 2133 } 2134 2135 phydev->master_slave_get = cfg; 2136 phydev->master_slave_state = state; 2137 2138 return 0; 2139 } 2140 EXPORT_SYMBOL(genphy_read_master_slave); 2141 2142 /** 2143 * genphy_restart_aneg - Enable and Restart Autonegotiation 2144 * @phydev: target phy_device struct 2145 */ 2146 int genphy_restart_aneg(struct phy_device *phydev) 2147 { 2148 /* Don't isolate the PHY if we're negotiating */ 2149 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2150 BMCR_ANENABLE | BMCR_ANRESTART); 2151 } 2152 EXPORT_SYMBOL(genphy_restart_aneg); 2153 2154 /** 2155 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2156 * @phydev: target phy_device struct 2157 * @restart: whether aneg restart is requested 2158 * 2159 * Check, and restart auto-negotiation if needed. 2160 */ 2161 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2162 { 2163 int ret; 2164 2165 if (!restart) { 2166 /* Advertisement hasn't changed, but maybe aneg was never on to 2167 * begin with? Or maybe phy was isolated? 2168 */ 2169 ret = phy_read(phydev, MII_BMCR); 2170 if (ret < 0) 2171 return ret; 2172 2173 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2174 restart = true; 2175 } 2176 2177 if (restart) 2178 return genphy_restart_aneg(phydev); 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2183 2184 /** 2185 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2186 * @phydev: target phy_device struct 2187 * @changed: whether autoneg is requested 2188 * 2189 * Description: If auto-negotiation is enabled, we configure the 2190 * advertising, and then restart auto-negotiation. If it is not 2191 * enabled, then we write the BMCR. 2192 */ 2193 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2194 { 2195 int err; 2196 2197 if (genphy_config_eee_advert(phydev)) 2198 changed = true; 2199 2200 err = genphy_setup_master_slave(phydev); 2201 if (err < 0) 2202 return err; 2203 else if (err) 2204 changed = true; 2205 2206 if (AUTONEG_ENABLE != phydev->autoneg) 2207 return genphy_setup_forced(phydev); 2208 2209 err = genphy_config_advert(phydev); 2210 if (err < 0) /* error */ 2211 return err; 2212 else if (err) 2213 changed = true; 2214 2215 return genphy_check_and_restart_aneg(phydev, changed); 2216 } 2217 EXPORT_SYMBOL(__genphy_config_aneg); 2218 2219 /** 2220 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2221 * @phydev: target phy_device struct 2222 * 2223 * Description: If auto-negotiation is enabled, we configure the 2224 * advertising, and then restart auto-negotiation. If it is not 2225 * enabled, then we write the BMCR. This function is intended 2226 * for use with Clause 37 1000Base-X mode. 2227 */ 2228 int genphy_c37_config_aneg(struct phy_device *phydev) 2229 { 2230 int err, changed; 2231 2232 if (phydev->autoneg != AUTONEG_ENABLE) 2233 return genphy_setup_forced(phydev); 2234 2235 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2236 BMCR_SPEED1000); 2237 if (err) 2238 return err; 2239 2240 changed = genphy_c37_config_advert(phydev); 2241 if (changed < 0) /* error */ 2242 return changed; 2243 2244 if (!changed) { 2245 /* Advertisement hasn't changed, but maybe aneg was never on to 2246 * begin with? Or maybe phy was isolated? 2247 */ 2248 int ctl = phy_read(phydev, MII_BMCR); 2249 2250 if (ctl < 0) 2251 return ctl; 2252 2253 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2254 changed = 1; /* do restart aneg */ 2255 } 2256 2257 /* Only restart aneg if we are advertising something different 2258 * than we were before. 2259 */ 2260 if (changed > 0) 2261 return genphy_restart_aneg(phydev); 2262 2263 return 0; 2264 } 2265 EXPORT_SYMBOL(genphy_c37_config_aneg); 2266 2267 /** 2268 * genphy_aneg_done - return auto-negotiation status 2269 * @phydev: target phy_device struct 2270 * 2271 * Description: Reads the status register and returns 0 either if 2272 * auto-negotiation is incomplete, or if there was an error. 2273 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2274 */ 2275 int genphy_aneg_done(struct phy_device *phydev) 2276 { 2277 int retval = phy_read(phydev, MII_BMSR); 2278 2279 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2280 } 2281 EXPORT_SYMBOL(genphy_aneg_done); 2282 2283 /** 2284 * genphy_update_link - update link status in @phydev 2285 * @phydev: target phy_device struct 2286 * 2287 * Description: Update the value in phydev->link to reflect the 2288 * current link value. In order to do this, we need to read 2289 * the status register twice, keeping the second value. 