1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[3] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 97 }; 98 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 99 100 const int phy_gbit_features_array[2] = { 101 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 102 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 105 106 const int phy_10gbit_features_array[1] = { 107 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 108 }; 109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 110 111 static const int phy_10gbit_fec_features_array[1] = { 112 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 113 }; 114 115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 117 118 static const int phy_10gbit_full_features_array[] = { 119 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 122 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 123 }; 124 125 static void features_init(void) 126 { 127 /* 10/100 half/full*/ 128 linkmode_set_bit_array(phy_basic_ports_array, 129 ARRAY_SIZE(phy_basic_ports_array), 130 phy_basic_features); 131 linkmode_set_bit_array(phy_10_100_features_array, 132 ARRAY_SIZE(phy_10_100_features_array), 133 phy_basic_features); 134 135 /* 100 full, TP */ 136 linkmode_set_bit_array(phy_basic_t1_features_array, 137 ARRAY_SIZE(phy_basic_t1_features_array), 138 phy_basic_t1_features); 139 140 /* 10/100 half/full + 1000 half/full */ 141 linkmode_set_bit_array(phy_basic_ports_array, 142 ARRAY_SIZE(phy_basic_ports_array), 143 phy_gbit_features); 144 linkmode_set_bit_array(phy_10_100_features_array, 145 ARRAY_SIZE(phy_10_100_features_array), 146 phy_gbit_features); 147 linkmode_set_bit_array(phy_gbit_features_array, 148 ARRAY_SIZE(phy_gbit_features_array), 149 phy_gbit_features); 150 151 /* 10/100 half/full + 1000 half/full + fibre*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_gbit_fibre_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_gbit_fibre_features); 158 linkmode_set_bit_array(phy_gbit_features_array, 159 ARRAY_SIZE(phy_gbit_features_array), 160 phy_gbit_fibre_features); 161 linkmode_set_bit_array(phy_fibre_port_array, 162 ARRAY_SIZE(phy_fibre_port_array), 163 phy_gbit_fibre_features); 164 165 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 166 linkmode_set_bit_array(phy_all_ports_features_array, 167 ARRAY_SIZE(phy_all_ports_features_array), 168 phy_gbit_all_ports_features); 169 linkmode_set_bit_array(phy_10_100_features_array, 170 ARRAY_SIZE(phy_10_100_features_array), 171 phy_gbit_all_ports_features); 172 linkmode_set_bit_array(phy_gbit_features_array, 173 ARRAY_SIZE(phy_gbit_features_array), 174 phy_gbit_all_ports_features); 175 176 /* 10/100 half/full + 1000 half/full + 10G full*/ 177 linkmode_set_bit_array(phy_all_ports_features_array, 178 ARRAY_SIZE(phy_all_ports_features_array), 179 phy_10gbit_features); 180 linkmode_set_bit_array(phy_10_100_features_array, 181 ARRAY_SIZE(phy_10_100_features_array), 182 phy_10gbit_features); 183 linkmode_set_bit_array(phy_gbit_features_array, 184 ARRAY_SIZE(phy_gbit_features_array), 185 phy_10gbit_features); 186 linkmode_set_bit_array(phy_10gbit_features_array, 187 ARRAY_SIZE(phy_10gbit_features_array), 188 phy_10gbit_features); 189 190 /* 10/100/1000/10G full */ 191 linkmode_set_bit_array(phy_all_ports_features_array, 192 ARRAY_SIZE(phy_all_ports_features_array), 193 phy_10gbit_full_features); 194 linkmode_set_bit_array(phy_10gbit_full_features_array, 195 ARRAY_SIZE(phy_10gbit_full_features_array), 196 phy_10gbit_full_features); 197 /* 10G FEC only */ 198 linkmode_set_bit_array(phy_10gbit_fec_features_array, 199 ARRAY_SIZE(phy_10gbit_fec_features_array), 200 phy_10gbit_fec_features); 201 } 202 203 void phy_device_free(struct phy_device *phydev) 204 { 205 put_device(&phydev->mdio.dev); 206 } 207 EXPORT_SYMBOL(phy_device_free); 208 209 static void phy_mdio_device_free(struct mdio_device *mdiodev) 210 { 211 struct phy_device *phydev; 212 213 phydev = container_of(mdiodev, struct phy_device, mdio); 214 phy_device_free(phydev); 215 } 216 217 static void phy_device_release(struct device *dev) 218 { 219 kfree(to_phy_device(dev)); 220 } 221 222 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 223 { 224 struct phy_device *phydev; 225 226 phydev = container_of(mdiodev, struct phy_device, mdio); 227 phy_device_remove(phydev); 228 } 229 230 static struct phy_driver genphy_driver; 231 232 static LIST_HEAD(phy_fixup_list); 233 static DEFINE_MUTEX(phy_fixup_lock); 234 235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 236 { 237 struct device_driver *drv = phydev->mdio.dev.driver; 238 struct phy_driver *phydrv = to_phy_driver(drv); 239 struct net_device *netdev = phydev->attached_dev; 240 241 if (!drv || !phydrv->suspend) 242 return false; 243 244 /* PHY not attached? May suspend if the PHY has not already been 245 * suspended as part of a prior call to phy_disconnect() -> 246 * phy_detach() -> phy_suspend() because the parent netdev might be the 247 * MDIO bus driver and clock gated at this point. 248 */ 249 if (!netdev) 250 goto out; 251 252 if (netdev->wol_enabled) 253 return false; 254 255 /* As long as not all affected network drivers support the 256 * wol_enabled flag, let's check for hints that WoL is enabled. 257 * Don't suspend PHY if the attached netdev parent may wake up. 258 * The parent may point to a PCI device, as in tg3 driver. 259 */ 260 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 261 return false; 262 263 /* Also don't suspend PHY if the netdev itself may wakeup. This 264 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 265 * e.g. SoC devices. 266 */ 267 if (device_may_wakeup(&netdev->dev)) 268 return false; 269 270 out: 271 return !phydev->suspended; 272 } 273 274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 275 { 276 struct phy_device *phydev = to_phy_device(dev); 277 278 if (phydev->mac_managed_pm) 279 return 0; 280 281 /* Wakeup interrupts may occur during the system sleep transition when 282 * the PHY is inaccessible. Set flag to postpone handling until the PHY 283 * has resumed. Wait for concurrent interrupt handler to complete. 284 */ 285 if (phy_interrupt_is_valid(phydev)) { 286 phydev->irq_suspended = 1; 287 synchronize_irq(phydev->irq); 288 } 289 290 /* We must stop the state machine manually, otherwise it stops out of 291 * control, possibly with the phydev->lock held. Upon resume, netdev 292 * may call phy routines that try to grab the same lock, and that may 293 * lead to a deadlock. 294 */ 295 if (phydev->attached_dev && phydev->adjust_link) 296 phy_stop_machine(phydev); 297 298 if (!mdio_bus_phy_may_suspend(phydev)) 299 return 0; 300 301 phydev->suspended_by_mdio_bus = 1; 302 303 return phy_suspend(phydev); 304 } 305 306 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 307 { 308 struct phy_device *phydev = to_phy_device(dev); 309 int ret; 310 311 if (phydev->mac_managed_pm) 312 return 0; 313 314 if (!phydev->suspended_by_mdio_bus) 315 goto no_resume; 316 317 phydev->suspended_by_mdio_bus = 0; 318 319 /* If we managed to get here with the PHY state machine in a state other 320 * than PHY_HALTED this is an indication that something went wrong and 321 * we should most likely be using MAC managed PM and we are not. 322 */ 323 WARN_ON(phydev->state != PHY_HALTED && !phydev->mac_managed_pm); 324 325 ret = phy_init_hw(phydev); 326 if (ret < 0) 327 return ret; 328 329 ret = phy_resume(phydev); 330 if (ret < 0) 331 return ret; 332 no_resume: 333 if (phy_interrupt_is_valid(phydev)) { 334 phydev->irq_suspended = 0; 335 synchronize_irq(phydev->irq); 336 337 /* Rerun interrupts which were postponed by phy_interrupt() 338 * because they occurred during the system sleep transition. 