1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/bitmap.h> 13 #include <linux/delay.h> 14 #include <linux/errno.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/mdio.h> 22 #include <linux/mii.h> 23 #include <linux/mm.h> 24 #include <linux/module.h> 25 #include <linux/netdevice.h> 26 #include <linux/phy.h> 27 #include <linux/phy_led_triggers.h> 28 #include <linux/property.h> 29 #include <linux/sfp.h> 30 #include <linux/skbuff.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/uaccess.h> 34 #include <linux/unistd.h> 35 36 MODULE_DESCRIPTION("PHY library"); 37 MODULE_AUTHOR("Andy Fleming"); 38 MODULE_LICENSE("GPL"); 39 40 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 41 EXPORT_SYMBOL_GPL(phy_basic_features); 42 43 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 44 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_gbit_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_10gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 60 61 const int phy_basic_ports_array[3] = { 62 ETHTOOL_LINK_MODE_Autoneg_BIT, 63 ETHTOOL_LINK_MODE_TP_BIT, 64 ETHTOOL_LINK_MODE_MII_BIT, 65 }; 66 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 67 68 const int phy_fibre_port_array[1] = { 69 ETHTOOL_LINK_MODE_FIBRE_BIT, 70 }; 71 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 72 73 const int phy_all_ports_features_array[7] = { 74 ETHTOOL_LINK_MODE_Autoneg_BIT, 75 ETHTOOL_LINK_MODE_TP_BIT, 76 ETHTOOL_LINK_MODE_MII_BIT, 77 ETHTOOL_LINK_MODE_FIBRE_BIT, 78 ETHTOOL_LINK_MODE_AUI_BIT, 79 ETHTOOL_LINK_MODE_BNC_BIT, 80 ETHTOOL_LINK_MODE_Backplane_BIT, 81 }; 82 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 83 84 const int phy_10_100_features_array[4] = { 85 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 86 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 87 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 89 }; 90 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 91 92 const int phy_basic_t1_features_array[2] = { 93 ETHTOOL_LINK_MODE_TP_BIT, 94 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 95 }; 96 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 97 98 const int phy_gbit_features_array[2] = { 99 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 100 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 101 }; 102 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 103 104 const int phy_10gbit_features_array[1] = { 105 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 106 }; 107 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 108 109 static const int phy_10gbit_fec_features_array[1] = { 110 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 111 }; 112 113 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 114 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 115 116 static const int phy_10gbit_full_features_array[] = { 117 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 118 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 119 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 121 }; 122 123 static void features_init(void) 124 { 125 /* 10/100 half/full*/ 126 linkmode_set_bit_array(phy_basic_ports_array, 127 ARRAY_SIZE(phy_basic_ports_array), 128 phy_basic_features); 129 linkmode_set_bit_array(phy_10_100_features_array, 130 ARRAY_SIZE(phy_10_100_features_array), 131 phy_basic_features); 132 133 /* 100 full, TP */ 134 linkmode_set_bit_array(phy_basic_t1_features_array, 135 ARRAY_SIZE(phy_basic_t1_features_array), 136 phy_basic_t1_features); 137 138 /* 10/100 half/full + 1000 half/full */ 139 linkmode_set_bit_array(phy_basic_ports_array, 140 ARRAY_SIZE(phy_basic_ports_array), 141 phy_gbit_features); 142 linkmode_set_bit_array(phy_10_100_features_array, 143 ARRAY_SIZE(phy_10_100_features_array), 144 phy_gbit_features); 145 linkmode_set_bit_array(phy_gbit_features_array, 146 ARRAY_SIZE(phy_gbit_features_array), 147 phy_gbit_features); 148 149 /* 10/100 half/full + 1000 half/full + fibre*/ 150 linkmode_set_bit_array(phy_basic_ports_array, 151 ARRAY_SIZE(phy_basic_ports_array), 152 phy_gbit_fibre_features); 153 linkmode_set_bit_array(phy_10_100_features_array, 154 ARRAY_SIZE(phy_10_100_features_array), 155 phy_gbit_fibre_features); 156 linkmode_set_bit_array(phy_gbit_features_array, 157 ARRAY_SIZE(phy_gbit_features_array), 158 phy_gbit_fibre_features); 159 linkmode_set_bit_array(phy_fibre_port_array, 160 ARRAY_SIZE(phy_fibre_port_array), 161 phy_gbit_fibre_features); 162 163 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 164 linkmode_set_bit_array(phy_all_ports_features_array, 165 ARRAY_SIZE(phy_all_ports_features_array), 166 phy_gbit_all_ports_features); 167 linkmode_set_bit_array(phy_10_100_features_array, 168 ARRAY_SIZE(phy_10_100_features_array), 169 phy_gbit_all_ports_features); 170 linkmode_set_bit_array(phy_gbit_features_array, 171 ARRAY_SIZE(phy_gbit_features_array), 172 phy_gbit_all_ports_features); 173 174 /* 10/100 half/full + 1000 half/full + 10G full*/ 175 linkmode_set_bit_array(phy_all_ports_features_array, 176 ARRAY_SIZE(phy_all_ports_features_array), 177 phy_10gbit_features); 178 linkmode_set_bit_array(phy_10_100_features_array, 179 ARRAY_SIZE(phy_10_100_features_array), 180 phy_10gbit_features); 181 linkmode_set_bit_array(phy_gbit_features_array, 182 ARRAY_SIZE(phy_gbit_features_array), 183 phy_10gbit_features); 184 linkmode_set_bit_array(phy_10gbit_features_array, 185 ARRAY_SIZE(phy_10gbit_features_array), 186 phy_10gbit_features); 187 188 /* 10/100/1000/10G full */ 189 linkmode_set_bit_array(phy_all_ports_features_array, 190 ARRAY_SIZE(phy_all_ports_features_array), 191 phy_10gbit_full_features); 192 linkmode_set_bit_array(phy_10gbit_full_features_array, 193 ARRAY_SIZE(phy_10gbit_full_features_array), 194 phy_10gbit_full_features); 195 /* 10G FEC only */ 196 linkmode_set_bit_array(phy_10gbit_fec_features_array, 197 ARRAY_SIZE(phy_10gbit_fec_features_array), 198 phy_10gbit_fec_features); 199 } 200 201 void phy_device_free(struct phy_device *phydev) 202 { 203 put_device(&phydev->mdio.dev); 204 } 205 EXPORT_SYMBOL(phy_device_free); 206 207 static void phy_mdio_device_free(struct mdio_device *mdiodev) 208 { 209 struct phy_device *phydev; 210 211 phydev = container_of(mdiodev, struct phy_device, mdio); 212 phy_device_free(phydev); 213 } 214 215 static void phy_device_release(struct device *dev) 216 { 217 kfree(to_phy_device(dev)); 218 } 219 220 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 221 { 222 struct phy_device *phydev; 223 224 phydev = container_of(mdiodev, struct phy_device, mdio); 225 phy_device_remove(phydev); 226 } 227 228 static struct phy_driver genphy_driver; 229 230 static LIST_HEAD(phy_fixup_list); 231 static DEFINE_MUTEX(phy_fixup_lock); 232 233 #ifdef CONFIG_PM 234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 235 { 236 struct device_driver *drv = phydev->mdio.dev.driver; 237 struct phy_driver *phydrv = to_phy_driver(drv); 238 struct net_device *netdev = phydev->attached_dev; 239 240 if (!drv || !phydrv->suspend) 241 return false; 242 243 /* PHY not attached? May suspend if the PHY has not already been 244 * suspended as part of a prior call to phy_disconnect() -> 245 * phy_detach() -> phy_suspend() because the parent netdev might be the 246 * MDIO bus driver and clock gated at this point. 247 */ 248 if (!netdev) 249 goto out; 250 251 if (netdev->wol_enabled) 252 return false; 253 254 /* As long as not all affected network drivers support the 255 * wol_enabled flag, let's check for hints that WoL is enabled. 256 * Don't suspend PHY if the attached netdev parent may wake up. 257 * The parent may point to a PCI device, as in tg3 driver. 258 */ 259 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 260 return false; 261 262 /* Also don't suspend PHY if the netdev itself may wakeup. This 263 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 264 * e.g. SoC devices. 265 */ 266 if (device_may_wakeup(&netdev->dev)) 267 return false; 268 269 out: 270 return !phydev->suspended; 271 } 272 273 static int mdio_bus_phy_suspend(struct device *dev) 274 { 275 struct phy_device *phydev = to_phy_device(dev); 276 277 /* We must stop the state machine manually, otherwise it stops out of 278 * control, possibly with the phydev->lock held. Upon resume, netdev 279 * may call phy routines that try to grab the same lock, and that may 280 * lead to a deadlock. 281 */ 282 if (phydev->attached_dev && phydev->adjust_link) 283 phy_stop_machine(phydev); 284 285 if (!mdio_bus_phy_may_suspend(phydev)) 286 return 0; 287 288 phydev->suspended_by_mdio_bus = 1; 289 290 return phy_suspend(phydev); 291 } 292 293 static int mdio_bus_phy_resume(struct device *dev) 294 { 295 struct phy_device *phydev = to_phy_device(dev); 296 int ret; 297 298 if (!phydev->suspended_by_mdio_bus) 299 goto no_resume; 300 301 phydev->suspended_by_mdio_bus = 0; 302 303 ret = phy_resume(phydev); 304 if (ret < 0) 305 return ret; 306 307 no_resume: 308 if (phydev->attached_dev && phydev->adjust_link) 309 phy_start_machine(phydev); 310 311 return 0; 312 } 313 314 static int mdio_bus_phy_restore(struct device *dev) 315 { 316 struct phy_device *phydev = to_phy_device(dev); 317 struct net_device *netdev = phydev->attached_dev; 318 int ret; 319 320 if (!netdev) 321 return 0; 322 323 ret = phy_init_hw(phydev); 324 if (ret < 0) 325 return ret; 326 327 if (phydev->attached_dev && phydev->adjust_link) 328 phy_start_machine(phydev); 329 330 return 0; 331 } 332 333 static const struct dev_pm_ops mdio_bus_phy_pm_ops = { 334 .suspend = mdio_bus_phy_suspend, 335 .resume = mdio_bus_phy_resume, 336 .freeze = mdio_bus_phy_suspend, 337 .thaw = mdio_bus_phy_resume, 338 .restore = mdio_bus_phy_restore, 339 }; 340 341 #define MDIO_BUS_PHY_PM_OPS (&mdio_bus_phy_pm_ops) 342 343 #else 344 345 #define MDIO_BUS_PHY_PM_OPS NULL 346 347 #endif /* CONFIG_PM */ 348 349 /** 350 * phy_register_fixup - creates a new phy_fixup and adds it to the list 351 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 352 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 353 * It can also be PHY_ANY_UID 354 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 355 * comparison 356 * @run: The actual code to be run when a matching PHY is found 357 */ 358 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 359 int (*run)(struct phy_device *)) 360 { 361 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 362 363 if (!fixup) 364 return -ENOMEM; 365 366 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 367 fixup->phy_uid = phy_uid; 368 fixup->phy_uid_mask = phy_uid_mask; 369 fixup->run = run; 370 371 mutex_lock(&phy_fixup_lock); 372 list_add_tail(&fixup->list, &phy_fixup_list); 373 mutex_unlock(&phy_fixup_lock); 374 375 return 0; 376 } 377 EXPORT_SYMBOL(phy_register_fixup); 378 379 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 380 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 381 int (*run)(struct phy_device *)) 382 { 383 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 384 } 385 EXPORT_SYMBOL(phy_register_fixup_for_uid); 386 387 /* Registers a fixup to be run on the PHY with id string bus_id */ 388 int phy_register_fixup_for_id(const char *bus_id, 389 int (*run)(struct phy_device *)) 390 { 391 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 392 } 393 EXPORT_SYMBOL(phy_register_fixup_for_id); 394 395 /** 396 * phy_unregister_fixup - remove a phy_fixup from the list 397 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 398 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 399 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 400 */ 401 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 402 { 403 struct list_head *pos, *n; 404 struct phy_fixup *fixup; 405 int ret; 406 407 ret = -ENODEV; 408 409 mutex_lock(&phy_fixup_lock); 410 list_for_each_safe(pos, n, &phy_fixup_list) { 411 fixup = list_entry(pos, struct phy_fixup, list); 412 413 if ((!strcmp(fixup->bus_id, bus_id)) && 414 ((fixup->phy_uid & phy_uid_mask) == 415 (phy_uid & phy_uid_mask))) { 416 list_del(&fixup->list); 417 kfree(fixup); 418 ret = 0; 419 break; 420 } 421 } 422 mutex_unlock(&phy_fixup_lock); 423 424 return ret; 425 } 426 EXPORT_SYMBOL(phy_unregister_fixup); 427 428 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 429 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 430 { 431 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 432 } 433 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 434 435 /* Unregisters a fixup of the PHY with id string bus_id */ 436 int phy_unregister_fixup_for_id(const char *bus_id) 437 { 438 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 439 } 440 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 441 442 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 443 * Fixups can be set to match any in one or more fields. 