1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phy_led_triggers.h> 31 #include <linux/pse-pd/pse.h> 32 #include <linux/property.h> 33 #include <linux/sfp.h> 34 #include <linux/skbuff.h> 35 #include <linux/slab.h> 36 #include <linux/string.h> 37 #include <linux/uaccess.h> 38 #include <linux/unistd.h> 39 40 MODULE_DESCRIPTION("PHY library"); 41 MODULE_AUTHOR("Andy Fleming"); 42 MODULE_LICENSE("GPL"); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 61 62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 63 EXPORT_SYMBOL_GPL(phy_10gbit_features); 64 65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 66 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 67 68 const int phy_basic_ports_array[3] = { 69 ETHTOOL_LINK_MODE_Autoneg_BIT, 70 ETHTOOL_LINK_MODE_TP_BIT, 71 ETHTOOL_LINK_MODE_MII_BIT, 72 }; 73 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 74 75 const int phy_fibre_port_array[1] = { 76 ETHTOOL_LINK_MODE_FIBRE_BIT, 77 }; 78 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 79 80 const int phy_all_ports_features_array[7] = { 81 ETHTOOL_LINK_MODE_Autoneg_BIT, 82 ETHTOOL_LINK_MODE_TP_BIT, 83 ETHTOOL_LINK_MODE_MII_BIT, 84 ETHTOOL_LINK_MODE_FIBRE_BIT, 85 ETHTOOL_LINK_MODE_AUI_BIT, 86 ETHTOOL_LINK_MODE_BNC_BIT, 87 ETHTOOL_LINK_MODE_Backplane_BIT, 88 }; 89 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 90 91 const int phy_10_100_features_array[4] = { 92 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 93 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 94 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 96 }; 97 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 98 99 const int phy_basic_t1_features_array[3] = { 100 ETHTOOL_LINK_MODE_TP_BIT, 101 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 102 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 105 106 const int phy_basic_t1s_p2mp_features_array[2] = { 107 ETHTOOL_LINK_MODE_TP_BIT, 108 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 109 }; 110 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 111 112 const int phy_gbit_features_array[2] = { 113 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 114 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 115 }; 116 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 117 118 const int phy_10gbit_features_array[1] = { 119 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 120 }; 121 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 122 123 static const int phy_10gbit_fec_features_array[1] = { 124 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 125 }; 126 127 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 128 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 129 130 static const int phy_10gbit_full_features_array[] = { 131 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 132 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 133 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 135 }; 136 137 static const int phy_eee_cap1_features_array[] = { 138 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 139 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 140 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 143 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 144 }; 145 146 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 147 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 148 149 static void features_init(void) 150 { 151 /* 10/100 half/full*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_basic_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_basic_features); 158 159 /* 100 full, TP */ 160 linkmode_set_bit_array(phy_basic_t1_features_array, 161 ARRAY_SIZE(phy_basic_t1_features_array), 162 phy_basic_t1_features); 163 164 /* 10 half, P2MP, TP */ 165 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 166 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 167 phy_basic_t1s_p2mp_features); 168 169 /* 10/100 half/full + 1000 half/full */ 170 linkmode_set_bit_array(phy_basic_ports_array, 171 ARRAY_SIZE(phy_basic_ports_array), 172 phy_gbit_features); 173 linkmode_set_bit_array(phy_10_100_features_array, 174 ARRAY_SIZE(phy_10_100_features_array), 175 phy_gbit_features); 176 linkmode_set_bit_array(phy_gbit_features_array, 177 ARRAY_SIZE(phy_gbit_features_array), 178 phy_gbit_features); 179 180 /* 10/100 half/full + 1000 half/full + fibre*/ 181 linkmode_set_bit_array(phy_basic_ports_array, 182 ARRAY_SIZE(phy_basic_ports_array), 183 phy_gbit_fibre_features); 184 linkmode_set_bit_array(phy_10_100_features_array, 185 ARRAY_SIZE(phy_10_100_features_array), 186 phy_gbit_fibre_features); 187 linkmode_set_bit_array(phy_gbit_features_array, 188 ARRAY_SIZE(phy_gbit_features_array), 189 phy_gbit_fibre_features); 190 linkmode_set_bit_array(phy_fibre_port_array, 191 ARRAY_SIZE(phy_fibre_port_array), 192 phy_gbit_fibre_features); 193 194 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 195 linkmode_set_bit_array(phy_all_ports_features_array, 196 ARRAY_SIZE(phy_all_ports_features_array), 197 phy_gbit_all_ports_features); 198 linkmode_set_bit_array(phy_10_100_features_array, 199 ARRAY_SIZE(phy_10_100_features_array), 200 phy_gbit_all_ports_features); 201 linkmode_set_bit_array(phy_gbit_features_array, 202 ARRAY_SIZE(phy_gbit_features_array), 203 phy_gbit_all_ports_features); 204 205 /* 10/100 half/full + 1000 half/full + 10G full*/ 206 linkmode_set_bit_array(phy_all_ports_features_array, 207 ARRAY_SIZE(phy_all_ports_features_array), 208 phy_10gbit_features); 209 linkmode_set_bit_array(phy_10_100_features_array, 210 ARRAY_SIZE(phy_10_100_features_array), 211 phy_10gbit_features); 212 linkmode_set_bit_array(phy_gbit_features_array, 213 ARRAY_SIZE(phy_gbit_features_array), 214 phy_10gbit_features); 215 linkmode_set_bit_array(phy_10gbit_features_array, 216 ARRAY_SIZE(phy_10gbit_features_array), 217 phy_10gbit_features); 218 219 /* 10/100/1000/10G full */ 220 linkmode_set_bit_array(phy_all_ports_features_array, 221 ARRAY_SIZE(phy_all_ports_features_array), 222 phy_10gbit_full_features); 223 linkmode_set_bit_array(phy_10gbit_full_features_array, 224 ARRAY_SIZE(phy_10gbit_full_features_array), 225 phy_10gbit_full_features); 226 /* 10G FEC only */ 227 linkmode_set_bit_array(phy_10gbit_fec_features_array, 228 ARRAY_SIZE(phy_10gbit_fec_features_array), 229 phy_10gbit_fec_features); 230 linkmode_set_bit_array(phy_eee_cap1_features_array, 231 ARRAY_SIZE(phy_eee_cap1_features_array), 232 phy_eee_cap1_features); 233 234 } 235 236 void phy_device_free(struct phy_device *phydev) 237 { 238 put_device(&phydev->mdio.dev); 239 } 240 EXPORT_SYMBOL(phy_device_free); 241 242 static void phy_mdio_device_free(struct mdio_device *mdiodev) 243 { 244 struct phy_device *phydev; 245 246 phydev = container_of(mdiodev, struct phy_device, mdio); 247 phy_device_free(phydev); 248 } 249 250 static void phy_device_release(struct device *dev) 251 { 252 fwnode_handle_put(dev->fwnode); 253 kfree(to_phy_device(dev)); 254 } 255 256 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 257 { 258 struct phy_device *phydev; 259 260 phydev = container_of(mdiodev, struct phy_device, mdio); 261 phy_device_remove(phydev); 262 } 263 264 static struct phy_driver genphy_driver; 265 266 static LIST_HEAD(phy_fixup_list); 267 static DEFINE_MUTEX(phy_fixup_lock); 268 269 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 270 { 271 struct device_driver *drv = phydev->mdio.dev.driver; 272 struct phy_driver *phydrv = to_phy_driver(drv); 273 struct net_device *netdev = phydev->attached_dev; 274 275 if (!drv || !phydrv->suspend) 276 return false; 277 278 /* PHY not attached? May suspend if the PHY has not already been 279 * suspended as part of a prior call to phy_disconnect() -> 280 * phy_detach() -> phy_suspend() because the parent netdev might be the 281 * MDIO bus driver and clock gated at this point. 282 */ 283 if (!netdev) 284 goto out; 285 286 if (netdev->wol_enabled) 287 return false; 288 289 /* As long as not all affected network drivers support the 290 * wol_enabled flag, let's check for hints that WoL is enabled. 291 * Don't suspend PHY if the attached netdev parent may wake up. 292 * The parent may point to a PCI device, as in tg3 driver. 293 */ 294 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 295 return false; 296 297 /* Also don't suspend PHY if the netdev itself may wakeup. This 298 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 299 * e.g. SoC devices. 300 */ 301 if (device_may_wakeup(&netdev->dev)) 302 return false; 303 304 out: 305 return !phydev->suspended; 306 } 307 308 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 309 { 310 struct phy_device *phydev = to_phy_device(dev); 311 312 if (phydev->mac_managed_pm) 313 return 0; 314 315 /* Wakeup interrupts may occur during the system sleep transition when 316 * the PHY is inaccessible. Set flag to postpone handling until the PHY 317 * has resumed. Wait for concurrent interrupt handler to complete. 318 */ 319 if (phy_interrupt_is_valid(phydev)) { 320 phydev->irq_suspended = 1; 321 synchronize_irq(phydev->irq); 322 } 323 324 /* We must stop the state machine manually, otherwise it stops out of 325 * control, possibly with the phydev->lock held. Upon resume, netdev 326 * may call phy routines that try to grab the same lock, and that may 327 * lead to a deadlock. 328 */ 329 if (phydev->attached_dev && phydev->adjust_link) 330 phy_stop_machine(phydev); 331 332 if (!mdio_bus_phy_may_suspend(phydev)) 333 return 0; 334 335 phydev->suspended_by_mdio_bus = 1; 336 337 return phy_suspend(phydev); 338 } 339 340 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 341 { 342 struct phy_device *phydev = to_phy_device(dev); 343 int ret; 344 345 if (phydev->mac_managed_pm) 346 return 0; 347 348 if (!phydev->suspended_by_mdio_bus) 349 goto no_resume; 350 351 phydev->suspended_by_mdio_bus = 0; 352 353 /* If we managed to get here with the PHY state machine in a state 354 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 355 * that something went wrong and we should most likely be using 356 * MAC managed PM, but we are not. 357 */ 358 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 359 phydev->state != PHY_UP); 360 361 ret = phy_init_hw(phydev); 362 if (ret < 0) 363 return ret; 364 365 ret = phy_resume(phydev); 366 if (ret < 0) 367 return ret; 368 no_resume: 369 if (phy_interrupt_is_valid(phydev)) { 370 phydev->irq_suspended = 0; 371 synchronize_irq(phydev->irq); 372 373 /* Rerun interrupts which were postponed by phy_interrupt() 374 * because they occurred during the system sleep transition. 375 */ 376 if (phydev->irq_rerun) { 377 phydev->irq_rerun = 0; 378 enable_irq(phydev->irq); 379 irq_wake_thread(phydev->irq, phydev); 380 } 381 } 382 383 if (phydev->attached_dev && phydev->adjust_link) 384 phy_start_machine(phydev); 385 386 return 0; 387 } 388 389 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 390 mdio_bus_phy_resume); 391 392 /** 393 * phy_register_fixup - creates a new phy_fixup and adds it to the list 394 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 395 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 396 * It can also be PHY_ANY_UID 397 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 398 * comparison 399 * @run: The actual code to be run when a matching PHY is found 400 */ 401 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 402 int (*run)(struct phy_device *)) 403 { 404 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 405 406 if (!fixup) 407 return -ENOMEM; 408 409 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 410 fixup->phy_uid = phy_uid; 411 fixup->phy_uid_mask = phy_uid_mask; 412 fixup->run = run; 413 414 mutex_lock(&phy_fixup_lock); 415 list_add_tail(&fixup->list, &phy_fixup_list); 416 mutex_unlock(&phy_fixup_lock); 417 418 return 0; 419 } 420 EXPORT_SYMBOL(phy_register_fixup); 421 422 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 423 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 424 int (*run)(struct phy_device *)) 425 { 426 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 427 } 428 EXPORT_SYMBOL(phy_register_fixup_for_uid); 429 430 /* Registers a fixup to be run on the PHY with id string bus_id */ 431 int phy_register_fixup_for_id(const char *bus_id, 432 int (*run)(struct phy_device *)) 433 { 434 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 435 } 436 EXPORT_SYMBOL(phy_register_fixup_for_id); 437 438 /** 439 * phy_unregister_fixup - remove a phy_fixup from the list 440 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 441 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 442 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 443 */ 444 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 445 { 446 struct list_head *pos, *n; 447 struct phy_fixup *fixup; 448 int ret; 449 450 ret = -ENODEV; 451 452 mutex_lock(&phy_fixup_lock); 453 list_for_each_safe(pos, n, &phy_fixup_list) { 454 fixup = list_entry(pos, struct phy_fixup, list); 455 456 if ((!strcmp(fixup->bus_id, bus_id)) && 457 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 458 list_del(&fixup->list); 459 kfree(fixup); 460 ret = 0; 461 break; 462 } 463 } 464 mutex_unlock(&phy_fixup_lock); 465 466 return ret; 467 } 468 EXPORT_SYMBOL(phy_unregister_fixup); 469 470 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 471 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 472 { 473 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 474 } 475 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 476 477 /* Unregisters a fixup of the PHY with id string bus_id */ 478 int phy_unregister_fixup_for_id(const char *bus_id) 479 { 480 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 481 } 482 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 483 484 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 485 * Fixups can be set to match any in one or more fields. 