2290 */ 2291 int genphy_update_link(struct phy_device *phydev) 2292 { 2293 int status = 0, bmcr; 2294 2295 bmcr = phy_read(phydev, MII_BMCR); 2296 if (bmcr < 0) 2297 return bmcr; 2298 2299 /* Autoneg is being started, therefore disregard BMSR value and 2300 * report link as down. 2301 */ 2302 if (bmcr & BMCR_ANRESTART) 2303 goto done; 2304 2305 /* The link state is latched low so that momentary link 2306 * drops can be detected. Do not double-read the status 2307 * in polling mode to detect such short link drops except 2308 * the link was already down. 2309 */ 2310 if (!phy_polling_mode(phydev) || !phydev->link) { 2311 status = phy_read(phydev, MII_BMSR); 2312 if (status < 0) 2313 return status; 2314 else if (status & BMSR_LSTATUS) 2315 goto done; 2316 } 2317 2318 /* Read link and autonegotiation status */ 2319 status = phy_read(phydev, MII_BMSR); 2320 if (status < 0) 2321 return status; 2322 done: 2323 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2324 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2325 2326 /* Consider the case that autoneg was started and "aneg complete" 2327 * bit has been reset, but "link up" bit not yet. 2328 */ 2329 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2330 phydev->link = 0; 2331 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(genphy_update_link); 2335 2336 int genphy_read_lpa(struct phy_device *phydev) 2337 { 2338 int lpa, lpagb; 2339 2340 if (phydev->autoneg == AUTONEG_ENABLE) { 2341 if (!phydev->autoneg_complete) { 2342 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2343 0); 2344 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2345 return 0; 2346 } 2347 2348 if (phydev->is_gigabit_capable) { 2349 lpagb = phy_read(phydev, MII_STAT1000); 2350 if (lpagb < 0) 2351 return lpagb; 2352 2353 if (lpagb & LPA_1000MSFAIL) { 2354 int adv = phy_read(phydev, MII_CTRL1000); 2355 2356 if (adv < 0) 2357 return adv; 2358 2359 if (adv & CTL1000_ENABLE_MASTER) 2360 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2361 else 2362 phydev_err(phydev, "Master/Slave resolution failed\n"); 2363 return -ENOLINK; 2364 } 2365 2366 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2367 lpagb); 2368 } 2369 2370 lpa = phy_read(phydev, MII_LPA); 2371 if (lpa < 0) 2372 return lpa; 2373 2374 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2375 } else { 2376 linkmode_zero(phydev->lp_advertising); 2377 } 2378 2379 return 0; 2380 } 2381 EXPORT_SYMBOL(genphy_read_lpa); 2382 2383 /** 2384 * genphy_read_status_fixed - read the link parameters for !aneg mode 2385 * @phydev: target phy_device struct 2386 * 2387 * Read the current duplex and speed state for a PHY operating with 2388 * autonegotiation disabled. 2389 */ 2390 int genphy_read_status_fixed(struct phy_device *phydev) 2391 { 2392 int bmcr = phy_read(phydev, MII_BMCR); 2393 2394 if (bmcr < 0) 2395 return bmcr; 2396 2397 if (bmcr & BMCR_FULLDPLX) 2398 phydev->duplex = DUPLEX_FULL; 2399 else 2400 phydev->duplex = DUPLEX_HALF; 2401 2402 if (bmcr & BMCR_SPEED1000) 2403 phydev->speed = SPEED_1000; 2404 else if (bmcr & BMCR_SPEED100) 2405 phydev->speed = SPEED_100; 2406 else 2407 phydev->speed = SPEED_10; 2408 2409 return 0; 2410 } 2411 EXPORT_SYMBOL(genphy_read_status_fixed); 2412 2413 /** 2414 * genphy_read_status - check the link status and update current link state 2415 * @phydev: target phy_device struct 2416 * 2417 * Description: Check the link, then figure out the current state 2418 * by comparing what we advertise with what the link partner 2419 * advertises. Start by checking the gigabit possibilities, 2420 * then move on to 10/100. 