444 */ 445 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 446 { 447 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 448 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 449 return 0; 450 451 if ((fixup->phy_uid & fixup->phy_uid_mask) != 452 (phydev->phy_id & fixup->phy_uid_mask)) 453 if (fixup->phy_uid != PHY_ANY_UID) 454 return 0; 455 456 return 1; 457 } 458 459 /* Runs any matching fixups for this phydev */ 460 static int phy_scan_fixups(struct phy_device *phydev) 461 { 462 struct phy_fixup *fixup; 463 464 mutex_lock(&phy_fixup_lock); 465 list_for_each_entry(fixup, &phy_fixup_list, list) { 466 if (phy_needs_fixup(phydev, fixup)) { 467 int err = fixup->run(phydev); 468 469 if (err < 0) { 470 mutex_unlock(&phy_fixup_lock); 471 return err; 472 } 473 phydev->has_fixups = true; 474 } 475 } 476 mutex_unlock(&phy_fixup_lock); 477 478 return 0; 479 } 480 481 static int phy_bus_match(struct device *dev, struct device_driver *drv) 482 { 483 struct phy_device *phydev = to_phy_device(dev); 484 struct phy_driver *phydrv = to_phy_driver(drv); 485 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 486 int i; 487 488 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 489 return 0; 490 491 if (phydrv->match_phy_device) 492 return phydrv->match_phy_device(phydev); 493 494 if (phydev->is_c45) { 495 for (i = 1; i < num_ids; i++) { 496 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 497 continue; 498 499 if ((phydrv->phy_id & phydrv->phy_id_mask) == 500 (phydev->c45_ids.device_ids[i] & 501 phydrv->phy_id_mask)) 502 return 1; 503 } 504 return 0; 505 } else { 506 return (phydrv->phy_id & phydrv->phy_id_mask) == 507 (phydev->phy_id & phydrv->phy_id_mask); 508 } 509 } 510 511 static ssize_t 512 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 513 { 514 struct phy_device *phydev = to_phy_device(dev); 515 516 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 517 } 518 static DEVICE_ATTR_RO(phy_id); 519 520 static ssize_t 521 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 522 { 523 struct phy_device *phydev = to_phy_device(dev); 524 const char *mode = NULL; 525 526 if (phy_is_internal(phydev)) 527 mode = "internal"; 528 else 529 mode = phy_modes(phydev->interface); 530 531 return sprintf(buf, "%s\n", mode); 532 } 533 static DEVICE_ATTR_RO(phy_interface); 534 535 static ssize_t 536 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 537 char *buf) 538 { 539 struct phy_device *phydev = to_phy_device(dev); 540 541 return sprintf(buf, "%d\n", phydev->has_fixups); 542 } 543 static DEVICE_ATTR_RO(phy_has_fixups); 544 545 static struct attribute *phy_dev_attrs[] = { 546 &dev_attr_phy_id.attr, 547 &dev_attr_phy_interface.attr, 548 &dev_attr_phy_has_fixups.attr, 549 NULL, 550 }; 551 ATTRIBUTE_GROUPS(phy_dev); 552 553 static const struct device_type mdio_bus_phy_type = { 554 .name = "PHY", 555 .groups = phy_dev_groups, 556 .release = phy_device_release, 557 .pm = MDIO_BUS_PHY_PM_OPS, 558 }; 559 560 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 561 { 562 int ret; 563 564 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 565 MDIO_ID_ARGS(phy_id)); 566 /* We only check for failures in executing the usermode binary, 567 * not whether a PHY driver module exists for the PHY ID. 568 * Accept -ENOENT because this may occur in case no initramfs exists, 569 * then modprobe isn't available. 570 */ 571 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 572 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 573 ret, (unsigned long)phy_id); 574 return ret; 575 } 576 577 return 0; 578 } 579 580 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 581 bool is_c45, 582 struct phy_c45_device_ids *c45_ids) 583 { 584 struct phy_device *dev; 585 struct mdio_device *mdiodev; 586 int ret = 0; 587 588 /* We allocate the device, and initialize the default values */ 589 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 590 if (!dev) 591 return ERR_PTR(-ENOMEM); 592 593 mdiodev = &dev->mdio; 594 mdiodev->dev.parent = &bus->dev; 595 mdiodev->dev.bus = &mdio_bus_type; 596 mdiodev->dev.type = &mdio_bus_phy_type; 597 mdiodev->bus = bus; 598 mdiodev->bus_match = phy_bus_match; 599 mdiodev->addr = addr; 600 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 601 mdiodev->device_free = phy_mdio_device_free; 602 mdiodev->device_remove = phy_mdio_device_remove; 603 604 dev->speed = SPEED_UNKNOWN; 605 dev->duplex = DUPLEX_UNKNOWN; 606 dev->pause = 0; 607 dev->asym_pause = 0; 608 dev->link = 0; 609 dev->port = PORT_TP; 610 dev->interface = PHY_INTERFACE_MODE_GMII; 611 612 dev->autoneg = AUTONEG_ENABLE; 613 614 dev->is_c45 = is_c45; 615 dev->phy_id = phy_id; 616 if (c45_ids) 617 dev->c45_ids = *c45_ids; 618 dev->irq = bus->irq[addr]; 619 620 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 621 device_initialize(&mdiodev->dev); 622 623 dev->state = PHY_DOWN; 624 625 mutex_init(&dev->lock); 626 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 627 628 /* Request the appropriate module unconditionally; don't 629 * bother trying to do so only if it isn't already loaded, 630 * because that gets complicated. A hotplug event would have 631 * done an unconditional modprobe anyway. 632 * We don't do normal hotplug because it won't work for MDIO 633 * -- because it relies on the device staying around for long 634 * enough for the driver to get loaded. With MDIO, the NIC 635 * driver will get bored and give up as soon as it finds that 636 * there's no driver _already_ loaded. 637 */ 638 if (is_c45 && c45_ids) { 639 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 640 int i; 641 642 for (i = 1; i < num_ids; i++) { 643 if (c45_ids->device_ids[i] == 0xffffffff) 644 continue; 645 646 ret = phy_request_driver_module(dev, 647 c45_ids->device_ids[i]); 648 if (ret) 649 break; 650 } 651 } else { 652 ret = phy_request_driver_module(dev, phy_id); 653 } 654 655 if (ret) { 656 put_device(&mdiodev->dev); 657 dev = ERR_PTR(ret); 658 } 659 660 return dev; 661 } 662 EXPORT_SYMBOL(phy_device_create); 663 664 /* phy_c45_probe_present - checks to see if a MMD is present in the package 665 * @bus: the target MII bus 666 * @prtad: PHY package address on the MII bus 667 * @devad: PHY device (MMD) address 668 * 669 * Read the MDIO_STAT2 register, and check whether a device is responding 670 * at this address. 671 * 672 * Returns: negative error number on bus access error, zero if no device 673 * is responding, or positive if a device is present. 674 */ 675 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 676 { 677 int stat2; 678 679 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 680 if (stat2 < 0) 681 return stat2; 682 683 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 684 } 685 686 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 687 * @bus: the target MII bus 688 * @addr: PHY address on the MII bus 689 * @dev_addr: MMD address in the PHY. 690 * @devices_in_package: where to store the devices in package information. 691 * 692 * Description: reads devices in package registers of a MMD at @dev_addr 693 * from PHY at @addr on @bus. 694 * 695 * Returns: 0 on success, -EIO on failure. 696 */ 697 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 698 u32 *devices_in_package) 699 { 700 int phy_reg; 701 702 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 703 if (phy_reg < 0) 704 return -EIO; 705 *devices_in_package = phy_reg << 16; 706 707 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 708 if (phy_reg < 0) 709 return -EIO; 710 *devices_in_package |= phy_reg; 711 712 return 0; 713 } 714 715 /** 716 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 717 * @bus: the target MII bus 718 * @addr: PHY address on the MII bus 719 * @c45_ids: where to store the c45 ID information. 720 * 721 * Read the PHY "devices in package". If this appears to be valid, read 722 * the PHY identifiers for each device. Return the "devices in package" 723 * and identifiers in @c45_ids. 724 * 725 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 726 * the "devices in package" is invalid. 727 */ 728 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 729 struct phy_c45_device_ids *c45_ids) 730 { 731 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 732 u32 devs_in_pkg = 0; 733 int i, ret, phy_reg; 734 735 /* Find first non-zero Devices In package. Device zero is reserved 736 * for 802.3 c45 complied PHYs, so don't probe it at first. 737 */ 738 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 739 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 740 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 741 /* Check that there is a device present at this 742 * address before reading the devices-in-package 743 * register to avoid reading garbage from the PHY. 744 * Some PHYs (88x3310) vendor space is not IEEE802.3 745 * compliant. 746 */ 747 ret = phy_c45_probe_present(bus, addr, i); 748 if (ret < 0) 749 return -EIO; 750 751 if (!ret) 752 continue; 753 } 754 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 755 if (phy_reg < 0) 756 return -EIO; 757 } 758 759 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 760 /* If mostly Fs, there is no device there, then let's probe 761 * MMD 0, as some 10G PHYs have zero Devices In package, 762 * e.g. Cortina CS4315/CS4340 PHY. 763 */ 764 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 765 if (phy_reg < 0) 766 return -EIO; 767 768 /* no device there, let's get out of here */ 769 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 770 return -ENODEV; 771 } 772 773 /* Now probe Device Identifiers for each device present. */ 774 for (i = 1; i < num_ids; i++) { 775 if (!(devs_in_pkg & (1 << i))) 776 continue; 777 778 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 779 /* Probe the "Device Present" bits for the vendor MMDs 780 * to ignore these if they do not contain IEEE 802.3 781 * registers. 