339 */ 340 if (phydev->irq_rerun) { 341 phydev->irq_rerun = 0; 342 enable_irq(phydev->irq); 343 irq_wake_thread(phydev->irq, phydev); 344 } 345 } 346 347 if (phydev->attached_dev && phydev->adjust_link) 348 phy_start_machine(phydev); 349 350 return 0; 351 } 352 353 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 354 mdio_bus_phy_resume); 355 356 /** 357 * phy_register_fixup - creates a new phy_fixup and adds it to the list 358 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 359 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 360 * It can also be PHY_ANY_UID 361 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 362 * comparison 363 * @run: The actual code to be run when a matching PHY is found 364 */ 365 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 366 int (*run)(struct phy_device *)) 367 { 368 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 369 370 if (!fixup) 371 return -ENOMEM; 372 373 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 374 fixup->phy_uid = phy_uid; 375 fixup->phy_uid_mask = phy_uid_mask; 376 fixup->run = run; 377 378 mutex_lock(&phy_fixup_lock); 379 list_add_tail(&fixup->list, &phy_fixup_list); 380 mutex_unlock(&phy_fixup_lock); 381 382 return 0; 383 } 384 EXPORT_SYMBOL(phy_register_fixup); 385 386 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 387 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 388 int (*run)(struct phy_device *)) 389 { 390 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 391 } 392 EXPORT_SYMBOL(phy_register_fixup_for_uid); 393 394 /* Registers a fixup to be run on the PHY with id string bus_id */ 395 int phy_register_fixup_for_id(const char *bus_id, 396 int (*run)(struct phy_device *)) 397 { 398 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 399 } 400 EXPORT_SYMBOL(phy_register_fixup_for_id); 401 402 /** 403 * phy_unregister_fixup - remove a phy_fixup from the list 404 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 405 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 406 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 407 */ 408 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 409 { 410 struct list_head *pos, *n; 411 struct phy_fixup *fixup; 412 int ret; 413 414 ret = -ENODEV; 415 416 mutex_lock(&phy_fixup_lock); 417 list_for_each_safe(pos, n, &phy_fixup_list) { 418 fixup = list_entry(pos, struct phy_fixup, list); 419 420 if ((!strcmp(fixup->bus_id, bus_id)) && 421 ((fixup->phy_uid & phy_uid_mask) == 422 (phy_uid & phy_uid_mask))) { 423 list_del(&fixup->list); 424 kfree(fixup); 425 ret = 0; 426 break; 427 } 428 } 429 mutex_unlock(&phy_fixup_lock); 430 431 return ret; 432 } 433 EXPORT_SYMBOL(phy_unregister_fixup); 434 435 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 436 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 437 { 438 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 439 } 440 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 441 442 /* Unregisters a fixup of the PHY with id string bus_id */ 443 int phy_unregister_fixup_for_id(const char *bus_id) 444 { 445 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 446 } 447 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 448 449 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 450 * Fixups can be set to match any in one or more fields. 451 */ 452 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 453 { 454 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 455 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 456 return 0; 457 458 if ((fixup->phy_uid & fixup->phy_uid_mask) != 459 (phydev->phy_id & fixup->phy_uid_mask)) 460 if (fixup->phy_uid != PHY_ANY_UID) 461 return 0; 462 463 return 1; 464 } 465 466 /* Runs any matching fixups for this phydev */ 467 static int phy_scan_fixups(struct phy_device *phydev) 468 { 469 struct phy_fixup *fixup; 470 471 mutex_lock(&phy_fixup_lock); 472 list_for_each_entry(fixup, &phy_fixup_list, list) { 473 if (phy_needs_fixup(phydev, fixup)) { 474 int err = fixup->run(phydev); 475 476 if (err < 0) { 477 mutex_unlock(&phy_fixup_lock); 478 return err; 479 } 480 phydev->has_fixups = true; 481 } 482 } 483 mutex_unlock(&phy_fixup_lock); 484 485 return 0; 486 } 487 488 static int phy_bus_match(struct device *dev, struct device_driver *drv) 489 { 490 struct phy_device *phydev = to_phy_device(dev); 491 struct phy_driver *phydrv = to_phy_driver(drv); 492 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 493 int i; 494 495 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 496 return 0; 497 498 if (phydrv->match_phy_device) 499 return phydrv->match_phy_device(phydev); 500 501 if (phydev->is_c45) { 502 for (i = 1; i < num_ids; i++) { 503 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 504 continue; 505 506 if ((phydrv->phy_id & phydrv->phy_id_mask) == 507 (phydev->c45_ids.device_ids[i] & 508 phydrv->phy_id_mask)) 509 return 1; 510 } 511 return 0; 512 } else { 513 return (phydrv->phy_id & phydrv->phy_id_mask) == 514 (phydev->phy_id & phydrv->phy_id_mask); 515 } 516 } 517 518 static ssize_t 519 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 520 { 521 struct phy_device *phydev = to_phy_device(dev); 522 523 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 524 } 525 static DEVICE_ATTR_RO(phy_id); 526 527 static ssize_t 528 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 529 { 530 struct phy_device *phydev = to_phy_device(dev); 531 const char *mode = NULL; 532 533 if (phy_is_internal(phydev)) 534 mode = "internal"; 535 else 536 mode = phy_modes(phydev->interface); 537 538 return sprintf(buf, "%s\n", mode); 539 } 540 static DEVICE_ATTR_RO(phy_interface); 541 542 static ssize_t 543 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 544 char *buf) 545 { 546 struct phy_device *phydev = to_phy_device(dev); 547 548 return sprintf(buf, "%d\n", phydev->has_fixups); 549 } 550 static DEVICE_ATTR_RO(phy_has_fixups); 551 552 static ssize_t phy_dev_flags_show(struct device *dev, 553 struct device_attribute *attr, 554 char *buf) 555 { 556 struct phy_device *phydev = to_phy_device(dev); 557 558 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 559 } 560 static DEVICE_ATTR_RO(phy_dev_flags); 561 562 static struct attribute *phy_dev_attrs[] = { 563 &dev_attr_phy_id.attr, 564 &dev_attr_phy_interface.attr, 565 &dev_attr_phy_has_fixups.attr, 566 &dev_attr_phy_dev_flags.attr, 567 NULL, 568 }; 569 ATTRIBUTE_GROUPS(phy_dev); 570 571 static const struct device_type mdio_bus_phy_type = { 572 .name = "PHY", 573 .groups = phy_dev_groups, 574 .release = phy_device_release, 575 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 576 }; 577 578 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 579 { 580 int ret; 581 582 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 583 MDIO_ID_ARGS(phy_id)); 584 /* We only check for failures in executing the usermode binary, 585 * not whether a PHY driver module exists for the PHY ID. 586 * Accept -ENOENT because this may occur in case no initramfs exists, 587 * then modprobe isn't available. 588 */ 589 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 590 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 591 ret, (unsigned long)phy_id); 592 return ret; 593 } 594 595 return 0; 596 } 597 598 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 599 bool is_c45, 600 struct phy_c45_device_ids *c45_ids) 601 { 602 struct phy_device *dev; 603 struct mdio_device *mdiodev; 604 int ret = 0; 605 606 /* We allocate the device, and initialize the default values */ 607 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 608 if (!dev) 609 return ERR_PTR(-ENOMEM); 610 611 mdiodev = &dev->mdio; 612 mdiodev->dev.parent = &bus->dev; 613 mdiodev->dev.bus = &mdio_bus_type; 614 mdiodev->dev.type = &mdio_bus_phy_type; 615 mdiodev->bus = bus; 616 mdiodev->bus_match = phy_bus_match; 617 mdiodev->addr = addr; 618 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 619 mdiodev->device_free = phy_mdio_device_free; 620 mdiodev->device_remove = phy_mdio_device_remove; 621 622 dev->speed = SPEED_UNKNOWN; 623 dev->duplex = DUPLEX_UNKNOWN; 624 dev->pause = 0; 625 dev->asym_pause = 0; 626 dev->link = 0; 627 dev->port = PORT_TP; 628 dev->interface = PHY_INTERFACE_MODE_GMII; 629 630 dev->autoneg = AUTONEG_ENABLE; 631 632 dev->pma_extable = -ENODATA; 633 dev->is_c45 = is_c45; 634 dev->phy_id = phy_id; 635 if (c45_ids) 636 dev->c45_ids = *c45_ids; 637 dev->irq = bus->irq[addr]; 638 639 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 640 device_initialize(&mdiodev->dev); 641 642 dev->state = PHY_DOWN; 643 644 mutex_init(&dev->lock); 645 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 646 647 /* Request the appropriate module unconditionally; don't 648 * bother trying to do so only if it isn't already loaded, 649 * because that gets complicated. A hotplug event would have 650 * done an unconditional modprobe anyway. 651 * We don't do normal hotplug because it won't work for MDIO 652 * -- because it relies on the device staying around for long 653 * enough for the driver to get loaded. With MDIO, the NIC 654 * driver will get bored and give up as soon as it finds that 655 * there's no driver _already_ loaded. 656 */ 657 if (is_c45 && c45_ids) { 658 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 659 int i; 660 661 for (i = 1; i < num_ids; i++) { 662 if (c45_ids->device_ids[i] == 0xffffffff) 663 continue; 664 665 ret = phy_request_driver_module(dev, 666 c45_ids->device_ids[i]); 667 if (ret) 668 break; 669 } 670 } else { 671 ret = phy_request_driver_module(dev, phy_id); 672 } 673 674 if (ret) { 675 put_device(&mdiodev->dev); 676 dev = ERR_PTR(ret); 677 } 678 679 return dev; 680 } 681 EXPORT_SYMBOL(phy_device_create); 682 683 /* phy_c45_probe_present - checks to see if a MMD is present in the package 684 * @bus: the target MII bus 685 * @prtad: PHY package address on the MII bus 686 * @devad: PHY device (MMD) address 687 * 688 * Read the MDIO_STAT2 register, and check whether a device is responding 689 * at this address. 