2421 */ 2422 int genphy_read_status(struct phy_device *phydev) 2423 { 2424 int err, old_link = phydev->link; 2425 2426 /* Update the link, but return if there was an error */ 2427 err = genphy_update_link(phydev); 2428 if (err) 2429 return err; 2430 2431 /* why bother the PHY if nothing can have changed */ 2432 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2433 return 0; 2434 2435 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2436 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2437 phydev->speed = SPEED_UNKNOWN; 2438 phydev->duplex = DUPLEX_UNKNOWN; 2439 phydev->pause = 0; 2440 phydev->asym_pause = 0; 2441 2442 if (phydev->is_gigabit_capable) { 2443 err = genphy_read_master_slave(phydev); 2444 if (err < 0) 2445 return err; 2446 } 2447 2448 err = genphy_read_lpa(phydev); 2449 if (err < 0) 2450 return err; 2451 2452 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2453 phy_resolve_aneg_linkmode(phydev); 2454 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2455 err = genphy_read_status_fixed(phydev); 2456 if (err < 0) 2457 return err; 2458 } 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL(genphy_read_status); 2463 2464 /** 2465 * genphy_c37_read_status - check the link status and update current link state 2466 * @phydev: target phy_device struct 2467 * 2468 * Description: Check the link, then figure out the current state 2469 * by comparing what we advertise with what the link partner 2470 * advertises. This function is for Clause 37 1000Base-X mode. 2471 */ 2472 int genphy_c37_read_status(struct phy_device *phydev) 2473 { 2474 int lpa, err, old_link = phydev->link; 2475 2476 /* Update the link, but return if there was an error */ 2477 err = genphy_update_link(phydev); 2478 if (err) 2479 return err; 2480 2481 /* why bother the PHY if nothing can have changed */ 2482 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2483 return 0; 2484 2485 phydev->duplex = DUPLEX_UNKNOWN; 2486 phydev->pause = 0; 2487 phydev->asym_pause = 0; 2488 2489 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2490 lpa = phy_read(phydev, MII_LPA); 2491 if (lpa < 0) 2492 return lpa; 2493 2494 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2495 phydev->lp_advertising, lpa & LPA_LPACK); 2496 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2497 phydev->lp_advertising, lpa & LPA_1000XFULL); 2498 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2499 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2500 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2501 phydev->lp_advertising, 2502 lpa & LPA_1000XPAUSE_ASYM); 2503 2504 phy_resolve_aneg_linkmode(phydev); 2505 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2506 int bmcr = phy_read(phydev, MII_BMCR); 2507 2508 if (bmcr < 0) 2509 return bmcr; 2510 2511 if (bmcr & BMCR_FULLDPLX) 2512 phydev->duplex = DUPLEX_FULL; 2513 else 2514 phydev->duplex = DUPLEX_HALF; 2515 } 2516 2517 return 0; 2518 } 2519 EXPORT_SYMBOL(genphy_c37_read_status); 2520 2521 /** 2522 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2523 * @phydev: target phy_device struct 2524 * 2525 * Description: Perform a software PHY reset using the standard 2526 * BMCR_RESET bit and poll for the reset bit to be cleared. 2527 * 2528 * Returns: 0 on success, < 0 on failure 2529 */ 2530 int genphy_soft_reset(struct phy_device *phydev) 2531 { 2532 u16 res = BMCR_RESET; 2533 int ret; 2534 2535 if (phydev->autoneg == AUTONEG_ENABLE) 2536 res |= BMCR_ANRESTART; 2537 2538 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2539 if (ret < 0) 2540 return ret; 2541 2542 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2543 * to their default value. Therefore the POWER DOWN bit is supposed to 2544 * be cleared after soft reset. 2545 */ 2546 phydev->suspended = 0; 2547 2548 ret = phy_poll_reset(phydev); 2549 if (ret) 2550 return ret; 2551 2552 /* BMCR may be reset to defaults */ 2553 if (phydev->autoneg == AUTONEG_DISABLE) 2554 ret = genphy_setup_forced(phydev); 2555 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(genphy_soft_reset); 2559 2560 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2561 { 2562 /* It seems there are cases where the interrupts are handled by another 2563 * entity (ie an IRQ controller embedded inside the PHY) and do not 2564 * need any other interraction from phylib. In this case, just trigger 2565 * the state machine directly. 2566 */ 2567 phy_trigger_machine(phydev); 2568 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2572 2573 /** 2574 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2575 * @phydev: target phy_device struct 2576 * 2577 * Description: Reads the PHY's abilities and populates 2578 * phydev->supported accordingly. 