782 */ 783 ret = phy_c45_probe_present(bus, addr, i); 784 if (ret < 0) 785 return ret; 786 787 if (!ret) 788 continue; 789 } 790 791 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 792 if (phy_reg < 0) 793 return -EIO; 794 c45_ids->device_ids[i] = phy_reg << 16; 795 796 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 797 if (phy_reg < 0) 798 return -EIO; 799 c45_ids->device_ids[i] |= phy_reg; 800 } 801 802 c45_ids->devices_in_package = devs_in_pkg; 803 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 804 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 805 806 return 0; 807 } 808 809 /** 810 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 811 * @bus: the target MII bus 812 * @addr: PHY address on the MII bus 813 * @phy_id: where to store the ID retrieved. 814 * 815 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 816 * placing it in @phy_id. Return zero on successful read and the ID is 817 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 818 * or invalid ID. 819 */ 820 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 821 { 822 int phy_reg; 823 824 /* Grab the bits from PHYIR1, and put them in the upper half */ 825 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 826 if (phy_reg < 0) { 827 /* returning -ENODEV doesn't stop bus scanning */ 828 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 829 } 830 831 *phy_id = phy_reg << 16; 832 833 /* Grab the bits from PHYIR2, and put them in the lower half */ 834 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 835 if (phy_reg < 0) { 836 /* returning -ENODEV doesn't stop bus scanning */ 837 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 838 } 839 840 *phy_id |= phy_reg; 841 842 /* If the phy_id is mostly Fs, there is no device there */ 843 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 844 return -ENODEV; 845 846 return 0; 847 } 848 849 /** 850 * get_phy_device - reads the specified PHY device and returns its @phy_device 851 * struct 852 * @bus: the target MII bus 853 * @addr: PHY address on the MII bus 854 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 855 * 856 * Probe for a PHY at @addr on @bus. 857 * 858 * When probing for a clause 22 PHY, then read the ID registers. If we find 859 * a valid ID, allocate and return a &struct phy_device. 860 * 861 * When probing for a clause 45 PHY, read the "devices in package" registers. 862 * If the "devices in package" appears valid, read the ID registers for each 863 * MMD, allocate and return a &struct phy_device. 864 * 865 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 866 * no PHY present, or %-EIO on bus access error. 867 */ 868 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 869 { 870 struct phy_c45_device_ids c45_ids; 871 u32 phy_id = 0; 872 int r; 873 874 c45_ids.devices_in_package = 0; 875 c45_ids.mmds_present = 0; 876 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 877 878 if (is_c45) 879 r = get_phy_c45_ids(bus, addr, &c45_ids); 880 else 881 r = get_phy_c22_id(bus, addr, &phy_id); 882 883 if (r) 884 return ERR_PTR(r); 885 886 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 887 } 888 EXPORT_SYMBOL(get_phy_device); 889 890 /** 891 * phy_device_register - Register the phy device on the MDIO bus 892 * @phydev: phy_device structure to be added to the MDIO bus 893 */ 894 int phy_device_register(struct phy_device *phydev) 895 { 896 int err; 897 898 err = mdiobus_register_device(&phydev->mdio); 899 if (err) 900 return err; 901 902 /* Deassert the reset signal */ 903 phy_device_reset(phydev, 0); 904 905 /* Run all of the fixups for this PHY */ 906 err = phy_scan_fixups(phydev); 907 if (err) { 908 phydev_err(phydev, "failed to initialize\n"); 909 goto out; 910 } 911 912 err = device_add(&phydev->mdio.dev); 913 if (err) { 914 phydev_err(phydev, "failed to add\n"); 915 goto out; 916 } 917 918 return 0; 919 920 out: 921 /* Assert the reset signal */ 922 phy_device_reset(phydev, 1); 923 924 mdiobus_unregister_device(&phydev->mdio); 925 return err; 926 } 927 EXPORT_SYMBOL(phy_device_register); 928 929 /** 930 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 931 * @phydev: phy_device structure to remove 932 * 933 * This doesn't free the phy_device itself, it merely reverses the effects 934 * of phy_device_register(). Use phy_device_free() to free the device 935 * after calling this function. 936 */ 937 void phy_device_remove(struct phy_device *phydev) 938 { 939 if (phydev->mii_ts) 940 unregister_mii_timestamper(phydev->mii_ts); 941 942 device_del(&phydev->mdio.dev); 943 944 /* Assert the reset signal */ 945 phy_device_reset(phydev, 1); 946 947 mdiobus_unregister_device(&phydev->mdio); 948 } 949 EXPORT_SYMBOL(phy_device_remove); 950 951 /** 952 * phy_find_first - finds the first PHY device on the bus 953 * @bus: the target MII bus 954 */ 955 struct phy_device *phy_find_first(struct mii_bus *bus) 956 { 957 struct phy_device *phydev; 958 int addr; 959 960 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 961 phydev = mdiobus_get_phy(bus, addr); 962 if (phydev) 963 return phydev; 964 } 965 return NULL; 966 } 967 EXPORT_SYMBOL(phy_find_first); 968 969 static void phy_link_change(struct phy_device *phydev, bool up) 970 { 971 struct net_device *netdev = phydev->attached_dev; 972 973 if (up) 974 netif_carrier_on(netdev); 975 else 976 netif_carrier_off(netdev); 977 phydev->adjust_link(netdev); 978 if (phydev->mii_ts && phydev->mii_ts->link_state) 979 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 980 } 981 982 /** 983 * phy_prepare_link - prepares the PHY layer to monitor link status 984 * @phydev: target phy_device struct 985 * @handler: callback function for link status change notifications 986 * 987 * Description: Tells the PHY infrastructure to handle the 988 * gory details on monitoring link status (whether through 989 * polling or an interrupt), and to call back to the 990 * connected device driver when the link status changes. 991 * If you want to monitor your own link state, don't call 992 * this function. 993 */ 994 static void phy_prepare_link(struct phy_device *phydev, 995 void (*handler)(struct net_device *)) 996 { 997 phydev->adjust_link = handler; 998 } 999 1000 /** 1001 * phy_connect_direct - connect an ethernet device to a specific phy_device 1002 * @dev: the network device to connect 1003 * @phydev: the pointer to the phy device 1004 * @handler: callback function for state change notifications 1005 * @interface: PHY device's interface 1006 */ 1007 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1008 void (*handler)(struct net_device *), 1009 phy_interface_t interface) 1010 { 1011 int rc; 1012 1013 if (!dev) 1014 return -EINVAL; 1015 1016 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1017 if (rc) 1018 return rc; 1019 1020 phy_prepare_link(phydev, handler); 1021 if (phy_interrupt_is_valid(phydev)) 1022 phy_request_interrupt(phydev); 1023 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(phy_connect_direct); 1027 1028 /** 1029 * phy_connect - connect an ethernet device to a PHY device 1030 * @dev: the network device to connect 1031 * @bus_id: the id string of the PHY device to connect 1032 * @handler: callback function for state change notifications 1033 * @interface: PHY device's interface 1034 * 1035 * Description: Convenience function for connecting ethernet 1036 * devices to PHY devices. The default behavior is for 1037 * the PHY infrastructure to handle everything, and only notify 1038 * the connected driver when the link status changes. If you 1039 * don't want, or can't use the provided functionality, you may 1040 * choose to call only the subset of functions which provide 1041 * the desired functionality. 1042 */ 1043 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1044 void (*handler)(struct net_device *), 1045 phy_interface_t interface) 1046 { 1047 struct phy_device *phydev; 1048 struct device *d; 1049 int rc; 1050 1051 /* Search the list of PHY devices on the mdio bus for the 1052 * PHY with the requested name 1053 */ 1054 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1055 if (!d) { 1056 pr_err("PHY %s not found\n", bus_id); 1057 return ERR_PTR(-ENODEV); 1058 } 1059 phydev = to_phy_device(d); 1060 1061 rc = phy_connect_direct(dev, phydev, handler, interface); 1062 put_device(d); 1063 if (rc) 1064 return ERR_PTR(rc); 1065 1066 return phydev; 1067 } 1068 EXPORT_SYMBOL(phy_connect); 1069 1070 /** 1071 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1072 * device 1073 * @phydev: target phy_device struct 1074 */ 1075 void phy_disconnect(struct phy_device *phydev) 1076 { 1077 if (phy_is_started(phydev)) 1078 phy_stop(phydev); 1079 1080 if (phy_interrupt_is_valid(phydev)) 1081 phy_free_interrupt(phydev); 1082 1083 phydev->adjust_link = NULL; 1084 1085 phy_detach(phydev); 1086 } 1087 EXPORT_SYMBOL(phy_disconnect); 1088 1089 /** 1090 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1091 * @phydev: The PHY device to poll 1092 * 1093 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1094 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1095 * register must be polled until the BMCR_RESET bit clears. 1096 * 1097 * Furthermore, any attempts to write to PHY registers may have no effect 1098 * or even generate MDIO bus errors until this is complete. 1099 * 1100 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1101 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1102 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1103 * effort to support such broken PHYs, this function is separate from the 1104 * standard phy_init_hw() which will zero all the other bits in the BMCR 1105 * and reapply all driver-specific and board-specific fixups. 1106 */ 1107 static int phy_poll_reset(struct phy_device *phydev) 1108 { 1109 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1110 int ret, val; 1111 1112 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1113 50000, 600000, true); 1114 if (ret) 1115 return ret; 1116 /* Some chips (smsc911x) may still need up to another 1ms after the 1117 * BMCR_RESET bit is cleared before they are usable. 