xref: /openbmc/linux/drivers/net/phy/phy_device.c (revision a80de066)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mdio.h>
23 #include <linux/mii.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/phy.h>
28 #include <linux/phy_led_triggers.h>
29 #include <linux/property.h>
30 #include <linux/sfp.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/uaccess.h>
35 #include <linux/unistd.h>
36 
37 MODULE_DESCRIPTION("PHY library");
38 MODULE_AUTHOR("Andy Fleming");
39 MODULE_LICENSE("GPL");
40 
41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
42 EXPORT_SYMBOL_GPL(phy_basic_features);
43 
44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
45 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_gbit_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_10gbit_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
61 
62 const int phy_basic_ports_array[3] = {
63 	ETHTOOL_LINK_MODE_Autoneg_BIT,
64 	ETHTOOL_LINK_MODE_TP_BIT,
65 	ETHTOOL_LINK_MODE_MII_BIT,
66 };
67 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
68 
69 const int phy_fibre_port_array[1] = {
70 	ETHTOOL_LINK_MODE_FIBRE_BIT,
71 };
72 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
73 
74 const int phy_all_ports_features_array[7] = {
75 	ETHTOOL_LINK_MODE_Autoneg_BIT,
76 	ETHTOOL_LINK_MODE_TP_BIT,
77 	ETHTOOL_LINK_MODE_MII_BIT,
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 	ETHTOOL_LINK_MODE_AUI_BIT,
80 	ETHTOOL_LINK_MODE_BNC_BIT,
81 	ETHTOOL_LINK_MODE_Backplane_BIT,
82 };
83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
84 
85 const int phy_10_100_features_array[4] = {
86 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
87 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
88 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
89 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
92 
93 const int phy_basic_t1_features_array[3] = {
94 	ETHTOOL_LINK_MODE_TP_BIT,
95 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
97 };
98 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
99 
100 const int phy_gbit_features_array[2] = {
101 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
102 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
103 };
104 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
105 
106 const int phy_10gbit_features_array[1] = {
107 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
108 };
109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
110 
111 static const int phy_10gbit_fec_features_array[1] = {
112 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
113 };
114 
115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
117 
118 static const int phy_10gbit_full_features_array[] = {
119 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
120 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
121 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
122 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
123 };
124 
125 static void features_init(void)
126 {
127 	/* 10/100 half/full*/
128 	linkmode_set_bit_array(phy_basic_ports_array,
129 			       ARRAY_SIZE(phy_basic_ports_array),
130 			       phy_basic_features);
131 	linkmode_set_bit_array(phy_10_100_features_array,
132 			       ARRAY_SIZE(phy_10_100_features_array),
133 			       phy_basic_features);
134 
135 	/* 100 full, TP */
136 	linkmode_set_bit_array(phy_basic_t1_features_array,
137 			       ARRAY_SIZE(phy_basic_t1_features_array),
138 			       phy_basic_t1_features);
139 
140 	/* 10/100 half/full + 1000 half/full */
141 	linkmode_set_bit_array(phy_basic_ports_array,
142 			       ARRAY_SIZE(phy_basic_ports_array),
143 			       phy_gbit_features);
144 	linkmode_set_bit_array(phy_10_100_features_array,
145 			       ARRAY_SIZE(phy_10_100_features_array),
146 			       phy_gbit_features);
147 	linkmode_set_bit_array(phy_gbit_features_array,
148 			       ARRAY_SIZE(phy_gbit_features_array),
149 			       phy_gbit_features);
150 
151 	/* 10/100 half/full + 1000 half/full + fibre*/
152 	linkmode_set_bit_array(phy_basic_ports_array,
153 			       ARRAY_SIZE(phy_basic_ports_array),
154 			       phy_gbit_fibre_features);
155 	linkmode_set_bit_array(phy_10_100_features_array,
156 			       ARRAY_SIZE(phy_10_100_features_array),
157 			       phy_gbit_fibre_features);
158 	linkmode_set_bit_array(phy_gbit_features_array,
159 			       ARRAY_SIZE(phy_gbit_features_array),
160 			       phy_gbit_fibre_features);
161 	linkmode_set_bit_array(phy_fibre_port_array,
162 			       ARRAY_SIZE(phy_fibre_port_array),
163 			       phy_gbit_fibre_features);
164 
165 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
166 	linkmode_set_bit_array(phy_all_ports_features_array,
167 			       ARRAY_SIZE(phy_all_ports_features_array),
168 			       phy_gbit_all_ports_features);
169 	linkmode_set_bit_array(phy_10_100_features_array,
170 			       ARRAY_SIZE(phy_10_100_features_array),
171 			       phy_gbit_all_ports_features);
172 	linkmode_set_bit_array(phy_gbit_features_array,
173 			       ARRAY_SIZE(phy_gbit_features_array),
174 			       phy_gbit_all_ports_features);
175 
176 	/* 10/100 half/full + 1000 half/full + 10G full*/
177 	linkmode_set_bit_array(phy_all_ports_features_array,
178 			       ARRAY_SIZE(phy_all_ports_features_array),
179 			       phy_10gbit_features);
180 	linkmode_set_bit_array(phy_10_100_features_array,
181 			       ARRAY_SIZE(phy_10_100_features_array),
182 			       phy_10gbit_features);
183 	linkmode_set_bit_array(phy_gbit_features_array,
184 			       ARRAY_SIZE(phy_gbit_features_array),
185 			       phy_10gbit_features);
186 	linkmode_set_bit_array(phy_10gbit_features_array,
187 			       ARRAY_SIZE(phy_10gbit_features_array),
188 			       phy_10gbit_features);
189 
190 	/* 10/100/1000/10G full */
191 	linkmode_set_bit_array(phy_all_ports_features_array,
192 			       ARRAY_SIZE(phy_all_ports_features_array),
193 			       phy_10gbit_full_features);
194 	linkmode_set_bit_array(phy_10gbit_full_features_array,
195 			       ARRAY_SIZE(phy_10gbit_full_features_array),
196 			       phy_10gbit_full_features);
197 	/* 10G FEC only */
198 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
199 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
200 			       phy_10gbit_fec_features);
201 }
202 
203 void phy_device_free(struct phy_device *phydev)
204 {
205 	put_device(&phydev->mdio.dev);
206 }
207 EXPORT_SYMBOL(phy_device_free);
208 
209 static void phy_mdio_device_free(struct mdio_device *mdiodev)
210 {
211 	struct phy_device *phydev;
212 
213 	phydev = container_of(mdiodev, struct phy_device, mdio);
214 	phy_device_free(phydev);
215 }
216 
217 static void phy_device_release(struct device *dev)
218 {
219 	kfree(to_phy_device(dev));
220 }
221 
222 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
223 {
224 	struct phy_device *phydev;
225 
226 	phydev = container_of(mdiodev, struct phy_device, mdio);
227 	phy_device_remove(phydev);
228 }
229 
230 static struct phy_driver genphy_driver;
231 
232 static LIST_HEAD(phy_fixup_list);
233 static DEFINE_MUTEX(phy_fixup_lock);
234 
235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
236 {
237 	struct device_driver *drv = phydev->mdio.dev.driver;
238 	struct phy_driver *phydrv = to_phy_driver(drv);
239 	struct net_device *netdev = phydev->attached_dev;
240 
241 	if (!drv || !phydrv->suspend)
242 		return false;
243 
244 	/* PHY not attached? May suspend if the PHY has not already been
245 	 * suspended as part of a prior call to phy_disconnect() ->
246 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
247 	 * MDIO bus driver and clock gated at this point.
248 	 */
249 	if (!netdev)
250 		goto out;
251 
252 	if (netdev->wol_enabled)
253 		return false;
254 
255 	/* As long as not all affected network drivers support the
256 	 * wol_enabled flag, let's check for hints that WoL is enabled.
257 	 * Don't suspend PHY if the attached netdev parent may wake up.
258 	 * The parent may point to a PCI device, as in tg3 driver.
259 	 */
260 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
261 		return false;
262 
263 	/* Also don't suspend PHY if the netdev itself may wakeup. This
264 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
265 	 * e.g. SoC devices.
266 	 */
267 	if (device_may_wakeup(&netdev->dev))
268 		return false;
269 
270 out:
271 	return !phydev->suspended;
272 }
273 
274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
275 {
276 	struct phy_device *phydev = to_phy_device(dev);
277 
278 	if (phydev->mac_managed_pm)
279 		return 0;
280 
281 	/* Wakeup interrupts may occur during the system sleep transition when
282 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
283 	 * has resumed. Wait for concurrent interrupt handler to complete.
284 	 */
285 	if (phy_interrupt_is_valid(phydev)) {
286 		phydev->irq_suspended = 1;
287 		synchronize_irq(phydev->irq);
288 	}
289 
290 	/* We must stop the state machine manually, otherwise it stops out of
291 	 * control, possibly with the phydev->lock held. Upon resume, netdev
292 	 * may call phy routines that try to grab the same lock, and that may
293 	 * lead to a deadlock.
294 	 */
295 	if (phydev->attached_dev && phydev->adjust_link)
296 		phy_stop_machine(phydev);
297 
298 	if (!mdio_bus_phy_may_suspend(phydev))
299 		return 0;
300 
301 	phydev->suspended_by_mdio_bus = 1;
302 
303 	return phy_suspend(phydev);
304 }
305 
306 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
307 {
308 	struct phy_device *phydev = to_phy_device(dev);
309 	int ret;
310 
311 	if (phydev->mac_managed_pm)
312 		return 0;
313 
314 	if (!phydev->suspended_by_mdio_bus)
315 		goto no_resume;
316 
317 	phydev->suspended_by_mdio_bus = 0;
318 
319 	/* If we managed to get here with the PHY state machine in a state
320 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
321 	 * that something went wrong and we should most likely be using
322 	 * MAC managed PM, but we are not.
323 	 */
324 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
325 		phydev->state != PHY_UP);
326 
327 	ret = phy_init_hw(phydev);
328 	if (ret < 0)
329 		return ret;
330 
331 	ret = phy_resume(phydev);
332 	if (ret < 0)
333 		return ret;
334 no_resume:
335 	if (phy_interrupt_is_valid(phydev)) {
336 		phydev->irq_suspended = 0;
337 		synchronize_irq(phydev->irq);
338 
339 		/* Rerun interrupts which were postponed by phy_interrupt()
340 		 * because they occurred during the system sleep transition.
341 		 */
342 		if (phydev->irq_rerun) {
343 			phydev->irq_rerun = 0;
344 			enable_irq(phydev->irq);
345 			irq_wake_thread(phydev->irq, phydev);
346 		}
347 	}
348 
349 	if (phydev->attached_dev && phydev->adjust_link)
350 		phy_start_machine(phydev);
351 
352 	return 0;
353 }
354 
355 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
356 			 mdio_bus_phy_resume);
357 
358 /**
359  * phy_register_fixup - creates a new phy_fixup and adds it to the list
360  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
361  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
362  *	It can also be PHY_ANY_UID
363  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
364  *	comparison
365  * @run: The actual code to be run when a matching PHY is found
366  */
367 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
368 		       int (*run)(struct phy_device *))
369 {
370 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
371 
372 	if (!fixup)
373 		return -ENOMEM;
374 
375 	strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
376 	fixup->phy_uid = phy_uid;
377 	fixup->phy_uid_mask = phy_uid_mask;
378 	fixup->run = run;
379 
380 	mutex_lock(&phy_fixup_lock);
381 	list_add_tail(&fixup->list, &phy_fixup_list);
382 	mutex_unlock(&phy_fixup_lock);
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL(phy_register_fixup);
387 
388 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
389 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
390 			       int (*run)(struct phy_device *))
391 {
392 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
393 }
394 EXPORT_SYMBOL(phy_register_fixup_for_uid);
395 
396 /* Registers a fixup to be run on the PHY with id string bus_id */
397 int phy_register_fixup_for_id(const char *bus_id,
398 			      int (*run)(struct phy_device *))
399 {
400 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
401 }
402 EXPORT_SYMBOL(phy_register_fixup_for_id);
403 
404 /**
405  * phy_unregister_fixup - remove a phy_fixup from the list
406  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
407  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
408  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
409  */
410 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
411 {
412 	struct list_head *pos, *n;
413 	struct phy_fixup *fixup;
414 	int ret;
415 
416 	ret = -ENODEV;
417 
418 	mutex_lock(&phy_fixup_lock);
419 	list_for_each_safe(pos, n, &phy_fixup_list) {
420 		fixup = list_entry(pos, struct phy_fixup, list);
421 
422 		if ((!strcmp(fixup->bus_id, bus_id)) &&
423 		    ((fixup->phy_uid & phy_uid_mask) ==
424 		     (phy_uid & phy_uid_mask))) {
425 			list_del(&fixup->list);
426 			kfree(fixup);
427 			ret = 0;
428 			break;
429 		}
430 	}
431 	mutex_unlock(&phy_fixup_lock);
432 
433 	return ret;
434 }
435 EXPORT_SYMBOL(phy_unregister_fixup);
436 
437 /* Unregisters a fixup of any PHY with the UID in phy_uid */
438 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
439 {
440 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
441 }
442 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
443 
444 /* Unregisters a fixup of the PHY with id string bus_id */
445 int phy_unregister_fixup_for_id(const char *bus_id)
446 {
447 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
448 }
449 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
450 
451 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
452  * Fixups can be set to match any in one or more fields.