2579 * 2580 * Returns: 0 on success, < 0 on failure 2581 */ 2582 int genphy_read_abilities(struct phy_device *phydev) 2583 { 2584 int val; 2585 2586 linkmode_set_bit_array(phy_basic_ports_array, 2587 ARRAY_SIZE(phy_basic_ports_array), 2588 phydev->supported); 2589 2590 val = phy_read(phydev, MII_BMSR); 2591 if (val < 0) 2592 return val; 2593 2594 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2595 val & BMSR_ANEGCAPABLE); 2596 2597 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2598 val & BMSR_100FULL); 2599 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2600 val & BMSR_100HALF); 2601 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2602 val & BMSR_10FULL); 2603 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2604 val & BMSR_10HALF); 2605 2606 if (val & BMSR_ESTATEN) { 2607 val = phy_read(phydev, MII_ESTATUS); 2608 if (val < 0) 2609 return val; 2610 2611 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2612 phydev->supported, val & ESTATUS_1000_TFULL); 2613 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2614 phydev->supported, val & ESTATUS_1000_THALF); 2615 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2616 phydev->supported, val & ESTATUS_1000_XFULL); 2617 } 2618 2619 return 0; 2620 } 2621 EXPORT_SYMBOL(genphy_read_abilities); 2622 2623 /* This is used for the phy device which doesn't support the MMD extended 2624 * register access, but it does have side effect when we are trying to access 2625 * the MMD register via indirect method. 2626 */ 2627 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2628 { 2629 return -EOPNOTSUPP; 2630 } 2631 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2632 2633 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2634 u16 regnum, u16 val) 2635 { 2636 return -EOPNOTSUPP; 2637 } 2638 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2639 2640 int genphy_suspend(struct phy_device *phydev) 2641 { 2642 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2643 } 2644 EXPORT_SYMBOL(genphy_suspend); 2645 2646 int genphy_resume(struct phy_device *phydev) 2647 { 2648 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2649 } 2650 EXPORT_SYMBOL(genphy_resume); 2651 2652 int genphy_loopback(struct phy_device *phydev, bool enable) 2653 { 2654 if (enable) { 2655 u16 val, ctl = BMCR_LOOPBACK; 2656 int ret; 2657 2658 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2659 2660 phy_modify(phydev, MII_BMCR, ~0, ctl); 2661 2662 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2663 val & BMSR_LSTATUS, 2664 5000, 500000, true); 2665 if (ret) 2666 return ret; 2667 } else { 2668 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2669 2670 phy_config_aneg(phydev); 2671 } 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(genphy_loopback); 2676 2677 /** 2678 * phy_remove_link_mode - Remove a supported link mode 2679 * @phydev: phy_device structure to remove link mode from 2680 * @link_mode: Link mode to be removed 2681 * 2682 * Description: Some MACs don't support all link modes which the PHY 2683 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2684 * to remove a link mode. 2685 */ 2686 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2687 { 2688 linkmode_clear_bit(link_mode, phydev->supported); 2689 phy_advertise_supported(phydev); 2690 } 2691 EXPORT_SYMBOL(phy_remove_link_mode); 2692 2693 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2694 { 2695 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2696 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2697 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2698 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2699 } 2700 2701 /** 2702 * phy_advertise_supported - Advertise all supported modes 2703 * @phydev: target phy_device struct 2704 * 2705 * Description: Called to advertise all supported modes, doesn't touch 2706 * pause mode advertising. 2707 */ 2708 void phy_advertise_supported(struct phy_device *phydev) 2709 { 2710 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2711 2712 linkmode_copy(new, phydev->supported); 2713 phy_copy_pause_bits(new, phydev->advertising); 2714 linkmode_copy(phydev->advertising, new); 2715 } 2716 EXPORT_SYMBOL(phy_advertise_supported); 2717 2718 /** 2719 * phy_support_sym_pause - Enable support of symmetrical pause 2720 * @phydev: target phy_device struct 2721 * 2722 * Description: Called by the MAC to indicate is supports symmetrical 2723 * Pause, but not asym pause. 