690 * 691 * Returns: negative error number on bus access error, zero if no device 692 * is responding, or positive if a device is present. 693 */ 694 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 695 { 696 int stat2; 697 698 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 699 if (stat2 < 0) 700 return stat2; 701 702 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 703 } 704 705 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 706 * @bus: the target MII bus 707 * @addr: PHY address on the MII bus 708 * @dev_addr: MMD address in the PHY. 709 * @devices_in_package: where to store the devices in package information. 710 * 711 * Description: reads devices in package registers of a MMD at @dev_addr 712 * from PHY at @addr on @bus. 713 * 714 * Returns: 0 on success, -EIO on failure. 715 */ 716 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 717 u32 *devices_in_package) 718 { 719 int phy_reg; 720 721 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 722 if (phy_reg < 0) 723 return -EIO; 724 *devices_in_package = phy_reg << 16; 725 726 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 727 if (phy_reg < 0) 728 return -EIO; 729 *devices_in_package |= phy_reg; 730 731 return 0; 732 } 733 734 /** 735 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 736 * @bus: the target MII bus 737 * @addr: PHY address on the MII bus 738 * @c45_ids: where to store the c45 ID information. 739 * 740 * Read the PHY "devices in package". If this appears to be valid, read 741 * the PHY identifiers for each device. Return the "devices in package" 742 * and identifiers in @c45_ids. 743 * 744 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 745 * the "devices in package" is invalid. 746 */ 747 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 748 struct phy_c45_device_ids *c45_ids) 749 { 750 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 751 u32 devs_in_pkg = 0; 752 int i, ret, phy_reg; 753 754 /* Find first non-zero Devices In package. Device zero is reserved 755 * for 802.3 c45 complied PHYs, so don't probe it at first. 756 */ 757 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 758 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 759 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 760 /* Check that there is a device present at this 761 * address before reading the devices-in-package 762 * register to avoid reading garbage from the PHY. 763 * Some PHYs (88x3310) vendor space is not IEEE802.3 764 * compliant. 765 */ 766 ret = phy_c45_probe_present(bus, addr, i); 767 if (ret < 0) 768 return -EIO; 769 770 if (!ret) 771 continue; 772 } 773 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 774 if (phy_reg < 0) 775 return -EIO; 776 } 777 778 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 779 /* If mostly Fs, there is no device there, then let's probe 780 * MMD 0, as some 10G PHYs have zero Devices In package, 781 * e.g. Cortina CS4315/CS4340 PHY. 782 */ 783 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 784 if (phy_reg < 0) 785 return -EIO; 786 787 /* no device there, let's get out of here */ 788 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 789 return -ENODEV; 790 } 791 792 /* Now probe Device Identifiers for each device present. */ 793 for (i = 1; i < num_ids; i++) { 794 if (!(devs_in_pkg & (1 << i))) 795 continue; 796 797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 798 /* Probe the "Device Present" bits for the vendor MMDs 799 * to ignore these if they do not contain IEEE 802.3 800 * registers. 801 */ 802 ret = phy_c45_probe_present(bus, addr, i); 803 if (ret < 0) 804 return ret; 805 806 if (!ret) 807 continue; 808 } 809 810 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 811 if (phy_reg < 0) 812 return -EIO; 813 c45_ids->device_ids[i] = phy_reg << 16; 814 815 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 816 if (phy_reg < 0) 817 return -EIO; 818 c45_ids->device_ids[i] |= phy_reg; 819 } 820 821 c45_ids->devices_in_package = devs_in_pkg; 822 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 823 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 824 825 return 0; 826 } 827 828 /** 829 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 830 * @bus: the target MII bus 831 * @addr: PHY address on the MII bus 832 * @phy_id: where to store the ID retrieved. 833 * 834 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 835 * placing it in @phy_id. Return zero on successful read and the ID is 836 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 837 * or invalid ID. 838 */ 839 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 840 { 841 int phy_reg; 842 843 /* Grab the bits from PHYIR1, and put them in the upper half */ 844 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 845 if (phy_reg < 0) { 846 /* returning -ENODEV doesn't stop bus scanning */ 847 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 848 } 849 850 *phy_id = phy_reg << 16; 851 852 /* Grab the bits from PHYIR2, and put them in the lower half */ 853 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 854 if (phy_reg < 0) { 855 /* returning -ENODEV doesn't stop bus scanning */ 856 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 857 } 858 859 *phy_id |= phy_reg; 860 861 /* If the phy_id is mostly Fs, there is no device there */ 862 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 863 return -ENODEV; 864 865 return 0; 866 } 867 868 /* Extract the phy ID from the compatible string of the form 869 * ethernet-phy-idAAAA.BBBB. 870 */ 871 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 872 { 873 unsigned int upper, lower; 874 const char *cp; 875 int ret; 876 877 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 878 if (ret) 879 return ret; 880 881 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 882 return -EINVAL; 883 884 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 885 return 0; 886 } 887 EXPORT_SYMBOL(fwnode_get_phy_id); 888 889 /** 890 * get_phy_device - reads the specified PHY device and returns its @phy_device 891 * struct 892 * @bus: the target MII bus 893 * @addr: PHY address on the MII bus 894 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 895 * 896 * Probe for a PHY at @addr on @bus. 897 * 898 * When probing for a clause 22 PHY, then read the ID registers. If we find 899 * a valid ID, allocate and return a &struct phy_device. 900 * 901 * When probing for a clause 45 PHY, read the "devices in package" registers. 902 * If the "devices in package" appears valid, read the ID registers for each 903 * MMD, allocate and return a &struct phy_device. 904 * 905 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 906 * no PHY present, or %-EIO on bus access error. 907 */ 908 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 909 { 910 struct phy_c45_device_ids c45_ids; 911 u32 phy_id = 0; 912 int r; 913 914 c45_ids.devices_in_package = 0; 915 c45_ids.mmds_present = 0; 916 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 917 918 if (is_c45) 919 r = get_phy_c45_ids(bus, addr, &c45_ids); 920 else 921 r = get_phy_c22_id(bus, addr, &phy_id); 922 923 if (r) 924 return ERR_PTR(r); 925 926 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 927 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 928 * probe with C45 to see if we're able to get a valid PHY ID in the C45 929 * space, if successful, create the C45 PHY device. 930 */ 931 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 932 r = get_phy_c45_ids(bus, addr, &c45_ids); 933 if (!r) 934 return phy_device_create(bus, addr, phy_id, 935 true, &c45_ids); 936 } 937 938 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 939 } 940 EXPORT_SYMBOL(get_phy_device); 941 942 /** 943 * phy_device_register - Register the phy device on the MDIO bus 944 * @phydev: phy_device structure to be added to the MDIO bus 945 */ 946 int phy_device_register(struct phy_device *phydev) 947 { 948 int err; 949 950 err = mdiobus_register_device(&phydev->mdio); 951 if (err) 952 return err; 953 954 /* Deassert the reset signal */ 955 phy_device_reset(phydev, 0); 956 957 /* Run all of the fixups for this PHY */ 958 err = phy_scan_fixups(phydev); 959 if (err) { 960 phydev_err(phydev, "failed to initialize\n"); 961 goto out; 962 } 963 964 err = device_add(&phydev->mdio.dev); 965 if (err) { 966 phydev_err(phydev, "failed to add\n"); 967 goto out; 968 } 969 970 return 0; 971 972 out: 973 /* Assert the reset signal */ 974 phy_device_reset(phydev, 1); 975 976 mdiobus_unregister_device(&phydev->mdio); 977 return err; 978 } 979 EXPORT_SYMBOL(phy_device_register); 980 981 /** 982 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 983 * @phydev: phy_device structure to remove 984 * 985 * This doesn't free the phy_device itself, it merely reverses the effects 986 * of phy_device_register(). Use phy_device_free() to free the device 987 * after calling this function. 