453  */
454 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
455 {
456 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
457 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
458 			return 0;
459 
460 	if ((fixup->phy_uid & fixup->phy_uid_mask) !=
461 	    (phydev->phy_id & fixup->phy_uid_mask))
462 		if (fixup->phy_uid != PHY_ANY_UID)
463 			return 0;
464 
465 	return 1;
466 }
467 
468 /* Runs any matching fixups for this phydev */
469 static int phy_scan_fixups(struct phy_device *phydev)
470 {
471 	struct phy_fixup *fixup;
472 
473 	mutex_lock(&phy_fixup_lock);
474 	list_for_each_entry(fixup, &phy_fixup_list, list) {
475 		if (phy_needs_fixup(phydev, fixup)) {
476 			int err = fixup->run(phydev);
477 
478 			if (err < 0) {
479 				mutex_unlock(&phy_fixup_lock);
480 				return err;
481 			}
482 			phydev->has_fixups = true;
483 		}
484 	}
485 	mutex_unlock(&phy_fixup_lock);
486 
487 	return 0;
488 }
489 
490 static int phy_bus_match(struct device *dev, struct device_driver *drv)
491 {
492 	struct phy_device *phydev = to_phy_device(dev);
493 	struct phy_driver *phydrv = to_phy_driver(drv);
494 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
495 	int i;
496 
497 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
498 		return 0;
499 
500 	if (phydrv->match_phy_device)
501 		return phydrv->match_phy_device(phydev);
502 
503 	if (phydev->is_c45) {
504 		for (i = 1; i < num_ids; i++) {
505 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
506 				continue;
507 
508 			if ((phydrv->phy_id & phydrv->phy_id_mask) ==
509 			    (phydev->c45_ids.device_ids[i] &
510 			     phydrv->phy_id_mask))
511 				return 1;
512 		}
513 		return 0;
514 	} else {
515 		return (phydrv->phy_id & phydrv->phy_id_mask) ==
516 			(phydev->phy_id & phydrv->phy_id_mask);
517 	}
518 }
519 
520 static ssize_t
521 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
522 {
523 	struct phy_device *phydev = to_phy_device(dev);
524 
525 	return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
526 }
527 static DEVICE_ATTR_RO(phy_id);
528 
529 static ssize_t
530 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
531 {
532 	struct phy_device *phydev = to_phy_device(dev);
533 	const char *mode = NULL;
534 
535 	if (phy_is_internal(phydev))
536 		mode = "internal";
537 	else
538 		mode = phy_modes(phydev->interface);
539 
540 	return sprintf(buf, "%s\n", mode);
541 }
542 static DEVICE_ATTR_RO(phy_interface);
543 
544 static ssize_t
545 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
546 		    char *buf)
547 {
548 	struct phy_device *phydev = to_phy_device(dev);
549 
550 	return sprintf(buf, "%d\n", phydev->has_fixups);
551 }
552 static DEVICE_ATTR_RO(phy_has_fixups);
553 
554 static ssize_t phy_dev_flags_show(struct device *dev,
555 				  struct device_attribute *attr,
556 				  char *buf)
557 {
558 	struct phy_device *phydev = to_phy_device(dev);
559 
560 	return sprintf(buf, "0x%08x\n", phydev->dev_flags);
561 }
562 static DEVICE_ATTR_RO(phy_dev_flags);
563 
564 static struct attribute *phy_dev_attrs[] = {
565 	&dev_attr_phy_id.attr,
566 	&dev_attr_phy_interface.attr,
567 	&dev_attr_phy_has_fixups.attr,
568 	&dev_attr_phy_dev_flags.attr,
569 	NULL,
570 };
571 ATTRIBUTE_GROUPS(phy_dev);
572 
573 static const struct device_type mdio_bus_phy_type = {
574 	.name = "PHY",
575 	.groups = phy_dev_groups,
576 	.release = phy_device_release,
577 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
578 };
579 
580 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
581 {
582 	int ret;
583 
584 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
585 			     MDIO_ID_ARGS(phy_id));
586 	/* We only check for failures in executing the usermode binary,
587 	 * not whether a PHY driver module exists for the PHY ID.
588 	 * Accept -ENOENT because this may occur in case no initramfs exists,
589 	 * then modprobe isn't available.
590 	 */
591 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
592 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
593 			   ret, (unsigned long)phy_id);
594 		return ret;
595 	}
596 
597 	return 0;
598 }
599 
600 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
601 				     bool is_c45,
602 				     struct phy_c45_device_ids *c45_ids)
603 {
604 	struct phy_device *dev;
605 	struct mdio_device *mdiodev;
606 	int ret = 0;
607 
608 	/* We allocate the device, and initialize the default values */
609 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
610 	if (!dev)
611 		return ERR_PTR(-ENOMEM);
612 
613 	mdiodev = &dev->mdio;
614 	mdiodev->dev.parent = &bus->dev;
615 	mdiodev->dev.bus = &mdio_bus_type;
616 	mdiodev->dev.type = &mdio_bus_phy_type;
617 	mdiodev->bus = bus;
618 	mdiodev->bus_match = phy_bus_match;
619 	mdiodev->addr = addr;
620 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
621 	mdiodev->device_free = phy_mdio_device_free;
622 	mdiodev->device_remove = phy_mdio_device_remove;
623 
624 	dev->speed = SPEED_UNKNOWN;
625 	dev->duplex = DUPLEX_UNKNOWN;
626 	dev->pause = 0;
627 	dev->asym_pause = 0;
628 	dev->link = 0;
629 	dev->port = PORT_TP;
630 	dev->interface = PHY_INTERFACE_MODE_GMII;
631 
632 	dev->autoneg = AUTONEG_ENABLE;
633 
634 	dev->pma_extable = -ENODATA;
635 	dev->is_c45 = is_c45;
636 	dev->phy_id = phy_id;
637 	if (c45_ids)
638 		dev->c45_ids = *c45_ids;
639 	dev->irq = bus->irq[addr];
640 
641 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
642 	device_initialize(&mdiodev->dev);
643 
644 	dev->state = PHY_DOWN;
645 
646 	mutex_init(&dev->lock);
647 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
648 
649 	/* Request the appropriate module unconditionally; don't
650 	 * bother trying to do so only if it isn't already loaded,
651 	 * because that gets complicated. A hotplug event would have
652 	 * done an unconditional modprobe anyway.
653 	 * We don't do normal hotplug because it won't work for MDIO
654 	 * -- because it relies on the device staying around for long
655 	 * enough for the driver to get loaded. With MDIO, the NIC
656 	 * driver will get bored and give up as soon as it finds that
657 	 * there's no driver _already_ loaded.
658 	 */
659 	if (is_c45 && c45_ids) {
660 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
661 		int i;
662 
663 		for (i = 1; i < num_ids; i++) {
664 			if (c45_ids->device_ids[i] == 0xffffffff)
665 				continue;
666 
667 			ret = phy_request_driver_module(dev,
668 						c45_ids->device_ids[i]);
669 			if (ret)
670 				break;
671 		}
672 	} else {
673 		ret = phy_request_driver_module(dev, phy_id);
674 	}
675 
676 	if (ret) {
677 		put_device(&mdiodev->dev);
678 		dev = ERR_PTR(ret);
679 	}
680 
681 	return dev;
682 }
683 EXPORT_SYMBOL(phy_device_create);
684 
685 /* phy_c45_probe_present - checks to see if a MMD is present in the package
686  * @bus: the target MII bus
687  * @prtad: PHY package address on the MII bus
688  * @devad: PHY device (MMD) address
689  *
690  * Read the MDIO_STAT2 register, and check whether a device is responding
691  * at this address.
692  *
693  * Returns: negative error number on bus access error, zero if no device
694  * is responding, or positive if a device is present.
695  */
696 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
697 {
698 	int stat2;
699 
700 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
701 	if (stat2 < 0)
702 		return stat2;
703 
704 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
705 }
706 
707 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
708  * @bus: the target MII bus
709  * @addr: PHY address on the MII bus
710  * @dev_addr: MMD address in the PHY.
711  * @devices_in_package: where to store the devices in package information.
712  *
713  * Description: reads devices in package registers of a MMD at @dev_addr
714  * from PHY at @addr on @bus.
715  *
716  * Returns: 0 on success, -EIO on failure.
717  */
718 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
719 				   u32 *devices_in_package)
720 {
721 	int phy_reg;
722 
723 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
724 	if (phy_reg < 0)
725 		return -EIO;
726 	*devices_in_package = phy_reg << 16;
727 
728 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
729 	if (phy_reg < 0)
730 		return -EIO;
731 	*devices_in_package |= phy_reg;
732 
733 	return 0;
734 }
735 
736 /**
737  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
738  * @bus: the target MII bus
739  * @addr: PHY address on the MII bus
740  * @c45_ids: where to store the c45 ID information.
741  *
742  * Read the PHY "devices in package". If this appears to be valid, read
743  * the PHY identifiers for each device. Return the "devices in package"
744  * and identifiers in @c45_ids.
745  *
746  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
747  * the "devices in package" is invalid.
748  */
749 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
750 			   struct phy_c45_device_ids *c45_ids)
751 {
752 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
753 	u32 devs_in_pkg = 0;
754 	int i, ret, phy_reg;
755 
756 	/* Find first non-zero Devices In package. Device zero is reserved
757 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
758 	 */
759 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
760 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
761 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
762 			/* Check that there is a device present at this
763 			 * address before reading the devices-in-package
764 			 * register to avoid reading garbage from the PHY.
765 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
766 			 * compliant.
767 			 */
768 			ret = phy_c45_probe_present(bus, addr, i);
769 			if (ret < 0)
770 				return -EIO;
771 
772 			if (!ret)
773 				continue;
774 		}
775 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
776 		if (phy_reg < 0)
777 			return -EIO;
778 	}
779 
780 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
781 		/* If mostly Fs, there is no device there, then let's probe
782 		 * MMD 0, as some 10G PHYs have zero Devices In package,
783 		 * e.g. Cortina CS4315/CS4340 PHY.
784 		 */
785 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
786 		if (phy_reg < 0)
787 			return -EIO;
788 
789 		/* no device there, let's get out of here */
790 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
791 			return -ENODEV;
792 	}
793 
794 	/* Now probe Device Identifiers for each device present. */
795 	for (i = 1; i < num_ids; i++) {
796 		if (!(devs_in_pkg & (1 << i)))
797 			continue;
798 
799 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
800 			/* Probe the "Device Present" bits for the vendor MMDs
801 			 * to ignore these if they do not contain IEEE 802.3
802 			 * registers.
803 			 */
804 			ret = phy_c45_probe_present(bus, addr, i);
805 			if (ret < 0)
806 				return ret;
807 
808 			if (!ret)
809 				continue;
810 		}
811 
812 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
813 		if (phy_reg < 0)
814 			return -EIO;
815 		c45_ids->device_ids[i] = phy_reg << 16;
816 
817 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
818 		if (phy_reg < 0)
819 			return -EIO;
820 		c45_ids->device_ids[i] |= phy_reg;
821 	}
822 
823 	c45_ids->devices_in_package = devs_in_pkg;
824 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
825 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
826 
827 	return 0;
828 }
829 
830 /**
831  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
832  * @bus: the target MII bus
833  * @addr: PHY address on the MII bus
834  * @phy_id: where to store the ID retrieved.
835  *
836  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
837  * placing it in @phy_id. Return zero on successful read and the ID is
838  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
839  * or invalid ID.