2724 */ 2725 void phy_support_sym_pause(struct phy_device *phydev) 2726 { 2727 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2728 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2729 } 2730 EXPORT_SYMBOL(phy_support_sym_pause); 2731 2732 /** 2733 * phy_support_asym_pause - Enable support of asym pause 2734 * @phydev: target phy_device struct 2735 * 2736 * Description: Called by the MAC to indicate is supports Asym Pause. 2737 */ 2738 void phy_support_asym_pause(struct phy_device *phydev) 2739 { 2740 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2741 } 2742 EXPORT_SYMBOL(phy_support_asym_pause); 2743 2744 /** 2745 * phy_set_sym_pause - Configure symmetric Pause 2746 * @phydev: target phy_device struct 2747 * @rx: Receiver Pause is supported 2748 * @tx: Transmit Pause is supported 2749 * @autoneg: Auto neg should be used 2750 * 2751 * Description: Configure advertised Pause support depending on if 2752 * receiver pause and pause auto neg is supported. Generally called 2753 * from the set_pauseparam .ndo. 2754 */ 2755 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2756 bool autoneg) 2757 { 2758 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2759 2760 if (rx && tx && autoneg) 2761 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2762 phydev->supported); 2763 2764 linkmode_copy(phydev->advertising, phydev->supported); 2765 } 2766 EXPORT_SYMBOL(phy_set_sym_pause); 2767 2768 /** 2769 * phy_set_asym_pause - Configure Pause and Asym Pause 2770 * @phydev: target phy_device struct 2771 * @rx: Receiver Pause is supported 2772 * @tx: Transmit Pause is supported 2773 * 2774 * Description: Configure advertised Pause support depending on if 2775 * transmit and receiver pause is supported. If there has been a 2776 * change in adverting, trigger a new autoneg. Generally called from 2777 * the set_pauseparam .ndo. 2778 */ 2779 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2780 { 2781 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2782 2783 linkmode_copy(oldadv, phydev->advertising); 2784 linkmode_set_pause(phydev->advertising, tx, rx); 2785 2786 if (!linkmode_equal(oldadv, phydev->advertising) && 2787 phydev->autoneg) 2788 phy_start_aneg(phydev); 2789 } 2790 EXPORT_SYMBOL(phy_set_asym_pause); 2791 2792 /** 2793 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2794 * @phydev: phy_device struct 2795 * @pp: requested pause configuration 2796 * 2797 * Description: Test if the PHY/MAC combination supports the Pause 2798 * configuration the user is requesting. Returns True if it is 2799 * supported, false otherwise. 2800 */ 2801 bool phy_validate_pause(struct phy_device *phydev, 2802 struct ethtool_pauseparam *pp) 2803 { 2804 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2805 phydev->supported) && pp->rx_pause) 2806 return false; 2807 2808 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2809 phydev->supported) && 2810 pp->rx_pause != pp->tx_pause) 2811 return false; 2812 2813 return true; 2814 } 2815 EXPORT_SYMBOL(phy_validate_pause); 2816 2817 /** 2818 * phy_get_pause - resolve negotiated pause modes 2819 * @phydev: phy_device struct 2820 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2821 * enabled. 2822 * @rx_pause: pointer to bool to indicate whether receive pause should be 2823 * enabled. 2824 * 2825 * Resolve and return the flow control modes according to the negotiation 2826 * result. This includes checking that we are operating in full duplex mode. 2827 * See linkmode_resolve_pause() for further details. 2828 */ 2829 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2830 { 2831 if (phydev->duplex != DUPLEX_FULL) { 2832 *tx_pause = false; 2833 *rx_pause = false; 2834 return; 2835 } 2836 2837 return linkmode_resolve_pause(phydev->advertising, 2838 phydev->lp_advertising, 2839 tx_pause, rx_pause); 2840 } 2841 EXPORT_SYMBOL(phy_get_pause); 2842 2843 #if IS_ENABLED(CONFIG_OF_MDIO) 2844 static int phy_get_int_delay_property(struct device *dev, const char *name) 2845 { 2846 s32 int_delay; 2847 int ret; 2848 2849 ret = device_property_read_u32(dev, name, &int_delay); 2850 if (ret) 2851 return ret; 2852 2853 return int_delay; 2854 } 2855 #else 2856 static int phy_get_int_delay_property(struct device *dev, const char *name) 2857 { 2858 return -EINVAL; 2859 } 2860 #endif 2861 2862 /** 2863 * phy_get_internal_delay - returns the index of the internal delay 2864 * @phydev: phy_device struct 2865 * @dev: pointer to the devices device struct 2866 * @delay_values: array of delays the PHY supports 2867 * @size: the size of the delay array 2868 * @is_rx: boolean to indicate to get the rx internal delay 2869 * 2870 * Returns the index within the array of internal delay passed in. 2871 * If the device property is not present then the interface type is checked 2872 * if the interface defines use of internal delay then a 1 is returned otherwise 2873 * a 0 is returned. 