988 */ 989 void phy_device_remove(struct phy_device *phydev) 990 { 991 unregister_mii_timestamper(phydev->mii_ts); 992 993 device_del(&phydev->mdio.dev); 994 995 /* Assert the reset signal */ 996 phy_device_reset(phydev, 1); 997 998 mdiobus_unregister_device(&phydev->mdio); 999 } 1000 EXPORT_SYMBOL(phy_device_remove); 1001 1002 /** 1003 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1004 * @phydev: phy_device structure to read 802.3-c45 IDs 1005 * 1006 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1007 * the "devices in package" is invalid. 1008 */ 1009 int phy_get_c45_ids(struct phy_device *phydev) 1010 { 1011 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1012 &phydev->c45_ids); 1013 } 1014 EXPORT_SYMBOL(phy_get_c45_ids); 1015 1016 /** 1017 * phy_find_first - finds the first PHY device on the bus 1018 * @bus: the target MII bus 1019 */ 1020 struct phy_device *phy_find_first(struct mii_bus *bus) 1021 { 1022 struct phy_device *phydev; 1023 int addr; 1024 1025 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1026 phydev = mdiobus_get_phy(bus, addr); 1027 if (phydev) 1028 return phydev; 1029 } 1030 return NULL; 1031 } 1032 EXPORT_SYMBOL(phy_find_first); 1033 1034 static void phy_link_change(struct phy_device *phydev, bool up) 1035 { 1036 struct net_device *netdev = phydev->attached_dev; 1037 1038 if (up) 1039 netif_carrier_on(netdev); 1040 else 1041 netif_carrier_off(netdev); 1042 phydev->adjust_link(netdev); 1043 if (phydev->mii_ts && phydev->mii_ts->link_state) 1044 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1045 } 1046 1047 /** 1048 * phy_prepare_link - prepares the PHY layer to monitor link status 1049 * @phydev: target phy_device struct 1050 * @handler: callback function for link status change notifications 1051 * 1052 * Description: Tells the PHY infrastructure to handle the 1053 * gory details on monitoring link status (whether through 1054 * polling or an interrupt), and to call back to the 1055 * connected device driver when the link status changes. 1056 * If you want to monitor your own link state, don't call 1057 * this function. 1058 */ 1059 static void phy_prepare_link(struct phy_device *phydev, 1060 void (*handler)(struct net_device *)) 1061 { 1062 phydev->adjust_link = handler; 1063 } 1064 1065 /** 1066 * phy_connect_direct - connect an ethernet device to a specific phy_device 1067 * @dev: the network device to connect 1068 * @phydev: the pointer to the phy device 1069 * @handler: callback function for state change notifications 1070 * @interface: PHY device's interface 1071 */ 1072 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1073 void (*handler)(struct net_device *), 1074 phy_interface_t interface) 1075 { 1076 int rc; 1077 1078 if (!dev) 1079 return -EINVAL; 1080 1081 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1082 if (rc) 1083 return rc; 1084 1085 phy_prepare_link(phydev, handler); 1086 if (phy_interrupt_is_valid(phydev)) 1087 phy_request_interrupt(phydev); 1088 1089 return 0; 1090 } 1091 EXPORT_SYMBOL(phy_connect_direct); 1092 1093 /** 1094 * phy_connect - connect an ethernet device to a PHY device 1095 * @dev: the network device to connect 1096 * @bus_id: the id string of the PHY device to connect 1097 * @handler: callback function for state change notifications 1098 * @interface: PHY device's interface 1099 * 1100 * Description: Convenience function for connecting ethernet 1101 * devices to PHY devices. The default behavior is for 1102 * the PHY infrastructure to handle everything, and only notify 1103 * the connected driver when the link status changes. If you 1104 * don't want, or can't use the provided functionality, you may 1105 * choose to call only the subset of functions which provide 1106 * the desired functionality. 1107 */ 1108 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1109 void (*handler)(struct net_device *), 1110 phy_interface_t interface) 1111 { 1112 struct phy_device *phydev; 1113 struct device *d; 1114 int rc; 1115 1116 /* Search the list of PHY devices on the mdio bus for the 1117 * PHY with the requested name 1118 */ 1119 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1120 if (!d) { 1121 pr_err("PHY %s not found\n", bus_id); 1122 return ERR_PTR(-ENODEV); 1123 } 1124 phydev = to_phy_device(d); 1125 1126 rc = phy_connect_direct(dev, phydev, handler, interface); 1127 put_device(d); 1128 if (rc) 1129 return ERR_PTR(rc); 1130 1131 return phydev; 1132 } 1133 EXPORT_SYMBOL(phy_connect); 1134 1135 /** 1136 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1137 * device 1138 * @phydev: target phy_device struct 1139 */ 1140 void phy_disconnect(struct phy_device *phydev) 1141 { 1142 if (phy_is_started(phydev)) 1143 phy_stop(phydev); 1144 1145 if (phy_interrupt_is_valid(phydev)) 1146 phy_free_interrupt(phydev); 1147 1148 phydev->adjust_link = NULL; 1149 1150 phy_detach(phydev); 1151 } 1152 EXPORT_SYMBOL(phy_disconnect); 1153 1154 /** 1155 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1156 * @phydev: The PHY device to poll 1157 * 1158 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1159 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1160 * register must be polled until the BMCR_RESET bit clears. 1161 * 1162 * Furthermore, any attempts to write to PHY registers may have no effect 1163 * or even generate MDIO bus errors until this is complete. 1164 * 1165 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1166 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1167 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1168 * effort to support such broken PHYs, this function is separate from the 1169 * standard phy_init_hw() which will zero all the other bits in the BMCR 1170 * and reapply all driver-specific and board-specific fixups. 1171 */ 1172 static int phy_poll_reset(struct phy_device *phydev) 1173 { 1174 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1175 int ret, val; 1176 1177 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1178 50000, 600000, true); 1179 if (ret) 1180 return ret; 1181 /* Some chips (smsc911x) may still need up to another 1ms after the 1182 * BMCR_RESET bit is cleared before they are usable. 1183 */ 1184 msleep(1); 1185 return 0; 1186 } 1187 1188 int phy_init_hw(struct phy_device *phydev) 1189 { 1190 int ret = 0; 1191 1192 /* Deassert the reset signal */ 1193 phy_device_reset(phydev, 0); 1194 1195 if (!phydev->drv) 1196 return 0; 1197 1198 if (phydev->drv->soft_reset) { 1199 ret = phydev->drv->soft_reset(phydev); 1200 /* see comment in genphy_soft_reset for an explanation */ 1201 if (!ret) 1202 phydev->suspended = 0; 1203 } 1204 1205 if (ret < 0) 1206 return ret; 1207 1208 ret = phy_scan_fixups(phydev); 1209 if (ret < 0) 1210 return ret; 1211 1212 if (phydev->drv->config_init) { 1213 ret = phydev->drv->config_init(phydev); 1214 if (ret < 0) 1215 return ret; 1216 } 1217 1218 if (phydev->drv->config_intr) { 1219 ret = phydev->drv->config_intr(phydev); 1220 if (ret < 0) 1221 return ret; 1222 } 1223 1224 return 0; 1225 } 1226 EXPORT_SYMBOL(phy_init_hw); 1227 1228 void phy_attached_info(struct phy_device *phydev) 1229 { 1230 phy_attached_print(phydev, NULL); 1231 } 1232 EXPORT_SYMBOL(phy_attached_info); 1233 1234 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1235 char *phy_attached_info_irq(struct phy_device *phydev) 1236 { 1237 char *irq_str; 1238 char irq_num[8]; 1239 1240 switch(phydev->irq) { 1241 case PHY_POLL: 1242 irq_str = "POLL"; 1243 break; 1244 case PHY_MAC_INTERRUPT: 1245 irq_str = "MAC"; 1246 break; 1247 default: 1248 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1249 irq_str = irq_num; 1250 break; 1251 } 1252 1253 return kasprintf(GFP_KERNEL, "%s", irq_str); 1254 } 1255 EXPORT_SYMBOL(phy_attached_info_irq); 1256 1257 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1258 { 1259 const char *unbound = phydev->drv ? "" : "[unbound] "; 1260 char *irq_str = phy_attached_info_irq(phydev); 1261 1262 if (!fmt) { 1263 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1264 phydev_name(phydev), irq_str); 1265 } else { 1266 va_list ap; 1267 1268 phydev_info(phydev, ATTACHED_FMT, unbound, 1269 phydev_name(phydev), irq_str); 1270 1271 va_start(ap, fmt); 1272 vprintk(fmt, ap); 1273 va_end(ap); 1274 } 1275 kfree(irq_str); 1276 } 1277 EXPORT_SYMBOL(phy_attached_print); 1278 1279 static void phy_sysfs_create_links(struct phy_device *phydev) 1280 { 1281 struct net_device *dev = phydev->attached_dev; 1282 int err; 1283 1284 if (!dev) 1285 return; 1286 1287 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1288 "attached_dev"); 1289 if (err) 1290 return; 1291 1292 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1293 &phydev->mdio.dev.kobj, 1294 "phydev"); 1295 if (err) { 1296 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1297 kobject_name(&phydev->mdio.dev.kobj), 1298 err); 1299 /* non-fatal - some net drivers can use one netdevice 1300 * with more then one phy 1301 */ 1302 } 1303 1304 phydev->sysfs_links = true; 1305 } 1306 1307 static ssize_t 1308 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1309 char *buf) 1310 { 1311 struct phy_device *phydev = to_phy_device(dev); 1312 1313 return sprintf(buf, "%d\n", !phydev->attached_dev); 1314 } 1315 static DEVICE_ATTR_RO(phy_standalone); 1316 1317 /** 1318 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1319 * @upstream: pointer to the phy device 1320 * @bus: sfp bus representing cage being attached 1321 * 1322 * This is used to fill in the sfp_upstream_ops .attach member. 