486 */ 487 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 488 { 489 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 490 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 491 return 0; 492 493 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 494 fixup->phy_uid_mask)) 495 if (fixup->phy_uid != PHY_ANY_UID) 496 return 0; 497 498 return 1; 499 } 500 501 /* Runs any matching fixups for this phydev */ 502 static int phy_scan_fixups(struct phy_device *phydev) 503 { 504 struct phy_fixup *fixup; 505 506 mutex_lock(&phy_fixup_lock); 507 list_for_each_entry(fixup, &phy_fixup_list, list) { 508 if (phy_needs_fixup(phydev, fixup)) { 509 int err = fixup->run(phydev); 510 511 if (err < 0) { 512 mutex_unlock(&phy_fixup_lock); 513 return err; 514 } 515 phydev->has_fixups = true; 516 } 517 } 518 mutex_unlock(&phy_fixup_lock); 519 520 return 0; 521 } 522 523 static int phy_bus_match(struct device *dev, struct device_driver *drv) 524 { 525 struct phy_device *phydev = to_phy_device(dev); 526 struct phy_driver *phydrv = to_phy_driver(drv); 527 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 528 int i; 529 530 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 531 return 0; 532 533 if (phydrv->match_phy_device) 534 return phydrv->match_phy_device(phydev); 535 536 if (phydev->is_c45) { 537 for (i = 1; i < num_ids; i++) { 538 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 539 continue; 540 541 if (phy_id_compare(phydev->c45_ids.device_ids[i], 542 phydrv->phy_id, phydrv->phy_id_mask)) 543 return 1; 544 } 545 return 0; 546 } else { 547 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 548 phydrv->phy_id_mask); 549 } 550 } 551 552 static ssize_t 553 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 554 { 555 struct phy_device *phydev = to_phy_device(dev); 556 557 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 558 } 559 static DEVICE_ATTR_RO(phy_id); 560 561 static ssize_t 562 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 563 { 564 struct phy_device *phydev = to_phy_device(dev); 565 const char *mode = NULL; 566 567 if (phy_is_internal(phydev)) 568 mode = "internal"; 569 else 570 mode = phy_modes(phydev->interface); 571 572 return sysfs_emit(buf, "%s\n", mode); 573 } 574 static DEVICE_ATTR_RO(phy_interface); 575 576 static ssize_t 577 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 578 char *buf) 579 { 580 struct phy_device *phydev = to_phy_device(dev); 581 582 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 583 } 584 static DEVICE_ATTR_RO(phy_has_fixups); 585 586 static ssize_t phy_dev_flags_show(struct device *dev, 587 struct device_attribute *attr, 588 char *buf) 589 { 590 struct phy_device *phydev = to_phy_device(dev); 591 592 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 593 } 594 static DEVICE_ATTR_RO(phy_dev_flags); 595 596 static struct attribute *phy_dev_attrs[] = { 597 &dev_attr_phy_id.attr, 598 &dev_attr_phy_interface.attr, 599 &dev_attr_phy_has_fixups.attr, 600 &dev_attr_phy_dev_flags.attr, 601 NULL, 602 }; 603 ATTRIBUTE_GROUPS(phy_dev); 604 605 static const struct device_type mdio_bus_phy_type = { 606 .name = "PHY", 607 .groups = phy_dev_groups, 608 .release = phy_device_release, 609 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 610 }; 611 612 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 613 { 614 int ret; 615 616 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 617 MDIO_ID_ARGS(phy_id)); 618 /* We only check for failures in executing the usermode binary, 619 * not whether a PHY driver module exists for the PHY ID. 620 * Accept -ENOENT because this may occur in case no initramfs exists, 621 * then modprobe isn't available. 622 */ 623 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 624 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 625 ret, (unsigned long)phy_id); 626 return ret; 627 } 628 629 return 0; 630 } 631 632 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 633 bool is_c45, 634 struct phy_c45_device_ids *c45_ids) 635 { 636 struct phy_device *dev; 637 struct mdio_device *mdiodev; 638 int ret = 0; 639 640 /* We allocate the device, and initialize the default values */ 641 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 642 if (!dev) 643 return ERR_PTR(-ENOMEM); 644 645 mdiodev = &dev->mdio; 646 mdiodev->dev.parent = &bus->dev; 647 mdiodev->dev.bus = &mdio_bus_type; 648 mdiodev->dev.type = &mdio_bus_phy_type; 649 mdiodev->bus = bus; 650 mdiodev->bus_match = phy_bus_match; 651 mdiodev->addr = addr; 652 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 653 mdiodev->device_free = phy_mdio_device_free; 654 mdiodev->device_remove = phy_mdio_device_remove; 655 656 dev->speed = SPEED_UNKNOWN; 657 dev->duplex = DUPLEX_UNKNOWN; 658 dev->pause = 0; 659 dev->asym_pause = 0; 660 dev->link = 0; 661 dev->port = PORT_TP; 662 dev->interface = PHY_INTERFACE_MODE_GMII; 663 664 dev->autoneg = AUTONEG_ENABLE; 665 666 dev->pma_extable = -ENODATA; 667 dev->is_c45 = is_c45; 668 dev->phy_id = phy_id; 669 if (c45_ids) 670 dev->c45_ids = *c45_ids; 671 dev->irq = bus->irq[addr]; 672 673 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 674 device_initialize(&mdiodev->dev); 675 676 dev->state = PHY_DOWN; 677 INIT_LIST_HEAD(&dev->leds); 678 679 mutex_init(&dev->lock); 680 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 681 682 /* Request the appropriate module unconditionally; don't 683 * bother trying to do so only if it isn't already loaded, 684 * because that gets complicated. A hotplug event would have 685 * done an unconditional modprobe anyway. 686 * We don't do normal hotplug because it won't work for MDIO 687 * -- because it relies on the device staying around for long 688 * enough for the driver to get loaded. With MDIO, the NIC 689 * driver will get bored and give up as soon as it finds that 690 * there's no driver _already_ loaded. 691 */ 692 if (is_c45 && c45_ids) { 693 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 694 int i; 695 696 for (i = 1; i < num_ids; i++) { 697 if (c45_ids->device_ids[i] == 0xffffffff) 698 continue; 699 700 ret = phy_request_driver_module(dev, 701 c45_ids->device_ids[i]); 702 if (ret) 703 break; 704 } 705 } else { 706 ret = phy_request_driver_module(dev, phy_id); 707 } 708 709 if (ret) { 710 put_device(&mdiodev->dev); 711 dev = ERR_PTR(ret); 712 } 713 714 return dev; 715 } 716 EXPORT_SYMBOL(phy_device_create); 717 718 /* phy_c45_probe_present - checks to see if a MMD is present in the package 719 * @bus: the target MII bus 720 * @prtad: PHY package address on the MII bus 721 * @devad: PHY device (MMD) address 722 * 723 * Read the MDIO_STAT2 register, and check whether a device is responding 724 * at this address. 725 * 726 * Returns: negative error number on bus access error, zero if no device 727 * is responding, or positive if a device is present. 728 */ 729 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 730 { 731 int stat2; 732 733 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 734 if (stat2 < 0) 735 return stat2; 736 737 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 738 } 739 740 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 741 * @bus: the target MII bus 742 * @addr: PHY address on the MII bus 743 * @dev_addr: MMD address in the PHY. 744 * @devices_in_package: where to store the devices in package information. 745 * 746 * Description: reads devices in package registers of a MMD at @dev_addr 747 * from PHY at @addr on @bus. 748 * 749 * Returns: 0 on success, -EIO on failure. 750 */ 751 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 752 u32 *devices_in_package) 753 { 754 int phy_reg; 755 756 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 757 if (phy_reg < 0) 758 return -EIO; 759 *devices_in_package = phy_reg << 16; 760 761 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 762 if (phy_reg < 0) 763 return -EIO; 764 *devices_in_package |= phy_reg; 765 766 return 0; 767 } 768 769 /** 770 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 771 * @bus: the target MII bus 772 * @addr: PHY address on the MII bus 773 * @c45_ids: where to store the c45 ID information. 774 * 775 * Read the PHY "devices in package". If this appears to be valid, read 776 * the PHY identifiers for each device. Return the "devices in package" 777 * and identifiers in @c45_ids. 778 * 779 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 780 * the "devices in package" is invalid. 781 */ 782 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 783 struct phy_c45_device_ids *c45_ids) 784 { 785 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 786 u32 devs_in_pkg = 0; 787 int i, ret, phy_reg; 788 789 /* Find first non-zero Devices In package. Device zero is reserved 790 * for 802.3 c45 complied PHYs, so don't probe it at first. 791 */ 792 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 793 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 794 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 795 /* Check that there is a device present at this 796 * address before reading the devices-in-package 797 * register to avoid reading garbage from the PHY. 798 * Some PHYs (88x3310) vendor space is not IEEE802.3 799 * compliant. 800 */ 801 ret = phy_c45_probe_present(bus, addr, i); 802 if (ret < 0) 803 return -EIO; 804 805 if (!ret) 806 continue; 807 } 808 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 809 if (phy_reg < 0) 810 return -EIO; 811 } 812 813 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 814 /* If mostly Fs, there is no device there, then let's probe 815 * MMD 0, as some 10G PHYs have zero Devices In package, 816 * e.g. Cortina CS4315/CS4340 PHY. 817 */ 818 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 819 if (phy_reg < 0) 820 return -EIO; 821 822 /* no device there, let's get out of here */ 823 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 824 return -ENODEV; 825 } 826 827 /* Now probe Device Identifiers for each device present. */ 828 for (i = 1; i < num_ids; i++) { 829 if (!(devs_in_pkg & (1 << i))) 830 continue; 831 832 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 833 /* Probe the "Device Present" bits for the vendor MMDs 834 * to ignore these if they do not contain IEEE 802.3 835 * registers. 836 */ 837 ret = phy_c45_probe_present(bus, addr, i); 838 if (ret < 0) 839 return ret; 840 841 if (!ret) 842 continue; 843 } 844 845 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 846 if (phy_reg < 0) 847 return -EIO; 848 c45_ids->device_ids[i] = phy_reg << 16; 849 850 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 851 if (phy_reg < 0) 852 return -EIO; 853 c45_ids->device_ids[i] |= phy_reg; 854 } 855 856 c45_ids->devices_in_package = devs_in_pkg; 857 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 858 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 859 860 return 0; 861 } 862 863 /** 864 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 865 * @bus: the target MII bus 866 * @addr: PHY address on the MII bus 867 * @phy_id: where to store the ID retrieved. 