840  */
841 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
842 {
843 	int phy_reg;
844 
845 	/* Grab the bits from PHYIR1, and put them in the upper half */
846 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
847 	if (phy_reg < 0) {
848 		/* returning -ENODEV doesn't stop bus scanning */
849 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
850 	}
851 
852 	*phy_id = phy_reg << 16;
853 
854 	/* Grab the bits from PHYIR2, and put them in the lower half */
855 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
856 	if (phy_reg < 0) {
857 		/* returning -ENODEV doesn't stop bus scanning */
858 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
859 	}
860 
861 	*phy_id |= phy_reg;
862 
863 	/* If the phy_id is mostly Fs, there is no device there */
864 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
865 		return -ENODEV;
866 
867 	return 0;
868 }
869 
870 /* Extract the phy ID from the compatible string of the form
871  * ethernet-phy-idAAAA.BBBB.
872  */
873 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
874 {
875 	unsigned int upper, lower;
876 	const char *cp;
877 	int ret;
878 
879 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
880 	if (ret)
881 		return ret;
882 
883 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
884 		return -EINVAL;
885 
886 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
887 	return 0;
888 }
889 EXPORT_SYMBOL(fwnode_get_phy_id);
890 
891 /**
892  * get_phy_device - reads the specified PHY device and returns its @phy_device
893  *		    struct
894  * @bus: the target MII bus
895  * @addr: PHY address on the MII bus
896  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
897  *
898  * Probe for a PHY at @addr on @bus.
899  *
900  * When probing for a clause 22 PHY, then read the ID registers. If we find
901  * a valid ID, allocate and return a &struct phy_device.
902  *
903  * When probing for a clause 45 PHY, read the "devices in package" registers.
904  * If the "devices in package" appears valid, read the ID registers for each
905  * MMD, allocate and return a &struct phy_device.
906  *
907  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
908  * no PHY present, or %-EIO on bus access error.
909  */
910 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
911 {
912 	struct phy_c45_device_ids c45_ids;
913 	u32 phy_id = 0;
914 	int r;
915 
916 	c45_ids.devices_in_package = 0;
917 	c45_ids.mmds_present = 0;
918 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
919 
920 	if (is_c45)
921 		r = get_phy_c45_ids(bus, addr, &c45_ids);
922 	else
923 		r = get_phy_c22_id(bus, addr, &phy_id);
924 
925 	if (r)
926 		return ERR_PTR(r);
927 
928 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
929 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
930 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
931 	 * space, if successful, create the C45 PHY device.
932 	 */
933 	if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) {
934 		r = get_phy_c45_ids(bus, addr, &c45_ids);
935 		if (!r)
936 			return phy_device_create(bus, addr, phy_id,
937 						 true, &c45_ids);
938 	}
939 
940 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
941 }
942 EXPORT_SYMBOL(get_phy_device);
943 
944 /**
945  * phy_device_register - Register the phy device on the MDIO bus
946  * @phydev: phy_device structure to be added to the MDIO bus
947  */
948 int phy_device_register(struct phy_device *phydev)
949 {
950 	int err;
951 
952 	err = mdiobus_register_device(&phydev->mdio);
953 	if (err)
954 		return err;
955 
956 	/* Deassert the reset signal */
957 	phy_device_reset(phydev, 0);
958 
959 	/* Run all of the fixups for this PHY */
960 	err = phy_scan_fixups(phydev);
961 	if (err) {
962 		phydev_err(phydev, "failed to initialize\n");
963 		goto out;
964 	}
965 
966 	err = device_add(&phydev->mdio.dev);
967 	if (err) {
968 		phydev_err(phydev, "failed to add\n");
969 		goto out;
970 	}
971 
972 	return 0;
973 
974  out:
975 	/* Assert the reset signal */
976 	phy_device_reset(phydev, 1);
977 
978 	mdiobus_unregister_device(&phydev->mdio);
979 	return err;
980 }
981 EXPORT_SYMBOL(phy_device_register);
982 
983 /**
984  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
985  * @phydev: phy_device structure to remove
986  *
987  * This doesn't free the phy_device itself, it merely reverses the effects
988  * of phy_device_register(). Use phy_device_free() to free the device
989  * after calling this function.
990  */
991 void phy_device_remove(struct phy_device *phydev)
992 {
993 	unregister_mii_timestamper(phydev->mii_ts);
994 
995 	device_del(&phydev->mdio.dev);
996 
997 	/* Assert the reset signal */
998 	phy_device_reset(phydev, 1);
999 
1000 	mdiobus_unregister_device(&phydev->mdio);
1001 }
1002 EXPORT_SYMBOL(phy_device_remove);
1003 
1004 /**
1005  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1006  * @phydev: phy_device structure to read 802.3-c45 IDs
1007  *
1008  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1009  * the "devices in package" is invalid.
1010  */
1011 int phy_get_c45_ids(struct phy_device *phydev)
1012 {
1013 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1014 			       &phydev->c45_ids);
1015 }
1016 EXPORT_SYMBOL(phy_get_c45_ids);
1017 
1018 /**
1019  * phy_find_first - finds the first PHY device on the bus
1020  * @bus: the target MII bus
1021  */
1022 struct phy_device *phy_find_first(struct mii_bus *bus)
1023 {
1024 	struct phy_device *phydev;
1025 	int addr;
1026 
1027 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1028 		phydev = mdiobus_get_phy(bus, addr);
1029 		if (phydev)
1030 			return phydev;
1031 	}
1032 	return NULL;
1033 }
1034 EXPORT_SYMBOL(phy_find_first);
1035 
1036 static void phy_link_change(struct phy_device *phydev, bool up)
1037 {
1038 	struct net_device *netdev = phydev->attached_dev;
1039 
1040 	if (up)
1041 		netif_carrier_on(netdev);
1042 	else
1043 		netif_carrier_off(netdev);
1044 	phydev->adjust_link(netdev);
1045 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1046 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1047 }
1048 
1049 /**
1050  * phy_prepare_link - prepares the PHY layer to monitor link status
1051  * @phydev: target phy_device struct
1052  * @handler: callback function for link status change notifications
1053  *
1054  * Description: Tells the PHY infrastructure to handle the
1055  *   gory details on monitoring link status (whether through
1056  *   polling or an interrupt), and to call back to the
1057  *   connected device driver when the link status changes.
1058  *   If you want to monitor your own link state, don't call
1059  *   this function.
1060  */
1061 static void phy_prepare_link(struct phy_device *phydev,
1062 			     void (*handler)(struct net_device *))
1063 {
1064 	phydev->adjust_link = handler;
1065 }
1066 
1067 /**
1068  * phy_connect_direct - connect an ethernet device to a specific phy_device
1069  * @dev: the network device to connect
1070  * @phydev: the pointer to the phy device
1071  * @handler: callback function for state change notifications
1072  * @interface: PHY device's interface
1073  */
1074 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1075 		       void (*handler)(struct net_device *),
1076 		       phy_interface_t interface)
1077 {
1078 	int rc;
1079 
1080 	if (!dev)
1081 		return -EINVAL;
1082 
1083 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1084 	if (rc)
1085 		return rc;
1086 
1087 	phy_prepare_link(phydev, handler);
1088 	if (phy_interrupt_is_valid(phydev))
1089 		phy_request_interrupt(phydev);
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL(phy_connect_direct);
1094 
1095 /**
1096  * phy_connect - connect an ethernet device to a PHY device
1097  * @dev: the network device to connect
1098  * @bus_id: the id string of the PHY device to connect
1099  * @handler: callback function for state change notifications
1100  * @interface: PHY device's interface
1101  *
1102  * Description: Convenience function for connecting ethernet
1103  *   devices to PHY devices.  The default behavior is for
1104  *   the PHY infrastructure to handle everything, and only notify
1105  *   the connected driver when the link status changes.  If you
1106  *   don't want, or can't use the provided functionality, you may
1107  *   choose to call only the subset of functions which provide
1108  *   the desired functionality.
1109  */
1110 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1111 			       void (*handler)(struct net_device *),
1112 			       phy_interface_t interface)
1113 {
1114 	struct phy_device *phydev;
1115 	struct device *d;
1116 	int rc;
1117 
1118 	/* Search the list of PHY devices on the mdio bus for the
1119 	 * PHY with the requested name
1120 	 */
1121 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1122 	if (!d) {
1123 		pr_err("PHY %s not found\n", bus_id);
1124 		return ERR_PTR(-ENODEV);
1125 	}
1126 	phydev = to_phy_device(d);
1127 
1128 	rc = phy_connect_direct(dev, phydev, handler, interface);
1129 	put_device(d);
1130 	if (rc)
1131 		return ERR_PTR(rc);
1132 
1133 	return phydev;
1134 }
1135 EXPORT_SYMBOL(phy_connect);
1136 
1137 /**
1138  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1139  *		    device
1140  * @phydev: target phy_device struct
1141  */
1142 void phy_disconnect(struct phy_device *phydev)
1143 {
1144 	if (phy_is_started(phydev))
1145 		phy_stop(phydev);
1146 
1147 	if (phy_interrupt_is_valid(phydev))
1148 		phy_free_interrupt(phydev);
1149 
1150 	phydev->adjust_link = NULL;
1151 
1152 	phy_detach(phydev);
1153 }
1154 EXPORT_SYMBOL(phy_disconnect);
1155 
1156 /**
1157  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1158  * @phydev: The PHY device to poll
1159  *
1160  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1161  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1162  *   register must be polled until the BMCR_RESET bit clears.
1163  *
1164  *   Furthermore, any attempts to write to PHY registers may have no effect
1165  *   or even generate MDIO bus errors until this is complete.
1166  *
1167  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1168  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1169  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1170  *   effort to support such broken PHYs, this function is separate from the
1171  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1172  *   and reapply all driver-specific and board-specific fixups.
1173  */
1174 static int phy_poll_reset(struct phy_device *phydev)
1175 {
1176 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1177 	int ret, val;
1178 
1179 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1180 				    50000, 600000, true);
1181 	if (ret)
1182 		return ret;
1183 	/* Some chips (smsc911x) may still need up to another 1ms after the
1184 	 * BMCR_RESET bit is cleared before they are usable.
1185 	 */
1186 	msleep(1);
1187 	return 0;
1188 }
1189 
1190 int phy_init_hw(struct phy_device *phydev)
1191 {
1192 	int ret = 0;
1193 
1194 	/* Deassert the reset signal */
1195 	phy_device_reset(phydev, 0);
1196 
1197 	if (!phydev->drv)
1198 		return 0;
1199 
1200 	if (phydev->drv->soft_reset) {
1201 		ret = phydev->drv->soft_reset(phydev);
1202 		/* see comment in genphy_soft_reset for an explanation */
1203 		if (!ret)
1204 			phydev->suspended = 0;
1205 	}
1206 
1207 	if (ret < 0)
1208 		return ret;
1209 
1210 	ret = phy_scan_fixups(phydev);
1211 	if (ret < 0)
1212 		return ret;
1213 
1214 	if (phydev->drv->config_init) {
1215 		ret = phydev->drv->config_init(phydev);
1216 		if (ret < 0)
1217 			return ret;
1218 	}
1219 
1220 	if (phydev->drv->config_intr) {
1221 		ret = phydev->drv->config_intr(phydev);
1222 		if (ret < 0)
1223 			return ret;
1224 	}
1225 
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL(phy_init_hw);
1229 
1230 void phy_attached_info(struct phy_device *phydev)
1231 {
1232 	phy_attached_print(phydev, NULL);
1233 }
1234 EXPORT_SYMBOL(phy_attached_info);
1235 
1236 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1237 char *phy_attached_info_irq(struct phy_device *phydev)
1238 {
1239 	char *irq_str;
1240 	char irq_num[8];
1241 
1242 	switch(phydev->irq) {
1243 	case PHY_POLL:
1244 		irq_str = "POLL";
1245 		break;
1246 	case PHY_MAC_INTERRUPT:
1247 		irq_str = "MAC";
1248 		break;
1249 	default:
1250 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1251 		irq_str = irq_num;
1252 		break;
1253 	}
1254 
1255 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1256 }
1257 EXPORT_SYMBOL(phy_attached_info_irq);
1258 
1259 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1260 {
1261 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1262 	char *irq_str = phy_attached_info_irq(phydev);
1263 
1264 	if (!fmt) {
1265 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1266 			    phydev_name(phydev), irq_str);
1267 	} else {
1268 		va_list ap;
1269 
1270 		phydev_info(phydev, ATTACHED_FMT, unbound,
1271 			    phydev_name(phydev), irq_str);
1272 
1273 		va_start(ap, fmt);
1274 		vprintk(fmt, ap);
1275 		va_end(ap);
1276 	}
1277 	kfree(irq_str);
1278 }
1279 EXPORT_SYMBOL(phy_attached_print);
1280 
1281 static void phy_sysfs_create_links(struct phy_device *phydev)
1282 {
1283 	struct net_device *dev = phydev->attached_dev;
1284 	int err;
1285 
1286 	if (!dev)
1287 		return;
1288 
1289 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1290 				"attached_dev");
1291 	if (err)
1292 		return;
1293 
1294 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1295 				       &phydev->mdio.dev.kobj,
1296 				       "phydev");
1297 	if (err) {
1298 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1299 			kobject_name(&phydev->mdio.dev.kobj),
1300 			err);
1301 		/* non-fatal - some net drivers can use one netdevice
1302 		 * with more then one phy
1303 		 */
1304 	}
1305 
1306 	phydev->sysfs_links = true;
1307 }
1308 
1309 static ssize_t
1310 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1311 		    char *buf)
1312 {
1313 	struct phy_device *phydev = to_phy_device(dev);
1314 
1315 	return sprintf(buf, "%d\n", !phydev->attached_dev);
1316 }
1317 static DEVICE_ATTR_RO(phy_standalone);
1318 
1319 /**
1320  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1321  * @upstream: pointer to the phy device
1322  * @bus: sfp bus representing cage being attached
1323  *
1324  * This is used to fill in the sfp_upstream_ops .attach member.