1323 */ 1324 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1325 { 1326 struct phy_device *phydev = upstream; 1327 1328 if (phydev->attached_dev) 1329 phydev->attached_dev->sfp_bus = bus; 1330 phydev->sfp_bus_attached = true; 1331 } 1332 EXPORT_SYMBOL(phy_sfp_attach); 1333 1334 /** 1335 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1336 * @upstream: pointer to the phy device 1337 * @bus: sfp bus representing cage being attached 1338 * 1339 * This is used to fill in the sfp_upstream_ops .detach member. 1340 */ 1341 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1342 { 1343 struct phy_device *phydev = upstream; 1344 1345 if (phydev->attached_dev) 1346 phydev->attached_dev->sfp_bus = NULL; 1347 phydev->sfp_bus_attached = false; 1348 } 1349 EXPORT_SYMBOL(phy_sfp_detach); 1350 1351 /** 1352 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1353 * @phydev: Pointer to phy_device 1354 * @ops: SFP's upstream operations 1355 */ 1356 int phy_sfp_probe(struct phy_device *phydev, 1357 const struct sfp_upstream_ops *ops) 1358 { 1359 struct sfp_bus *bus; 1360 int ret = 0; 1361 1362 if (phydev->mdio.dev.fwnode) { 1363 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1364 if (IS_ERR(bus)) 1365 return PTR_ERR(bus); 1366 1367 phydev->sfp_bus = bus; 1368 1369 ret = sfp_bus_add_upstream(bus, phydev, ops); 1370 sfp_bus_put(bus); 1371 } 1372 return ret; 1373 } 1374 EXPORT_SYMBOL(phy_sfp_probe); 1375 1376 /** 1377 * phy_attach_direct - attach a network device to a given PHY device pointer 1378 * @dev: network device to attach 1379 * @phydev: Pointer to phy_device to attach 1380 * @flags: PHY device's dev_flags 1381 * @interface: PHY device's interface 1382 * 1383 * Description: Called by drivers to attach to a particular PHY 1384 * device. The phy_device is found, and properly hooked up 1385 * to the phy_driver. If no driver is attached, then a 1386 * generic driver is used. The phy_device is given a ptr to 1387 * the attaching device, and given a callback for link status 1388 * change. The phy_device is returned to the attaching driver. 1389 * This function takes a reference on the phy device. 1390 */ 1391 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1392 u32 flags, phy_interface_t interface) 1393 { 1394 struct mii_bus *bus = phydev->mdio.bus; 1395 struct device *d = &phydev->mdio.dev; 1396 struct module *ndev_owner = NULL; 1397 bool using_genphy = false; 1398 int err; 1399 1400 /* For Ethernet device drivers that register their own MDIO bus, we 1401 * will have bus->owner match ndev_mod, so we do not want to increment 1402 * our own module->refcnt here, otherwise we would not be able to 1403 * unload later on. 1404 */ 1405 if (dev) 1406 ndev_owner = dev->dev.parent->driver->owner; 1407 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1408 phydev_err(phydev, "failed to get the bus module\n"); 1409 return -EIO; 1410 } 1411 1412 get_device(d); 1413 1414 /* Assume that if there is no driver, that it doesn't 1415 * exist, and we should use the genphy driver. 1416 */ 1417 if (!d->driver) { 1418 if (phydev->is_c45) 1419 d->driver = &genphy_c45_driver.mdiodrv.driver; 1420 else 1421 d->driver = &genphy_driver.mdiodrv.driver; 1422 1423 using_genphy = true; 1424 } 1425 1426 if (!try_module_get(d->driver->owner)) { 1427 phydev_err(phydev, "failed to get the device driver module\n"); 1428 err = -EIO; 1429 goto error_put_device; 1430 } 1431 1432 if (using_genphy) { 1433 err = d->driver->probe(d); 1434 if (err >= 0) 1435 err = device_bind_driver(d); 1436 1437 if (err) 1438 goto error_module_put; 1439 } 1440 1441 if (phydev->attached_dev) { 1442 dev_err(&dev->dev, "PHY already attached\n"); 1443 err = -EBUSY; 1444 goto error; 1445 } 1446 1447 phydev->phy_link_change = phy_link_change; 1448 if (dev) { 1449 phydev->attached_dev = dev; 1450 dev->phydev = phydev; 1451 1452 if (phydev->sfp_bus_attached) 1453 dev->sfp_bus = phydev->sfp_bus; 1454 else if (dev->sfp_bus) 1455 phydev->is_on_sfp_module = true; 1456 } 1457 1458 /* Some Ethernet drivers try to connect to a PHY device before 1459 * calling register_netdevice() -> netdev_register_kobject() and 1460 * does the dev->dev.kobj initialization. Here we only check for 1461 * success which indicates that the network device kobject is 1462 * ready. Once we do that we still need to keep track of whether 1463 * links were successfully set up or not for phy_detach() to 1464 * remove them accordingly. 1465 */ 1466 phydev->sysfs_links = false; 1467 1468 phy_sysfs_create_links(phydev); 1469 1470 if (!phydev->attached_dev) { 1471 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1472 &dev_attr_phy_standalone.attr); 1473 if (err) 1474 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1475 } 1476 1477 phydev->dev_flags |= flags; 1478 1479 phydev->interface = interface; 1480 1481 phydev->state = PHY_READY; 1482 1483 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1484 1485 /* Port is set to PORT_TP by default and the actual PHY driver will set 1486 * it to different value depending on the PHY configuration. If we have 1487 * the generic PHY driver we can't figure it out, thus set the old 1488 * legacy PORT_MII value. 1489 */ 1490 if (using_genphy) 1491 phydev->port = PORT_MII; 1492 1493 /* Initial carrier state is off as the phy is about to be 1494 * (re)initialized. 1495 */ 1496 if (dev) 1497 netif_carrier_off(phydev->attached_dev); 1498 1499 /* Do initial configuration here, now that 1500 * we have certain key parameters 1501 * (dev_flags and interface) 1502 */ 1503 err = phy_init_hw(phydev); 1504 if (err) 1505 goto error; 1506 1507 phy_resume(phydev); 1508 phy_led_triggers_register(phydev); 1509 1510 return err; 1511 1512 error: 1513 /* phy_detach() does all of the cleanup below */ 1514 phy_detach(phydev); 1515 return err; 1516 1517 error_module_put: 1518 module_put(d->driver->owner); 1519 error_put_device: 1520 put_device(d); 1521 if (ndev_owner != bus->owner) 1522 module_put(bus->owner); 1523 return err; 1524 } 1525 EXPORT_SYMBOL(phy_attach_direct); 1526 1527 /** 1528 * phy_attach - attach a network device to a particular PHY device 1529 * @dev: network device to attach 1530 * @bus_id: Bus ID of PHY device to attach 1531 * @interface: PHY device's interface 1532 * 1533 * Description: Same as phy_attach_direct() except that a PHY bus_id 1534 * string is passed instead of a pointer to a struct phy_device. 1535 */ 1536 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1537 phy_interface_t interface) 1538 { 1539 struct bus_type *bus = &mdio_bus_type; 1540 struct phy_device *phydev; 1541 struct device *d; 1542 int rc; 1543 1544 if (!dev) 1545 return ERR_PTR(-EINVAL); 1546 1547 /* Search the list of PHY devices on the mdio bus for the 1548 * PHY with the requested name 1549 */ 1550 d = bus_find_device_by_name(bus, NULL, bus_id); 1551 if (!d) { 1552 pr_err("PHY %s not found\n", bus_id); 1553 return ERR_PTR(-ENODEV); 1554 } 1555 phydev = to_phy_device(d); 1556 1557 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1558 put_device(d); 1559 if (rc) 1560 return ERR_PTR(rc); 1561 1562 return phydev; 1563 } 1564 EXPORT_SYMBOL(phy_attach); 1565 1566 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1567 struct device_driver *driver) 1568 { 1569 struct device *d = &phydev->mdio.dev; 1570 bool ret = false; 1571 1572 if (!phydev->drv) 1573 return ret; 1574 1575 get_device(d); 1576 ret = d->driver == driver; 1577 put_device(d); 1578 1579 return ret; 1580 } 1581 1582 bool phy_driver_is_genphy(struct phy_device *phydev) 1583 { 1584 return phy_driver_is_genphy_kind(phydev, 1585 &genphy_driver.mdiodrv.driver); 1586 } 1587 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1588 1589 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1590 { 1591 return phy_driver_is_genphy_kind(phydev, 1592 &genphy_c45_driver.mdiodrv.driver); 1593 } 1594 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1595 1596 /** 1597 * phy_package_join - join a common PHY group 1598 * @phydev: target phy_device struct 1599 * @addr: cookie and PHY address for global register access 1600 * @priv_size: if non-zero allocate this amount of bytes for private data 1601 * 1602 * This joins a PHY group and provides a shared storage for all phydevs in 1603 * this group. This is intended to be used for packages which contain 1604 * more than one PHY, for example a quad PHY transceiver. 