868 * 869 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 870 * placing it in @phy_id. Return zero on successful read and the ID is 871 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 872 * or invalid ID. 873 */ 874 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 875 { 876 int phy_reg; 877 878 /* Grab the bits from PHYIR1, and put them in the upper half */ 879 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 880 if (phy_reg < 0) { 881 /* returning -ENODEV doesn't stop bus scanning */ 882 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 883 } 884 885 *phy_id = phy_reg << 16; 886 887 /* Grab the bits from PHYIR2, and put them in the lower half */ 888 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 889 if (phy_reg < 0) { 890 /* returning -ENODEV doesn't stop bus scanning */ 891 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 892 } 893 894 *phy_id |= phy_reg; 895 896 /* If the phy_id is mostly Fs, there is no device there */ 897 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 898 return -ENODEV; 899 900 return 0; 901 } 902 903 /* Extract the phy ID from the compatible string of the form 904 * ethernet-phy-idAAAA.BBBB. 905 */ 906 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 907 { 908 unsigned int upper, lower; 909 const char *cp; 910 int ret; 911 912 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 913 if (ret) 914 return ret; 915 916 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 917 return -EINVAL; 918 919 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 920 return 0; 921 } 922 EXPORT_SYMBOL(fwnode_get_phy_id); 923 924 /** 925 * get_phy_device - reads the specified PHY device and returns its @phy_device 926 * struct 927 * @bus: the target MII bus 928 * @addr: PHY address on the MII bus 929 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 930 * 931 * Probe for a PHY at @addr on @bus. 932 * 933 * When probing for a clause 22 PHY, then read the ID registers. If we find 934 * a valid ID, allocate and return a &struct phy_device. 935 * 936 * When probing for a clause 45 PHY, read the "devices in package" registers. 937 * If the "devices in package" appears valid, read the ID registers for each 938 * MMD, allocate and return a &struct phy_device. 939 * 940 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 941 * no PHY present, or %-EIO on bus access error. 942 */ 943 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 944 { 945 struct phy_c45_device_ids c45_ids; 946 u32 phy_id = 0; 947 int r; 948 949 c45_ids.devices_in_package = 0; 950 c45_ids.mmds_present = 0; 951 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 952 953 if (is_c45) 954 r = get_phy_c45_ids(bus, addr, &c45_ids); 955 else 956 r = get_phy_c22_id(bus, addr, &phy_id); 957 958 if (r) 959 return ERR_PTR(r); 960 961 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 962 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 963 * probe with C45 to see if we're able to get a valid PHY ID in the C45 964 * space, if successful, create the C45 PHY device. 965 */ 966 if (!is_c45 && phy_id == 0 && bus->read_c45) { 967 r = get_phy_c45_ids(bus, addr, &c45_ids); 968 if (!r) 969 return phy_device_create(bus, addr, phy_id, 970 true, &c45_ids); 971 } 972 973 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 974 } 975 EXPORT_SYMBOL(get_phy_device); 976 977 /** 978 * phy_device_register - Register the phy device on the MDIO bus 979 * @phydev: phy_device structure to be added to the MDIO bus 980 */ 981 int phy_device_register(struct phy_device *phydev) 982 { 983 int err; 984 985 err = mdiobus_register_device(&phydev->mdio); 986 if (err) 987 return err; 988 989 /* Deassert the reset signal */ 990 phy_device_reset(phydev, 0); 991 992 /* Run all of the fixups for this PHY */ 993 err = phy_scan_fixups(phydev); 994 if (err) { 995 phydev_err(phydev, "failed to initialize\n"); 996 goto out; 997 } 998 999 err = device_add(&phydev->mdio.dev); 1000 if (err) { 1001 phydev_err(phydev, "failed to add\n"); 1002 goto out; 1003 } 1004 1005 return 0; 1006 1007 out: 1008 /* Assert the reset signal */ 1009 phy_device_reset(phydev, 1); 1010 1011 mdiobus_unregister_device(&phydev->mdio); 1012 return err; 1013 } 1014 EXPORT_SYMBOL(phy_device_register); 1015 1016 /** 1017 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1018 * @phydev: phy_device structure to remove 1019 * 1020 * This doesn't free the phy_device itself, it merely reverses the effects 1021 * of phy_device_register(). Use phy_device_free() to free the device 1022 * after calling this function. 1023 */ 1024 void phy_device_remove(struct phy_device *phydev) 1025 { 1026 unregister_mii_timestamper(phydev->mii_ts); 1027 pse_control_put(phydev->psec); 1028 1029 device_del(&phydev->mdio.dev); 1030 1031 /* Assert the reset signal */ 1032 phy_device_reset(phydev, 1); 1033 1034 mdiobus_unregister_device(&phydev->mdio); 1035 } 1036 EXPORT_SYMBOL(phy_device_remove); 1037 1038 /** 1039 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1040 * @phydev: phy_device structure to read 802.3-c45 IDs 1041 * 1042 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1043 * the "devices in package" is invalid. 1044 */ 1045 int phy_get_c45_ids(struct phy_device *phydev) 1046 { 1047 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1048 &phydev->c45_ids); 1049 } 1050 EXPORT_SYMBOL(phy_get_c45_ids); 1051 1052 /** 1053 * phy_find_first - finds the first PHY device on the bus 1054 * @bus: the target MII bus 1055 */ 1056 struct phy_device *phy_find_first(struct mii_bus *bus) 1057 { 1058 struct phy_device *phydev; 1059 int addr; 1060 1061 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1062 phydev = mdiobus_get_phy(bus, addr); 1063 if (phydev) 1064 return phydev; 1065 } 1066 return NULL; 1067 } 1068 EXPORT_SYMBOL(phy_find_first); 1069 1070 static void phy_link_change(struct phy_device *phydev, bool up) 1071 { 1072 struct net_device *netdev = phydev->attached_dev; 1073 1074 if (up) 1075 netif_carrier_on(netdev); 1076 else 1077 netif_carrier_off(netdev); 1078 phydev->adjust_link(netdev); 1079 if (phydev->mii_ts && phydev->mii_ts->link_state) 1080 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1081 } 1082 1083 /** 1084 * phy_prepare_link - prepares the PHY layer to monitor link status 1085 * @phydev: target phy_device struct 1086 * @handler: callback function for link status change notifications 1087 * 1088 * Description: Tells the PHY infrastructure to handle the 1089 * gory details on monitoring link status (whether through 1090 * polling or an interrupt), and to call back to the 1091 * connected device driver when the link status changes. 1092 * If you want to monitor your own link state, don't call 1093 * this function. 1094 */ 1095 static void phy_prepare_link(struct phy_device *phydev, 1096 void (*handler)(struct net_device *)) 1097 { 1098 phydev->adjust_link = handler; 1099 } 1100 1101 /** 1102 * phy_connect_direct - connect an ethernet device to a specific phy_device 1103 * @dev: the network device to connect 1104 * @phydev: the pointer to the phy device 1105 * @handler: callback function for state change notifications 1106 * @interface: PHY device's interface 1107 */ 1108 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1109 void (*handler)(struct net_device *), 1110 phy_interface_t interface) 1111 { 1112 int rc; 1113 1114 if (!dev) 1115 return -EINVAL; 1116 1117 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1118 if (rc) 1119 return rc; 1120 1121 phy_prepare_link(phydev, handler); 1122 if (phy_interrupt_is_valid(phydev)) 1123 phy_request_interrupt(phydev); 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(phy_connect_direct); 1128 1129 /** 1130 * phy_connect - connect an ethernet device to a PHY device 1131 * @dev: the network device to connect 1132 * @bus_id: the id string of the PHY device to connect 1133 * @handler: callback function for state change notifications 1134 * @interface: PHY device's interface 1135 * 1136 * Description: Convenience function for connecting ethernet 1137 * devices to PHY devices. The default behavior is for 1138 * the PHY infrastructure to handle everything, and only notify 1139 * the connected driver when the link status changes. If you 1140 * don't want, or can't use the provided functionality, you may 1141 * choose to call only the subset of functions which provide 1142 * the desired functionality. 1143 */ 1144 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1145 void (*handler)(struct net_device *), 1146 phy_interface_t interface) 1147 { 1148 struct phy_device *phydev; 1149 struct device *d; 1150 int rc; 1151 1152 /* Search the list of PHY devices on the mdio bus for the 1153 * PHY with the requested name 1154 */ 1155 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1156 if (!d) { 1157 pr_err("PHY %s not found\n", bus_id); 1158 return ERR_PTR(-ENODEV); 1159 } 1160 phydev = to_phy_device(d); 1161 1162 rc = phy_connect_direct(dev, phydev, handler, interface); 1163 put_device(d); 1164 if (rc) 1165 return ERR_PTR(rc); 1166 1167 return phydev; 1168 } 1169 EXPORT_SYMBOL(phy_connect); 1170 1171 /** 1172 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1173 * device 1174 * @phydev: target phy_device struct 1175 */ 1176 void phy_disconnect(struct phy_device *phydev) 1177 { 1178 if (phy_is_started(phydev)) 1179 phy_stop(phydev); 1180 1181 if (phy_interrupt_is_valid(phydev)) 1182 phy_free_interrupt(phydev); 1183 1184 phydev->adjust_link = NULL; 1185 1186 phy_detach(phydev); 1187 } 1188 EXPORT_SYMBOL(phy_disconnect); 1189 1190 /** 1191 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1192 * @phydev: The PHY device to poll 1193 * 1194 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1195 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1196 * register must be polled until the BMCR_RESET bit clears. 1197 * 1198 * Furthermore, any attempts to write to PHY registers may have no effect 1199 * or even generate MDIO bus errors until this is complete. 1200 * 1201 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1202 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1203 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1204 * effort to support such broken PHYs, this function is separate from the 1205 * standard phy_init_hw() which will zero all the other bits in the BMCR 1206 * and reapply all driver-specific and board-specific fixups. 1207 */ 1208 static int phy_poll_reset(struct phy_device *phydev) 1209 { 1210 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1211 int ret, val; 1212 1213 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1214 50000, 600000, true); 1215 if (ret) 1216 return ret; 1217 /* Some chips (smsc911x) may still need up to another 1ms after the 1218 * BMCR_RESET bit is cleared before they are usable. 1219 */ 1220 msleep(1); 1221 return 0; 1222 } 1223 1224 int phy_init_hw(struct phy_device *phydev) 1225 { 1226 int ret = 0; 1227 1228 /* Deassert the reset signal */ 1229 phy_device_reset(phydev, 0); 1230 1231 if (!phydev->drv) 1232 return 0; 1233 1234 if (phydev->drv->soft_reset) { 1235 ret = phydev->drv->soft_reset(phydev); 1236 /* see comment in genphy_soft_reset for an explanation */ 1237 if (!ret) 1238 phydev->suspended = 0; 1239 } 1240 1241 if (ret < 0) 1242 return ret; 1243 1244 ret = phy_scan_fixups(phydev); 1245 if (ret < 0) 1246 return ret; 1247 1248 if (phydev->drv->config_init) { 1249 ret = phydev->drv->config_init(phydev); 1250 if (ret < 0) 1251 return ret; 1252 } 1253 1254 if (phydev->drv->config_intr) { 1255 ret = phydev->drv->config_intr(phydev); 1256 if (ret < 0) 1257 return ret; 1258 } 1259 1260 return 0; 1261 } 1262 EXPORT_SYMBOL(phy_init_hw); 1263 1264 void phy_attached_info(struct phy_device *phydev) 1265 { 1266 phy_attached_print(phydev, NULL); 1267 } 1268 EXPORT_SYMBOL(phy_attached_info); 1269 1270 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1271 char *phy_attached_info_irq(struct phy_device *phydev) 1272 { 1273 char *irq_str; 1274 char irq_num[8]; 1275 1276 switch(phydev->irq) { 1277 case PHY_POLL: 1278 irq_str = "POLL"; 1279 break; 1280 case PHY_MAC_INTERRUPT: 1281 irq_str = "MAC"; 1282 break; 1283 default: 1284 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1285 irq_str = irq_num; 1286 break; 1287 } 1288 1289 return kasprintf(GFP_KERNEL, "%s", irq_str); 1290 } 1291 EXPORT_SYMBOL(phy_attached_info_irq); 1292 1293 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1294 { 1295 const char *unbound = phydev->drv ? "" : "[unbound] "; 1296 char *irq_str = phy_attached_info_irq(phydev); 1297 1298 if (!fmt) { 1299 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1300 phydev_name(phydev), irq_str); 1301 } else { 1302 va_list ap; 1303 1304 phydev_info(phydev, ATTACHED_FMT, unbound, 1305 phydev_name(phydev), irq_str); 1306 1307 va_start(ap, fmt); 1308 vprintk(fmt, ap); 1309 va_end(ap); 1310 } 1311 kfree(irq_str); 1312 } 1313 EXPORT_SYMBOL(phy_attached_print); 1314 1315 static void phy_sysfs_create_links(struct phy_device *phydev) 1316 { 1317 struct net_device *dev = phydev->attached_dev; 1318 int err; 1319 1320 if (!dev) 1321 return; 1322 1323 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1324 "attached_dev"); 1325 if (err) 1326 return; 1327 1328 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1329 &phydev->mdio.dev.kobj, 1330 "phydev"); 1331 if (err) { 1332 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1333 kobject_name(&phydev->mdio.dev.kobj), 1334 err); 1335 /* non-fatal - some net drivers can use one netdevice 1336 * with more then one phy 1337 */ 1338 } 1339 1340 phydev->sysfs_links = true; 1341 } 1342 1343 static ssize_t 1344 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1345 char *buf) 1346 { 1347 struct phy_device *phydev = to_phy_device(dev); 1348 1349 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1350 } 1351 static DEVICE_ATTR_RO(phy_standalone); 1352 1353 /** 1354 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1355 * @upstream: pointer to the phy device 1356 * @bus: sfp bus representing cage being attached 1357 * 1358 * This is used to fill in the sfp_upstream_ops .attach member. 