2874 * The array must be in ascending order. If PHY does not have an ascending order 2875 * array then size = 0 and the value of the delay property is returned. 2876 * Return -EINVAL if the delay is invalid or cannot be found. 2877 */ 2878 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2879 const int *delay_values, int size, bool is_rx) 2880 { 2881 s32 delay; 2882 int i; 2883 2884 if (is_rx) { 2885 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2886 if (delay < 0 && size == 0) { 2887 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2888 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2889 return 1; 2890 else 2891 return 0; 2892 } 2893 2894 } else { 2895 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2896 if (delay < 0 && size == 0) { 2897 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2898 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2899 return 1; 2900 else 2901 return 0; 2902 } 2903 } 2904 2905 if (delay < 0) 2906 return delay; 2907 2908 if (delay && size == 0) 2909 return delay; 2910 2911 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2912 phydev_err(phydev, "Delay %d is out of range\n", delay); 2913 return -EINVAL; 2914 } 2915 2916 if (delay == delay_values[0]) 2917 return 0; 2918 2919 for (i = 1; i < size; i++) { 2920 if (delay == delay_values[i]) 2921 return i; 2922 2923 /* Find an approximate index by looking up the table */ 2924 if (delay > delay_values[i - 1] && 2925 delay < delay_values[i]) { 2926 if (delay - delay_values[i - 1] < 2927 delay_values[i] - delay) 2928 return i - 1; 2929 else 2930 return i; 2931 } 2932 } 2933 2934 phydev_err(phydev, "error finding internal delay index for %d\n", 2935 delay); 2936 2937 return -EINVAL; 2938 } 2939 EXPORT_SYMBOL(phy_get_internal_delay); 2940 2941 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2942 { 2943 return phydrv->config_intr && phydrv->handle_interrupt; 2944 } 2945 2946 /** 2947 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2948 * @fwnode: pointer to the mdio_device's fwnode 2949 * 2950 * If successful, returns a pointer to the mdio_device with the embedded 2951 * struct device refcount incremented by one, or NULL on failure. 2952 * The caller should call put_device() on the mdio_device after its use. 2953 */ 2954 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2955 { 2956 struct device *d; 2957 2958 if (!fwnode) 2959 return NULL; 2960 2961 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2962 if (!d) 2963 return NULL; 2964 2965 return to_mdio_device(d); 2966 } 2967 EXPORT_SYMBOL(fwnode_mdio_find_device); 2968 2969 /** 2970 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2971 * 2972 * @phy_fwnode: Pointer to the phy's fwnode. 2973 * 2974 * If successful, returns a pointer to the phy_device with the embedded 2975 * struct device refcount incremented by one, or NULL on failure. 2976 */ 2977 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2978 { 2979 struct mdio_device *mdiodev; 2980 2981 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2982 if (!mdiodev) 2983 return NULL; 2984 2985 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2986 return to_phy_device(&mdiodev->dev); 2987 2988 put_device(&mdiodev->dev); 2989 2990 return NULL; 2991 } 2992 EXPORT_SYMBOL(fwnode_phy_find_device); 2993 2994 /** 2995 * device_phy_find_device - For the given device, get the phy_device 2996 * @dev: Pointer to the given device 2997 * 2998 * Refer return conditions of fwnode_phy_find_device(). 2999 */ 3000 struct phy_device *device_phy_find_device(struct device *dev) 3001 { 3002 return fwnode_phy_find_device(dev_fwnode(dev)); 3003 } 3004 EXPORT_SYMBOL_GPL(device_phy_find_device); 3005 3006 /** 3007 * fwnode_get_phy_node - Get the phy_node using the named reference. 3008 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3009 * 3010 * Refer return conditions of fwnode_find_reference(). 