1118 */ 1119 msleep(1); 1120 return 0; 1121 } 1122 1123 int phy_init_hw(struct phy_device *phydev) 1124 { 1125 int ret = 0; 1126 1127 /* Deassert the reset signal */ 1128 phy_device_reset(phydev, 0); 1129 1130 if (!phydev->drv) 1131 return 0; 1132 1133 if (phydev->drv->soft_reset) { 1134 ret = phydev->drv->soft_reset(phydev); 1135 /* see comment in genphy_soft_reset for an explanation */ 1136 if (!ret) 1137 phydev->suspended = 0; 1138 } 1139 1140 if (ret < 0) 1141 return ret; 1142 1143 ret = phy_scan_fixups(phydev); 1144 if (ret < 0) 1145 return ret; 1146 1147 if (phydev->drv->config_init) 1148 ret = phydev->drv->config_init(phydev); 1149 1150 return ret; 1151 } 1152 EXPORT_SYMBOL(phy_init_hw); 1153 1154 void phy_attached_info(struct phy_device *phydev) 1155 { 1156 phy_attached_print(phydev, NULL); 1157 } 1158 EXPORT_SYMBOL(phy_attached_info); 1159 1160 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1161 char *phy_attached_info_irq(struct phy_device *phydev) 1162 { 1163 char *irq_str; 1164 char irq_num[8]; 1165 1166 switch(phydev->irq) { 1167 case PHY_POLL: 1168 irq_str = "POLL"; 1169 break; 1170 case PHY_IGNORE_INTERRUPT: 1171 irq_str = "IGNORE"; 1172 break; 1173 default: 1174 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1175 irq_str = irq_num; 1176 break; 1177 } 1178 1179 return kasprintf(GFP_KERNEL, "%s", irq_str); 1180 } 1181 EXPORT_SYMBOL(phy_attached_info_irq); 1182 1183 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1184 { 1185 const char *unbound = phydev->drv ? "" : "[unbound] "; 1186 char *irq_str = phy_attached_info_irq(phydev); 1187 1188 if (!fmt) { 1189 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1190 phydev_name(phydev), irq_str); 1191 } else { 1192 va_list ap; 1193 1194 phydev_info(phydev, ATTACHED_FMT, unbound, 1195 phydev_name(phydev), irq_str); 1196 1197 va_start(ap, fmt); 1198 vprintk(fmt, ap); 1199 va_end(ap); 1200 } 1201 kfree(irq_str); 1202 } 1203 EXPORT_SYMBOL(phy_attached_print); 1204 1205 static void phy_sysfs_create_links(struct phy_device *phydev) 1206 { 1207 struct net_device *dev = phydev->attached_dev; 1208 int err; 1209 1210 if (!dev) 1211 return; 1212 1213 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1214 "attached_dev"); 1215 if (err) 1216 return; 1217 1218 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1219 &phydev->mdio.dev.kobj, 1220 "phydev"); 1221 if (err) { 1222 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1223 kobject_name(&phydev->mdio.dev.kobj), 1224 err); 1225 /* non-fatal - some net drivers can use one netdevice 1226 * with more then one phy 1227 */ 1228 } 1229 1230 phydev->sysfs_links = true; 1231 } 1232 1233 static ssize_t 1234 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1235 char *buf) 1236 { 1237 struct phy_device *phydev = to_phy_device(dev); 1238 1239 return sprintf(buf, "%d\n", !phydev->attached_dev); 1240 } 1241 static DEVICE_ATTR_RO(phy_standalone); 1242 1243 /** 1244 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1245 * @upstream: pointer to the phy device 1246 * @bus: sfp bus representing cage being attached 1247 * 1248 * This is used to fill in the sfp_upstream_ops .attach member. 1249 */ 1250 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1251 { 1252 struct phy_device *phydev = upstream; 1253 1254 if (phydev->attached_dev) 1255 phydev->attached_dev->sfp_bus = bus; 1256 phydev->sfp_bus_attached = true; 1257 } 1258 EXPORT_SYMBOL(phy_sfp_attach); 1259 1260 /** 1261 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1262 * @upstream: pointer to the phy device 1263 * @bus: sfp bus representing cage being attached 1264 * 1265 * This is used to fill in the sfp_upstream_ops .detach member. 1266 */ 1267 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1268 { 1269 struct phy_device *phydev = upstream; 1270 1271 if (phydev->attached_dev) 1272 phydev->attached_dev->sfp_bus = NULL; 1273 phydev->sfp_bus_attached = false; 1274 } 1275 EXPORT_SYMBOL(phy_sfp_detach); 1276 1277 /** 1278 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1279 * @phydev: Pointer to phy_device 1280 * @ops: SFP's upstream operations 1281 */ 1282 int phy_sfp_probe(struct phy_device *phydev, 1283 const struct sfp_upstream_ops *ops) 1284 { 1285 struct sfp_bus *bus; 1286 int ret = 0; 1287 1288 if (phydev->mdio.dev.fwnode) { 1289 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1290 if (IS_ERR(bus)) 1291 return PTR_ERR(bus); 1292 1293 phydev->sfp_bus = bus; 1294 1295 ret = sfp_bus_add_upstream(bus, phydev, ops); 1296 sfp_bus_put(bus); 1297 } 1298 return ret; 1299 } 1300 EXPORT_SYMBOL(phy_sfp_probe); 1301 1302 /** 1303 * phy_attach_direct - attach a network device to a given PHY device pointer 1304 * @dev: network device to attach 1305 * @phydev: Pointer to phy_device to attach 1306 * @flags: PHY device's dev_flags 1307 * @interface: PHY device's interface 1308 * 1309 * Description: Called by drivers to attach to a particular PHY 1310 * device. The phy_device is found, and properly hooked up 1311 * to the phy_driver. If no driver is attached, then a 1312 * generic driver is used. The phy_device is given a ptr to 1313 * the attaching device, and given a callback for link status 1314 * change. The phy_device is returned to the attaching driver. 1315 * This function takes a reference on the phy device. 1316 */ 1317 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1318 u32 flags, phy_interface_t interface) 1319 { 1320 struct mii_bus *bus = phydev->mdio.bus; 1321 struct device *d = &phydev->mdio.dev; 1322 struct module *ndev_owner = NULL; 1323 bool using_genphy = false; 1324 int err; 1325 1326 /* For Ethernet device drivers that register their own MDIO bus, we 1327 * will have bus->owner match ndev_mod, so we do not want to increment 1328 * our own module->refcnt here, otherwise we would not be able to 1329 * unload later on. 1330 */ 1331 if (dev) 1332 ndev_owner = dev->dev.parent->driver->owner; 1333 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1334 phydev_err(phydev, "failed to get the bus module\n"); 1335 return -EIO; 1336 } 1337 1338 get_device(d); 1339 1340 /* Assume that if there is no driver, that it doesn't 1341 * exist, and we should use the genphy driver. 1342 */ 1343 if (!d->driver) { 1344 if (phydev->is_c45) 1345 d->driver = &genphy_c45_driver.mdiodrv.driver; 1346 else 1347 d->driver = &genphy_driver.mdiodrv.driver; 1348 1349 using_genphy = true; 1350 } 1351 1352 if (!try_module_get(d->driver->owner)) { 1353 phydev_err(phydev, "failed to get the device driver module\n"); 1354 err = -EIO; 1355 goto error_put_device; 1356 } 1357 1358 if (using_genphy) { 1359 err = d->driver->probe(d); 1360 if (err >= 0) 1361 err = device_bind_driver(d); 1362 1363 if (err) 1364 goto error_module_put; 1365 } 1366 1367 if (phydev->attached_dev) { 1368 dev_err(&dev->dev, "PHY already attached\n"); 1369 err = -EBUSY; 1370 goto error; 1371 } 1372 1373 phydev->phy_link_change = phy_link_change; 1374 if (dev) { 1375 phydev->attached_dev = dev; 1376 dev->phydev = phydev; 1377 1378 if (phydev->sfp_bus_attached) 1379 dev->sfp_bus = phydev->sfp_bus; 1380 } 1381 1382 /* Some Ethernet drivers try to connect to a PHY device before 1383 * calling register_netdevice() -> netdev_register_kobject() and 1384 * does the dev->dev.kobj initialization. Here we only check for 1385 * success which indicates that the network device kobject is 1386 * ready. Once we do that we still need to keep track of whether 1387 * links were successfully set up or not for phy_detach() to 1388 * remove them accordingly. 1389 */ 1390 phydev->sysfs_links = false; 1391 1392 phy_sysfs_create_links(phydev); 1393 1394 if (!phydev->attached_dev) { 1395 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1396 &dev_attr_phy_standalone.attr); 1397 if (err) 1398 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1399 } 1400 1401 phydev->dev_flags |= flags; 1402 1403 phydev->interface = interface; 1404 1405 phydev->state = PHY_READY; 1406 1407 /* Port is set to PORT_TP by default and the actual PHY driver will set 1408 * it to different value depending on the PHY configuration. If we have 1409 * the generic PHY driver we can't figure it out, thus set the old 1410 * legacy PORT_MII value. 1411 */ 1412 if (using_genphy) 1413 phydev->port = PORT_MII; 1414 1415 /* Initial carrier state is off as the phy is about to be 1416 * (re)initialized. 1417 */ 1418 if (dev) 1419 netif_carrier_off(phydev->attached_dev); 1420 1421 /* Do initial configuration here, now that 1422 * we have certain key parameters 1423 * (dev_flags and interface) 1424 */ 1425 err = phy_init_hw(phydev); 1426 if (err) 1427 goto error; 1428 1429 err = phy_disable_interrupts(phydev); 1430 if (err) 1431 return err; 1432 1433 phy_resume(phydev); 1434 phy_led_triggers_register(phydev); 1435 1436 return err; 1437 1438 error: 1439 /* phy_detach() does all of the cleanup below */ 1440 phy_detach(phydev); 1441 return err; 1442 1443 error_module_put: 1444 module_put(d->driver->owner); 1445 error_put_device: 1446 put_device(d); 1447 if (ndev_owner != bus->owner) 1448 module_put(bus->owner); 1449 return err; 1450 } 1451 EXPORT_SYMBOL(phy_attach_direct); 1452 1453 /** 1454 * phy_attach - attach a network device to a particular PHY device 1455 * @dev: network device to attach 1456 * @bus_id: Bus ID of PHY device to attach 1457 * @interface: PHY device's interface 1458 * 1459 * Description: Same as phy_attach_direct() except that a PHY bus_id 1460 * string is passed instead of a pointer to a struct phy_device. 1461 */ 1462 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1463 phy_interface_t interface) 1464 { 1465 struct bus_type *bus = &mdio_bus_type; 1466 struct phy_device *phydev; 1467 struct device *d; 1468 int rc; 1469 1470 if (!dev) 1471 return ERR_PTR(-EINVAL); 1472 1473 /* Search the list of PHY devices on the mdio bus for the 1474 * PHY with the requested name 1475 */ 1476 d = bus_find_device_by_name(bus, NULL, bus_id); 1477 if (!d) { 1478 pr_err("PHY %s not found\n", bus_id); 1479 return ERR_PTR(-ENODEV); 1480 } 1481 phydev = to_phy_device(d); 1482 1483 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1484 put_device(d); 1485 if (rc) 1486 return ERR_PTR(rc); 1487 1488 return phydev; 1489 } 1490 EXPORT_SYMBOL(phy_attach); 1491 1492 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1493 struct device_driver *driver) 1494 { 1495 struct device *d = &phydev->mdio.dev; 1496 bool ret = false; 1497 1498 if (!phydev->drv) 1499 return ret; 1500 1501 get_device(d); 1502 ret = d->driver == driver; 1503 put_device(d); 1504 1505 return ret; 1506 } 1507 1508 bool phy_driver_is_genphy(struct phy_device *phydev) 1509 { 1510 return phy_driver_is_genphy_kind(phydev, 1511 &genphy_driver.mdiodrv.driver); 1512 } 1513 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1514 1515 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1516 { 1517 return phy_driver_is_genphy_kind(phydev, 1518 &genphy_c45_driver.mdiodrv.driver); 1519 } 1520 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1521 1522 /** 1523 * phy_package_join - join a common PHY group 1524 * @phydev: target phy_device struct 1525 * @addr: cookie and PHY address for global register access 1526 * @priv_size: if non-zero allocate this amount of bytes for private data 1527 * 1528 * This joins a PHY group and provides a shared storage for all phydevs in 1529 * this group. This is intended to be used for packages which contain 1530 * more than one PHY, for example a quad PHY transceiver. 1531 * 1532 * The addr parameter serves as a cookie which has to have the same value 1533 * for all members of one group and as a PHY address to access generic 1534 * registers of a PHY package. Usually, one of the PHY addresses of the 1535 * different PHYs in the package provides access to these global registers. 1536 * The address which is given here, will be used in the phy_package_read() 1537 * and phy_package_write() convenience functions. If your PHY doesn't have 1538 * global registers you can just pick any of the PHY addresses. 1539 * 1540 * This will set the shared pointer of the phydev to the shared storage. 1541 * If this is the first call for a this cookie the shared storage will be 1542 * allocated. If priv_size is non-zero, the given amount of bytes are 1543 * allocated for the priv member. 1544 * 1545 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1546 * with the same cookie but a different priv_size is an error. 