1359 */ 1360 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1361 { 1362 struct phy_device *phydev = upstream; 1363 1364 if (phydev->attached_dev) 1365 phydev->attached_dev->sfp_bus = bus; 1366 phydev->sfp_bus_attached = true; 1367 } 1368 EXPORT_SYMBOL(phy_sfp_attach); 1369 1370 /** 1371 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1372 * @upstream: pointer to the phy device 1373 * @bus: sfp bus representing cage being attached 1374 * 1375 * This is used to fill in the sfp_upstream_ops .detach member. 1376 */ 1377 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1378 { 1379 struct phy_device *phydev = upstream; 1380 1381 if (phydev->attached_dev) 1382 phydev->attached_dev->sfp_bus = NULL; 1383 phydev->sfp_bus_attached = false; 1384 } 1385 EXPORT_SYMBOL(phy_sfp_detach); 1386 1387 /** 1388 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1389 * @phydev: Pointer to phy_device 1390 * @ops: SFP's upstream operations 1391 */ 1392 int phy_sfp_probe(struct phy_device *phydev, 1393 const struct sfp_upstream_ops *ops) 1394 { 1395 struct sfp_bus *bus; 1396 int ret = 0; 1397 1398 if (phydev->mdio.dev.fwnode) { 1399 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1400 if (IS_ERR(bus)) 1401 return PTR_ERR(bus); 1402 1403 phydev->sfp_bus = bus; 1404 1405 ret = sfp_bus_add_upstream(bus, phydev, ops); 1406 sfp_bus_put(bus); 1407 } 1408 return ret; 1409 } 1410 EXPORT_SYMBOL(phy_sfp_probe); 1411 1412 /** 1413 * phy_attach_direct - attach a network device to a given PHY device pointer 1414 * @dev: network device to attach 1415 * @phydev: Pointer to phy_device to attach 1416 * @flags: PHY device's dev_flags 1417 * @interface: PHY device's interface 1418 * 1419 * Description: Called by drivers to attach to a particular PHY 1420 * device. The phy_device is found, and properly hooked up 1421 * to the phy_driver. If no driver is attached, then a 1422 * generic driver is used. The phy_device is given a ptr to 1423 * the attaching device, and given a callback for link status 1424 * change. The phy_device is returned to the attaching driver. 1425 * This function takes a reference on the phy device. 1426 */ 1427 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1428 u32 flags, phy_interface_t interface) 1429 { 1430 struct mii_bus *bus = phydev->mdio.bus; 1431 struct device *d = &phydev->mdio.dev; 1432 struct module *ndev_owner = NULL; 1433 bool using_genphy = false; 1434 int err; 1435 1436 /* For Ethernet device drivers that register their own MDIO bus, we 1437 * will have bus->owner match ndev_mod, so we do not want to increment 1438 * our own module->refcnt here, otherwise we would not be able to 1439 * unload later on. 1440 */ 1441 if (dev) 1442 ndev_owner = dev->dev.parent->driver->owner; 1443 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1444 phydev_err(phydev, "failed to get the bus module\n"); 1445 return -EIO; 1446 } 1447 1448 get_device(d); 1449 1450 /* Assume that if there is no driver, that it doesn't 1451 * exist, and we should use the genphy driver. 1452 */ 1453 if (!d->driver) { 1454 if (phydev->is_c45) 1455 d->driver = &genphy_c45_driver.mdiodrv.driver; 1456 else 1457 d->driver = &genphy_driver.mdiodrv.driver; 1458 1459 using_genphy = true; 1460 } 1461 1462 if (!try_module_get(d->driver->owner)) { 1463 phydev_err(phydev, "failed to get the device driver module\n"); 1464 err = -EIO; 1465 goto error_put_device; 1466 } 1467 1468 if (using_genphy) { 1469 err = d->driver->probe(d); 1470 if (err >= 0) 1471 err = device_bind_driver(d); 1472 1473 if (err) 1474 goto error_module_put; 1475 } 1476 1477 if (phydev->attached_dev) { 1478 dev_err(&dev->dev, "PHY already attached\n"); 1479 err = -EBUSY; 1480 goto error; 1481 } 1482 1483 phydev->phy_link_change = phy_link_change; 1484 if (dev) { 1485 phydev->attached_dev = dev; 1486 dev->phydev = phydev; 1487 1488 if (phydev->sfp_bus_attached) 1489 dev->sfp_bus = phydev->sfp_bus; 1490 else if (dev->sfp_bus) 1491 phydev->is_on_sfp_module = true; 1492 } 1493 1494 /* Some Ethernet drivers try to connect to a PHY device before 1495 * calling register_netdevice() -> netdev_register_kobject() and 1496 * does the dev->dev.kobj initialization. Here we only check for 1497 * success which indicates that the network device kobject is 1498 * ready. Once we do that we still need to keep track of whether 1499 * links were successfully set up or not for phy_detach() to 1500 * remove them accordingly. 1501 */ 1502 phydev->sysfs_links = false; 1503 1504 phy_sysfs_create_links(phydev); 1505 1506 if (!phydev->attached_dev) { 1507 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1508 &dev_attr_phy_standalone.attr); 1509 if (err) 1510 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1511 } 1512 1513 phydev->dev_flags |= flags; 1514 1515 phydev->interface = interface; 1516 1517 phydev->state = PHY_READY; 1518 1519 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1520 1521 /* PHYs can request to use poll mode even though they have an 1522 * associated interrupt line. This could be the case if they 1523 * detect a broken interrupt handling. 1524 */ 1525 if (phydev->dev_flags & PHY_F_NO_IRQ) 1526 phydev->irq = PHY_POLL; 1527 1528 /* Port is set to PORT_TP by default and the actual PHY driver will set 1529 * it to different value depending on the PHY configuration. If we have 1530 * the generic PHY driver we can't figure it out, thus set the old 1531 * legacy PORT_MII value. 1532 */ 1533 if (using_genphy) 1534 phydev->port = PORT_MII; 1535 1536 /* Initial carrier state is off as the phy is about to be 1537 * (re)initialized. 1538 */ 1539 if (dev) 1540 netif_carrier_off(phydev->attached_dev); 1541 1542 /* Do initial configuration here, now that 1543 * we have certain key parameters 1544 * (dev_flags and interface) 1545 */ 1546 err = phy_init_hw(phydev); 1547 if (err) 1548 goto error; 1549 1550 phy_resume(phydev); 1551 phy_led_triggers_register(phydev); 1552 1553 /** 1554 * If the external phy used by current mac interface is managed by 1555 * another mac interface, so we should create a device link between 1556 * phy dev and mac dev. 1557 */ 1558 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1559 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1560 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1561 1562 return err; 1563 1564 error: 1565 /* phy_detach() does all of the cleanup below */ 1566 phy_detach(phydev); 1567 return err; 1568 1569 error_module_put: 1570 module_put(d->driver->owner); 1571 d->driver = NULL; 1572 error_put_device: 1573 put_device(d); 1574 if (ndev_owner != bus->owner) 1575 module_put(bus->owner); 1576 return err; 1577 } 1578 EXPORT_SYMBOL(phy_attach_direct); 1579 1580 /** 1581 * phy_attach - attach a network device to a particular PHY device 1582 * @dev: network device to attach 1583 * @bus_id: Bus ID of PHY device to attach 1584 * @interface: PHY device's interface 1585 * 1586 * Description: Same as phy_attach_direct() except that a PHY bus_id 1587 * string is passed instead of a pointer to a struct phy_device. 1588 */ 1589 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1590 phy_interface_t interface) 1591 { 1592 struct bus_type *bus = &mdio_bus_type; 1593 struct phy_device *phydev; 1594 struct device *d; 1595 int rc; 1596 1597 if (!dev) 1598 return ERR_PTR(-EINVAL); 1599 1600 /* Search the list of PHY devices on the mdio bus for the 1601 * PHY with the requested name 1602 */ 1603 d = bus_find_device_by_name(bus, NULL, bus_id); 1604 if (!d) { 1605 pr_err("PHY %s not found\n", bus_id); 1606 return ERR_PTR(-ENODEV); 1607 } 1608 phydev = to_phy_device(d); 1609 1610 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1611 put_device(d); 1612 if (rc) 1613 return ERR_PTR(rc); 1614 1615 return phydev; 1616 } 1617 EXPORT_SYMBOL(phy_attach); 1618 1619 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1620 struct device_driver *driver) 1621 { 1622 struct device *d = &phydev->mdio.dev; 1623 bool ret = false; 1624 1625 if (!phydev->drv) 1626 return ret; 1627 1628 get_device(d); 1629 ret = d->driver == driver; 1630 put_device(d); 1631 1632 return ret; 1633 } 1634 1635 bool phy_driver_is_genphy(struct phy_device *phydev) 1636 { 1637 return phy_driver_is_genphy_kind(phydev, 1638 &genphy_driver.mdiodrv.driver); 1639 } 1640 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1641 1642 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1643 { 1644 return phy_driver_is_genphy_kind(phydev, 1645 &genphy_c45_driver.mdiodrv.driver); 1646 } 1647 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1648 1649 /** 1650 * phy_package_join - join a common PHY group 1651 * @phydev: target phy_device struct 1652 * @addr: cookie and PHY address for global register access 1653 * @priv_size: if non-zero allocate this amount of bytes for private data 1654 * 1655 * This joins a PHY group and provides a shared storage for all phydevs in 1656 * this group. This is intended to be used for packages which contain 1657 * more than one PHY, for example a quad PHY transceiver. 1658 * 1659 * The addr parameter serves as a cookie which has to have the same value 1660 * for all members of one group and as a PHY address to access generic 1661 * registers of a PHY package. Usually, one of the PHY addresses of the 1662 * different PHYs in the package provides access to these global registers. 1663 * The address which is given here, will be used in the phy_package_read() 1664 * and phy_package_write() convenience functions. If your PHY doesn't have 1665 * global registers you can just pick any of the PHY addresses. 1666 * 1667 * This will set the shared pointer of the phydev to the shared storage. 1668 * If this is the first call for a this cookie the shared storage will be 1669 * allocated. If priv_size is non-zero, the given amount of bytes are 1670 * allocated for the priv member. 1671 * 1672 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1673 * with the same cookie but a different priv_size is an error. 1674 */ 1675 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1676 { 1677 struct mii_bus *bus = phydev->mdio.bus; 1678 struct phy_package_shared *shared; 1679 int ret; 1680 1681 if (addr < 0 || addr >= PHY_MAX_ADDR) 1682 return -EINVAL; 1683 1684 mutex_lock(&bus->shared_lock); 1685 shared = bus->shared[addr]; 1686 if (!shared) { 1687 ret = -ENOMEM; 1688 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1689 if (!shared) 1690 goto err_unlock; 1691 if (priv_size) { 1692 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1693 if (!shared->priv) 1694 goto err_free; 1695 shared->priv_size = priv_size; 1696 } 1697 shared->addr = addr; 1698 refcount_set(&shared->refcnt, 1); 1699 bus->shared[addr] = shared; 1700 } else { 1701 ret = -EINVAL; 1702 if (priv_size && priv_size != shared->priv_size) 1703 goto err_unlock; 1704 refcount_inc(&shared->refcnt); 1705 } 1706 mutex_unlock(&bus->shared_lock); 1707 1708 phydev->shared = shared; 1709 1710 return 0; 1711 1712 err_free: 1713 kfree(shared); 1714 err_unlock: 1715 mutex_unlock(&bus->shared_lock); 1716 return ret; 1717 } 1718 EXPORT_SYMBOL_GPL(phy_package_join); 1719 1720 /** 1721 * phy_package_leave - leave a common PHY group 1722 * @phydev: target phy_device struct 1723 * 1724 * This leaves a PHY group created by phy_package_join(). If this phydev 1725 * was the last user of the shared data between the group, this data is 1726 * freed. Resets the phydev->shared pointer to NULL. 1727 */ 1728 void phy_package_leave(struct phy_device *phydev) 1729 { 1730 struct phy_package_shared *shared = phydev->shared; 1731 struct mii_bus *bus = phydev->mdio.bus; 1732 1733 if (!shared) 1734 return; 1735 1736 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1737 bus->shared[shared->addr] = NULL; 1738 mutex_unlock(&bus->shared_lock); 1739 kfree(shared->priv); 1740 kfree(shared); 1741 } 1742 1743 phydev->shared = NULL; 1744 } 1745 EXPORT_SYMBOL_GPL(phy_package_leave); 1746 1747 static void devm_phy_package_leave(struct device *dev, void *res) 1748 { 1749 phy_package_leave(*(struct phy_device **)res); 1750 } 1751 1752 /** 1753 * devm_phy_package_join - resource managed phy_package_join() 1754 * @dev: device that is registering this PHY package 1755 * @phydev: target phy_device struct 1756 * @addr: cookie and PHY address for global register access 1757 * @priv_size: if non-zero allocate this amount of bytes for private data 1758 * 1759 * Managed phy_package_join(). Shared storage fetched by this function, 1760 * phy_package_leave() is automatically called on driver detach. See 1761 * phy_package_join() for more information. 