3011 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3012 * and "phy-device" are not supported in ACPI. DT supports all the three 3013 * named references to the phy node. 3014 */ 3015 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 3016 { 3017 struct fwnode_handle *phy_node; 3018 3019 /* Only phy-handle is used for ACPI */ 3020 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3021 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3022 return phy_node; 3023 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3024 if (IS_ERR(phy_node)) 3025 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3026 return phy_node; 3027 } 3028 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3029 3030 /** 3031 * phy_probe - probe and init a PHY device 3032 * @dev: device to probe and init 3033 * 3034 * Description: Take care of setting up the phy_device structure, 3035 * set the state to READY (the driver's init function should 3036 * set it to STARTING if needed). 3037 */ 3038 static int phy_probe(struct device *dev) 3039 { 3040 struct phy_device *phydev = to_phy_device(dev); 3041 struct device_driver *drv = phydev->mdio.dev.driver; 3042 struct phy_driver *phydrv = to_phy_driver(drv); 3043 int err = 0; 3044 3045 phydev->drv = phydrv; 3046 3047 /* Disable the interrupt if the PHY doesn't support it 3048 * but the interrupt is still a valid one 3049 */ 3050 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3051 phydev->irq = PHY_POLL; 3052 3053 if (phydrv->flags & PHY_IS_INTERNAL) 3054 phydev->is_internal = true; 3055 3056 mutex_lock(&phydev->lock); 3057 3058 /* Deassert the reset signal */ 3059 phy_device_reset(phydev, 0); 3060 3061 if (phydev->drv->probe) { 3062 err = phydev->drv->probe(phydev); 3063 if (err) 3064 goto out; 3065 } 3066 3067 /* Start out supporting everything. Eventually, 3068 * a controller will attach, and may modify one 3069 * or both of these values 3070 */ 3071 if (phydrv->features) 3072 linkmode_copy(phydev->supported, phydrv->features); 3073 else if (phydrv->get_features) 3074 err = phydrv->get_features(phydev); 3075 else if (phydev->is_c45) 3076 err = genphy_c45_pma_read_abilities(phydev); 3077 else 3078 err = genphy_read_abilities(phydev); 3079 3080 if (err) 3081 goto out; 3082 3083 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3084 phydev->supported)) 3085 phydev->autoneg = 0; 3086 3087 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3088 phydev->supported)) 3089 phydev->is_gigabit_capable = 1; 3090 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3091 phydev->supported)) 3092 phydev->is_gigabit_capable = 1; 3093 3094 of_set_phy_supported(phydev); 3095 phy_advertise_supported(phydev); 3096 3097 /* Get the EEE modes we want to prohibit. We will ask 3098 * the PHY stop advertising these mode later on 3099 */ 3100 of_set_phy_eee_broken(phydev); 3101 3102 /* The Pause Frame bits indicate that the PHY can support passing 3103 * pause frames. During autonegotiation, the PHYs will determine if 3104 * they should allow pause frames to pass. The MAC driver should then 3105 * use that result to determine whether to enable flow control via 3106 * pause frames. 3107 * 3108 * Normally, PHY drivers should not set the Pause bits, and instead 3109 * allow phylib to do that. However, there may be some situations 3110 * (e.g. hardware erratum) where the driver wants to set only one 3111 * of these bits. 3112 */ 3113 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3114 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3115 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3116 phydev->supported); 3117 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3118 phydev->supported); 3119 } 3120 3121 /* Set the state to READY by default */ 3122 phydev->state = PHY_READY; 3123 3124 out: 3125 /* Assert the reset signal */ 3126 if (err) 3127 phy_device_reset(phydev, 1); 3128 3129 mutex_unlock(&phydev->lock); 3130 3131 return err; 3132 } 3133 3134 static int phy_remove(struct device *dev) 3135 { 3136 struct phy_device *phydev = to_phy_device(dev); 3137 3138 cancel_delayed_work_sync(&phydev->state_queue); 3139 3140 mutex_lock(&phydev->lock); 3141 phydev->state = PHY_DOWN; 3142 mutex_unlock(&phydev->lock); 3143 3144 sfp_bus_del_upstream(phydev->sfp_bus); 3145 phydev->sfp_bus = NULL; 3146 3147 if (phydev->drv && phydev->drv->remove) 3148 