1547 */ 1548 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1549 { 1550 struct mii_bus *bus = phydev->mdio.bus; 1551 struct phy_package_shared *shared; 1552 int ret; 1553 1554 if (addr < 0 || addr >= PHY_MAX_ADDR) 1555 return -EINVAL; 1556 1557 mutex_lock(&bus->shared_lock); 1558 shared = bus->shared[addr]; 1559 if (!shared) { 1560 ret = -ENOMEM; 1561 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1562 if (!shared) 1563 goto err_unlock; 1564 if (priv_size) { 1565 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1566 if (!shared->priv) 1567 goto err_free; 1568 shared->priv_size = priv_size; 1569 } 1570 shared->addr = addr; 1571 refcount_set(&shared->refcnt, 1); 1572 bus->shared[addr] = shared; 1573 } else { 1574 ret = -EINVAL; 1575 if (priv_size && priv_size != shared->priv_size) 1576 goto err_unlock; 1577 refcount_inc(&shared->refcnt); 1578 } 1579 mutex_unlock(&bus->shared_lock); 1580 1581 phydev->shared = shared; 1582 1583 return 0; 1584 1585 err_free: 1586 kfree(shared); 1587 err_unlock: 1588 mutex_unlock(&bus->shared_lock); 1589 return ret; 1590 } 1591 EXPORT_SYMBOL_GPL(phy_package_join); 1592 1593 /** 1594 * phy_package_leave - leave a common PHY group 1595 * @phydev: target phy_device struct 1596 * 1597 * This leaves a PHY group created by phy_package_join(). If this phydev 1598 * was the last user of the shared data between the group, this data is 1599 * freed. Resets the phydev->shared pointer to NULL. 1600 */ 1601 void phy_package_leave(struct phy_device *phydev) 1602 { 1603 struct phy_package_shared *shared = phydev->shared; 1604 struct mii_bus *bus = phydev->mdio.bus; 1605 1606 if (!shared) 1607 return; 1608 1609 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1610 bus->shared[shared->addr] = NULL; 1611 mutex_unlock(&bus->shared_lock); 1612 kfree(shared->priv); 1613 kfree(shared); 1614 } 1615 1616 phydev->shared = NULL; 1617 } 1618 EXPORT_SYMBOL_GPL(phy_package_leave); 1619 1620 static void devm_phy_package_leave(struct device *dev, void *res) 1621 { 1622 phy_package_leave(*(struct phy_device **)res); 1623 } 1624 1625 /** 1626 * devm_phy_package_join - resource managed phy_package_join() 1627 * @dev: device that is registering this PHY package 1628 * @phydev: target phy_device struct 1629 * @addr: cookie and PHY address for global register access 1630 * @priv_size: if non-zero allocate this amount of bytes for private data 1631 * 1632 * Managed phy_package_join(). Shared storage fetched by this function, 1633 * phy_package_leave() is automatically called on driver detach. See 1634 * phy_package_join() for more information. 1635 */ 1636 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1637 int addr, size_t priv_size) 1638 { 1639 struct phy_device **ptr; 1640 int ret; 1641 1642 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1643 GFP_KERNEL); 1644 if (!ptr) 1645 return -ENOMEM; 1646 1647 ret = phy_package_join(phydev, addr, priv_size); 1648 1649 if (!ret) { 1650 *ptr = phydev; 1651 devres_add(dev, ptr); 1652 } else { 1653 devres_free(ptr); 1654 } 1655 1656 return ret; 1657 } 1658 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1659 1660 /** 1661 * phy_detach - detach a PHY device from its network device 1662 * @phydev: target phy_device struct 1663 * 1664 * This detaches the phy device from its network device and the phy 1665 * driver, and drops the reference count taken in phy_attach_direct(). 1666 */ 1667 void phy_detach(struct phy_device *phydev) 1668 { 1669 struct net_device *dev = phydev->attached_dev; 1670 struct module *ndev_owner = NULL; 1671 struct mii_bus *bus; 1672 1673 if (phydev->sysfs_links) { 1674 if (dev) 1675 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1676 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1677 } 1678 1679 if (!phydev->attached_dev) 1680 sysfs_remove_file(&phydev->mdio.dev.kobj, 1681 &dev_attr_phy_standalone.attr); 1682 1683 phy_suspend(phydev); 1684 if (dev) { 1685 phydev->attached_dev->phydev = NULL; 1686 phydev->attached_dev = NULL; 1687 } 1688 phydev->phylink = NULL; 1689 1690 phy_led_triggers_unregister(phydev); 1691 1692 if (phydev->mdio.dev.driver) 1693 module_put(phydev->mdio.dev.driver->owner); 1694 1695 /* If the device had no specific driver before (i.e. - it 1696 * was using the generic driver), we unbind the device 1697 * from the generic driver so that there's a chance a 1698 * real driver could be loaded 1699 */ 1700 if (phy_driver_is_genphy(phydev) || 1701 phy_driver_is_genphy_10g(phydev)) 1702 device_release_driver(&phydev->mdio.dev); 1703 1704 /* 1705 * The phydev might go away on the put_device() below, so avoid 1706 * a use-after-free bug by reading the underlying bus first. 1707 */ 1708 bus = phydev->mdio.bus; 1709 1710 put_device(&phydev->mdio.dev); 1711 if (dev) 1712 ndev_owner = dev->dev.parent->driver->owner; 1713 if (ndev_owner != bus->owner) 1714 module_put(bus->owner); 1715 1716 /* Assert the reset signal */ 1717 phy_device_reset(phydev, 1); 1718 } 1719 EXPORT_SYMBOL(phy_detach); 1720 1721 int phy_suspend(struct phy_device *phydev) 1722 { 1723 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1724 struct net_device *netdev = phydev->attached_dev; 1725 struct phy_driver *phydrv = phydev->drv; 1726 int ret; 1727 1728 if (phydev->suspended) 1729 return 0; 1730 1731 /* If the device has WOL enabled, we cannot suspend the PHY */ 1732 phy_ethtool_get_wol(phydev, &wol); 1733 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1734 return -EBUSY; 1735 1736 if (!phydrv || !phydrv->suspend) 1737 return 0; 1738 1739 ret = phydrv->suspend(phydev); 1740 if (!ret) 1741 phydev->suspended = true; 1742 1743 return ret; 1744 } 1745 EXPORT_SYMBOL(phy_suspend); 1746 1747 int __phy_resume(struct phy_device *phydev) 1748 { 1749 struct phy_driver *phydrv = phydev->drv; 1750 int ret; 1751 1752 lockdep_assert_held(&phydev->lock); 1753 1754 if (!phydrv || !phydrv->resume) 1755 return 0; 1756 1757 ret = phydrv->resume(phydev); 1758 if (!ret) 1759 phydev->suspended = false; 1760 1761 return ret; 1762 } 1763 EXPORT_SYMBOL(__phy_resume); 1764 1765 int phy_resume(struct phy_device *phydev) 1766 { 1767 int ret; 1768 1769 mutex_lock(&phydev->lock); 1770 ret = __phy_resume(phydev); 1771 mutex_unlock(&phydev->lock); 1772 1773 return ret; 1774 } 1775 EXPORT_SYMBOL(phy_resume); 1776 1777 int phy_loopback(struct phy_device *phydev, bool enable) 1778 { 1779 struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver); 1780 int ret = 0; 1781 1782 mutex_lock(&phydev->lock); 1783 1784 if (enable && phydev->loopback_enabled) { 1785 ret = -EBUSY; 1786 goto out; 1787 } 1788 1789 if (!enable && !phydev->loopback_enabled) { 1790 ret = -EINVAL; 1791 goto out; 1792 } 1793 1794 if (phydev->drv && phydrv->set_loopback) 1795 ret = phydrv->set_loopback(phydev, enable); 1796 else 1797 ret = -EOPNOTSUPP; 1798 1799 if (ret) 1800 goto out; 1801 1802 phydev->loopback_enabled = enable; 1803 1804 out: 1805 mutex_unlock(&phydev->lock); 1806 return ret; 1807 } 1808 EXPORT_SYMBOL(phy_loopback); 1809 1810 /** 1811 * phy_reset_after_clk_enable - perform a PHY reset if needed 1812 * @phydev: target phy_device struct 1813 * 1814 * Description: Some PHYs are known to need a reset after their refclk was 1815 * enabled. This function evaluates the flags and perform the reset if it's 1816 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1817 * was reset. 1818 */ 1819 int phy_reset_after_clk_enable(struct phy_device *phydev) 1820 { 1821 if (!phydev || !phydev->drv) 1822 return -ENODEV; 1823 1824 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1825 phy_device_reset(phydev, 1); 1826 phy_device_reset(phydev, 0); 1827 return 1; 1828 } 1829 1830 return 0; 1831 } 1832 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1833 1834 /* Generic PHY support and helper functions */ 1835 1836 /** 1837 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1838 * @phydev: target phy_device struct 1839 * 1840 * Description: Writes MII_ADVERTISE with the appropriate values, 1841 * after sanitizing the values to make sure we only advertise 1842 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1843 * hasn't changed, and > 0 if it has changed. 1844 */ 1845 static int genphy_config_advert(struct phy_device *phydev) 1846 { 1847 int err, bmsr, changed = 0; 1848 u32 adv; 1849 1850 /* Only allow advertising what this PHY supports */ 1851 linkmode_and(phydev->advertising, phydev->advertising, 1852 phydev->supported); 1853 1854 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1855 1856 /* Setup standard advertisement */ 1857 err = phy_modify_changed(phydev, MII_ADVERTISE, 1858 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1859 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1860 adv); 1861 if (err < 0) 1862 return err; 1863 if (err > 0) 1864 changed = 1; 1865 1866 bmsr = phy_read(phydev, MII_BMSR); 1867 if (bmsr < 0) 1868 return bmsr; 1869 1870 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1871 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1872 * logical 1. 1873 */ 1874 if (!(bmsr & BMSR_ESTATEN)) 1875 return changed; 1876 1877 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1878 1879 err = phy_modify_changed(phydev, MII_CTRL1000, 1880 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1881 adv); 1882 if (err < 0) 1883 return err; 1884 if (err > 0) 1885 changed = 1; 1886 1887 return changed; 1888 } 1889 1890 /** 1891 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1892 * @phydev: target phy_device struct 1893 * 1894 * Description: Writes MII_ADVERTISE with the appropriate values, 1895 * after sanitizing the values to make sure we only advertise 1896 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1897 * hasn't changed, and > 0 if it has changed. This function is intended 1898 * for Clause 37 1000Base-X mode. 1899 */ 1900 static int genphy_c37_config_advert(struct phy_device *phydev) 1901 { 1902 u16 adv = 0; 1903 1904 /* Only allow advertising what this PHY supports */ 1905 linkmode_and(phydev->advertising, phydev->advertising, 1906 phydev->supported); 1907 1908 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1909 phydev->advertising)) 1910 adv |= ADVERTISE_1000XFULL; 1911 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1912 phydev->advertising)) 1913 adv |= ADVERTISE_1000XPAUSE; 1914 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1915 phydev->advertising)) 1916 adv |= ADVERTISE_1000XPSE_ASYM; 1917 1918 return phy_modify_changed(phydev, MII_ADVERTISE, 1919 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1920 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1921 adv); 1922 } 1923 1924 /** 1925 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1926 * @phydev: target phy_device struct 1927 * 1928 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1929 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1930 * changed, and 1 if it has changed. 1931 */ 1932 int genphy_config_eee_advert(struct phy_device *phydev) 1933 { 1934 int err; 1935 1936 /* Nothing to disable */ 1937 if (!phydev->eee_broken_modes) 1938 return 0; 1939 1940 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1941 phydev->eee_broken_modes, 0); 1942 /* If the call failed, we assume that EEE is not supported */ 1943 return err < 0 ? 0 : err; 1944 } 1945 EXPORT_SYMBOL(genphy_config_eee_advert); 1946 1947 /** 1948 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1949 * @phydev: target phy_device struct 1950 * 1951 * Description: Configures MII_BMCR to force speed/duplex 1952 * to the values in phydev. Assumes that the values are valid. 