1325  */
1326 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1327 {
1328 	struct phy_device *phydev = upstream;
1329 
1330 	if (phydev->attached_dev)
1331 		phydev->attached_dev->sfp_bus = bus;
1332 	phydev->sfp_bus_attached = true;
1333 }
1334 EXPORT_SYMBOL(phy_sfp_attach);
1335 
1336 /**
1337  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1338  * @upstream: pointer to the phy device
1339  * @bus: sfp bus representing cage being attached
1340  *
1341  * This is used to fill in the sfp_upstream_ops .detach member.
1342  */
1343 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1344 {
1345 	struct phy_device *phydev = upstream;
1346 
1347 	if (phydev->attached_dev)
1348 		phydev->attached_dev->sfp_bus = NULL;
1349 	phydev->sfp_bus_attached = false;
1350 }
1351 EXPORT_SYMBOL(phy_sfp_detach);
1352 
1353 /**
1354  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1355  * @phydev: Pointer to phy_device
1356  * @ops: SFP's upstream operations
1357  */
1358 int phy_sfp_probe(struct phy_device *phydev,
1359 		  const struct sfp_upstream_ops *ops)
1360 {
1361 	struct sfp_bus *bus;
1362 	int ret = 0;
1363 
1364 	if (phydev->mdio.dev.fwnode) {
1365 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1366 		if (IS_ERR(bus))
1367 			return PTR_ERR(bus);
1368 
1369 		phydev->sfp_bus = bus;
1370 
1371 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1372 		sfp_bus_put(bus);
1373 	}
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL(phy_sfp_probe);
1377 
1378 /**
1379  * phy_attach_direct - attach a network device to a given PHY device pointer
1380  * @dev: network device to attach
1381  * @phydev: Pointer to phy_device to attach
1382  * @flags: PHY device's dev_flags
1383  * @interface: PHY device's interface
1384  *
1385  * Description: Called by drivers to attach to a particular PHY
1386  *     device. The phy_device is found, and properly hooked up
1387  *     to the phy_driver.  If no driver is attached, then a
1388  *     generic driver is used.  The phy_device is given a ptr to
1389  *     the attaching device, and given a callback for link status
1390  *     change.  The phy_device is returned to the attaching driver.
1391  *     This function takes a reference on the phy device.
1392  */
1393 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1394 		      u32 flags, phy_interface_t interface)
1395 {
1396 	struct mii_bus *bus = phydev->mdio.bus;
1397 	struct device *d = &phydev->mdio.dev;
1398 	struct module *ndev_owner = NULL;
1399 	bool using_genphy = false;
1400 	int err;
1401 
1402 	/* For Ethernet device drivers that register their own MDIO bus, we
1403 	 * will have bus->owner match ndev_mod, so we do not want to increment
1404 	 * our own module->refcnt here, otherwise we would not be able to
1405 	 * unload later on.
1406 	 */
1407 	if (dev)
1408 		ndev_owner = dev->dev.parent->driver->owner;
1409 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1410 		phydev_err(phydev, "failed to get the bus module\n");
1411 		return -EIO;
1412 	}
1413 
1414 	get_device(d);
1415 
1416 	/* Assume that if there is no driver, that it doesn't
1417 	 * exist, and we should use the genphy driver.
1418 	 */
1419 	if (!d->driver) {
1420 		if (phydev->is_c45)
1421 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1422 		else
1423 			d->driver = &genphy_driver.mdiodrv.driver;
1424 
1425 		using_genphy = true;
1426 	}
1427 
1428 	if (!try_module_get(d->driver->owner)) {
1429 		phydev_err(phydev, "failed to get the device driver module\n");
1430 		err = -EIO;
1431 		goto error_put_device;
1432 	}
1433 
1434 	if (using_genphy) {
1435 		err = d->driver->probe(d);
1436 		if (err >= 0)
1437 			err = device_bind_driver(d);
1438 
1439 		if (err)
1440 			goto error_module_put;
1441 	}
1442 
1443 	if (phydev->attached_dev) {
1444 		dev_err(&dev->dev, "PHY already attached\n");
1445 		err = -EBUSY;
1446 		goto error;
1447 	}
1448 
1449 	phydev->phy_link_change = phy_link_change;
1450 	if (dev) {
1451 		phydev->attached_dev = dev;
1452 		dev->phydev = phydev;
1453 
1454 		if (phydev->sfp_bus_attached)
1455 			dev->sfp_bus = phydev->sfp_bus;
1456 		else if (dev->sfp_bus)
1457 			phydev->is_on_sfp_module = true;
1458 	}
1459 
1460 	/* Some Ethernet drivers try to connect to a PHY device before
1461 	 * calling register_netdevice() -> netdev_register_kobject() and
1462 	 * does the dev->dev.kobj initialization. Here we only check for
1463 	 * success which indicates that the network device kobject is
1464 	 * ready. Once we do that we still need to keep track of whether
1465 	 * links were successfully set up or not for phy_detach() to
1466 	 * remove them accordingly.
1467 	 */
1468 	phydev->sysfs_links = false;
1469 
1470 	phy_sysfs_create_links(phydev);
1471 
1472 	if (!phydev->attached_dev) {
1473 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1474 					&dev_attr_phy_standalone.attr);
1475 		if (err)
1476 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1477 	}
1478 
1479 	phydev->dev_flags |= flags;
1480 
1481 	phydev->interface = interface;
1482 
1483 	phydev->state = PHY_READY;
1484 
1485 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1486 
1487 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1488 	 * it to different value depending on the PHY configuration. If we have
1489 	 * the generic PHY driver we can't figure it out, thus set the old
1490 	 * legacy PORT_MII value.
1491 	 */
1492 	if (using_genphy)
1493 		phydev->port = PORT_MII;
1494 
1495 	/* Initial carrier state is off as the phy is about to be
1496 	 * (re)initialized.
1497 	 */
1498 	if (dev)
1499 		netif_carrier_off(phydev->attached_dev);
1500 
1501 	/* Do initial configuration here, now that
1502 	 * we have certain key parameters
1503 	 * (dev_flags and interface)
1504 	 */
1505 	err = phy_init_hw(phydev);
1506 	if (err)
1507 		goto error;
1508 
1509 	phy_resume(phydev);
1510 	phy_led_triggers_register(phydev);
1511 
1512 	return err;
1513 
1514 error:
1515 	/* phy_detach() does all of the cleanup below */
1516 	phy_detach(phydev);
1517 	return err;
1518 
1519 error_module_put:
1520 	module_put(d->driver->owner);
1521 error_put_device:
1522 	put_device(d);
1523 	if (ndev_owner != bus->owner)
1524 		module_put(bus->owner);
1525 	return err;
1526 }
1527 EXPORT_SYMBOL(phy_attach_direct);
1528 
1529 /**
1530  * phy_attach - attach a network device to a particular PHY device
1531  * @dev: network device to attach
1532  * @bus_id: Bus ID of PHY device to attach
1533  * @interface: PHY device's interface
1534  *
1535  * Description: Same as phy_attach_direct() except that a PHY bus_id
1536  *     string is passed instead of a pointer to a struct phy_device.
1537  */
1538 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1539 			      phy_interface_t interface)
1540 {
1541 	struct bus_type *bus = &mdio_bus_type;
1542 	struct phy_device *phydev;
1543 	struct device *d;
1544 	int rc;
1545 
1546 	if (!dev)
1547 		return ERR_PTR(-EINVAL);
1548 
1549 	/* Search the list of PHY devices on the mdio bus for the
1550 	 * PHY with the requested name
1551 	 */
1552 	d = bus_find_device_by_name(bus, NULL, bus_id);
1553 	if (!d) {
1554 		pr_err("PHY %s not found\n", bus_id);
1555 		return ERR_PTR(-ENODEV);
1556 	}
1557 	phydev = to_phy_device(d);
1558 
1559 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1560 	put_device(d);
1561 	if (rc)
1562 		return ERR_PTR(rc);
1563 
1564 	return phydev;
1565 }
1566 EXPORT_SYMBOL(phy_attach);
1567 
1568 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1569 				      struct device_driver *driver)
1570 {
1571 	struct device *d = &phydev->mdio.dev;
1572 	bool ret = false;
1573 
1574 	if (!phydev->drv)
1575 		return ret;
1576 
1577 	get_device(d);
1578 	ret = d->driver == driver;
1579 	put_device(d);
1580 
1581 	return ret;
1582 }
1583 
1584 bool phy_driver_is_genphy(struct phy_device *phydev)
1585 {
1586 	return phy_driver_is_genphy_kind(phydev,
1587 					 &genphy_driver.mdiodrv.driver);
1588 }
1589 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1590 
1591 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1592 {
1593 	return phy_driver_is_genphy_kind(phydev,
1594 					 &genphy_c45_driver.mdiodrv.driver);
1595 }
1596 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1597 
1598 /**
1599  * phy_package_join - join a common PHY group
1600  * @phydev: target phy_device struct
1601  * @addr: cookie and PHY address for global register access
1602  * @priv_size: if non-zero allocate this amount of bytes for private data
1603  *
1604  * This joins a PHY group and provides a shared storage for all phydevs in
1605  * this group. This is intended to be used for packages which contain
1606  * more than one PHY, for example a quad PHY transceiver.
1607  *
1608  * The addr parameter serves as a cookie which has to have the same value
1609  * for all members of one group and as a PHY address to access generic
1610  * registers of a PHY package. Usually, one of the PHY addresses of the
1611  * different PHYs in the package provides access to these global registers.
1612  * The address which is given here, will be used in the phy_package_read()
1613  * and phy_package_write() convenience functions. If your PHY doesn't have
1614  * global registers you can just pick any of the PHY addresses.
1615  *
1616  * This will set the shared pointer of the phydev to the shared storage.
1617  * If this is the first call for a this cookie the shared storage will be
1618  * allocated. If priv_size is non-zero, the given amount of bytes are
1619  * allocated for the priv member.
1620  *
1621  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1622  * with the same cookie but a different priv_size is an error.
1623  */
1624 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1625 {
1626 	struct mii_bus *bus = phydev->mdio.bus;
1627 	struct phy_package_shared *shared;
1628 	int ret;
1629 
1630 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1631 		return -EINVAL;
1632 
1633 	mutex_lock(&bus->shared_lock);
1634 	shared = bus->shared[addr];
1635 	if (!shared) {
1636 		ret = -ENOMEM;
1637 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1638 		if (!shared)
1639 			goto err_unlock;
1640 		if (priv_size) {
1641 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1642 			if (!shared->priv)
1643 				goto err_free;
1644 			shared->priv_size = priv_size;
1645 		}
1646 		shared->addr = addr;
1647 		refcount_set(&shared->refcnt, 1);
1648 		bus->shared[addr] = shared;
1649 	} else {
1650 		ret = -EINVAL;
1651 		if (priv_size && priv_size != shared->priv_size)
1652 			goto err_unlock;
1653 		refcount_inc(&shared->refcnt);
1654 	}
1655 	mutex_unlock(&bus->shared_lock);
1656 
1657 	phydev->shared = shared;
1658 
1659 	return 0;
1660 
1661 err_free:
1662 	kfree(shared);
1663 err_unlock:
1664 	mutex_unlock(&bus->shared_lock);
1665 	return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(phy_package_join);
1668 
1669 /**
1670  * phy_package_leave - leave a common PHY group
1671  * @phydev: target phy_device struct
1672  *
1673  * This leaves a PHY group created by phy_package_join(). If this phydev
1674  * was the last user of the shared data between the group, this data is
1675  * freed. Resets the phydev->shared pointer to NULL.