1605 * 1606 * The addr parameter serves as a cookie which has to have the same value 1607 * for all members of one group and as a PHY address to access generic 1608 * registers of a PHY package. Usually, one of the PHY addresses of the 1609 * different PHYs in the package provides access to these global registers. 1610 * The address which is given here, will be used in the phy_package_read() 1611 * and phy_package_write() convenience functions. If your PHY doesn't have 1612 * global registers you can just pick any of the PHY addresses. 1613 * 1614 * This will set the shared pointer of the phydev to the shared storage. 1615 * If this is the first call for a this cookie the shared storage will be 1616 * allocated. If priv_size is non-zero, the given amount of bytes are 1617 * allocated for the priv member. 1618 * 1619 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1620 * with the same cookie but a different priv_size is an error. 1621 */ 1622 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1623 { 1624 struct mii_bus *bus = phydev->mdio.bus; 1625 struct phy_package_shared *shared; 1626 int ret; 1627 1628 if (addr < 0 || addr >= PHY_MAX_ADDR) 1629 return -EINVAL; 1630 1631 mutex_lock(&bus->shared_lock); 1632 shared = bus->shared[addr]; 1633 if (!shared) { 1634 ret = -ENOMEM; 1635 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1636 if (!shared) 1637 goto err_unlock; 1638 if (priv_size) { 1639 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1640 if (!shared->priv) 1641 goto err_free; 1642 shared->priv_size = priv_size; 1643 } 1644 shared->addr = addr; 1645 refcount_set(&shared->refcnt, 1); 1646 bus->shared[addr] = shared; 1647 } else { 1648 ret = -EINVAL; 1649 if (priv_size && priv_size != shared->priv_size) 1650 goto err_unlock; 1651 refcount_inc(&shared->refcnt); 1652 } 1653 mutex_unlock(&bus->shared_lock); 1654 1655 phydev->shared = shared; 1656 1657 return 0; 1658 1659 err_free: 1660 kfree(shared); 1661 err_unlock: 1662 mutex_unlock(&bus->shared_lock); 1663 return ret; 1664 } 1665 EXPORT_SYMBOL_GPL(phy_package_join); 1666 1667 /** 1668 * phy_package_leave - leave a common PHY group 1669 * @phydev: target phy_device struct 1670 * 1671 * This leaves a PHY group created by phy_package_join(). If this phydev 1672 * was the last user of the shared data between the group, this data is 1673 * freed. Resets the phydev->shared pointer to NULL. 1674 */ 1675 void phy_package_leave(struct phy_device *phydev) 1676 { 1677 struct phy_package_shared *shared = phydev->shared; 1678 struct mii_bus *bus = phydev->mdio.bus; 1679 1680 if (!shared) 1681 return; 1682 1683 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1684 bus->shared[shared->addr] = NULL; 1685 mutex_unlock(&bus->shared_lock); 1686 kfree(shared->priv); 1687 kfree(shared); 1688 } 1689 1690 phydev->shared = NULL; 1691 } 1692 EXPORT_SYMBOL_GPL(phy_package_leave); 1693 1694 static void devm_phy_package_leave(struct device *dev, void *res) 1695 { 1696 phy_package_leave(*(struct phy_device **)res); 1697 } 1698 1699 /** 1700 * devm_phy_package_join - resource managed phy_package_join() 1701 * @dev: device that is registering this PHY package 1702 * @phydev: target phy_device struct 1703 * @addr: cookie and PHY address for global register access 1704 * @priv_size: if non-zero allocate this amount of bytes for private data 1705 * 1706 * Managed phy_package_join(). Shared storage fetched by this function, 1707 * phy_package_leave() is automatically called on driver detach. See 1708 * phy_package_join() for more information. 1709 */ 1710 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1711 int addr, size_t priv_size) 1712 { 1713 struct phy_device **ptr; 1714 int ret; 1715 1716 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1717 GFP_KERNEL); 1718 if (!ptr) 1719 return -ENOMEM; 1720 1721 ret = phy_package_join(phydev, addr, priv_size); 1722 1723 if (!ret) { 1724 *ptr = phydev; 1725 devres_add(dev, ptr); 1726 } else { 1727 devres_free(ptr); 1728 } 1729 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1733 1734 /** 1735 * phy_detach - detach a PHY device from its network device 1736 * @phydev: target phy_device struct 1737 * 1738 * This detaches the phy device from its network device and the phy 1739 * driver, and drops the reference count taken in phy_attach_direct(). 1740 */ 1741 void phy_detach(struct phy_device *phydev) 1742 { 1743 struct net_device *dev = phydev->attached_dev; 1744 struct module *ndev_owner = NULL; 1745 struct mii_bus *bus; 1746 1747 if (phydev->sysfs_links) { 1748 if (dev) 1749 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1750 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1751 } 1752 1753 if (!phydev->attached_dev) 1754 sysfs_remove_file(&phydev->mdio.dev.kobj, 1755 &dev_attr_phy_standalone.attr); 1756 1757 phy_suspend(phydev); 1758 if (dev) { 1759 phydev->attached_dev->phydev = NULL; 1760 phydev->attached_dev = NULL; 1761 } 1762 phydev->phylink = NULL; 1763 1764 phy_led_triggers_unregister(phydev); 1765 1766 if (phydev->mdio.dev.driver) 1767 module_put(phydev->mdio.dev.driver->owner); 1768 1769 /* If the device had no specific driver before (i.e. - it 1770 * was using the generic driver), we unbind the device 1771 * from the generic driver so that there's a chance a 1772 * real driver could be loaded 1773 */ 1774 if (phy_driver_is_genphy(phydev) || 1775 phy_driver_is_genphy_10g(phydev)) 1776 device_release_driver(&phydev->mdio.dev); 1777 1778 /* Assert the reset signal */ 1779 phy_device_reset(phydev, 1); 1780 1781 /* 1782 * The phydev might go away on the put_device() below, so avoid 1783 * a use-after-free bug by reading the underlying bus first. 1784 */ 1785 bus = phydev->mdio.bus; 1786 1787 put_device(&phydev->mdio.dev); 1788 if (dev) 1789 ndev_owner = dev->dev.parent->driver->owner; 1790 if (ndev_owner != bus->owner) 1791 module_put(bus->owner); 1792 } 1793 EXPORT_SYMBOL(phy_detach); 1794 1795 int phy_suspend(struct phy_device *phydev) 1796 { 1797 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1798 struct net_device *netdev = phydev->attached_dev; 1799 struct phy_driver *phydrv = phydev->drv; 1800 int ret; 1801 1802 if (phydev->suspended) 1803 return 0; 1804 1805 /* If the device has WOL enabled, we cannot suspend the PHY */ 1806 phy_ethtool_get_wol(phydev, &wol); 1807 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1808 return -EBUSY; 1809 1810 if (!phydrv || !phydrv->suspend) 1811 return 0; 1812 1813 ret = phydrv->suspend(phydev); 1814 if (!ret) 1815 phydev->suspended = true; 1816 1817 return ret; 1818 } 1819 EXPORT_SYMBOL(phy_suspend); 1820 1821 int __phy_resume(struct phy_device *phydev) 1822 { 1823 struct phy_driver *phydrv = phydev->drv; 1824 int ret; 1825 1826 lockdep_assert_held(&phydev->lock); 1827 1828 if (!phydrv || !phydrv->resume) 1829 return 0; 1830 1831 ret = phydrv->resume(phydev); 1832 if (!ret) 1833 phydev->suspended = false; 1834 1835 return ret; 1836 } 1837 EXPORT_SYMBOL(__phy_resume); 1838 1839 int phy_resume(struct phy_device *phydev) 1840 { 1841 int ret; 1842 1843 mutex_lock(&phydev->lock); 1844 ret = __phy_resume(phydev); 1845 mutex_unlock(&phydev->lock); 1846 1847 return ret; 1848 } 1849 EXPORT_SYMBOL(phy_resume); 1850 1851 int phy_loopback(struct phy_device *phydev, bool enable) 1852 { 1853 int ret = 0; 1854 1855 if (!phydev->drv) 1856 return -EIO; 1857 1858 mutex_lock(&phydev->lock); 1859 1860 if (enable && phydev->loopback_enabled) { 1861 ret = -EBUSY; 1862 goto out; 1863 } 1864 1865 if (!enable && !phydev->loopback_enabled) { 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 if (phydev->drv->set_loopback) 1871 ret = phydev->drv->set_loopback(phydev, enable); 1872 else 1873 ret = genphy_loopback(phydev, enable); 1874 1875 if (ret) 1876 goto out; 1877 1878 phydev->loopback_enabled = enable; 1879 1880 out: 1881 mutex_unlock(&phydev->lock); 1882 return ret; 1883 } 1884 EXPORT_SYMBOL(phy_loopback); 1885 1886 /** 1887 * phy_reset_after_clk_enable - perform a PHY reset if needed 1888 * @phydev: target phy_device struct 1889 * 1890 * Description: Some PHYs are known to need a reset after their refclk was 1891 * enabled. This function evaluates the flags and perform the reset if it's 1892 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1893 * was reset. 