1953 * Please see phy_sanitize_settings(). 1954 */ 1955 int genphy_setup_forced(struct phy_device *phydev) 1956 { 1957 u16 ctl = 0; 1958 1959 phydev->pause = 0; 1960 phydev->asym_pause = 0; 1961 1962 if (SPEED_1000 == phydev->speed) 1963 ctl |= BMCR_SPEED1000; 1964 else if (SPEED_100 == phydev->speed) 1965 ctl |= BMCR_SPEED100; 1966 1967 if (DUPLEX_FULL == phydev->duplex) 1968 ctl |= BMCR_FULLDPLX; 1969 1970 return phy_modify(phydev, MII_BMCR, 1971 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 1972 } 1973 EXPORT_SYMBOL(genphy_setup_forced); 1974 1975 static int genphy_setup_master_slave(struct phy_device *phydev) 1976 { 1977 u16 ctl = 0; 1978 1979 if (!phydev->is_gigabit_capable) 1980 return 0; 1981 1982 switch (phydev->master_slave_set) { 1983 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 1984 ctl |= CTL1000_PREFER_MASTER; 1985 break; 1986 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 1987 break; 1988 case MASTER_SLAVE_CFG_MASTER_FORCE: 1989 ctl |= CTL1000_AS_MASTER; 1990 fallthrough; 1991 case MASTER_SLAVE_CFG_SLAVE_FORCE: 1992 ctl |= CTL1000_ENABLE_MASTER; 1993 break; 1994 case MASTER_SLAVE_CFG_UNKNOWN: 1995 case MASTER_SLAVE_CFG_UNSUPPORTED: 1996 return 0; 1997 default: 1998 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 1999 return -EOPNOTSUPP; 2000 } 2001 2002 return phy_modify_changed(phydev, MII_CTRL1000, 2003 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2004 CTL1000_PREFER_MASTER), ctl); 2005 } 2006 2007 static int genphy_read_master_slave(struct phy_device *phydev) 2008 { 2009 int cfg, state; 2010 int val; 2011 2012 if (!phydev->is_gigabit_capable) { 2013 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2014 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2015 return 0; 2016 } 2017 2018 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2019 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2020 2021 val = phy_read(phydev, MII_CTRL1000); 2022 if (val < 0) 2023 return val; 2024 2025 if (val & CTL1000_ENABLE_MASTER) { 2026 if (val & CTL1000_AS_MASTER) 2027 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2028 else 2029 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2030 } else { 2031 if (val & CTL1000_PREFER_MASTER) 2032 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2033 else 2034 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2035 } 2036 2037 val = phy_read(phydev, MII_STAT1000); 2038 if (val < 0) 2039 return val; 2040 2041 if (val & LPA_1000MSFAIL) { 2042 state = MASTER_SLAVE_STATE_ERR; 2043 } else if (phydev->link) { 2044 /* this bits are valid only for active link */ 2045 if (val & LPA_1000MSRES) 2046 state = MASTER_SLAVE_STATE_MASTER; 2047 else 2048 state = MASTER_SLAVE_STATE_SLAVE; 2049 } else { 2050 state = MASTER_SLAVE_STATE_UNKNOWN; 2051 } 2052 2053 phydev->master_slave_get = cfg; 2054 phydev->master_slave_state = state; 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * genphy_restart_aneg - Enable and Restart Autonegotiation 2061 * @phydev: target phy_device struct 2062 */ 2063 int genphy_restart_aneg(struct phy_device *phydev) 2064 { 2065 /* Don't isolate the PHY if we're negotiating */ 2066 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2067 BMCR_ANENABLE | BMCR_ANRESTART); 2068 } 2069 EXPORT_SYMBOL(genphy_restart_aneg); 2070 2071 /** 2072 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2073 * @phydev: target phy_device struct 2074 * @restart: whether aneg restart is requested 2075 * 2076 * Check, and restart auto-negotiation if needed. 2077 */ 2078 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2079 { 2080 int ret; 2081 2082 if (!restart) { 2083 /* Advertisement hasn't changed, but maybe aneg was never on to 2084 * begin with? Or maybe phy was isolated? 2085 */ 2086 ret = phy_read(phydev, MII_BMCR); 2087 if (ret < 0) 2088 return ret; 2089 2090 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2091 restart = true; 2092 } 2093 2094 if (restart) 2095 return genphy_restart_aneg(phydev); 2096 2097 return 0; 2098 } 2099 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2100 2101 /** 2102 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2103 * @phydev: target phy_device struct 2104 * @changed: whether autoneg is requested 2105 * 2106 * Description: If auto-negotiation is enabled, we configure the 2107 * advertising, and then restart auto-negotiation. If it is not 2108 * enabled, then we write the BMCR. 2109 */ 2110 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2111 { 2112 int err; 2113 2114 if (genphy_config_eee_advert(phydev)) 2115 changed = true; 2116 2117 err = genphy_setup_master_slave(phydev); 2118 if (err < 0) 2119 return err; 2120 else if (err) 2121 changed = true; 2122 2123 if (AUTONEG_ENABLE != phydev->autoneg) 2124 return genphy_setup_forced(phydev); 2125 2126 err = genphy_config_advert(phydev); 2127 if (err < 0) /* error */ 2128 return err; 2129 else if (err) 2130 changed = true; 2131 2132 return genphy_check_and_restart_aneg(phydev, changed); 2133 } 2134 EXPORT_SYMBOL(__genphy_config_aneg); 2135 2136 /** 2137 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2138 * @phydev: target phy_device struct 2139 * 2140 * Description: If auto-negotiation is enabled, we configure the 2141 * advertising, and then restart auto-negotiation. If it is not 2142 * enabled, then we write the BMCR. This function is intended 2143 * for use with Clause 37 1000Base-X mode. 2144 */ 2145 int genphy_c37_config_aneg(struct phy_device *phydev) 2146 { 2147 int err, changed; 2148 2149 if (phydev->autoneg != AUTONEG_ENABLE) 2150 return genphy_setup_forced(phydev); 2151 2152 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2153 BMCR_SPEED1000); 2154 if (err) 2155 return err; 2156 2157 changed = genphy_c37_config_advert(phydev); 2158 if (changed < 0) /* error */ 2159 return changed; 2160 2161 if (!changed) { 2162 /* Advertisement hasn't changed, but maybe aneg was never on to 2163 * begin with? Or maybe phy was isolated? 2164 */ 2165 int ctl = phy_read(phydev, MII_BMCR); 2166 2167 if (ctl < 0) 2168 return ctl; 2169 2170 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2171 changed = 1; /* do restart aneg */ 2172 } 2173 2174 /* Only restart aneg if we are advertising something different 2175 * than we were before. 2176 */ 2177 if (changed > 0) 2178 return genphy_restart_aneg(phydev); 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL(genphy_c37_config_aneg); 2183 2184 /** 2185 * genphy_aneg_done - return auto-negotiation status 2186 * @phydev: target phy_device struct 2187 * 2188 * Description: Reads the status register and returns 0 either if 2189 * auto-negotiation is incomplete, or if there was an error. 2190 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2191 */ 2192 int genphy_aneg_done(struct phy_device *phydev) 2193 { 2194 int retval = phy_read(phydev, MII_BMSR); 2195 2196 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2197 } 2198 EXPORT_SYMBOL(genphy_aneg_done); 2199 2200 /** 2201 * genphy_update_link - update link status in @phydev 2202 * @phydev: target phy_device struct 2203 * 2204 * Description: Update the value in phydev->link to reflect the 2205 * current link value. In order to do this, we need to read 2206 * the status register twice, keeping the second value. 2207 */ 2208 int genphy_update_link(struct phy_device *phydev) 2209 { 2210 int status = 0, bmcr; 2211 2212 bmcr = phy_read(phydev, MII_BMCR); 2213 if (bmcr < 0) 2214 return bmcr; 2215 2216 /* Autoneg is being started, therefore disregard BMSR value and 2217 * report link as down. 2218 */ 2219 if (bmcr & BMCR_ANRESTART) 2220 goto done; 2221 2222 /* The link state is latched low so that momentary link 2223 * drops can be detected. Do not double-read the status 2224 * in polling mode to detect such short link drops except 2225 * the link was already down. 2226 */ 2227 if (!phy_polling_mode(phydev) || !phydev->link) { 2228 status = phy_read(phydev, MII_BMSR); 2229 if (status < 0) 2230 return status; 2231 else if (status & BMSR_LSTATUS) 2232 goto done; 2233 } 2234 2235 /* Read link and autonegotiation status */ 2236 status = phy_read(phydev, MII_BMSR); 2237 if (status < 0) 2238 return status; 2239 done: 2240 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2241 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2242 2243 /* Consider the case that autoneg was started and "aneg complete" 2244 * bit has been reset, but "link up" bit not yet. 2245 */ 2246 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2247 phydev->link = 0; 2248 2249 return 0; 2250 } 2251 EXPORT_SYMBOL(genphy_update_link); 2252 2253 int genphy_read_lpa(struct phy_device *phydev) 2254 { 2255 int lpa, lpagb; 2256 2257 if (phydev->autoneg == AUTONEG_ENABLE) { 2258 if (!phydev->autoneg_complete) { 2259 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2260 0); 2261 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2262 return 0; 2263 } 2264 2265 if (phydev->is_gigabit_capable) { 2266 lpagb = phy_read(phydev, MII_STAT1000); 2267 if (lpagb < 0) 2268 return lpagb; 2269 2270 if (lpagb & LPA_1000MSFAIL) { 2271 int adv = phy_read(phydev, MII_CTRL1000); 2272 2273 if (adv < 0) 2274 return adv; 2275 2276 if (adv & CTL1000_ENABLE_MASTER) 2277 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2278 else 2279 phydev_err(phydev, "Master/Slave resolution failed\n"); 2280 return -ENOLINK; 2281 } 2282 2283 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2284 lpagb); 2285 } 2286 2287 lpa = phy_read(phydev, MII_LPA); 2288 if (lpa < 0) 2289 return lpa; 2290 2291 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2292 } else { 2293 linkmode_zero(phydev->lp_advertising); 2294 } 2295 2296 return 0; 2297 } 2298 EXPORT_SYMBOL(genphy_read_lpa); 2299 2300 /** 2301 * genphy_read_status_fixed - read the link parameters for !aneg mode 2302 * @phydev: target phy_device struct 2303 * 2304 * Read the current duplex and speed state for a PHY operating with 2305 * autonegotiation disabled. 2306 */ 2307 int genphy_read_status_fixed(struct phy_device *phydev) 2308 { 2309 int bmcr = phy_read(phydev, MII_BMCR); 2310 2311 if (bmcr < 0) 2312 return bmcr; 2313 2314 if (bmcr & BMCR_FULLDPLX) 2315 phydev->duplex = DUPLEX_FULL; 2316 else 2317 phydev->duplex = DUPLEX_HALF; 2318 2319 if (bmcr & BMCR_SPEED1000) 2320 phydev->speed = SPEED_1000; 2321 else if (bmcr & BMCR_SPEED100) 2322 phydev->speed = SPEED_100; 2323 else 2324 phydev->speed = SPEED_10; 2325 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(genphy_read_status_fixed); 2329 2330 /** 2331 * genphy_read_status - check the link status and update current link state 2332 * @phydev: target phy_device struct 2333 * 2334 * Description: Check the link, then figure out the current state 2335 * by comparing what we advertise with what the link partner 2336 * advertises. Start by checking the gigabit possibilities, 2337 * then move on to 10/100. 