1676  */
1677 void phy_package_leave(struct phy_device *phydev)
1678 {
1679 	struct phy_package_shared *shared = phydev->shared;
1680 	struct mii_bus *bus = phydev->mdio.bus;
1681 
1682 	if (!shared)
1683 		return;
1684 
1685 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1686 		bus->shared[shared->addr] = NULL;
1687 		mutex_unlock(&bus->shared_lock);
1688 		kfree(shared->priv);
1689 		kfree(shared);
1690 	}
1691 
1692 	phydev->shared = NULL;
1693 }
1694 EXPORT_SYMBOL_GPL(phy_package_leave);
1695 
1696 static void devm_phy_package_leave(struct device *dev, void *res)
1697 {
1698 	phy_package_leave(*(struct phy_device **)res);
1699 }
1700 
1701 /**
1702  * devm_phy_package_join - resource managed phy_package_join()
1703  * @dev: device that is registering this PHY package
1704  * @phydev: target phy_device struct
1705  * @addr: cookie and PHY address for global register access
1706  * @priv_size: if non-zero allocate this amount of bytes for private data
1707  *
1708  * Managed phy_package_join(). Shared storage fetched by this function,
1709  * phy_package_leave() is automatically called on driver detach. See
1710  * phy_package_join() for more information.
1711  */
1712 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1713 			  int addr, size_t priv_size)
1714 {
1715 	struct phy_device **ptr;
1716 	int ret;
1717 
1718 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1719 			   GFP_KERNEL);
1720 	if (!ptr)
1721 		return -ENOMEM;
1722 
1723 	ret = phy_package_join(phydev, addr, priv_size);
1724 
1725 	if (!ret) {
1726 		*ptr = phydev;
1727 		devres_add(dev, ptr);
1728 	} else {
1729 		devres_free(ptr);
1730 	}
1731 
1732 	return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1735 
1736 /**
1737  * phy_detach - detach a PHY device from its network device
1738  * @phydev: target phy_device struct
1739  *
1740  * This detaches the phy device from its network device and the phy
1741  * driver, and drops the reference count taken in phy_attach_direct().
1742  */
1743 void phy_detach(struct phy_device *phydev)
1744 {
1745 	struct net_device *dev = phydev->attached_dev;
1746 	struct module *ndev_owner = NULL;
1747 	struct mii_bus *bus;
1748 
1749 	if (phydev->sysfs_links) {
1750 		if (dev)
1751 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1752 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1753 	}
1754 
1755 	if (!phydev->attached_dev)
1756 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1757 				  &dev_attr_phy_standalone.attr);
1758 
1759 	phy_suspend(phydev);
1760 	if (dev) {
1761 		phydev->attached_dev->phydev = NULL;
1762 		phydev->attached_dev = NULL;
1763 	}
1764 	phydev->phylink = NULL;
1765 
1766 	phy_led_triggers_unregister(phydev);
1767 
1768 	if (phydev->mdio.dev.driver)
1769 		module_put(phydev->mdio.dev.driver->owner);
1770 
1771 	/* If the device had no specific driver before (i.e. - it
1772 	 * was using the generic driver), we unbind the device
1773 	 * from the generic driver so that there's a chance a
1774 	 * real driver could be loaded
1775 	 */
1776 	if (phy_driver_is_genphy(phydev) ||
1777 	    phy_driver_is_genphy_10g(phydev))
1778 		device_release_driver(&phydev->mdio.dev);
1779 
1780 	/* Assert the reset signal */
1781 	phy_device_reset(phydev, 1);
1782 
1783 	/*
1784 	 * The phydev might go away on the put_device() below, so avoid
1785 	 * a use-after-free bug by reading the underlying bus first.
1786 	 */
1787 	bus = phydev->mdio.bus;
1788 
1789 	put_device(&phydev->mdio.dev);
1790 	if (dev)
1791 		ndev_owner = dev->dev.parent->driver->owner;
1792 	if (ndev_owner != bus->owner)
1793 		module_put(bus->owner);
1794 }
1795 EXPORT_SYMBOL(phy_detach);
1796 
1797 int phy_suspend(struct phy_device *phydev)
1798 {
1799 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1800 	struct net_device *netdev = phydev->attached_dev;
1801 	struct phy_driver *phydrv = phydev->drv;
1802 	int ret;
1803 
1804 	if (phydev->suspended)
1805 		return 0;
1806 
1807 	/* If the device has WOL enabled, we cannot suspend the PHY */
1808 	phy_ethtool_get_wol(phydev, &wol);
1809 	if (wol.wolopts || (netdev && netdev->wol_enabled))
1810 		return -EBUSY;
1811 
1812 	if (!phydrv || !phydrv->suspend)
1813 		return 0;
1814 
1815 	ret = phydrv->suspend(phydev);
1816 	if (!ret)
1817 		phydev->suspended = true;
1818 
1819 	return ret;
1820 }
1821 EXPORT_SYMBOL(phy_suspend);
1822 
1823 int __phy_resume(struct phy_device *phydev)
1824 {
1825 	struct phy_driver *phydrv = phydev->drv;
1826 	int ret;
1827 
1828 	lockdep_assert_held(&phydev->lock);
1829 
1830 	if (!phydrv || !phydrv->resume)
1831 		return 0;
1832 
1833 	ret = phydrv->resume(phydev);
1834 	if (!ret)
1835 		phydev->suspended = false;
1836 
1837 	return ret;
1838 }
1839 EXPORT_SYMBOL(__phy_resume);
1840 
1841 int phy_resume(struct phy_device *phydev)
1842 {
1843 	int ret;
1844 
1845 	mutex_lock(&phydev->lock);
1846 	ret = __phy_resume(phydev);
1847 	mutex_unlock(&phydev->lock);
1848 
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL(phy_resume);
1852 
1853 int phy_loopback(struct phy_device *phydev, bool enable)
1854 {
1855 	int ret = 0;
1856 
1857 	if (!phydev->drv)
1858 		return -EIO;
1859 
1860 	mutex_lock(&phydev->lock);
1861 
1862 	if (enable && phydev->loopback_enabled) {
1863 		ret = -EBUSY;
1864 		goto out;
1865 	}
1866 
1867 	if (!enable && !phydev->loopback_enabled) {
1868 		ret = -EINVAL;
1869 		goto out;
1870 	}
1871 
1872 	if (phydev->drv->set_loopback)
1873 		ret = phydev->drv->set_loopback(phydev, enable);
1874 	else
1875 		ret = genphy_loopback(phydev, enable);
1876 
1877 	if (ret)
1878 		goto out;
1879 
1880 	phydev->loopback_enabled = enable;
1881 
1882 out:
1883 	mutex_unlock(&phydev->lock);
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL(phy_loopback);
1887 
1888 /**
1889  * phy_reset_after_clk_enable - perform a PHY reset if needed
1890  * @phydev: target phy_device struct
1891  *
1892  * Description: Some PHYs are known to need a reset after their refclk was
1893  *   enabled. This function evaluates the flags and perform the reset if it's
1894  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1895  *   was reset.
1896  */
1897 int phy_reset_after_clk_enable(struct phy_device *phydev)
1898 {
1899 	if (!phydev || !phydev->drv)
1900 		return -ENODEV;
1901 
1902 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1903 		phy_device_reset(phydev, 1);
1904 		phy_device_reset(phydev, 0);
1905 		return 1;
1906 	}
1907 
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1911 
1912 /* Generic PHY support and helper functions */
1913 
1914 /**
1915  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1916  * @phydev: target phy_device struct
1917  *
1918  * Description: Writes MII_ADVERTISE with the appropriate values,
1919  *   after sanitizing the values to make sure we only advertise
1920  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1921  *   hasn't changed, and > 0 if it has changed.
1922  */
1923 static int genphy_config_advert(struct phy_device *phydev)
1924 {
1925 	int err, bmsr, changed = 0;
1926 	u32 adv;
1927 
1928 	/* Only allow advertising what this PHY supports */
1929 	linkmode_and(phydev->advertising, phydev->advertising,
1930 		     phydev->supported);
1931 
1932 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1933 
1934 	/* Setup standard advertisement */
1935 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1936 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1937 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1938 				 adv);
1939 	if (err < 0)
1940 		return err;
1941 	if (err > 0)
1942 		changed = 1;
1943 
1944 	bmsr = phy_read(phydev, MII_BMSR);
1945 	if (bmsr < 0)
1946 		return bmsr;
1947 
1948 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1949 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1950 	 * logical 1.
1951 	 */
1952 	if (!(bmsr & BMSR_ESTATEN))
1953 		return changed;
1954 
1955 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1956 
1957 	err = phy_modify_changed(phydev, MII_CTRL1000,
1958 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1959 				 adv);
1960 	if (err < 0)
1961 		return err;
1962 	if (err > 0)
1963 		changed = 1;
1964 
1965 	return changed;
1966 }
1967 
1968 /**
1969  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1970  * @phydev: target phy_device struct
1971  *
1972  * Description: Writes MII_ADVERTISE with the appropriate values,
1973  *   after sanitizing the values to make sure we only advertise
1974  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1975  *   hasn't changed, and > 0 if it has changed. This function is intended
1976  *   for Clause 37 1000Base-X mode.
1977  */
1978 static int genphy_c37_config_advert(struct phy_device *phydev)
1979 {
1980 	u16 adv = 0;
1981 
1982 	/* Only allow advertising what this PHY supports */
1983 	linkmode_and(phydev->advertising, phydev->advertising,
1984 		     phydev->supported);
1985 
1986 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1987 			      phydev->advertising))
1988 		adv |= ADVERTISE_1000XFULL;
1989 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1990 			      phydev->advertising))
1991 		adv |= ADVERTISE_1000XPAUSE;
1992 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1993 			      phydev->advertising))
1994 		adv |= ADVERTISE_1000XPSE_ASYM;
1995 
1996 	return phy_modify_changed(phydev, MII_ADVERTISE,
1997 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1998 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1999 				  adv);
2000 }
2001 
2002 /**
2003  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2004  * @phydev: target phy_device struct
2005  *
2006  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2007  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2008  *   changed, and 1 if it has changed.
2009  */
2010 int genphy_config_eee_advert(struct phy_device *phydev)
2011 {
2012 	int err;
2013 
2014 	/* Nothing to disable */
2015 	if (!phydev->eee_broken_modes)
2016 		return 0;
2017 
2018 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2019 				     phydev->eee_broken_modes, 0);
2020 	/* If the call failed, we assume that EEE is not supported */
2021 	return err < 0 ? 0 : err;
2022 }
2023 EXPORT_SYMBOL(genphy_config_eee_advert);
2024 
2025 /**
2026  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2027  * @phydev: target phy_device struct
2028  *
2029  * Description: Configures MII_BMCR to force speed/duplex
2030  *   to the values in phydev. Assumes that the values are valid.
2031  *   Please see phy_sanitize_settings().