1762 */ 1763 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1764 int addr, size_t priv_size) 1765 { 1766 struct phy_device **ptr; 1767 int ret; 1768 1769 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1770 GFP_KERNEL); 1771 if (!ptr) 1772 return -ENOMEM; 1773 1774 ret = phy_package_join(phydev, addr, priv_size); 1775 1776 if (!ret) { 1777 *ptr = phydev; 1778 devres_add(dev, ptr); 1779 } else { 1780 devres_free(ptr); 1781 } 1782 1783 return ret; 1784 } 1785 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1786 1787 /** 1788 * phy_detach - detach a PHY device from its network device 1789 * @phydev: target phy_device struct 1790 * 1791 * This detaches the phy device from its network device and the phy 1792 * driver, and drops the reference count taken in phy_attach_direct(). 1793 */ 1794 void phy_detach(struct phy_device *phydev) 1795 { 1796 struct net_device *dev = phydev->attached_dev; 1797 struct module *ndev_owner = NULL; 1798 struct mii_bus *bus; 1799 1800 if (phydev->devlink) 1801 device_link_del(phydev->devlink); 1802 1803 if (phydev->sysfs_links) { 1804 if (dev) 1805 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1806 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1807 } 1808 1809 if (!phydev->attached_dev) 1810 sysfs_remove_file(&phydev->mdio.dev.kobj, 1811 &dev_attr_phy_standalone.attr); 1812 1813 phy_suspend(phydev); 1814 if (dev) { 1815 phydev->attached_dev->phydev = NULL; 1816 phydev->attached_dev = NULL; 1817 } 1818 phydev->phylink = NULL; 1819 1820 phy_led_triggers_unregister(phydev); 1821 1822 if (phydev->mdio.dev.driver) 1823 module_put(phydev->mdio.dev.driver->owner); 1824 1825 /* If the device had no specific driver before (i.e. - it 1826 * was using the generic driver), we unbind the device 1827 * from the generic driver so that there's a chance a 1828 * real driver could be loaded 1829 */ 1830 if (phy_driver_is_genphy(phydev) || 1831 phy_driver_is_genphy_10g(phydev)) 1832 device_release_driver(&phydev->mdio.dev); 1833 1834 /* Assert the reset signal */ 1835 phy_device_reset(phydev, 1); 1836 1837 /* 1838 * The phydev might go away on the put_device() below, so avoid 1839 * a use-after-free bug by reading the underlying bus first. 1840 */ 1841 bus = phydev->mdio.bus; 1842 1843 put_device(&phydev->mdio.dev); 1844 if (dev) 1845 ndev_owner = dev->dev.parent->driver->owner; 1846 if (ndev_owner != bus->owner) 1847 module_put(bus->owner); 1848 } 1849 EXPORT_SYMBOL(phy_detach); 1850 1851 int phy_suspend(struct phy_device *phydev) 1852 { 1853 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1854 struct net_device *netdev = phydev->attached_dev; 1855 struct phy_driver *phydrv = phydev->drv; 1856 int ret; 1857 1858 if (phydev->suspended) 1859 return 0; 1860 1861 phy_ethtool_get_wol(phydev, &wol); 1862 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1863 /* If the device has WOL enabled, we cannot suspend the PHY */ 1864 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1865 return -EBUSY; 1866 1867 if (!phydrv || !phydrv->suspend) 1868 return 0; 1869 1870 ret = phydrv->suspend(phydev); 1871 if (!ret) 1872 phydev->suspended = true; 1873 1874 return ret; 1875 } 1876 EXPORT_SYMBOL(phy_suspend); 1877 1878 int __phy_resume(struct phy_device *phydev) 1879 { 1880 struct phy_driver *phydrv = phydev->drv; 1881 int ret; 1882 1883 lockdep_assert_held(&phydev->lock); 1884 1885 if (!phydrv || !phydrv->resume) 1886 return 0; 1887 1888 ret = phydrv->resume(phydev); 1889 if (!ret) 1890 phydev->suspended = false; 1891 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(__phy_resume); 1895 1896 int phy_resume(struct phy_device *phydev) 1897 { 1898 int ret; 1899 1900 mutex_lock(&phydev->lock); 1901 ret = __phy_resume(phydev); 1902 mutex_unlock(&phydev->lock); 1903 1904 return ret; 1905 } 1906 EXPORT_SYMBOL(phy_resume); 1907 1908 int phy_loopback(struct phy_device *phydev, bool enable) 1909 { 1910 int ret = 0; 1911 1912 if (!phydev->drv) 1913 return -EIO; 1914 1915 mutex_lock(&phydev->lock); 1916 1917 if (enable && phydev->loopback_enabled) { 1918 ret = -EBUSY; 1919 goto out; 1920 } 1921 1922 if (!enable && !phydev->loopback_enabled) { 1923 ret = -EINVAL; 1924 goto out; 1925 } 1926 1927 if (phydev->drv->set_loopback) 1928 ret = phydev->drv->set_loopback(phydev, enable); 1929 else 1930 ret = genphy_loopback(phydev, enable); 1931 1932 if (ret) 1933 goto out; 1934 1935 phydev->loopback_enabled = enable; 1936 1937 out: 1938 mutex_unlock(&phydev->lock); 1939 return ret; 1940 } 1941 EXPORT_SYMBOL(phy_loopback); 1942 1943 /** 1944 * phy_reset_after_clk_enable - perform a PHY reset if needed 1945 * @phydev: target phy_device struct 1946 * 1947 * Description: Some PHYs are known to need a reset after their refclk was 1948 * enabled. This function evaluates the flags and perform the reset if it's 1949 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1950 * was reset. 1951 */ 1952 int phy_reset_after_clk_enable(struct phy_device *phydev) 1953 { 1954 if (!phydev || !phydev->drv) 1955 return -ENODEV; 1956 1957 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1958 phy_device_reset(phydev, 1); 1959 phy_device_reset(phydev, 0); 1960 return 1; 1961 } 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1966 1967 /* Generic PHY support and helper functions */ 1968 1969 /** 1970 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1971 * @phydev: target phy_device struct 1972 * 1973 * Description: Writes MII_ADVERTISE with the appropriate values, 1974 * after sanitizing the values to make sure we only advertise 1975 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1976 * hasn't changed, and > 0 if it has changed. 1977 */ 1978 static int genphy_config_advert(struct phy_device *phydev) 1979 { 1980 int err, bmsr, changed = 0; 1981 u32 adv; 1982 1983 /* Only allow advertising what this PHY supports */ 1984 linkmode_and(phydev->advertising, phydev->advertising, 1985 phydev->supported); 1986 1987 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1988 1989 /* Setup standard advertisement */ 1990 err = phy_modify_changed(phydev, MII_ADVERTISE, 1991 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1992 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1993 adv); 1994 if (err < 0) 1995 return err; 1996 if (err > 0) 1997 changed = 1; 1998 1999 bmsr = phy_read(phydev, MII_BMSR); 2000 if (bmsr < 0) 2001 return bmsr; 2002 2003 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2004 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2005 * logical 1. 2006 */ 2007 if (!(bmsr & BMSR_ESTATEN)) 2008 return changed; 2009 2010 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2011 2012 err = phy_modify_changed(phydev, MII_CTRL1000, 2013 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2014 adv); 2015 if (err < 0) 2016 return err; 2017 if (err > 0) 2018 changed = 1; 2019 2020 return changed; 2021 } 2022 2023 /** 2024 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2025 * @phydev: target phy_device struct 2026 * 2027 * Description: Writes MII_ADVERTISE with the appropriate values, 2028 * after sanitizing the values to make sure we only advertise 2029 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2030 * hasn't changed, and > 0 if it has changed. This function is intended 2031 * for Clause 37 1000Base-X mode. 2032 */ 2033 static int genphy_c37_config_advert(struct phy_device *phydev) 2034 { 2035 u16 adv = 0; 2036 2037 /* Only allow advertising what this PHY supports */ 2038 linkmode_and(phydev->advertising, phydev->advertising, 2039 phydev->supported); 2040 2041 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2042 phydev->advertising)) 2043 adv |= ADVERTISE_1000XFULL; 2044 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2045 phydev->advertising)) 2046 adv |= ADVERTISE_1000XPAUSE; 2047 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2048 phydev->advertising)) 2049 adv |= ADVERTISE_1000XPSE_ASYM; 2050 2051 return phy_modify_changed(phydev, MII_ADVERTISE, 2052 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2053 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2054 adv); 2055 } 2056 2057 /** 2058 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2059 * @phydev: target phy_device struct 2060 * 2061 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2062 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2063 * changed, and 1 if it has changed. 2064 */ 2065 int genphy_config_eee_advert(struct phy_device *phydev) 2066 { 2067 int err; 2068 2069 /* Nothing to disable */ 2070 if (!phydev->eee_broken_modes) 2071 return 0; 2072 2073 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2074 phydev->eee_broken_modes, 0); 2075 /* If the call failed, we assume that EEE is not supported */ 2076 return err < 0 ? 0 : err; 2077 } 2078 EXPORT_SYMBOL(genphy_config_eee_advert); 2079 2080 /** 2081 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2082 * @phydev: target phy_device struct 2083 * 2084 * Description: Configures MII_BMCR to force speed/duplex 2085 * to the values in phydev. Assumes that the values are valid. 2086 * Please see phy_sanitize_settings(). 2087 */ 2088 int genphy_setup_forced(struct phy_device *phydev) 2089 { 2090 u16 ctl; 2091 2092 phydev->pause = 0; 2093 phydev->asym_pause = 0; 2094 2095 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2096 2097 return phy_modify(phydev, MII_BMCR, 2098 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2099 } 2100 EXPORT_SYMBOL(genphy_setup_forced); 2101 2102 static int genphy_setup_master_slave(struct phy_device *phydev) 2103 { 2104 u16 ctl = 0; 2105 2106 if (!phydev->is_gigabit_capable) 2107 return 0; 2108 2109 switch (phydev->master_slave_set) { 2110 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2111 ctl |= CTL1000_PREFER_MASTER; 2112 break; 2113 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2114 break; 2115 case MASTER_SLAVE_CFG_MASTER_FORCE: 2116 ctl |= CTL1000_AS_MASTER; 2117 fallthrough; 2118 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2119 ctl |= CTL1000_ENABLE_MASTER; 2120 break; 2121 case MASTER_SLAVE_CFG_UNKNOWN: 2122 case MASTER_SLAVE_CFG_UNSUPPORTED: 2123 return 0; 2124 default: 2125 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2126 return -EOPNOTSUPP; 2127 } 2128 2129 return phy_modify_changed(phydev, MII_CTRL1000, 2130 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2131 CTL1000_PREFER_MASTER), ctl); 2132 } 2133 2134 int genphy_read_master_slave(struct phy_device *phydev) 2135 { 2136 int cfg, state; 2137 int val; 2138 2139 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2140 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2141 2142 val = phy_read(phydev, MII_CTRL1000); 2143 if (val < 0) 2144 return val; 2145 2146 if (val & CTL1000_ENABLE_MASTER) { 2147 if (val & CTL1000_AS_MASTER) 2148 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2149 else 2150 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2151 } else { 2152 if (val & CTL1000_PREFER_MASTER) 2153 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2154 else 2155 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2156 } 2157 2158 val = phy_read(phydev, MII_STAT1000); 2159 if (val < 0) 2160 return val; 2161 2162 if (val & LPA_1000MSFAIL) { 2163 state = MASTER_SLAVE_STATE_ERR; 2164 } else if (phydev->link) { 2165 /* this bits are valid only for active link */ 2166 if (val & LPA_1000MSRES) 2167 state = MASTER_SLAVE_STATE_MASTER; 2168 else 2169 state = MASTER_SLAVE_STATE_SLAVE; 2170 } else { 2171 state = MASTER_SLAVE_STATE_UNKNOWN; 2172 } 2173 2174 phydev->master_slave_get = cfg; 2175 phydev->master_slave_state = state; 2176 2177 return 0; 2178 } 2179 EXPORT_SYMBOL(genphy_read_master_slave); 2180 2181 /** 2182 * genphy_restart_aneg - Enable and Restart Autonegotiation 2183 * @phydev: target phy_device struct 2184 */ 2185 int genphy_restart_aneg(struct phy_device *phydev) 2186 { 2187 /* Don't isolate the PHY if we're negotiating */ 2188 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2189 BMCR_ANENABLE | BMCR_ANRESTART); 2190 } 2191 EXPORT_SYMBOL(genphy_restart_aneg); 2192 2193 /** 2194 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2195 * @phydev: target phy_device struct 2196 * @restart: whether aneg restart is requested 2197 * 2198 * Check, and restart auto-negotiation if needed. 