phydev->drv->remove(phydev); 3149 3150 /* Assert the reset signal */ 3151 phy_device_reset(phydev, 1); 3152 3153 phydev->drv = NULL; 3154 3155 return 0; 3156 } 3157 3158 static void phy_shutdown(struct device *dev) 3159 { 3160 struct phy_device *phydev = to_phy_device(dev); 3161 3162 if (phydev->state == PHY_READY || !phydev->attached_dev) 3163 return; 3164 3165 phy_disable_interrupts(phydev); 3166 } 3167 3168 /** 3169 * phy_driver_register - register a phy_driver with the PHY layer 3170 * @new_driver: new phy_driver to register 3171 * @owner: module owning this PHY 3172 */ 3173 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3174 { 3175 int retval; 3176 3177 /* Either the features are hard coded, or dynamically 3178 * determined. It cannot be both. 3179 */ 3180 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3181 pr_err("%s: features and get_features must not both be set\n", 3182 new_driver->name); 3183 return -EINVAL; 3184 } 3185 3186 /* PHYLIB device drivers must not match using a DT compatible table 3187 * as this bypasses our checks that the mdiodev that is being matched 3188 * is backed by a struct phy_device. If such a case happens, we will 3189 * make out-of-bounds accesses and lockup in phydev->lock. 3190 */ 3191 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3192 "%s: driver must not provide a DT match table\n", 3193 new_driver->name)) 3194 return -EINVAL; 3195 3196 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3197 new_driver->mdiodrv.driver.name = new_driver->name; 3198 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3199 new_driver->mdiodrv.driver.probe = phy_probe; 3200 new_driver->mdiodrv.driver.remove = phy_remove; 3201 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3202 new_driver->mdiodrv.driver.owner = owner; 3203 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3204 3205 retval = driver_register(&new_driver->mdiodrv.driver); 3206 if (retval) { 3207 pr_err("%s: Error %d in registering driver\n", 3208 new_driver->name, retval); 3209 3210 return retval; 3211 } 3212 3213 pr_debug("%s: Registered new driver\n", new_driver->name); 3214 3215 return 0; 3216 } 3217 EXPORT_SYMBOL(phy_driver_register); 3218 3219 int phy_drivers_register(struct phy_driver *new_driver, int n, 3220 struct module *owner) 3221 { 3222 int i, ret = 0; 3223 3224 for (i = 0; i < n; i++) { 3225 ret = phy_driver_register(new_driver + i, owner); 3226 if (ret) { 3227 while (i-- > 0) 3228 phy_driver_unregister(new_driver + i); 3229 break; 3230 } 3231 } 3232 return ret; 3233 } 3234 EXPORT_SYMBOL(phy_drivers_register); 3235 3236 void phy_driver_unregister(struct phy_driver *drv) 3237 { 3238 driver_unregister(&drv->mdiodrv.driver); 3239 } 3240 EXPORT_SYMBOL(phy_driver_unregister); 3241 3242 void phy_drivers_unregister(struct phy_driver *drv, int n) 3243 { 3244 int i; 3245 3246 for (i = 0; i < n; i++) 3247 phy_driver_unregister(drv + i); 3248 } 3249 EXPORT_SYMBOL(phy_drivers_unregister); 3250 3251 static struct phy_driver genphy_driver = { 3252 .phy_id = 0xffffffff, 3253 .phy_id_mask = 0xffffffff, 3254 .name = "Generic PHY", 3255 .get_features = genphy_read_abilities, 3256 .suspend = genphy_suspend, 3257 .resume = genphy_resume, 3258 .set_loopback = genphy_loopback, 3259 }; 3260 3261 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3262 .get_sset_count = phy_ethtool_get_sset_count, 3263 .get_strings = phy_ethtool_get_strings, 3264 .get_stats = phy_ethtool_get_stats, 3265 .start_cable_test = phy_start_cable_test, 3266 .start_cable_test_tdr = phy_start_cable_test_tdr, 3267 }; 3268 3269 static int __init phy_init(void) 3270 { 3271 int rc; 3272 3273 rc = mdio_bus_init(); 3274 if (rc) 3275 return rc; 3276 3277 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3278 features_init(); 3279 3280 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3281 if (rc) 3282 goto err_c45; 3283 3284 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3285 if (rc) { 3286 phy_driver_unregister(&genphy_c45_driver); 3287 err_c45: 3288 mdio_bus_exit(); 3289 } 3290 3291 return rc; 3292 } 3293 3294 static void __exit phy_exit(void) 3295 { 3296 phy_driver_unregister(&genphy_c45_driver); 3297 phy_driver_unregister(&genphy_driver); 3298 mdio_bus_exit(); 3299 ethtool_set_ethtool_phy_ops(NULL); 3300 } 3301 3302 subsys_initcall(phy_init); 3303 module_exit(phy_exit); 3304