2032  */
2033 int genphy_setup_forced(struct phy_device *phydev)
2034 {
2035 	u16 ctl;
2036 
2037 	phydev->pause = 0;
2038 	phydev->asym_pause = 0;
2039 
2040 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2041 
2042 	return phy_modify(phydev, MII_BMCR,
2043 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2044 }
2045 EXPORT_SYMBOL(genphy_setup_forced);
2046 
2047 static int genphy_setup_master_slave(struct phy_device *phydev)
2048 {
2049 	u16 ctl = 0;
2050 
2051 	if (!phydev->is_gigabit_capable)
2052 		return 0;
2053 
2054 	switch (phydev->master_slave_set) {
2055 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2056 		ctl |= CTL1000_PREFER_MASTER;
2057 		break;
2058 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2059 		break;
2060 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2061 		ctl |= CTL1000_AS_MASTER;
2062 		fallthrough;
2063 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2064 		ctl |= CTL1000_ENABLE_MASTER;
2065 		break;
2066 	case MASTER_SLAVE_CFG_UNKNOWN:
2067 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2068 		return 0;
2069 	default:
2070 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2071 		return -EOPNOTSUPP;
2072 	}
2073 
2074 	return phy_modify_changed(phydev, MII_CTRL1000,
2075 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2076 				   CTL1000_PREFER_MASTER), ctl);
2077 }
2078 
2079 int genphy_read_master_slave(struct phy_device *phydev)
2080 {
2081 	int cfg, state;
2082 	int val;
2083 
2084 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2085 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2086 
2087 	val = phy_read(phydev, MII_CTRL1000);
2088 	if (val < 0)
2089 		return val;
2090 
2091 	if (val & CTL1000_ENABLE_MASTER) {
2092 		if (val & CTL1000_AS_MASTER)
2093 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2094 		else
2095 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2096 	} else {
2097 		if (val & CTL1000_PREFER_MASTER)
2098 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2099 		else
2100 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2101 	}
2102 
2103 	val = phy_read(phydev, MII_STAT1000);
2104 	if (val < 0)
2105 		return val;
2106 
2107 	if (val & LPA_1000MSFAIL) {
2108 		state = MASTER_SLAVE_STATE_ERR;
2109 	} else if (phydev->link) {
2110 		/* this bits are valid only for active link */
2111 		if (val & LPA_1000MSRES)
2112 			state = MASTER_SLAVE_STATE_MASTER;
2113 		else
2114 			state = MASTER_SLAVE_STATE_SLAVE;
2115 	} else {
2116 		state = MASTER_SLAVE_STATE_UNKNOWN;
2117 	}
2118 
2119 	phydev->master_slave_get = cfg;
2120 	phydev->master_slave_state = state;
2121 
2122 	return 0;
2123 }
2124 EXPORT_SYMBOL(genphy_read_master_slave);
2125 
2126 /**
2127  * genphy_restart_aneg - Enable and Restart Autonegotiation
2128  * @phydev: target phy_device struct
2129  */
2130 int genphy_restart_aneg(struct phy_device *phydev)
2131 {
2132 	/* Don't isolate the PHY if we're negotiating */
2133 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2134 			  BMCR_ANENABLE | BMCR_ANRESTART);
2135 }
2136 EXPORT_SYMBOL(genphy_restart_aneg);
2137 
2138 /**
2139  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2140  * @phydev: target phy_device struct
2141  * @restart: whether aneg restart is requested
2142  *
2143  * Check, and restart auto-negotiation if needed.
2144  */
2145 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2146 {
2147 	int ret;
2148 
2149 	if (!restart) {
2150 		/* Advertisement hasn't changed, but maybe aneg was never on to
2151 		 * begin with?  Or maybe phy was isolated?
2152 		 */
2153 		ret = phy_read(phydev, MII_BMCR);
2154 		if (ret < 0)
2155 			return ret;
2156 
2157 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2158 			restart = true;
2159 	}
2160 
2161 	if (restart)
2162 		return genphy_restart_aneg(phydev);
2163 
2164 	return 0;
2165 }
2166 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2167 
2168 /**
2169  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2170  * @phydev: target phy_device struct
2171  * @changed: whether autoneg is requested
2172  *
2173  * Description: If auto-negotiation is enabled, we configure the
2174  *   advertising, and then restart auto-negotiation.  If it is not
2175  *   enabled, then we write the BMCR.
2176  */
2177 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2178 {
2179 	int err;
2180 
2181 	if (genphy_config_eee_advert(phydev))
2182 		changed = true;
2183 
2184 	err = genphy_setup_master_slave(phydev);
2185 	if (err < 0)
2186 		return err;
2187 	else if (err)
2188 		changed = true;
2189 
2190 	if (AUTONEG_ENABLE != phydev->autoneg)
2191 		return genphy_setup_forced(phydev);
2192 
2193 	err = genphy_config_advert(phydev);
2194 	if (err < 0) /* error */
2195 		return err;
2196 	else if (err)
2197 		changed = true;
2198 
2199 	return genphy_check_and_restart_aneg(phydev, changed);
2200 }
2201 EXPORT_SYMBOL(__genphy_config_aneg);
2202 
2203 /**
2204  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2205  * @phydev: target phy_device struct
2206  *
2207  * Description: If auto-negotiation is enabled, we configure the
2208  *   advertising, and then restart auto-negotiation.  If it is not
2209  *   enabled, then we write the BMCR. This function is intended
2210  *   for use with Clause 37 1000Base-X mode.
2211  */
2212 int genphy_c37_config_aneg(struct phy_device *phydev)
2213 {
2214 	int err, changed;
2215 
2216 	if (phydev->autoneg != AUTONEG_ENABLE)
2217 		return genphy_setup_forced(phydev);
2218 
2219 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2220 			 BMCR_SPEED1000);
2221 	if (err)
2222 		return err;
2223 
2224 	changed = genphy_c37_config_advert(phydev);
2225 	if (changed < 0) /* error */
2226 		return changed;
2227 
2228 	if (!changed) {
2229 		/* Advertisement hasn't changed, but maybe aneg was never on to
2230 		 * begin with?  Or maybe phy was isolated?
2231 		 */
2232 		int ctl = phy_read(phydev, MII_BMCR);
2233 
2234 		if (ctl < 0)
2235 			return ctl;
2236 
2237 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2238 			changed = 1; /* do restart aneg */
2239 	}
2240 
2241 	/* Only restart aneg if we are advertising something different
2242 	 * than we were before.
2243 	 */
2244 	if (changed > 0)
2245 		return genphy_restart_aneg(phydev);
2246 
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL(genphy_c37_config_aneg);
2250 
2251 /**
2252  * genphy_aneg_done - return auto-negotiation status
2253  * @phydev: target phy_device struct
2254  *
2255  * Description: Reads the status register and returns 0 either if
2256  *   auto-negotiation is incomplete, or if there was an error.
2257  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2258  */
2259 int genphy_aneg_done(struct phy_device *phydev)
2260 {
2261 	int retval = phy_read(phydev, MII_BMSR);
2262 
2263 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2264 }
2265 EXPORT_SYMBOL(genphy_aneg_done);
2266 
2267 /**
2268  * genphy_update_link - update link status in @phydev
2269  * @phydev: target phy_device struct
2270  *
2271  * Description: Update the value in phydev->link to reflect the
2272  *   current link value.  In order to do this, we need to read
2273  *   the status register twice, keeping the second value.
2274  */
2275 int genphy_update_link(struct phy_device *phydev)
2276 {
2277 	int status = 0, bmcr;
2278 
2279 	bmcr = phy_read(phydev, MII_BMCR);
2280 	if (bmcr < 0)
2281 		return bmcr;
2282 
2283 	/* Autoneg is being started, therefore disregard BMSR value and
2284 	 * report link as down.
2285 	 */
2286 	if (bmcr & BMCR_ANRESTART)
2287 		goto done;
2288 
2289 	/* The link state is latched low so that momentary link
2290 	 * drops can be detected. Do not double-read the status
2291 	 * in polling mode to detect such short link drops except
2292 	 * the link was already down.
2293 	 */
2294 	if (!phy_polling_mode(phydev) || !phydev->link) {
2295 		status = phy_read(phydev, MII_BMSR);
2296 		if (status < 0)
2297 			return status;
2298 		else if (status & BMSR_LSTATUS)
2299 			goto done;
2300 	}
2301 
2302 	/* Read link and autonegotiation status */
2303 	status = phy_read(phydev, MII_BMSR);
2304 	if (status < 0)
2305 		return status;
2306 done:
2307 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2308 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2309 
2310 	/* Consider the case that autoneg was started and "aneg complete"
2311 	 * bit has been reset, but "link up" bit not yet.
2312 	 */
2313 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2314 		phydev->link = 0;
2315 
2316 	return 0;
2317 }
2318 EXPORT_SYMBOL(genphy_update_link);
2319 
2320 int genphy_read_lpa(struct phy_device *phydev)
2321 {
2322 	int lpa, lpagb;
2323 
2324 	if (phydev->autoneg == AUTONEG_ENABLE) {
2325 		if (!phydev->autoneg_complete) {
2326 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2327 							0);
2328 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2329 			return 0;
2330 		}
2331 
2332 		if (phydev->is_gigabit_capable) {
2333 			lpagb = phy_read(phydev, MII_STAT1000);
2334 			if (lpagb < 0)
2335 				return lpagb;
2336 
2337 			if (lpagb & LPA_1000MSFAIL) {
2338 				int adv = phy_read(phydev, MII_CTRL1000);
2339 
2340 				if (adv < 0)
2341 					return adv;
2342 
2343 				if (adv & CTL1000_ENABLE_MASTER)
2344 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2345 				else
2346 					phydev_err(phydev, "Master/Slave resolution failed\n");
2347 				return -ENOLINK;
2348 			}
2349 
2350 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2351 							lpagb);
2352 		}
2353 
2354 		lpa = phy_read(phydev, MII_LPA);
2355 		if (lpa < 0)
2356 			return lpa;
2357 
2358 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2359 	} else {
2360 		linkmode_zero(phydev->lp_advertising);
2361 	}
2362 
2363 	return 0;
2364 }
2365 EXPORT_SYMBOL(genphy_read_lpa);
2366 
2367 /**
2368  * genphy_read_status_fixed - read the link parameters for !aneg mode
2369  * @phydev: target phy_device struct
2370  *
2371  * Read the current duplex and speed state for a PHY operating with
2372  * autonegotiation disabled.
2373  */
2374 int genphy_read_status_fixed(struct phy_device *phydev)
2375 {
2376 	int bmcr = phy_read(phydev, MII_BMCR);
2377 
2378 	if (bmcr < 0)
2379 		return bmcr;
2380 
2381 	if (bmcr & BMCR_FULLDPLX)
2382 		phydev->duplex = DUPLEX_FULL;
2383 	else
2384 		phydev->duplex = DUPLEX_HALF;
2385 
2386 	if (bmcr & BMCR_SPEED1000)
2387 		phydev->speed = SPEED_1000;
2388 	else if (bmcr & BMCR_SPEED100)
2389 		phydev->speed = SPEED_100;
2390 	else
2391 		phydev->speed = SPEED_10;
2392 
2393 	return 0;
2394 }
2395 EXPORT_SYMBOL(genphy_read_status_fixed);
2396 
2397 /**
2398  * genphy_read_status - check the link status and update current link state
2399  * @phydev: target phy_device struct
2400  *
2401  * Description: Check the link, then figure out the current state
2402  *   by comparing what we advertise with what the link partner
2403  *   advertises.  Start by checking the gigabit possibilities,
2404  *   then move on to 10/100.
2405  */
2406 int genphy_read_status(struct phy_device *phydev)
2407 {
2408 	int err, old_link = phydev->link;
2409 
2410 	/* Update the link, but return if there was an error */
2411 	err = genphy_update_link(phydev);
2412 	if (err)
2413 		return err;
2414 
2415 	/* why bother the PHY if nothing can have changed */
2416 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2417 		return 0;
2418 
2419 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2420 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2421 	phydev->speed = SPEED_UNKNOWN;
2422 	phydev->duplex = DUPLEX_UNKNOWN;
2423 	phydev->pause = 0;
2424 	phydev->asym_pause = 0;
2425 
2426 	if (phydev->is_gigabit_capable) {
2427 		err = genphy_read_master_slave(phydev);
2428 		if (err < 0)
2429 			return err;
2430 	}
2431 
2432 	err = genphy_read_lpa(phydev);
2433 	if (err < 0)
2434 		return err;
2435 
2436 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2437 		phy_resolve_aneg_linkmode(phydev);
2438 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2439 		err = genphy_read_status_fixed(phydev);
2440 		if (err < 0)
2441 			return err;
2442 	}
2443 
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL(genphy_read_status);
2447 
2448 /**
2449  * genphy_c37_read_status - check the link status and update current link state
2450  * @phydev: target phy_device struct
2451  *
2452  * Description: Check the link, then figure out the current state
2453  *   by comparing what we advertise with what the link partner
2454  *   advertises. This function is for Clause 37 1000Base-X mode.