2199 */ 2200 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2201 { 2202 int ret; 2203 2204 if (!restart) { 2205 /* Advertisement hasn't changed, but maybe aneg was never on to 2206 * begin with? Or maybe phy was isolated? 2207 */ 2208 ret = phy_read(phydev, MII_BMCR); 2209 if (ret < 0) 2210 return ret; 2211 2212 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2213 restart = true; 2214 } 2215 2216 if (restart) 2217 return genphy_restart_aneg(phydev); 2218 2219 return 0; 2220 } 2221 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2222 2223 /** 2224 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2225 * @phydev: target phy_device struct 2226 * @changed: whether autoneg is requested 2227 * 2228 * Description: If auto-negotiation is enabled, we configure the 2229 * advertising, and then restart auto-negotiation. If it is not 2230 * enabled, then we write the BMCR. 2231 */ 2232 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2233 { 2234 int err; 2235 2236 err = genphy_c45_an_config_eee_aneg(phydev); 2237 if (err < 0) 2238 return err; 2239 else if (err) 2240 changed = true; 2241 2242 err = genphy_setup_master_slave(phydev); 2243 if (err < 0) 2244 return err; 2245 else if (err) 2246 changed = true; 2247 2248 if (AUTONEG_ENABLE != phydev->autoneg) 2249 return genphy_setup_forced(phydev); 2250 2251 err = genphy_config_advert(phydev); 2252 if (err < 0) /* error */ 2253 return err; 2254 else if (err) 2255 changed = true; 2256 2257 return genphy_check_and_restart_aneg(phydev, changed); 2258 } 2259 EXPORT_SYMBOL(__genphy_config_aneg); 2260 2261 /** 2262 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2263 * @phydev: target phy_device struct 2264 * 2265 * Description: If auto-negotiation is enabled, we configure the 2266 * advertising, and then restart auto-negotiation. If it is not 2267 * enabled, then we write the BMCR. This function is intended 2268 * for use with Clause 37 1000Base-X mode. 2269 */ 2270 int genphy_c37_config_aneg(struct phy_device *phydev) 2271 { 2272 int err, changed; 2273 2274 if (phydev->autoneg != AUTONEG_ENABLE) 2275 return genphy_setup_forced(phydev); 2276 2277 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2278 BMCR_SPEED1000); 2279 if (err) 2280 return err; 2281 2282 changed = genphy_c37_config_advert(phydev); 2283 if (changed < 0) /* error */ 2284 return changed; 2285 2286 if (!changed) { 2287 /* Advertisement hasn't changed, but maybe aneg was never on to 2288 * begin with? Or maybe phy was isolated? 2289 */ 2290 int ctl = phy_read(phydev, MII_BMCR); 2291 2292 if (ctl < 0) 2293 return ctl; 2294 2295 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2296 changed = 1; /* do restart aneg */ 2297 } 2298 2299 /* Only restart aneg if we are advertising something different 2300 * than we were before. 2301 */ 2302 if (changed > 0) 2303 return genphy_restart_aneg(phydev); 2304 2305 return 0; 2306 } 2307 EXPORT_SYMBOL(genphy_c37_config_aneg); 2308 2309 /** 2310 * genphy_aneg_done - return auto-negotiation status 2311 * @phydev: target phy_device struct 2312 * 2313 * Description: Reads the status register and returns 0 either if 2314 * auto-negotiation is incomplete, or if there was an error. 2315 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2316 */ 2317 int genphy_aneg_done(struct phy_device *phydev) 2318 { 2319 int retval = phy_read(phydev, MII_BMSR); 2320 2321 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2322 } 2323 EXPORT_SYMBOL(genphy_aneg_done); 2324 2325 /** 2326 * genphy_update_link - update link status in @phydev 2327 * @phydev: target phy_device struct 2328 * 2329 * Description: Update the value in phydev->link to reflect the 2330 * current link value. In order to do this, we need to read 2331 * the status register twice, keeping the second value. 2332 */ 2333 int genphy_update_link(struct phy_device *phydev) 2334 { 2335 int status = 0, bmcr; 2336 2337 bmcr = phy_read(phydev, MII_BMCR); 2338 if (bmcr < 0) 2339 return bmcr; 2340 2341 /* Autoneg is being started, therefore disregard BMSR value and 2342 * report link as down. 2343 */ 2344 if (bmcr & BMCR_ANRESTART) 2345 goto done; 2346 2347 /* The link state is latched low so that momentary link 2348 * drops can be detected. Do not double-read the status 2349 * in polling mode to detect such short link drops except 2350 * the link was already down. 2351 */ 2352 if (!phy_polling_mode(phydev) || !phydev->link) { 2353 status = phy_read(phydev, MII_BMSR); 2354 if (status < 0) 2355 return status; 2356 else if (status & BMSR_LSTATUS) 2357 goto done; 2358 } 2359 2360 /* Read link and autonegotiation status */ 2361 status = phy_read(phydev, MII_BMSR); 2362 if (status < 0) 2363 return status; 2364 done: 2365 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2366 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2367 2368 /* Consider the case that autoneg was started and "aneg complete" 2369 * bit has been reset, but "link up" bit not yet. 2370 */ 2371 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2372 phydev->link = 0; 2373 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(genphy_update_link); 2377 2378 int genphy_read_lpa(struct phy_device *phydev) 2379 { 2380 int lpa, lpagb; 2381 2382 if (phydev->autoneg == AUTONEG_ENABLE) { 2383 if (!phydev->autoneg_complete) { 2384 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2385 0); 2386 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2387 return 0; 2388 } 2389 2390 if (phydev->is_gigabit_capable) { 2391 lpagb = phy_read(phydev, MII_STAT1000); 2392 if (lpagb < 0) 2393 return lpagb; 2394 2395 if (lpagb & LPA_1000MSFAIL) { 2396 int adv = phy_read(phydev, MII_CTRL1000); 2397 2398 if (adv < 0) 2399 return adv; 2400 2401 if (adv & CTL1000_ENABLE_MASTER) 2402 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2403 else 2404 phydev_err(phydev, "Master/Slave resolution failed\n"); 2405 return -ENOLINK; 2406 } 2407 2408 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2409 lpagb); 2410 } 2411 2412 lpa = phy_read(phydev, MII_LPA); 2413 if (lpa < 0) 2414 return lpa; 2415 2416 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2417 } else { 2418 linkmode_zero(phydev->lp_advertising); 2419 } 2420 2421 return 0; 2422 } 2423 EXPORT_SYMBOL(genphy_read_lpa); 2424 2425 /** 2426 * genphy_read_status_fixed - read the link parameters for !aneg mode 2427 * @phydev: target phy_device struct 2428 * 2429 * Read the current duplex and speed state for a PHY operating with 2430 * autonegotiation disabled. 2431 */ 2432 int genphy_read_status_fixed(struct phy_device *phydev) 2433 { 2434 int bmcr = phy_read(phydev, MII_BMCR); 2435 2436 if (bmcr < 0) 2437 return bmcr; 2438 2439 if (bmcr & BMCR_FULLDPLX) 2440 phydev->duplex = DUPLEX_FULL; 2441 else 2442 phydev->duplex = DUPLEX_HALF; 2443 2444 if (bmcr & BMCR_SPEED1000) 2445 phydev->speed = SPEED_1000; 2446 else if (bmcr & BMCR_SPEED100) 2447 phydev->speed = SPEED_100; 2448 else 2449 phydev->speed = SPEED_10; 2450 2451 return 0; 2452 } 2453 EXPORT_SYMBOL(genphy_read_status_fixed); 2454 2455 /** 2456 * genphy_read_status - check the link status and update current link state 2457 * @phydev: target phy_device struct 2458 * 2459 * Description: Check the link, then figure out the current state 2460 * by comparing what we advertise with what the link partner 2461 * advertises. Start by checking the gigabit possibilities, 2462 * then move on to 10/100. 2463 */ 2464 int genphy_read_status(struct phy_device *phydev) 2465 { 2466 int err, old_link = phydev->link; 2467 2468 /* Update the link, but return if there was an error */ 2469 err = genphy_update_link(phydev); 2470 if (err) 2471 return err; 2472 2473 /* why bother the PHY if nothing can have changed */ 2474 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2475 return 0; 2476 2477 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2478 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2479 phydev->speed = SPEED_UNKNOWN; 2480 phydev->duplex = DUPLEX_UNKNOWN; 2481 phydev->pause = 0; 2482 phydev->asym_pause = 0; 2483 2484 if (phydev->is_gigabit_capable) { 2485 err = genphy_read_master_slave(phydev); 2486 if (err < 0) 2487 return err; 2488 } 2489 2490 err = genphy_read_lpa(phydev); 2491 if (err < 0) 2492 return err; 2493 2494 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2495 phy_resolve_aneg_linkmode(phydev); 2496 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2497 err = genphy_read_status_fixed(phydev); 2498 if (err < 0) 2499 return err; 2500 } 2501 2502 return 0; 2503 } 2504 EXPORT_SYMBOL(genphy_read_status); 2505 2506 /** 2507 * genphy_c37_read_status - check the link status and update current link state 2508 * @phydev: target phy_device struct 2509 * 2510 * Description: Check the link, then figure out the current state 2511 * by comparing what we advertise with what the link partner 2512 * advertises. This function is for Clause 37 1000Base-X mode. 2513 */ 2514 int genphy_c37_read_status(struct phy_device *phydev) 2515 { 2516 int lpa, err, old_link = phydev->link; 2517 2518 /* Update the link, but return if there was an error */ 2519 err = genphy_update_link(phydev); 2520 if (err) 2521 return err; 2522 2523 /* why bother the PHY if nothing can have changed */ 2524 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2525 return 0; 2526 2527 phydev->duplex = DUPLEX_UNKNOWN; 2528 phydev->pause = 0; 2529 phydev->asym_pause = 0; 2530 2531 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2532 lpa = phy_read(phydev, MII_LPA); 2533 if (lpa < 0) 2534 return lpa; 2535 2536 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2537 phydev->lp_advertising, lpa & LPA_LPACK); 2538 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2539 phydev->lp_advertising, lpa & LPA_1000XFULL); 2540 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2541 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2542 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2543 phydev->lp_advertising, 2544 lpa & LPA_1000XPAUSE_ASYM); 2545 2546 phy_resolve_aneg_linkmode(phydev); 2547 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2548 int bmcr = phy_read(phydev, MII_BMCR); 2549 2550 if (bmcr < 0) 2551 return bmcr; 2552 2553 if (bmcr & BMCR_FULLDPLX) 2554 phydev->duplex = DUPLEX_FULL; 2555 else 2556 phydev->duplex = DUPLEX_HALF; 2557 } 2558 2559 return 0; 2560 } 2561 EXPORT_SYMBOL(genphy_c37_read_status); 2562 2563 /** 2564 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2565 * @phydev: target phy_device struct 2566 * 2567 * Description: Perform a software PHY reset using the standard 2568 * BMCR_RESET bit and poll for the reset bit to be cleared. 2569 * 2570 * Returns: 0 on success, < 0 on failure 2571 */ 2572 int genphy_soft_reset(struct phy_device *phydev) 2573 { 2574 u16 res = BMCR_RESET; 2575 int ret; 2576 2577 if (phydev->autoneg == AUTONEG_ENABLE) 2578 res |= BMCR_ANRESTART; 2579 2580 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2581 if (ret < 0) 2582 return ret; 2583 2584 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2585 * to their default value. Therefore the POWER DOWN bit is supposed to 2586 * be cleared after soft reset. 2587 */ 2588 phydev->suspended = 0; 2589 2590 ret = phy_poll_reset(phydev); 2591 if (ret) 2592 return ret; 2593 2594 /* BMCR may be reset to defaults */ 2595 if (phydev->autoneg == AUTONEG_DISABLE) 2596 ret = genphy_setup_forced(phydev); 2597 2598 return ret; 2599 } 2600 EXPORT_SYMBOL(genphy_soft_reset); 2601 2602 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2603 { 2604 /* It seems there are cases where the interrupts are handled by another 2605 * entity (ie an IRQ controller embedded inside the PHY) and do not 2606 * need any other interraction from phylib. In this case, just trigger 2607 * the state machine directly. 2608 */ 2609 phy_trigger_machine(phydev); 2610 2611 return 0; 2612 } 2613 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2614 2615 /** 2616 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2617 * @phydev: target phy_device struct 2618 * 2619 * Description: Reads the PHY's abilities and populates 2620 * phydev->supported accordingly. 