1894 */ 1895 int phy_reset_after_clk_enable(struct phy_device *phydev) 1896 { 1897 if (!phydev || !phydev->drv) 1898 return -ENODEV; 1899 1900 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1901 phy_device_reset(phydev, 1); 1902 phy_device_reset(phydev, 0); 1903 return 1; 1904 } 1905 1906 return 0; 1907 } 1908 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1909 1910 /* Generic PHY support and helper functions */ 1911 1912 /** 1913 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1914 * @phydev: target phy_device struct 1915 * 1916 * Description: Writes MII_ADVERTISE with the appropriate values, 1917 * after sanitizing the values to make sure we only advertise 1918 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1919 * hasn't changed, and > 0 if it has changed. 1920 */ 1921 static int genphy_config_advert(struct phy_device *phydev) 1922 { 1923 int err, bmsr, changed = 0; 1924 u32 adv; 1925 1926 /* Only allow advertising what this PHY supports */ 1927 linkmode_and(phydev->advertising, phydev->advertising, 1928 phydev->supported); 1929 1930 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1931 1932 /* Setup standard advertisement */ 1933 err = phy_modify_changed(phydev, MII_ADVERTISE, 1934 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1935 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1936 adv); 1937 if (err < 0) 1938 return err; 1939 if (err > 0) 1940 changed = 1; 1941 1942 bmsr = phy_read(phydev, MII_BMSR); 1943 if (bmsr < 0) 1944 return bmsr; 1945 1946 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1947 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1948 * logical 1. 1949 */ 1950 if (!(bmsr & BMSR_ESTATEN)) 1951 return changed; 1952 1953 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1954 1955 err = phy_modify_changed(phydev, MII_CTRL1000, 1956 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1957 adv); 1958 if (err < 0) 1959 return err; 1960 if (err > 0) 1961 changed = 1; 1962 1963 return changed; 1964 } 1965 1966 /** 1967 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1968 * @phydev: target phy_device struct 1969 * 1970 * Description: Writes MII_ADVERTISE with the appropriate values, 1971 * after sanitizing the values to make sure we only advertise 1972 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1973 * hasn't changed, and > 0 if it has changed. This function is intended 1974 * for Clause 37 1000Base-X mode. 1975 */ 1976 static int genphy_c37_config_advert(struct phy_device *phydev) 1977 { 1978 u16 adv = 0; 1979 1980 /* Only allow advertising what this PHY supports */ 1981 linkmode_and(phydev->advertising, phydev->advertising, 1982 phydev->supported); 1983 1984 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1985 phydev->advertising)) 1986 adv |= ADVERTISE_1000XFULL; 1987 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1988 phydev->advertising)) 1989 adv |= ADVERTISE_1000XPAUSE; 1990 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1991 phydev->advertising)) 1992 adv |= ADVERTISE_1000XPSE_ASYM; 1993 1994 return phy_modify_changed(phydev, MII_ADVERTISE, 1995 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1996 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1997 adv); 1998 } 1999 2000 /** 2001 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2002 * @phydev: target phy_device struct 2003 * 2004 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2005 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2006 * changed, and 1 if it has changed. 2007 */ 2008 int genphy_config_eee_advert(struct phy_device *phydev) 2009 { 2010 int err; 2011 2012 /* Nothing to disable */ 2013 if (!phydev->eee_broken_modes) 2014 return 0; 2015 2016 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2017 phydev->eee_broken_modes, 0); 2018 /* If the call failed, we assume that EEE is not supported */ 2019 return err < 0 ? 0 : err; 2020 } 2021 EXPORT_SYMBOL(genphy_config_eee_advert); 2022 2023 /** 2024 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2025 * @phydev: target phy_device struct 2026 * 2027 * Description: Configures MII_BMCR to force speed/duplex 2028 * to the values in phydev. Assumes that the values are valid. 2029 * Please see phy_sanitize_settings(). 2030 */ 2031 int genphy_setup_forced(struct phy_device *phydev) 2032 { 2033 u16 ctl; 2034 2035 phydev->pause = 0; 2036 phydev->asym_pause = 0; 2037 2038 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2039 2040 return phy_modify(phydev, MII_BMCR, 2041 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2042 } 2043 EXPORT_SYMBOL(genphy_setup_forced); 2044 2045 static int genphy_setup_master_slave(struct phy_device *phydev) 2046 { 2047 u16 ctl = 0; 2048 2049 if (!phydev->is_gigabit_capable) 2050 return 0; 2051 2052 switch (phydev->master_slave_set) { 2053 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2054 ctl |= CTL1000_PREFER_MASTER; 2055 break; 2056 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2057 break; 2058 case MASTER_SLAVE_CFG_MASTER_FORCE: 2059 ctl |= CTL1000_AS_MASTER; 2060 fallthrough; 2061 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2062 ctl |= CTL1000_ENABLE_MASTER; 2063 break; 2064 case MASTER_SLAVE_CFG_UNKNOWN: 2065 case MASTER_SLAVE_CFG_UNSUPPORTED: 2066 return 0; 2067 default: 2068 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2069 return -EOPNOTSUPP; 2070 } 2071 2072 return phy_modify_changed(phydev, MII_CTRL1000, 2073 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2074 CTL1000_PREFER_MASTER), ctl); 2075 } 2076 2077 int genphy_read_master_slave(struct phy_device *phydev) 2078 { 2079 int cfg, state; 2080 int val; 2081 2082 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2083 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2084 2085 val = phy_read(phydev, MII_CTRL1000); 2086 if (val < 0) 2087 return val; 2088 2089 if (val & CTL1000_ENABLE_MASTER) { 2090 if (val & CTL1000_AS_MASTER) 2091 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2092 else 2093 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2094 } else { 2095 if (val & CTL1000_PREFER_MASTER) 2096 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2097 else 2098 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2099 } 2100 2101 val = phy_read(phydev, MII_STAT1000); 2102 if (val < 0) 2103 return val; 2104 2105 if (val & LPA_1000MSFAIL) { 2106 state = MASTER_SLAVE_STATE_ERR; 2107 } else if (phydev->link) { 2108 /* this bits are valid only for active link */ 2109 if (val & LPA_1000MSRES) 2110 state = MASTER_SLAVE_STATE_MASTER; 2111 else 2112 state = MASTER_SLAVE_STATE_SLAVE; 2113 } else { 2114 state = MASTER_SLAVE_STATE_UNKNOWN; 2115 } 2116 2117 phydev->master_slave_get = cfg; 2118 phydev->master_slave_state = state; 2119 2120 return 0; 2121 } 2122 EXPORT_SYMBOL(genphy_read_master_slave); 2123 2124 /** 2125 * genphy_restart_aneg - Enable and Restart Autonegotiation 2126 * @phydev: target phy_device struct 2127 */ 2128 int genphy_restart_aneg(struct phy_device *phydev) 2129 { 2130 /* Don't isolate the PHY if we're negotiating */ 2131 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2132 BMCR_ANENABLE | BMCR_ANRESTART); 2133 } 2134 EXPORT_SYMBOL(genphy_restart_aneg); 2135 2136 /** 2137 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2138 * @phydev: target phy_device struct 2139 * @restart: whether aneg restart is requested 2140 * 2141 * Check, and restart auto-negotiation if needed. 2142 */ 2143 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2144 { 2145 int ret; 2146 2147 if (!restart) { 2148 /* Advertisement hasn't changed, but maybe aneg was never on to 2149 * begin with? Or maybe phy was isolated? 2150 */ 2151 ret = phy_read(phydev, MII_BMCR); 2152 if (ret < 0) 2153 return ret; 2154 2155 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2156 restart = true; 2157 } 2158 2159 if (restart) 2160 return genphy_restart_aneg(phydev); 2161 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2165 2166 /** 2167 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2168 * @phydev: target phy_device struct 2169 * @changed: whether autoneg is requested 2170 * 2171 * Description: If auto-negotiation is enabled, we configure the 2172 * advertising, and then restart auto-negotiation. If it is not 2173 * enabled, then we write the BMCR. 2174 */ 2175 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2176 { 2177 int err; 2178 2179 if (genphy_config_eee_advert(phydev)) 2180 changed = true; 2181 2182 err = genphy_setup_master_slave(phydev); 2183 if (err < 0) 2184 return err; 2185 else if (err) 2186 changed = true; 2187 2188 if (AUTONEG_ENABLE != phydev->autoneg) 2189 return genphy_setup_forced(phydev); 2190 2191 err = genphy_config_advert(phydev); 2192 if (err < 0) /* error */ 2193 return err; 2194 else if (err) 2195 changed = true; 2196 2197 return genphy_check_and_restart_aneg(phydev, changed); 2198 } 2199 EXPORT_SYMBOL(__genphy_config_aneg); 2200 2201 /** 2202 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2203 * @phydev: target phy_device struct 2204 * 2205 * Description: If auto-negotiation is enabled, we configure the 2206 * advertising, and then restart auto-negotiation. If it is not 2207 * enabled, then we write the BMCR. This function is intended 2208 * for use with Clause 37 1000Base-X mode. 2209 */ 2210 int genphy_c37_config_aneg(struct phy_device *phydev) 2211 { 2212 int err, changed; 2213 2214 if (phydev->autoneg != AUTONEG_ENABLE) 2215 return genphy_setup_forced(phydev); 2216 2217 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2218 BMCR_SPEED1000); 2219 if (err) 2220 return err; 2221 2222 changed = genphy_c37_config_advert(phydev); 2223 if (changed < 0) /* error */ 2224 return changed; 2225 2226 if (!changed) { 2227 /* Advertisement hasn't changed, but maybe aneg was never on to 2228 * begin with? Or maybe phy was isolated? 