2455  */
2456 int genphy_c37_read_status(struct phy_device *phydev)
2457 {
2458 	int lpa, err, old_link = phydev->link;
2459 
2460 	/* Update the link, but return if there was an error */
2461 	err = genphy_update_link(phydev);
2462 	if (err)
2463 		return err;
2464 
2465 	/* why bother the PHY if nothing can have changed */
2466 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2467 		return 0;
2468 
2469 	phydev->duplex = DUPLEX_UNKNOWN;
2470 	phydev->pause = 0;
2471 	phydev->asym_pause = 0;
2472 
2473 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2474 		lpa = phy_read(phydev, MII_LPA);
2475 		if (lpa < 0)
2476 			return lpa;
2477 
2478 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2479 				 phydev->lp_advertising, lpa & LPA_LPACK);
2480 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2481 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2482 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2483 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2484 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2485 				 phydev->lp_advertising,
2486 				 lpa & LPA_1000XPAUSE_ASYM);
2487 
2488 		phy_resolve_aneg_linkmode(phydev);
2489 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2490 		int bmcr = phy_read(phydev, MII_BMCR);
2491 
2492 		if (bmcr < 0)
2493 			return bmcr;
2494 
2495 		if (bmcr & BMCR_FULLDPLX)
2496 			phydev->duplex = DUPLEX_FULL;
2497 		else
2498 			phydev->duplex = DUPLEX_HALF;
2499 	}
2500 
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(genphy_c37_read_status);
2504 
2505 /**
2506  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2507  * @phydev: target phy_device struct
2508  *
2509  * Description: Perform a software PHY reset using the standard
2510  * BMCR_RESET bit and poll for the reset bit to be cleared.
2511  *
2512  * Returns: 0 on success, < 0 on failure
2513  */
2514 int genphy_soft_reset(struct phy_device *phydev)
2515 {
2516 	u16 res = BMCR_RESET;
2517 	int ret;
2518 
2519 	if (phydev->autoneg == AUTONEG_ENABLE)
2520 		res |= BMCR_ANRESTART;
2521 
2522 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2523 	if (ret < 0)
2524 		return ret;
2525 
2526 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2527 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2528 	 * be cleared after soft reset.
2529 	 */
2530 	phydev->suspended = 0;
2531 
2532 	ret = phy_poll_reset(phydev);
2533 	if (ret)
2534 		return ret;
2535 
2536 	/* BMCR may be reset to defaults */
2537 	if (phydev->autoneg == AUTONEG_DISABLE)
2538 		ret = genphy_setup_forced(phydev);
2539 
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL(genphy_soft_reset);
2543 
2544 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2545 {
2546 	/* It seems there are cases where the interrupts are handled by another
2547 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2548 	 * need any other interraction from phylib. In this case, just trigger
2549 	 * the state machine directly.
2550 	 */
2551 	phy_trigger_machine(phydev);
2552 
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2556 
2557 /**
2558  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2559  * @phydev: target phy_device struct
2560  *
2561  * Description: Reads the PHY's abilities and populates
2562  * phydev->supported accordingly.
2563  *
2564  * Returns: 0 on success, < 0 on failure
2565  */
2566 int genphy_read_abilities(struct phy_device *phydev)
2567 {
2568 	int val;
2569 
2570 	linkmode_set_bit_array(phy_basic_ports_array,
2571 			       ARRAY_SIZE(phy_basic_ports_array),
2572 			       phydev->supported);
2573 
2574 	val = phy_read(phydev, MII_BMSR);
2575 	if (val < 0)
2576 		return val;
2577 
2578 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2579 			 val & BMSR_ANEGCAPABLE);
2580 
2581 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2582 			 val & BMSR_100FULL);
2583 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2584 			 val & BMSR_100HALF);
2585 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2586 			 val & BMSR_10FULL);
2587 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2588 			 val & BMSR_10HALF);
2589 
2590 	if (val & BMSR_ESTATEN) {
2591 		val = phy_read(phydev, MII_ESTATUS);
2592 		if (val < 0)
2593 			return val;
2594 
2595 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2596 				 phydev->supported, val & ESTATUS_1000_TFULL);
2597 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2598 				 phydev->supported, val & ESTATUS_1000_THALF);
2599 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2600 				 phydev->supported, val & ESTATUS_1000_XFULL);
2601 	}
2602 
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL(genphy_read_abilities);
2606 
2607 /* This is used for the phy device which doesn't support the MMD extended
2608  * register access, but it does have side effect when we are trying to access
2609  * the MMD register via indirect method.
2610  */
2611 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2612 {
2613 	return -EOPNOTSUPP;
2614 }
2615 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2616 
2617 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2618 				 u16 regnum, u16 val)
2619 {
2620 	return -EOPNOTSUPP;
2621 }
2622 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2623 
2624 int genphy_suspend(struct phy_device *phydev)
2625 {
2626 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2627 }
2628 EXPORT_SYMBOL(genphy_suspend);
2629 
2630 int genphy_resume(struct phy_device *phydev)
2631 {
2632 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2633 }
2634 EXPORT_SYMBOL(genphy_resume);
2635 
2636 int genphy_loopback(struct phy_device *phydev, bool enable)
2637 {
2638 	if (enable) {
2639 		u16 val, ctl = BMCR_LOOPBACK;
2640 		int ret;
2641 
2642 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2643 
2644 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2645 
2646 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2647 					    val & BMSR_LSTATUS,
2648 				    5000, 500000, true);
2649 		if (ret)
2650 			return ret;
2651 	} else {
2652 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2653 
2654 		phy_config_aneg(phydev);
2655 	}
2656 
2657 	return 0;
2658 }
2659 EXPORT_SYMBOL(genphy_loopback);
2660 
2661 /**
2662  * phy_remove_link_mode - Remove a supported link mode
2663  * @phydev: phy_device structure to remove link mode from
2664  * @link_mode: Link mode to be removed
2665  *
2666  * Description: Some MACs don't support all link modes which the PHY
2667  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2668  * to remove a link mode.
2669  */
2670 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2671 {
2672 	linkmode_clear_bit(link_mode, phydev->supported);
2673 	phy_advertise_supported(phydev);
2674 }
2675 EXPORT_SYMBOL(phy_remove_link_mode);
2676 
2677 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2678 {
2679 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2680 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2681 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2682 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2683 }
2684 
2685 /**
2686  * phy_advertise_supported - Advertise all supported modes
2687  * @phydev: target phy_device struct
2688  *
2689  * Description: Called to advertise all supported modes, doesn't touch
2690  * pause mode advertising.
2691  */
2692 void phy_advertise_supported(struct phy_device *phydev)
2693 {
2694 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2695 
2696 	linkmode_copy(new, phydev->supported);
2697 	phy_copy_pause_bits(new, phydev->advertising);
2698 	linkmode_copy(phydev->advertising, new);
2699 }
2700 EXPORT_SYMBOL(phy_advertise_supported);
2701 
2702 /**
2703  * phy_support_sym_pause - Enable support of symmetrical pause
2704  * @phydev: target phy_device struct
2705  *
2706  * Description: Called by the MAC to indicate is supports symmetrical
2707  * Pause, but not asym pause.
2708  */
2709 void phy_support_sym_pause(struct phy_device *phydev)
2710 {
2711 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2712 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2713 }
2714 EXPORT_SYMBOL(phy_support_sym_pause);
2715 
2716 /**
2717  * phy_support_asym_pause - Enable support of asym pause
2718  * @phydev: target phy_device struct
2719  *
2720  * Description: Called by the MAC to indicate is supports Asym Pause.
2721  */
2722 void phy_support_asym_pause(struct phy_device *phydev)
2723 {
2724 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2725 }
2726 EXPORT_SYMBOL(phy_support_asym_pause);
2727 
2728 /**
2729  * phy_set_sym_pause - Configure symmetric Pause
2730  * @phydev: target phy_device struct
2731  * @rx: Receiver Pause is supported
2732  * @tx: Transmit Pause is supported
2733  * @autoneg: Auto neg should be used
2734  *
2735  * Description: Configure advertised Pause support depending on if
2736  * receiver pause and pause auto neg is supported. Generally called
2737  * from the set_pauseparam .ndo.
2738  */
2739 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2740 		       bool autoneg)
2741 {
2742 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2743 
2744 	if (rx && tx && autoneg)
2745 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2746 				 phydev->supported);
2747 
2748 	linkmode_copy(phydev->advertising, phydev->supported);
2749 }
2750 EXPORT_SYMBOL(phy_set_sym_pause);
2751 
2752 /**
2753  * phy_set_asym_pause - Configure Pause and Asym Pause
2754  * @phydev: target phy_device struct
2755  * @rx: Receiver Pause is supported
2756  * @tx: Transmit Pause is supported
2757  *
2758  * Description: Configure advertised Pause support depending on if
2759  * transmit and receiver pause is supported. If there has been a
2760  * change in adverting, trigger a new autoneg. Generally called from
2761  * the set_pauseparam .ndo.
2762  */
2763 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2764 {
2765 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2766 
2767 	linkmode_copy(oldadv, phydev->advertising);
2768 	linkmode_set_pause(phydev->advertising, tx, rx);
2769 
2770 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2771 	    phydev->autoneg)
2772 		phy_start_aneg(phydev);
2773 }
2774 EXPORT_SYMBOL(phy_set_asym_pause);
2775 
2776 /**
2777  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2778  * @phydev: phy_device struct
2779  * @pp: requested pause configuration
2780  *
2781  * Description: Test if the PHY/MAC combination supports the Pause
2782  * configuration the user is requesting. Returns True if it is
2783  * supported, false otherwise.
2784  */
2785 bool phy_validate_pause(struct phy_device *phydev,
2786 			struct ethtool_pauseparam *pp)
2787 {
2788 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2789 			       phydev->supported) && pp->rx_pause)
2790 		return false;
2791 
2792 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2793 			       phydev->supported) &&
2794 	    pp->rx_pause != pp->tx_pause)
2795 		return false;
2796 
2797 	return true;
2798 }
2799 EXPORT_SYMBOL(phy_validate_pause);
2800 
2801 /**
2802  * phy_get_pause - resolve negotiated pause modes
2803  * @phydev: phy_device struct
2804  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2805  * enabled.
2806  * @rx_pause: pointer to bool to indicate whether receive pause should be
2807  * enabled.
2808  *
2809  * Resolve and return the flow control modes according to the negotiation
2810  * result. This includes checking that we are operating in full duplex mode.
2811  * See linkmode_resolve_pause() for further details.
2812  */
2813 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2814 {
2815 	if (phydev->duplex != DUPLEX_FULL) {
2816 		*tx_pause = false;
2817 		*rx_pause = false;
2818 		return;
2819 	}
2820 
2821 	return linkmode_resolve_pause(phydev->advertising,
2822 				      phydev->lp_advertising,
2823 				      tx_pause, rx_pause);
2824 }
2825 EXPORT_SYMBOL(phy_get_pause);
2826 
2827 #if IS_ENABLED(CONFIG_OF_MDIO)
2828 static int phy_get_int_delay_property(struct device *dev, const char *name)
2829 {
2830 	s32 int_delay;
2831 	int ret;
2832 
2833 	ret = device_property_read_u32(dev, name, &int_delay);
2834 	if (ret)
2835 		return ret;
2836 
2837 	return int_delay;
2838 }
2839 #else
2840 static int phy_get_int_delay_property(struct device *dev, const char *name)
2841 {
2842 	return -EINVAL;
2843 }
2844 #endif
2845 
2846 /**
2847  * phy_get_internal_delay - returns the index of the internal delay
2848  * @phydev: phy_device struct
2849  * @dev: pointer to the devices device struct
2850  * @delay_values: array of delays the PHY supports
2851  * @size: the size of the delay array
2852  * @is_rx: boolean to indicate to get the rx internal delay
2853  *
2854  * Returns the index within the array of internal delay passed in.
2855  * If the device property is not present then the interface type is checked
2856  * if the interface defines use of internal delay then a 1 is returned otherwise
2857  * a 0 is returned.
2858  * The array must be in ascending order. If PHY does not have an ascending order
2859  * array then size = 0 and the value of the delay property is returned.
2860  * Return -EINVAL if the delay is invalid or cannot be found.