2621 * 2622 * Returns: 0 on success, < 0 on failure 2623 */ 2624 int genphy_read_abilities(struct phy_device *phydev) 2625 { 2626 int val; 2627 2628 linkmode_set_bit_array(phy_basic_ports_array, 2629 ARRAY_SIZE(phy_basic_ports_array), 2630 phydev->supported); 2631 2632 val = phy_read(phydev, MII_BMSR); 2633 if (val < 0) 2634 return val; 2635 2636 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2637 val & BMSR_ANEGCAPABLE); 2638 2639 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2640 val & BMSR_100FULL); 2641 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2642 val & BMSR_100HALF); 2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2644 val & BMSR_10FULL); 2645 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2646 val & BMSR_10HALF); 2647 2648 if (val & BMSR_ESTATEN) { 2649 val = phy_read(phydev, MII_ESTATUS); 2650 if (val < 0) 2651 return val; 2652 2653 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2654 phydev->supported, val & ESTATUS_1000_TFULL); 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2656 phydev->supported, val & ESTATUS_1000_THALF); 2657 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2658 phydev->supported, val & ESTATUS_1000_XFULL); 2659 } 2660 2661 /* This is optional functionality. If not supported, we may get an error 2662 * which should be ignored. 2663 */ 2664 genphy_c45_read_eee_abilities(phydev); 2665 2666 return 0; 2667 } 2668 EXPORT_SYMBOL(genphy_read_abilities); 2669 2670 /* This is used for the phy device which doesn't support the MMD extended 2671 * register access, but it does have side effect when we are trying to access 2672 * the MMD register via indirect method. 2673 */ 2674 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2675 { 2676 return -EOPNOTSUPP; 2677 } 2678 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2679 2680 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2681 u16 regnum, u16 val) 2682 { 2683 return -EOPNOTSUPP; 2684 } 2685 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2686 2687 int genphy_suspend(struct phy_device *phydev) 2688 { 2689 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2690 } 2691 EXPORT_SYMBOL(genphy_suspend); 2692 2693 int genphy_resume(struct phy_device *phydev) 2694 { 2695 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2696 } 2697 EXPORT_SYMBOL(genphy_resume); 2698 2699 int genphy_loopback(struct phy_device *phydev, bool enable) 2700 { 2701 if (enable) { 2702 u16 val, ctl = BMCR_LOOPBACK; 2703 int ret; 2704 2705 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2706 2707 phy_modify(phydev, MII_BMCR, ~0, ctl); 2708 2709 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2710 val & BMSR_LSTATUS, 2711 5000, 500000, true); 2712 if (ret) 2713 return ret; 2714 } else { 2715 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2716 2717 phy_config_aneg(phydev); 2718 } 2719 2720 return 0; 2721 } 2722 EXPORT_SYMBOL(genphy_loopback); 2723 2724 /** 2725 * phy_remove_link_mode - Remove a supported link mode 2726 * @phydev: phy_device structure to remove link mode from 2727 * @link_mode: Link mode to be removed 2728 * 2729 * Description: Some MACs don't support all link modes which the PHY 2730 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2731 * to remove a link mode. 2732 */ 2733 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2734 { 2735 linkmode_clear_bit(link_mode, phydev->supported); 2736 phy_advertise_supported(phydev); 2737 } 2738 EXPORT_SYMBOL(phy_remove_link_mode); 2739 2740 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2741 { 2742 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2743 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2744 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2745 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2746 } 2747 2748 /** 2749 * phy_advertise_supported - Advertise all supported modes 2750 * @phydev: target phy_device struct 2751 * 2752 * Description: Called to advertise all supported modes, doesn't touch 2753 * pause mode advertising. 2754 */ 2755 void phy_advertise_supported(struct phy_device *phydev) 2756 { 2757 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2758 2759 linkmode_copy(new, phydev->supported); 2760 phy_copy_pause_bits(new, phydev->advertising); 2761 linkmode_copy(phydev->advertising, new); 2762 } 2763 EXPORT_SYMBOL(phy_advertise_supported); 2764 2765 /** 2766 * phy_support_sym_pause - Enable support of symmetrical pause 2767 * @phydev: target phy_device struct 2768 * 2769 * Description: Called by the MAC to indicate is supports symmetrical 2770 * Pause, but not asym pause. 2771 */ 2772 void phy_support_sym_pause(struct phy_device *phydev) 2773 { 2774 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2775 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2776 } 2777 EXPORT_SYMBOL(phy_support_sym_pause); 2778 2779 /** 2780 * phy_support_asym_pause - Enable support of asym pause 2781 * @phydev: target phy_device struct 2782 * 2783 * Description: Called by the MAC to indicate is supports Asym Pause. 2784 */ 2785 void phy_support_asym_pause(struct phy_device *phydev) 2786 { 2787 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2788 } 2789 EXPORT_SYMBOL(phy_support_asym_pause); 2790 2791 /** 2792 * phy_set_sym_pause - Configure symmetric Pause 2793 * @phydev: target phy_device struct 2794 * @rx: Receiver Pause is supported 2795 * @tx: Transmit Pause is supported 2796 * @autoneg: Auto neg should be used 2797 * 2798 * Description: Configure advertised Pause support depending on if 2799 * receiver pause and pause auto neg is supported. Generally called 2800 * from the set_pauseparam .ndo. 2801 */ 2802 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2803 bool autoneg) 2804 { 2805 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2806 2807 if (rx && tx && autoneg) 2808 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2809 phydev->supported); 2810 2811 linkmode_copy(phydev->advertising, phydev->supported); 2812 } 2813 EXPORT_SYMBOL(phy_set_sym_pause); 2814 2815 /** 2816 * phy_set_asym_pause - Configure Pause and Asym Pause 2817 * @phydev: target phy_device struct 2818 * @rx: Receiver Pause is supported 2819 * @tx: Transmit Pause is supported 2820 * 2821 * Description: Configure advertised Pause support depending on if 2822 * transmit and receiver pause is supported. If there has been a 2823 * change in adverting, trigger a new autoneg. Generally called from 2824 * the set_pauseparam .ndo. 2825 */ 2826 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2827 { 2828 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2829 2830 linkmode_copy(oldadv, phydev->advertising); 2831 linkmode_set_pause(phydev->advertising, tx, rx); 2832 2833 if (!linkmode_equal(oldadv, phydev->advertising) && 2834 phydev->autoneg) 2835 phy_start_aneg(phydev); 2836 } 2837 EXPORT_SYMBOL(phy_set_asym_pause); 2838 2839 /** 2840 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2841 * @phydev: phy_device struct 2842 * @pp: requested pause configuration 2843 * 2844 * Description: Test if the PHY/MAC combination supports the Pause 2845 * configuration the user is requesting. Returns True if it is 2846 * supported, false otherwise. 2847 */ 2848 bool phy_validate_pause(struct phy_device *phydev, 2849 struct ethtool_pauseparam *pp) 2850 { 2851 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2852 phydev->supported) && pp->rx_pause) 2853 return false; 2854 2855 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2856 phydev->supported) && 2857 pp->rx_pause != pp->tx_pause) 2858 return false; 2859 2860 return true; 2861 } 2862 EXPORT_SYMBOL(phy_validate_pause); 2863 2864 /** 2865 * phy_get_pause - resolve negotiated pause modes 2866 * @phydev: phy_device struct 2867 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2868 * enabled. 2869 * @rx_pause: pointer to bool to indicate whether receive pause should be 2870 * enabled. 2871 * 2872 * Resolve and return the flow control modes according to the negotiation 2873 * result. This includes checking that we are operating in full duplex mode. 2874 * See linkmode_resolve_pause() for further details. 2875 */ 2876 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2877 { 2878 if (phydev->duplex != DUPLEX_FULL) { 2879 *tx_pause = false; 2880 *rx_pause = false; 2881 return; 2882 } 2883 2884 return linkmode_resolve_pause(phydev->advertising, 2885 phydev->lp_advertising, 2886 tx_pause, rx_pause); 2887 } 2888 EXPORT_SYMBOL(phy_get_pause); 2889 2890 #if IS_ENABLED(CONFIG_OF_MDIO) 2891 static int phy_get_int_delay_property(struct device *dev, const char *name) 2892 { 2893 s32 int_delay; 2894 int ret; 2895 2896 ret = device_property_read_u32(dev, name, &int_delay); 2897 if (ret) 2898 return ret; 2899 2900 return int_delay; 2901 } 2902 #else 2903 static int phy_get_int_delay_property(struct device *dev, const char *name) 2904 { 2905 return -EINVAL; 2906 } 2907 #endif 2908 2909 /** 2910 * phy_get_internal_delay - returns the index of the internal delay 2911 * @phydev: phy_device struct 2912 * @dev: pointer to the devices device struct 2913 * @delay_values: array of delays the PHY supports 2914 * @size: the size of the delay array 2915 * @is_rx: boolean to indicate to get the rx internal delay 2916 * 2917 * Returns the index within the array of internal delay passed in. 2918 * If the device property is not present then the interface type is checked 2919 * if the interface defines use of internal delay then a 1 is returned otherwise 2920 * a 0 is returned. 2921 * The array must be in ascending order. If PHY does not have an ascending order 2922 * array then size = 0 and the value of the delay property is returned. 2923 * Return -EINVAL if the delay is invalid or cannot be found. 2924 */ 2925 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2926 const int *delay_values, int size, bool is_rx) 2927 { 2928 s32 delay; 2929 int i; 2930 2931 if (is_rx) { 2932 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2933 if (delay < 0 && size == 0) { 2934 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2935 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2936 return 1; 2937 else 2938 return 0; 2939 } 2940 2941 } else { 2942 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2943 if (delay < 0 && size == 0) { 2944 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2945 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2946 return 1; 2947 else 2948 return 0; 2949 } 2950 } 2951 2952 if (delay < 0) 2953 return delay; 2954 2955 if (delay && size == 0) 2956 return delay; 2957 2958 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2959 phydev_err(phydev, "Delay %d is out of range\n", delay); 2960 return -EINVAL; 2961 } 2962 2963 if (delay == delay_values[0]) 2964 return 0; 2965 2966 for (i = 1; i < size; i++) { 2967 if (delay == delay_values[i]) 2968 return i; 2969 2970 /* Find an approximate index by looking up the table */ 2971 if (delay > delay_values[i - 1] && 2972 delay < delay_values[i]) { 2973 if (delay - delay_values[i - 1] < 2974 delay_values[i] - delay) 2975 return i - 1; 2976 else 2977 return i; 2978 } 2979 } 2980 2981 phydev_err(phydev, "error finding internal delay index for %d\n", 2982 delay); 2983 2984 return -EINVAL; 2985 } 2986 EXPORT_SYMBOL(phy_get_internal_delay); 2987 2988 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2989 { 2990 return phydrv->config_intr && phydrv->handle_interrupt; 2991 } 2992 2993 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2994 enum led_brightness value) 2995 { 2996 struct phy_led *phyled = to_phy_led(led_cdev); 2997 struct phy_device *phydev = phyled->phydev; 2998 int err; 2999 3000 mutex_lock(&phydev->lock); 3001 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3002 mutex_unlock(&phydev->lock); 3003 3004 return err; 3005 } 3006 3007 static int phy_led_blink_set(struct led_classdev *led_cdev, 3008 unsigned long *delay_on, 3009 unsigned long *delay_off) 3010 { 3011 struct phy_led *phyled = to_phy_led(led_cdev); 3012 struct phy_device *phydev = phyled->phydev; 3013 int err; 3014 3015 mutex_lock(&phydev->lock); 3016 err = phydev->drv->led_blink_set(phydev, phyled->index, 3017 delay_on, delay_off); 3018 mutex_unlock(&phydev->lock); 3019 3020 return err; 3021 } 3022 3023 static void phy_leds_unregister(struct phy_device *phydev) 3024 { 3025 struct phy_led *phyled; 3026 3027 list_for_each_entry(phyled, &phydev->leds, list) { 3028 led_classdev_unregister(&phyled->led_cdev); 3029 } 3030 } 3031 3032 static int of_phy_led(struct phy_device *phydev, 3033 struct device_node *led) 3034 { 3035 struct device *dev = &phydev->mdio.dev; 3036 struct led_init_data init_data = {}; 3037 struct led_classdev *cdev; 3038 struct phy_led *phyled; 3039 u32 index; 3040 int err; 3041 3042 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3043 if (!phyled) 3044 return -ENOMEM; 3045 3046 cdev = &phyled->led_cdev; 3047 phyled->phydev = phydev; 3048 3049 err = of_property_read_u32(led, "reg", &index); 3050 if (err) 3051 return err; 3052 if (index > U8_MAX) 3053 return -EINVAL; 3054 3055 phyled->index = index; 3056 if (phydev->drv->led_brightness_set) 3057 cdev->brightness_set_blocking = phy_led_set_brightness; 3058 if (phydev->drv->led_blink_set) 3059 cdev->blink_set = phy_led_blink_set; 3060 cdev->max_brightness = 1; 3061 init_data.devicename = dev_name(&phydev->mdio.dev); 3062 init_data.fwnode = of_fwnode_handle(led); 3063 init_data.devname_mandatory = true; 3064 3065 err = led_classdev_register_ext(dev, cdev, &init_data); 3066 if (err) 3067 return err; 3068 3069 list_add(&phyled->list, &phydev->leds); 3070 3071 return 0; 3072 } 3073 3074 static int of_phy_leds(struct phy_device *phydev) 3075 { 3076 struct device_node *node = phydev->mdio.dev.of_node; 3077 struct device_node *leds, *led; 3078 int err; 3079 3080 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3081 return 0; 3082 3083 if (!node) 3084 return 0; 3085 3086 leds = of_get_child_by_name(node, "leds"); 3087 if (!leds) 3088 return 0; 3089 3090 for_each_available_child_of_node(leds, led) { 3091 err = of_phy_led(phydev, led); 3092 if (err) { 3093 of_node_put(led); 3094 phy_leds_unregister(phydev); 3095 return err; 3096 } 3097 } 3098 3099 return 0; 3100 } 3101 3102 /** 3103 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3104 * @fwnode: pointer to the mdio_device's fwnode 3105 * 3106 * If successful, returns a pointer to the mdio_device with the embedded 3107 * struct device refcount incremented by one, or NULL on failure. 