2338 */ 2339 int genphy_read_status(struct phy_device *phydev) 2340 { 2341 int err, old_link = phydev->link; 2342 2343 /* Update the link, but return if there was an error */ 2344 err = genphy_update_link(phydev); 2345 if (err) 2346 return err; 2347 2348 /* why bother the PHY if nothing can have changed */ 2349 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2350 return 0; 2351 2352 phydev->speed = SPEED_UNKNOWN; 2353 phydev->duplex = DUPLEX_UNKNOWN; 2354 phydev->pause = 0; 2355 phydev->asym_pause = 0; 2356 2357 err = genphy_read_master_slave(phydev); 2358 if (err < 0) 2359 return err; 2360 2361 err = genphy_read_lpa(phydev); 2362 if (err < 0) 2363 return err; 2364 2365 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2366 phy_resolve_aneg_linkmode(phydev); 2367 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2368 err = genphy_read_status_fixed(phydev); 2369 if (err < 0) 2370 return err; 2371 } 2372 2373 return 0; 2374 } 2375 EXPORT_SYMBOL(genphy_read_status); 2376 2377 /** 2378 * genphy_c37_read_status - check the link status and update current link state 2379 * @phydev: target phy_device struct 2380 * 2381 * Description: Check the link, then figure out the current state 2382 * by comparing what we advertise with what the link partner 2383 * advertises. This function is for Clause 37 1000Base-X mode. 2384 */ 2385 int genphy_c37_read_status(struct phy_device *phydev) 2386 { 2387 int lpa, err, old_link = phydev->link; 2388 2389 /* Update the link, but return if there was an error */ 2390 err = genphy_update_link(phydev); 2391 if (err) 2392 return err; 2393 2394 /* why bother the PHY if nothing can have changed */ 2395 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2396 return 0; 2397 2398 phydev->duplex = DUPLEX_UNKNOWN; 2399 phydev->pause = 0; 2400 phydev->asym_pause = 0; 2401 2402 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2403 lpa = phy_read(phydev, MII_LPA); 2404 if (lpa < 0) 2405 return lpa; 2406 2407 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2408 phydev->lp_advertising, lpa & LPA_LPACK); 2409 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2410 phydev->lp_advertising, lpa & LPA_1000XFULL); 2411 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2412 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2413 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2414 phydev->lp_advertising, 2415 lpa & LPA_1000XPAUSE_ASYM); 2416 2417 phy_resolve_aneg_linkmode(phydev); 2418 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2419 int bmcr = phy_read(phydev, MII_BMCR); 2420 2421 if (bmcr < 0) 2422 return bmcr; 2423 2424 if (bmcr & BMCR_FULLDPLX) 2425 phydev->duplex = DUPLEX_FULL; 2426 else 2427 phydev->duplex = DUPLEX_HALF; 2428 } 2429 2430 return 0; 2431 } 2432 EXPORT_SYMBOL(genphy_c37_read_status); 2433 2434 /** 2435 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2436 * @phydev: target phy_device struct 2437 * 2438 * Description: Perform a software PHY reset using the standard 2439 * BMCR_RESET bit and poll for the reset bit to be cleared. 2440 * 2441 * Returns: 0 on success, < 0 on failure 2442 */ 2443 int genphy_soft_reset(struct phy_device *phydev) 2444 { 2445 u16 res = BMCR_RESET; 2446 int ret; 2447 2448 if (phydev->autoneg == AUTONEG_ENABLE) 2449 res |= BMCR_ANRESTART; 2450 2451 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2452 if (ret < 0) 2453 return ret; 2454 2455 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2456 * to their default value. Therefore the POWER DOWN bit is supposed to 2457 * be cleared after soft reset. 2458 */ 2459 phydev->suspended = 0; 2460 2461 ret = phy_poll_reset(phydev); 2462 if (ret) 2463 return ret; 2464 2465 /* BMCR may be reset to defaults */ 2466 if (phydev->autoneg == AUTONEG_DISABLE) 2467 ret = genphy_setup_forced(phydev); 2468 2469 return ret; 2470 } 2471 EXPORT_SYMBOL(genphy_soft_reset); 2472 2473 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2474 { 2475 /* It seems there are cases where the interrupts are handled by another 2476 * entity (ie an IRQ controller embedded inside the PHY) and do not 2477 * need any other interraction from phylib. In this case, just trigger 2478 * the state machine directly. 2479 */ 2480 phy_trigger_machine(phydev); 2481 2482 return 0; 2483 } 2484 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2485 2486 /** 2487 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2488 * @phydev: target phy_device struct 2489 * 2490 * Description: Reads the PHY's abilities and populates 2491 * phydev->supported accordingly. 2492 * 2493 * Returns: 0 on success, < 0 on failure 2494 */ 2495 int genphy_read_abilities(struct phy_device *phydev) 2496 { 2497 int val; 2498 2499 linkmode_set_bit_array(phy_basic_ports_array, 2500 ARRAY_SIZE(phy_basic_ports_array), 2501 phydev->supported); 2502 2503 val = phy_read(phydev, MII_BMSR); 2504 if (val < 0) 2505 return val; 2506 2507 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2508 val & BMSR_ANEGCAPABLE); 2509 2510 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2511 val & BMSR_100FULL); 2512 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2513 val & BMSR_100HALF); 2514 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2515 val & BMSR_10FULL); 2516 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2517 val & BMSR_10HALF); 2518 2519 if (val & BMSR_ESTATEN) { 2520 val = phy_read(phydev, MII_ESTATUS); 2521 if (val < 0) 2522 return val; 2523 2524 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2525 phydev->supported, val & ESTATUS_1000_TFULL); 2526 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2527 phydev->supported, val & ESTATUS_1000_THALF); 2528 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2529 phydev->supported, val & ESTATUS_1000_XFULL); 2530 } 2531 2532 return 0; 2533 } 2534 EXPORT_SYMBOL(genphy_read_abilities); 2535 2536 /* This is used for the phy device which doesn't support the MMD extended 2537 * register access, but it does have side effect when we are trying to access 2538 * the MMD register via indirect method. 2539 */ 2540 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2541 { 2542 return -EOPNOTSUPP; 2543 } 2544 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2545 2546 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2547 u16 regnum, u16 val) 2548 { 2549 return -EOPNOTSUPP; 2550 } 2551 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2552 2553 int genphy_suspend(struct phy_device *phydev) 2554 { 2555 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2556 } 2557 EXPORT_SYMBOL(genphy_suspend); 2558 2559 int genphy_resume(struct phy_device *phydev) 2560 { 2561 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2562 } 2563 EXPORT_SYMBOL(genphy_resume); 2564 2565 int genphy_loopback(struct phy_device *phydev, bool enable) 2566 { 2567 return phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 2568 enable ? BMCR_LOOPBACK : 0); 2569 } 2570 EXPORT_SYMBOL(genphy_loopback); 2571 2572 /** 2573 * phy_remove_link_mode - Remove a supported link mode 2574 * @phydev: phy_device structure to remove link mode from 2575 * @link_mode: Link mode to be removed 2576 * 2577 * Description: Some MACs don't support all link modes which the PHY 2578 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2579 * to remove a link mode. 2580 */ 2581 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2582 { 2583 linkmode_clear_bit(link_mode, phydev->supported); 2584 phy_advertise_supported(phydev); 2585 } 2586 EXPORT_SYMBOL(phy_remove_link_mode); 2587 2588 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2589 { 2590 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2591 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2592 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2593 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2594 } 2595 2596 /** 2597 * phy_advertise_supported - Advertise all supported modes 2598 * @phydev: target phy_device struct 2599 * 2600 * Description: Called to advertise all supported modes, doesn't touch 2601 * pause mode advertising. 2602 */ 2603 void phy_advertise_supported(struct phy_device *phydev) 2604 { 2605 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2606 2607 linkmode_copy(new, phydev->supported); 2608 phy_copy_pause_bits(new, phydev->advertising); 2609 linkmode_copy(phydev->advertising, new); 2610 } 2611 EXPORT_SYMBOL(phy_advertise_supported); 2612 2613 /** 2614 * phy_support_sym_pause - Enable support of symmetrical pause 2615 * @phydev: target phy_device struct 2616 * 2617 * Description: Called by the MAC to indicate is supports symmetrical 2618 * Pause, but not asym pause. 2619 */ 2620 void phy_support_sym_pause(struct phy_device *phydev) 2621 { 2622 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2623 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2624 } 2625 EXPORT_SYMBOL(phy_support_sym_pause); 2626 2627 /** 2628 * phy_support_asym_pause - Enable support of asym pause 2629 * @phydev: target phy_device struct 2630 * 2631 * Description: Called by the MAC to indicate is supports Asym Pause. 2632 */ 2633 void phy_support_asym_pause(struct phy_device *phydev) 2634 { 2635 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2636 } 2637 EXPORT_SYMBOL(phy_support_asym_pause); 2638 2639 /** 2640 * phy_set_sym_pause - Configure symmetric Pause 2641 * @phydev: target phy_device struct 2642 * @rx: Receiver Pause is supported 2643 * @tx: Transmit Pause is supported 2644 * @autoneg: Auto neg should be used 2645 * 2646 * Description: Configure advertised Pause support depending on if 2647 * receiver pause and pause auto neg is supported. Generally called 2648 * from the set_pauseparam .ndo. 2649 */ 2650 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2651 bool autoneg) 2652 { 2653 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2654 2655 if (rx && tx && autoneg) 2656 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2657 phydev->supported); 2658 2659 linkmode_copy(phydev->advertising, phydev->supported); 2660 } 2661 EXPORT_SYMBOL(phy_set_sym_pause); 2662 2663 /** 2664 * phy_set_asym_pause - Configure Pause and Asym Pause 2665 * @phydev: target phy_device struct 2666 * @rx: Receiver Pause is supported 2667 * @tx: Transmit Pause is supported 2668 * 2669 * Description: Configure advertised Pause support depending on if 2670 * transmit and receiver pause is supported. If there has been a 2671 * change in adverting, trigger a new autoneg. Generally called from 2672 * the set_pauseparam .ndo. 2673 */ 2674 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2675 { 2676 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2677 2678 linkmode_copy(oldadv, phydev->advertising); 2679 linkmode_set_pause(phydev->advertising, tx, rx); 2680 2681 if (!linkmode_equal(oldadv, phydev->advertising) && 2682 phydev->autoneg) 2683 phy_start_aneg(phydev); 2684 } 2685 EXPORT_SYMBOL(phy_set_asym_pause); 2686 2687 /** 2688 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2689 * @phydev: phy_device struct 2690 * @pp: requested pause configuration 2691 * 2692 * Description: Test if the PHY/MAC combination supports the Pause 2693 * configuration the user is requesting. Returns True if it is 2694 * supported, false otherwise. 2695 */ 2696 bool phy_validate_pause(struct phy_device *phydev, 2697 struct ethtool_pauseparam *pp) 2698 { 2699 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2700 phydev->supported) && pp->rx_pause) 2701 return false; 2702 2703 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2704 phydev->supported) && 2705 pp->rx_pause != pp->tx_pause) 2706 return false; 2707 2708 return true; 2709 } 2710 EXPORT_SYMBOL(phy_validate_pause); 2711 2712 /** 2713 * phy_get_pause - resolve negotiated pause modes 2714 * @phydev: phy_device struct 2715 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2716 * enabled. 