2861  */
2862 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2863 			   const int *delay_values, int size, bool is_rx)
2864 {
2865 	s32 delay;
2866 	int i;
2867 
2868 	if (is_rx) {
2869 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2870 		if (delay < 0 && size == 0) {
2871 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2872 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2873 				return 1;
2874 			else
2875 				return 0;
2876 		}
2877 
2878 	} else {
2879 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2880 		if (delay < 0 && size == 0) {
2881 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2882 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2883 				return 1;
2884 			else
2885 				return 0;
2886 		}
2887 	}
2888 
2889 	if (delay < 0)
2890 		return delay;
2891 
2892 	if (delay && size == 0)
2893 		return delay;
2894 
2895 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2896 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (delay == delay_values[0])
2901 		return 0;
2902 
2903 	for (i = 1; i < size; i++) {
2904 		if (delay == delay_values[i])
2905 			return i;
2906 
2907 		/* Find an approximate index by looking up the table */
2908 		if (delay > delay_values[i - 1] &&
2909 		    delay < delay_values[i]) {
2910 			if (delay - delay_values[i - 1] <
2911 			    delay_values[i] - delay)
2912 				return i - 1;
2913 			else
2914 				return i;
2915 		}
2916 	}
2917 
2918 	phydev_err(phydev, "error finding internal delay index for %d\n",
2919 		   delay);
2920 
2921 	return -EINVAL;
2922 }
2923 EXPORT_SYMBOL(phy_get_internal_delay);
2924 
2925 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2926 {
2927 	return phydrv->config_intr && phydrv->handle_interrupt;
2928 }
2929 
2930 /**
2931  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
2932  * @fwnode: pointer to the mdio_device's fwnode
2933  *
2934  * If successful, returns a pointer to the mdio_device with the embedded
2935  * struct device refcount incremented by one, or NULL on failure.
2936  * The caller should call put_device() on the mdio_device after its use.
2937  */
2938 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
2939 {
2940 	struct device *d;
2941 
2942 	if (!fwnode)
2943 		return NULL;
2944 
2945 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
2946 	if (!d)
2947 		return NULL;
2948 
2949 	return to_mdio_device(d);
2950 }
2951 EXPORT_SYMBOL(fwnode_mdio_find_device);
2952 
2953 /**
2954  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
2955  *
2956  * @phy_fwnode: Pointer to the phy's fwnode.
2957  *
2958  * If successful, returns a pointer to the phy_device with the embedded
2959  * struct device refcount incremented by one, or NULL on failure.
2960  */
2961 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
2962 {
2963 	struct mdio_device *mdiodev;
2964 
2965 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
2966 	if (!mdiodev)
2967 		return NULL;
2968 
2969 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
2970 		return to_phy_device(&mdiodev->dev);
2971 
2972 	put_device(&mdiodev->dev);
2973 
2974 	return NULL;
2975 }
2976 EXPORT_SYMBOL(fwnode_phy_find_device);
2977 
2978 /**
2979  * device_phy_find_device - For the given device, get the phy_device
2980  * @dev: Pointer to the given device
2981  *
2982  * Refer return conditions of fwnode_phy_find_device().
2983  */
2984 struct phy_device *device_phy_find_device(struct device *dev)
2985 {
2986 	return fwnode_phy_find_device(dev_fwnode(dev));
2987 }
2988 EXPORT_SYMBOL_GPL(device_phy_find_device);
2989 
2990 /**
2991  * fwnode_get_phy_node - Get the phy_node using the named reference.
2992  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
2993  *
2994  * Refer return conditions of fwnode_find_reference().
2995  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
2996  * and "phy-device" are not supported in ACPI. DT supports all the three
2997  * named references to the phy node.
2998  */
2999 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode)
3000 {
3001 	struct fwnode_handle *phy_node;
3002 
3003 	/* Only phy-handle is used for ACPI */
3004 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3005 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3006 		return phy_node;
3007 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3008 	if (IS_ERR(phy_node))
3009 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3010 	return phy_node;
3011 }
3012 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3013 
3014 /**
3015  * phy_probe - probe and init a PHY device
3016  * @dev: device to probe and init
3017  *
3018  * Description: Take care of setting up the phy_device structure,
3019  *   set the state to READY (the driver's init function should
3020  *   set it to STARTING if needed).
3021  */
3022 static int phy_probe(struct device *dev)
3023 {
3024 	struct phy_device *phydev = to_phy_device(dev);
3025 	struct device_driver *drv = phydev->mdio.dev.driver;
3026 	struct phy_driver *phydrv = to_phy_driver(drv);
3027 	int err = 0;
3028 
3029 	phydev->drv = phydrv;
3030 
3031 	/* Disable the interrupt if the PHY doesn't support it
3032 	 * but the interrupt is still a valid one
3033 	 */
3034 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3035 		phydev->irq = PHY_POLL;
3036 
3037 	if (phydrv->flags & PHY_IS_INTERNAL)
3038 		phydev->is_internal = true;
3039 
3040 	mutex_lock(&phydev->lock);
3041 
3042 	/* Deassert the reset signal */
3043 	phy_device_reset(phydev, 0);
3044 
3045 	if (phydev->drv->probe) {
3046 		err = phydev->drv->probe(phydev);
3047 		if (err)
3048 			goto out;
3049 	}
3050 
3051 	/* Start out supporting everything. Eventually,
3052 	 * a controller will attach, and may modify one
3053 	 * or both of these values
3054 	 */
3055 	if (phydrv->features)
3056 		linkmode_copy(phydev->supported, phydrv->features);
3057 	else if (phydrv->get_features)
3058 		err = phydrv->get_features(phydev);
3059 	else if (phydev->is_c45)
3060 		err = genphy_c45_pma_read_abilities(phydev);
3061 	else
3062 		err = genphy_read_abilities(phydev);
3063 
3064 	if (err)
3065 		goto out;
3066 
3067 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3068 			       phydev->supported))
3069 		phydev->autoneg = 0;
3070 
3071 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3072 			      phydev->supported))
3073 		phydev->is_gigabit_capable = 1;
3074 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3075 			      phydev->supported))
3076 		phydev->is_gigabit_capable = 1;
3077 
3078 	of_set_phy_supported(phydev);
3079 	phy_advertise_supported(phydev);
3080 
3081 	/* Get the EEE modes we want to prohibit. We will ask
3082 	 * the PHY stop advertising these mode later on
3083 	 */
3084 	of_set_phy_eee_broken(phydev);
3085 
3086 	/* The Pause Frame bits indicate that the PHY can support passing
3087 	 * pause frames. During autonegotiation, the PHYs will determine if
3088 	 * they should allow pause frames to pass.  The MAC driver should then
3089 	 * use that result to determine whether to enable flow control via
3090 	 * pause frames.
3091 	 *
3092 	 * Normally, PHY drivers should not set the Pause bits, and instead
3093 	 * allow phylib to do that.  However, there may be some situations
3094 	 * (e.g. hardware erratum) where the driver wants to set only one
3095 	 * of these bits.
3096 	 */
3097 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3098 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3099 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3100 				 phydev->supported);
3101 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3102 				 phydev->supported);
3103 	}
3104 
3105 	/* Set the state to READY by default */
3106 	phydev->state = PHY_READY;
3107 
3108 out:
3109 	/* Assert the reset signal */
3110 	if (err)
3111 		phy_device_reset(phydev, 1);
3112 
3113 	mutex_unlock(&phydev->lock);
3114 
3115 	return err;
3116 }
3117 
3118 static int phy_remove(struct device *dev)
3119 {
3120 	struct phy_device *phydev = to_phy_device(dev);
3121 
3122 	cancel_delayed_work_sync(&phydev->state_queue);
3123 
3124 	mutex_lock(&phydev->lock);
3125 	phydev->state = PHY_DOWN;
3126 	mutex_unlock(&phydev->lock);
3127 
3128 	sfp_bus_del_upstream(phydev->sfp_bus);
3129 	phydev->sfp_bus = NULL;
3130 
3131 	if (phydev->drv && phydev->drv->remove)
3132 		phydev->drv->remove(phydev);
3133 
3134 	/* Assert the reset signal */
3135 	phy_device_reset(phydev, 1);
3136 
3137 	phydev->drv = NULL;
3138 
3139 	return 0;
3140 }
3141 
3142 static void phy_shutdown(struct device *dev)
3143 {
3144 	struct phy_device *phydev = to_phy_device(dev);
3145 
3146 	if (phydev->state == PHY_READY || !phydev->attached_dev)
3147 		return;
3148 
3149 	phy_disable_interrupts(phydev);
3150 }
3151 
3152 /**
3153  * phy_driver_register - register a phy_driver with the PHY layer
3154  * @new_driver: new phy_driver to register
3155  * @owner: module owning this PHY
3156  */
3157 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3158 {
3159 	int retval;
3160 
3161 	/* Either the features are hard coded, or dynamically
3162 	 * determined. It cannot be both.
3163 	 */
3164 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3165 		pr_err("%s: features and get_features must not both be set\n",
3166 		       new_driver->name);
3167 		return -EINVAL;
3168 	}
3169 
3170 	/* PHYLIB device drivers must not match using a DT compatible table
3171 	 * as this bypasses our checks that the mdiodev that is being matched
3172 	 * is backed by a struct phy_device. If such a case happens, we will
3173 	 * make out-of-bounds accesses and lockup in phydev->lock.
3174 	 */
3175 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3176 		 "%s: driver must not provide a DT match table\n",
3177 		 new_driver->name))
3178 		return -EINVAL;
3179 
3180 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3181 	new_driver->mdiodrv.driver.name = new_driver->name;
3182 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3183 	new_driver->mdiodrv.driver.probe = phy_probe;
3184 	new_driver->mdiodrv.driver.remove = phy_remove;
3185 	new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3186 	new_driver->mdiodrv.driver.owner = owner;
3187 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3188 
3189 	retval = driver_register(&new_driver->mdiodrv.driver);
3190 	if (retval) {
3191 		pr_err("%s: Error %d in registering driver\n",
3192 		       new_driver->name, retval);
3193 
3194 		return retval;
3195 	}
3196 
3197 	pr_debug("%s: Registered new driver\n", new_driver->name);
3198 
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL(phy_driver_register);
3202 
3203 int phy_drivers_register(struct phy_driver *new_driver, int n,
3204 			 struct module *owner)
3205 {
3206 	int i, ret = 0;
3207 
3208 	for (i = 0; i < n; i++) {
3209 		ret = phy_driver_register(new_driver + i, owner);
3210 		if (ret) {
3211 			while (i-- > 0)
3212 				phy_driver_unregister(new_driver + i);
3213 			break;
3214 		}
3215 	}
3216 	return ret;
3217 }
3218 EXPORT_SYMBOL(phy_drivers_register);
3219 
3220 void phy_driver_unregister(struct phy_driver *drv)
3221 {
3222 	driver_unregister(&drv->mdiodrv.driver);
3223 }
3224 EXPORT_SYMBOL(phy_driver_unregister);
3225 
3226 void phy_drivers_unregister(struct phy_driver *drv, int n)
3227 {
3228 	int i;
3229 
3230 	for (i = 0; i < n; i++)
3231 		phy_driver_unregister(drv + i);
3232 }
3233 EXPORT_SYMBOL(phy_drivers_unregister);
3234 
3235 static struct phy_driver genphy_driver = {
3236 	.phy_id		= 0xffffffff,
3237 	.phy_id_mask	= 0xffffffff,
3238 	.name		= "Generic PHY",
3239 	.get_features	= genphy_read_abilities,
3240 	.suspend	= genphy_suspend,
3241 	.resume		= genphy_resume,
3242 	.set_loopback   = genphy_loopback,
3243 };
3244 
3245 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3246 	.get_sset_count		= phy_ethtool_get_sset_count,
3247 	.get_strings		= phy_ethtool_get_strings,
3248 	.get_stats		= phy_ethtool_get_stats,
3249 	.start_cable_test	= phy_start_cable_test,
3250 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3251 };
3252 
3253 static int __init phy_init(void)
3254 {
3255 	int rc;
3256 
3257 	rc = mdio_bus_init();
3258 	if (rc)
3259 		return rc;
3260 
3261 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3262 	features_init();
3263 
3264 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3265 	if (rc)
3266 		goto err_c45;
3267 
3268 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3269 	if (rc) {
3270 		phy_driver_unregister(&genphy_c45_driver);
3271 err_c45:
3272 		mdio_bus_exit();
3273 	}
3274 
3275 	return rc;
3276 }
3277 
3278 static void __exit phy_exit(void)
3279 {
3280 	phy_driver_unregister(&genphy_c45_driver);
3281 	phy_driver_unregister(&genphy_driver);
3282 	mdio_bus_exit();
3283 	ethtool_set_ethtool_phy_ops(NULL);
3284 }
3285 
3286 subsys_initcall(phy_init);
3287 module_exit(phy_exit);
3288