3108 * The caller should call put_device() on the mdio_device after its use. 3109 */ 3110 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3111 { 3112 struct device *d; 3113 3114 if (!fwnode) 3115 return NULL; 3116 3117 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3118 if (!d) 3119 return NULL; 3120 3121 return to_mdio_device(d); 3122 } 3123 EXPORT_SYMBOL(fwnode_mdio_find_device); 3124 3125 /** 3126 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3127 * 3128 * @phy_fwnode: Pointer to the phy's fwnode. 3129 * 3130 * If successful, returns a pointer to the phy_device with the embedded 3131 * struct device refcount incremented by one, or NULL on failure. 3132 */ 3133 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3134 { 3135 struct mdio_device *mdiodev; 3136 3137 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3138 if (!mdiodev) 3139 return NULL; 3140 3141 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3142 return to_phy_device(&mdiodev->dev); 3143 3144 put_device(&mdiodev->dev); 3145 3146 return NULL; 3147 } 3148 EXPORT_SYMBOL(fwnode_phy_find_device); 3149 3150 /** 3151 * device_phy_find_device - For the given device, get the phy_device 3152 * @dev: Pointer to the given device 3153 * 3154 * Refer return conditions of fwnode_phy_find_device(). 3155 */ 3156 struct phy_device *device_phy_find_device(struct device *dev) 3157 { 3158 return fwnode_phy_find_device(dev_fwnode(dev)); 3159 } 3160 EXPORT_SYMBOL_GPL(device_phy_find_device); 3161 3162 /** 3163 * fwnode_get_phy_node - Get the phy_node using the named reference. 3164 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3165 * 3166 * Refer return conditions of fwnode_find_reference(). 3167 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3168 * and "phy-device" are not supported in ACPI. DT supports all the three 3169 * named references to the phy node. 3170 */ 3171 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3172 { 3173 struct fwnode_handle *phy_node; 3174 3175 /* Only phy-handle is used for ACPI */ 3176 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3177 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3178 return phy_node; 3179 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3180 if (IS_ERR(phy_node)) 3181 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3182 return phy_node; 3183 } 3184 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3185 3186 /** 3187 * phy_probe - probe and init a PHY device 3188 * @dev: device to probe and init 3189 * 3190 * Take care of setting up the phy_device structure, set the state to READY. 3191 */ 3192 static int phy_probe(struct device *dev) 3193 { 3194 struct phy_device *phydev = to_phy_device(dev); 3195 struct device_driver *drv = phydev->mdio.dev.driver; 3196 struct phy_driver *phydrv = to_phy_driver(drv); 3197 int err = 0; 3198 3199 phydev->drv = phydrv; 3200 3201 /* Disable the interrupt if the PHY doesn't support it 3202 * but the interrupt is still a valid one 3203 */ 3204 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3205 phydev->irq = PHY_POLL; 3206 3207 if (phydrv->flags & PHY_IS_INTERNAL) 3208 phydev->is_internal = true; 3209 3210 /* Deassert the reset signal */ 3211 phy_device_reset(phydev, 0); 3212 3213 if (phydev->drv->probe) { 3214 err = phydev->drv->probe(phydev); 3215 if (err) 3216 goto out; 3217 } 3218 3219 /* Start out supporting everything. Eventually, 3220 * a controller will attach, and may modify one 3221 * or both of these values 3222 */ 3223 if (phydrv->features) { 3224 linkmode_copy(phydev->supported, phydrv->features); 3225 genphy_c45_read_eee_abilities(phydev); 3226 } 3227 else if (phydrv->get_features) 3228 err = phydrv->get_features(phydev); 3229 else if (phydev->is_c45) 3230 err = genphy_c45_pma_read_abilities(phydev); 3231 else 3232 err = genphy_read_abilities(phydev); 3233 3234 if (err) 3235 goto out; 3236 3237 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3238 phydev->supported)) 3239 phydev->autoneg = 0; 3240 3241 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3242 phydev->supported)) 3243 phydev->is_gigabit_capable = 1; 3244 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3245 phydev->supported)) 3246 phydev->is_gigabit_capable = 1; 3247 3248 of_set_phy_supported(phydev); 3249 phy_advertise_supported(phydev); 3250 3251 /* Get PHY default EEE advertising modes and handle them as potentially 3252 * safe initial configuration. 3253 */ 3254 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3255 if (err) 3256 goto out; 3257 3258 /* There is no "enabled" flag. If PHY is advertising, assume it is 3259 * kind of enabled. 3260 */ 3261 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3262 3263 /* Some PHYs may advertise, by default, not support EEE modes. So, 3264 * we need to clean them. 3265 */ 3266 if (phydev->eee_enabled) 3267 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3268 phydev->advertising_eee); 3269 3270 /* Get the EEE modes we want to prohibit. We will ask 3271 * the PHY stop advertising these mode later on 3272 */ 3273 of_set_phy_eee_broken(phydev); 3274 3275 /* The Pause Frame bits indicate that the PHY can support passing 3276 * pause frames. During autonegotiation, the PHYs will determine if 3277 * they should allow pause frames to pass. The MAC driver should then 3278 * use that result to determine whether to enable flow control via 3279 * pause frames. 3280 * 3281 * Normally, PHY drivers should not set the Pause bits, and instead 3282 * allow phylib to do that. However, there may be some situations 3283 * (e.g. hardware erratum) where the driver wants to set only one 3284 * of these bits. 3285 */ 3286 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3287 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3288 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3289 phydev->supported); 3290 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3291 phydev->supported); 3292 } 3293 3294 /* Set the state to READY by default */ 3295 phydev->state = PHY_READY; 3296 3297 /* Get the LEDs from the device tree, and instantiate standard 3298 * LEDs for them. 3299 */ 3300 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3301 err = of_phy_leds(phydev); 3302 3303 out: 3304 /* Re-assert the reset signal on error */ 3305 if (err) 3306 phy_device_reset(phydev, 1); 3307 3308 return err; 3309 } 3310 3311 static int phy_remove(struct device *dev) 3312 { 3313 struct phy_device *phydev = to_phy_device(dev); 3314 3315 cancel_delayed_work_sync(&phydev->state_queue); 3316 3317 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3318 phy_leds_unregister(phydev); 3319 3320 phydev->state = PHY_DOWN; 3321 3322 sfp_bus_del_upstream(phydev->sfp_bus); 3323 phydev->sfp_bus = NULL; 3324 3325 if (phydev->drv && phydev->drv->remove) 3326 phydev->drv->remove(phydev); 3327 3328 /* Assert the reset signal */ 3329 phy_device_reset(phydev, 1); 3330 3331 phydev->drv = NULL; 3332 3333 return 0; 3334 } 3335 3336 static void phy_shutdown(struct device *dev) 3337 { 3338 struct phy_device *phydev = to_phy_device(dev); 3339 3340 if (phydev->state == PHY_READY || !phydev->attached_dev) 3341 return; 3342 3343 phy_disable_interrupts(phydev); 3344 } 3345 3346 /** 3347 * phy_driver_register - register a phy_driver with the PHY layer 3348 * @new_driver: new phy_driver to register 3349 * @owner: module owning this PHY 3350 */ 3351 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3352 { 3353 int retval; 3354 3355 /* Either the features are hard coded, or dynamically 3356 * determined. It cannot be both. 3357 */ 3358 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3359 pr_err("%s: features and get_features must not both be set\n", 3360 new_driver->name); 3361 return -EINVAL; 3362 } 3363 3364 /* PHYLIB device drivers must not match using a DT compatible table 3365 * as this bypasses our checks that the mdiodev that is being matched 3366 * is backed by a struct phy_device. If such a case happens, we will 3367 * make out-of-bounds accesses and lockup in phydev->lock. 3368 */ 3369 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3370 "%s: driver must not provide a DT match table\n", 3371 new_driver->name)) 3372 return -EINVAL; 3373 3374 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3375 new_driver->mdiodrv.driver.name = new_driver->name; 3376 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3377 new_driver->mdiodrv.driver.probe = phy_probe; 3378 new_driver->mdiodrv.driver.remove = phy_remove; 3379 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3380 new_driver->mdiodrv.driver.owner = owner; 3381 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3382 3383 retval = driver_register(&new_driver->mdiodrv.driver); 3384 if (retval) { 3385 pr_err("%s: Error %d in registering driver\n", 3386 new_driver->name, retval); 3387 3388 return retval; 3389 } 3390 3391 pr_debug("%s: Registered new driver\n", new_driver->name); 3392 3393 return 0; 3394 } 3395 EXPORT_SYMBOL(phy_driver_register); 3396 3397 int phy_drivers_register(struct phy_driver *new_driver, int n, 3398 struct module *owner) 3399 { 3400 int i, ret = 0; 3401 3402 for (i = 0; i < n; i++) { 3403 ret = phy_driver_register(new_driver + i, owner); 3404 if (ret) { 3405 while (i-- > 0) 3406 phy_driver_unregister(new_driver + i); 3407 break; 3408 } 3409 } 3410 return ret; 3411 } 3412 EXPORT_SYMBOL(phy_drivers_register); 3413 3414 void phy_driver_unregister(struct phy_driver *drv) 3415 { 3416 driver_unregister(&drv->mdiodrv.driver); 3417 } 3418 EXPORT_SYMBOL(phy_driver_unregister); 3419 3420 void phy_drivers_unregister(struct phy_driver *drv, int n) 3421 { 3422 int i; 3423 3424 for (i = 0; i < n; i++) 3425 phy_driver_unregister(drv + i); 3426 } 3427 EXPORT_SYMBOL(phy_drivers_unregister); 3428 3429 static struct phy_driver genphy_driver = { 3430 .phy_id = 0xffffffff, 3431 .phy_id_mask = 0xffffffff, 3432 .name = "Generic PHY", 3433 .get_features = genphy_read_abilities, 3434 .suspend = genphy_suspend, 3435 .resume = genphy_resume, 3436 .set_loopback = genphy_loopback, 3437 }; 3438 3439 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3440 .get_sset_count = phy_ethtool_get_sset_count, 3441 .get_strings = phy_ethtool_get_strings, 3442 .get_stats = phy_ethtool_get_stats, 3443 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3444 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3445 .get_plca_status = phy_ethtool_get_plca_status, 3446 .start_cable_test = phy_start_cable_test, 3447 .start_cable_test_tdr = phy_start_cable_test_tdr, 3448 }; 3449 3450 static int __init phy_init(void) 3451 { 3452 int rc; 3453 3454 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3455 3456 rc = mdio_bus_init(); 3457 if (rc) 3458 goto err_ethtool_phy_ops; 3459 3460 features_init(); 3461 3462 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3463 if (rc) 3464 goto err_mdio_bus; 3465 3466 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3467 if (rc) 3468 goto err_c45; 3469 3470 return 0; 3471 3472 err_c45: 3473 phy_driver_unregister(&genphy_c45_driver); 3474 err_mdio_bus: 3475 mdio_bus_exit(); 3476 err_ethtool_phy_ops: 3477 ethtool_set_ethtool_phy_ops(NULL); 3478 3479 return rc; 3480 } 3481 3482 static void __exit phy_exit(void) 3483 { 3484 phy_driver_unregister(&genphy_c45_driver); 3485 phy_driver_unregister(&genphy_driver); 3486 mdio_bus_exit(); 3487 ethtool_set_ethtool_phy_ops(NULL); 3488 } 3489 3490 subsys_initcall(phy_init); 3491 module_exit(phy_exit); 3492