2717 * @rx_pause: pointer to bool to indicate whether receive pause should be 2718 * enabled. 2719 * 2720 * Resolve and return the flow control modes according to the negotiation 2721 * result. This includes checking that we are operating in full duplex mode. 2722 * See linkmode_resolve_pause() for further details. 2723 */ 2724 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2725 { 2726 if (phydev->duplex != DUPLEX_FULL) { 2727 *tx_pause = false; 2728 *rx_pause = false; 2729 return; 2730 } 2731 2732 return linkmode_resolve_pause(phydev->advertising, 2733 phydev->lp_advertising, 2734 tx_pause, rx_pause); 2735 } 2736 EXPORT_SYMBOL(phy_get_pause); 2737 2738 #if IS_ENABLED(CONFIG_OF_MDIO) 2739 static int phy_get_int_delay_property(struct device *dev, const char *name) 2740 { 2741 s32 int_delay; 2742 int ret; 2743 2744 ret = device_property_read_u32(dev, name, &int_delay); 2745 if (ret) 2746 return ret; 2747 2748 return int_delay; 2749 } 2750 #else 2751 static int phy_get_int_delay_property(struct device *dev, const char *name) 2752 { 2753 return -EINVAL; 2754 } 2755 #endif 2756 2757 /** 2758 * phy_get_internal_delay - returns the index of the internal delay 2759 * @phydev: phy_device struct 2760 * @dev: pointer to the devices device struct 2761 * @delay_values: array of delays the PHY supports 2762 * @size: the size of the delay array 2763 * @is_rx: boolean to indicate to get the rx internal delay 2764 * 2765 * Returns the index within the array of internal delay passed in. 2766 * If the device property is not present then the interface type is checked 2767 * if the interface defines use of internal delay then a 1 is returned otherwise 2768 * a 0 is returned. 2769 * The array must be in ascending order. If PHY does not have an ascending order 2770 * array then size = 0 and the value of the delay property is returned. 2771 * Return -EINVAL if the delay is invalid or cannot be found. 2772 */ 2773 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2774 const int *delay_values, int size, bool is_rx) 2775 { 2776 s32 delay; 2777 int i; 2778 2779 if (is_rx) { 2780 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2781 if (delay < 0 && size == 0) { 2782 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2783 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2784 return 1; 2785 else 2786 return 0; 2787 } 2788 2789 } else { 2790 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2791 if (delay < 0 && size == 0) { 2792 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2793 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2794 return 1; 2795 else 2796 return 0; 2797 } 2798 } 2799 2800 if (delay < 0) 2801 return delay; 2802 2803 if (delay && size == 0) 2804 return delay; 2805 2806 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2807 phydev_err(phydev, "Delay %d is out of range\n", delay); 2808 return -EINVAL; 2809 } 2810 2811 if (delay == delay_values[0]) 2812 return 0; 2813 2814 for (i = 1; i < size; i++) { 2815 if (delay == delay_values[i]) 2816 return i; 2817 2818 /* Find an approximate index by looking up the table */ 2819 if (delay > delay_values[i - 1] && 2820 delay < delay_values[i]) { 2821 if (delay - delay_values[i - 1] < 2822 delay_values[i] - delay) 2823 return i - 1; 2824 else 2825 return i; 2826 } 2827 } 2828 2829 phydev_err(phydev, "error finding internal delay index for %d\n", 2830 delay); 2831 2832 return -EINVAL; 2833 } 2834 EXPORT_SYMBOL(phy_get_internal_delay); 2835 2836 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2837 { 2838 return phydrv->config_intr && phydrv->handle_interrupt; 2839 } 2840 2841 /** 2842 * phy_probe - probe and init a PHY device 2843 * @dev: device to probe and init 2844 * 2845 * Description: Take care of setting up the phy_device structure, 2846 * set the state to READY (the driver's init function should 2847 * set it to STARTING if needed). 2848 */ 2849 static int phy_probe(struct device *dev) 2850 { 2851 struct phy_device *phydev = to_phy_device(dev); 2852 struct device_driver *drv = phydev->mdio.dev.driver; 2853 struct phy_driver *phydrv = to_phy_driver(drv); 2854 int err = 0; 2855 2856 phydev->drv = phydrv; 2857 2858 /* Disable the interrupt if the PHY doesn't support it 2859 * but the interrupt is still a valid one 2860 */ 2861 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 2862 phydev->irq = PHY_POLL; 2863 2864 if (phydrv->flags & PHY_IS_INTERNAL) 2865 phydev->is_internal = true; 2866 2867 mutex_lock(&phydev->lock); 2868 2869 /* Deassert the reset signal */ 2870 phy_device_reset(phydev, 0); 2871 2872 if (phydev->drv->probe) { 2873 err = phydev->drv->probe(phydev); 2874 if (err) 2875 goto out; 2876 } 2877 2878 /* Start out supporting everything. Eventually, 2879 * a controller will attach, and may modify one 2880 * or both of these values 2881 */ 2882 if (phydrv->features) { 2883 linkmode_copy(phydev->supported, phydrv->features); 2884 } else if (phydrv->get_features) { 2885 err = phydrv->get_features(phydev); 2886 } else if (phydev->is_c45) { 2887 err = genphy_c45_pma_read_abilities(phydev); 2888 } else { 2889 err = genphy_read_abilities(phydev); 2890 } 2891 2892 if (err) 2893 goto out; 2894 2895 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2896 phydev->supported)) 2897 phydev->autoneg = 0; 2898 2899 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2900 phydev->supported)) 2901 phydev->is_gigabit_capable = 1; 2902 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2903 phydev->supported)) 2904 phydev->is_gigabit_capable = 1; 2905 2906 of_set_phy_supported(phydev); 2907 phy_advertise_supported(phydev); 2908 2909 /* Get the EEE modes we want to prohibit. We will ask 2910 * the PHY stop advertising these mode later on 2911 */ 2912 of_set_phy_eee_broken(phydev); 2913 2914 /* The Pause Frame bits indicate that the PHY can support passing 2915 * pause frames. During autonegotiation, the PHYs will determine if 2916 * they should allow pause frames to pass. The MAC driver should then 2917 * use that result to determine whether to enable flow control via 2918 * pause frames. 2919 * 2920 * Normally, PHY drivers should not set the Pause bits, and instead 2921 * allow phylib to do that. However, there may be some situations 2922 * (e.g. hardware erratum) where the driver wants to set only one 2923 * of these bits. 2924 */ 2925 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 2926 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 2927 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2928 phydev->supported); 2929 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2930 phydev->supported); 2931 } 2932 2933 /* Set the state to READY by default */ 2934 phydev->state = PHY_READY; 2935 2936 out: 2937 /* Assert the reset signal */ 2938 if (err) 2939 phy_device_reset(phydev, 1); 2940 2941 mutex_unlock(&phydev->lock); 2942 2943 return err; 2944 } 2945 2946 static int phy_remove(struct device *dev) 2947 { 2948 struct phy_device *phydev = to_phy_device(dev); 2949 2950 cancel_delayed_work_sync(&phydev->state_queue); 2951 2952 mutex_lock(&phydev->lock); 2953 phydev->state = PHY_DOWN; 2954 mutex_unlock(&phydev->lock); 2955 2956 sfp_bus_del_upstream(phydev->sfp_bus); 2957 phydev->sfp_bus = NULL; 2958 2959 if (phydev->drv && phydev->drv->remove) 2960 phydev->drv->remove(phydev); 2961 2962 /* Assert the reset signal */ 2963 phy_device_reset(phydev, 1); 2964 2965 phydev->drv = NULL; 2966 2967 return 0; 2968 } 2969 2970 static void phy_shutdown(struct device *dev) 2971 { 2972 struct phy_device *phydev = to_phy_device(dev); 2973 2974 phy_disable_interrupts(phydev); 2975 } 2976 2977 /** 2978 * phy_driver_register - register a phy_driver with the PHY layer 2979 * @new_driver: new phy_driver to register 2980 * @owner: module owning this PHY 2981 */ 2982 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 2983 { 2984 int retval; 2985 2986 /* Either the features are hard coded, or dynamically 2987 * determined. It cannot be both. 2988 */ 2989 if (WARN_ON(new_driver->features && new_driver->get_features)) { 2990 pr_err("%s: features and get_features must not both be set\n", 2991 new_driver->name); 2992 return -EINVAL; 2993 } 2994 2995 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 2996 new_driver->mdiodrv.driver.name = new_driver->name; 2997 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 2998 new_driver->mdiodrv.driver.probe = phy_probe; 2999 new_driver->mdiodrv.driver.remove = phy_remove; 3000 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3001 new_driver->mdiodrv.driver.owner = owner; 3002 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3003 3004 retval = driver_register(&new_driver->mdiodrv.driver); 3005 if (retval) { 3006 pr_err("%s: Error %d in registering driver\n", 3007 new_driver->name, retval); 3008 3009 return retval; 3010 } 3011 3012 pr_debug("%s: Registered new driver\n", new_driver->name); 3013 3014 return 0; 3015 } 3016 EXPORT_SYMBOL(phy_driver_register); 3017 3018 int phy_drivers_register(struct phy_driver *new_driver, int n, 3019 struct module *owner) 3020 { 3021 int i, ret = 0; 3022 3023 for (i = 0; i < n; i++) { 3024 ret = phy_driver_register(new_driver + i, owner); 3025 if (ret) { 3026 while (i-- > 0) 3027 phy_driver_unregister(new_driver + i); 3028 break; 3029 } 3030 } 3031 return ret; 3032 } 3033 EXPORT_SYMBOL(phy_drivers_register); 3034 3035 void phy_driver_unregister(struct phy_driver *drv) 3036 { 3037 driver_unregister(&drv->mdiodrv.driver); 3038 } 3039 EXPORT_SYMBOL(phy_driver_unregister); 3040 3041 void phy_drivers_unregister(struct phy_driver *drv, int n) 3042 { 3043 int i; 3044 3045 for (i = 0; i < n; i++) 3046 phy_driver_unregister(drv + i); 3047 } 3048 EXPORT_SYMBOL(phy_drivers_unregister); 3049 3050 static struct phy_driver genphy_driver = { 3051 .phy_id = 0xffffffff, 3052 .phy_id_mask = 0xffffffff, 3053 .name = "Generic PHY", 3054 .get_features = genphy_read_abilities, 3055 .suspend = genphy_suspend, 3056 .resume = genphy_resume, 3057 .set_loopback = genphy_loopback, 3058 }; 3059 3060 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3061 .get_sset_count = phy_ethtool_get_sset_count, 3062 .get_strings = phy_ethtool_get_strings, 3063 .get_stats = phy_ethtool_get_stats, 3064 .start_cable_test = phy_start_cable_test, 3065 .start_cable_test_tdr = phy_start_cable_test_tdr, 3066 }; 3067 3068 static int __init phy_init(void) 3069 { 3070 int rc; 3071 3072 rc = mdio_bus_init(); 3073 if (rc) 3074 return rc; 3075 3076 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3077 features_init(); 3078 3079 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3080 if (rc) 3081 goto err_c45; 3082 3083 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3084 if (rc) { 3085 phy_driver_unregister(&genphy_c45_driver); 3086 err_c45: 3087 mdio_bus_exit(); 3088 } 3089 3090 return rc; 3091 } 3092 3093 static void __exit phy_exit(void) 3094 { 3095 phy_driver_unregister(&genphy_c45_driver); 3096 phy_driver_unregister(&genphy_driver); 3097 mdio_bus_exit(); 3098 ethtool_set_ethtool_phy_ops(NULL); 3099 } 3100 3101 subsys_initcall(phy_init); 3102 module_exit(phy_exit); 3103