2229 */ 2230 int ctl = phy_read(phydev, MII_BMCR); 2231 2232 if (ctl < 0) 2233 return ctl; 2234 2235 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2236 changed = 1; /* do restart aneg */ 2237 } 2238 2239 /* Only restart aneg if we are advertising something different 2240 * than we were before. 2241 */ 2242 if (changed > 0) 2243 return genphy_restart_aneg(phydev); 2244 2245 return 0; 2246 } 2247 EXPORT_SYMBOL(genphy_c37_config_aneg); 2248 2249 /** 2250 * genphy_aneg_done - return auto-negotiation status 2251 * @phydev: target phy_device struct 2252 * 2253 * Description: Reads the status register and returns 0 either if 2254 * auto-negotiation is incomplete, or if there was an error. 2255 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2256 */ 2257 int genphy_aneg_done(struct phy_device *phydev) 2258 { 2259 int retval = phy_read(phydev, MII_BMSR); 2260 2261 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2262 } 2263 EXPORT_SYMBOL(genphy_aneg_done); 2264 2265 /** 2266 * genphy_update_link - update link status in @phydev 2267 * @phydev: target phy_device struct 2268 * 2269 * Description: Update the value in phydev->link to reflect the 2270 * current link value. In order to do this, we need to read 2271 * the status register twice, keeping the second value. 2272 */ 2273 int genphy_update_link(struct phy_device *phydev) 2274 { 2275 int status = 0, bmcr; 2276 2277 bmcr = phy_read(phydev, MII_BMCR); 2278 if (bmcr < 0) 2279 return bmcr; 2280 2281 /* Autoneg is being started, therefore disregard BMSR value and 2282 * report link as down. 2283 */ 2284 if (bmcr & BMCR_ANRESTART) 2285 goto done; 2286 2287 /* The link state is latched low so that momentary link 2288 * drops can be detected. Do not double-read the status 2289 * in polling mode to detect such short link drops except 2290 * the link was already down. 2291 */ 2292 if (!phy_polling_mode(phydev) || !phydev->link) { 2293 status = phy_read(phydev, MII_BMSR); 2294 if (status < 0) 2295 return status; 2296 else if (status & BMSR_LSTATUS) 2297 goto done; 2298 } 2299 2300 /* Read link and autonegotiation status */ 2301 status = phy_read(phydev, MII_BMSR); 2302 if (status < 0) 2303 return status; 2304 done: 2305 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2306 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2307 2308 /* Consider the case that autoneg was started and "aneg complete" 2309 * bit has been reset, but "link up" bit not yet. 2310 */ 2311 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2312 phydev->link = 0; 2313 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(genphy_update_link); 2317 2318 int genphy_read_lpa(struct phy_device *phydev) 2319 { 2320 int lpa, lpagb; 2321 2322 if (phydev->autoneg == AUTONEG_ENABLE) { 2323 if (!phydev->autoneg_complete) { 2324 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2325 0); 2326 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2327 return 0; 2328 } 2329 2330 if (phydev->is_gigabit_capable) { 2331 lpagb = phy_read(phydev, MII_STAT1000); 2332 if (lpagb < 0) 2333 return lpagb; 2334 2335 if (lpagb & LPA_1000MSFAIL) { 2336 int adv = phy_read(phydev, MII_CTRL1000); 2337 2338 if (adv < 0) 2339 return adv; 2340 2341 if (adv & CTL1000_ENABLE_MASTER) 2342 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2343 else 2344 phydev_err(phydev, "Master/Slave resolution failed\n"); 2345 return -ENOLINK; 2346 } 2347 2348 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2349 lpagb); 2350 } 2351 2352 lpa = phy_read(phydev, MII_LPA); 2353 if (lpa < 0) 2354 return lpa; 2355 2356 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2357 } else { 2358 linkmode_zero(phydev->lp_advertising); 2359 } 2360 2361 return 0; 2362 } 2363 EXPORT_SYMBOL(genphy_read_lpa); 2364 2365 /** 2366 * genphy_read_status_fixed - read the link parameters for !aneg mode 2367 * @phydev: target phy_device struct 2368 * 2369 * Read the current duplex and speed state for a PHY operating with 2370 * autonegotiation disabled. 2371 */ 2372 int genphy_read_status_fixed(struct phy_device *phydev) 2373 { 2374 int bmcr = phy_read(phydev, MII_BMCR); 2375 2376 if (bmcr < 0) 2377 return bmcr; 2378 2379 if (bmcr & BMCR_FULLDPLX) 2380 phydev->duplex = DUPLEX_FULL; 2381 else 2382 phydev->duplex = DUPLEX_HALF; 2383 2384 if (bmcr & BMCR_SPEED1000) 2385 phydev->speed = SPEED_1000; 2386 else if (bmcr & BMCR_SPEED100) 2387 phydev->speed = SPEED_100; 2388 else 2389 phydev->speed = SPEED_10; 2390 2391 return 0; 2392 } 2393 EXPORT_SYMBOL(genphy_read_status_fixed); 2394 2395 /** 2396 * genphy_read_status - check the link status and update current link state 2397 * @phydev: target phy_device struct 2398 * 2399 * Description: Check the link, then figure out the current state 2400 * by comparing what we advertise with what the link partner 2401 * advertises. Start by checking the gigabit possibilities, 2402 * then move on to 10/100. 2403 */ 2404 int genphy_read_status(struct phy_device *phydev) 2405 { 2406 int err, old_link = phydev->link; 2407 2408 /* Update the link, but return if there was an error */ 2409 err = genphy_update_link(phydev); 2410 if (err) 2411 return err; 2412 2413 /* why bother the PHY if nothing can have changed */ 2414 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2415 return 0; 2416 2417 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2418 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2419 phydev->speed = SPEED_UNKNOWN; 2420 phydev->duplex = DUPLEX_UNKNOWN; 2421 phydev->pause = 0; 2422 phydev->asym_pause = 0; 2423 2424 if (phydev->is_gigabit_capable) { 2425 err = genphy_read_master_slave(phydev); 2426 if (err < 0) 2427 return err; 2428 } 2429 2430 err = genphy_read_lpa(phydev); 2431 if (err < 0) 2432 return err; 2433 2434 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2435 phy_resolve_aneg_linkmode(phydev); 2436 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2437 err = genphy_read_status_fixed(phydev); 2438 if (err < 0) 2439 return err; 2440 } 2441 2442 return 0; 2443 } 2444 EXPORT_SYMBOL(genphy_read_status); 2445 2446 /** 2447 * genphy_c37_read_status - check the link status and update current link state 2448 * @phydev: target phy_device struct 2449 * 2450 * Description: Check the link, then figure out the current state 2451 * by comparing what we advertise with what the link partner 2452 * advertises. This function is for Clause 37 1000Base-X mode. 2453 */ 2454 int genphy_c37_read_status(struct phy_device *phydev) 2455 { 2456 int lpa, err, old_link = phydev->link; 2457 2458 /* Update the link, but return if there was an error */ 2459 err = genphy_update_link(phydev); 2460 if (err) 2461 return err; 2462 2463 /* why bother the PHY if nothing can have changed */ 2464 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2465 return 0; 2466 2467 phydev->duplex = DUPLEX_UNKNOWN; 2468 phydev->pause = 0; 2469 phydev->asym_pause = 0; 2470 2471 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2472 lpa = phy_read(phydev, MII_LPA); 2473 if (lpa < 0) 2474 return lpa; 2475 2476 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2477 phydev->lp_advertising, lpa & LPA_LPACK); 2478 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2479 phydev->lp_advertising, lpa & LPA_1000XFULL); 2480 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2481 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2482 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2483 phydev->lp_advertising, 2484 lpa & LPA_1000XPAUSE_ASYM); 2485 2486 phy_resolve_aneg_linkmode(phydev); 2487 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2488 int bmcr = phy_read(phydev, MII_BMCR); 2489 2490 if (bmcr < 0) 2491 return bmcr; 2492 2493 if (bmcr & BMCR_FULLDPLX) 2494 phydev->duplex = DUPLEX_FULL; 2495 else 2496 phydev->duplex = DUPLEX_HALF; 2497 } 2498 2499 return 0; 2500 } 2501 EXPORT_SYMBOL(genphy_c37_read_status); 2502 2503 /** 2504 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2505 * @phydev: target phy_device struct 2506 * 2507 * Description: Perform a software PHY reset using the standard 2508 * BMCR_RESET bit and poll for the reset bit to be cleared. 2509 * 2510 * Returns: 0 on success, < 0 on failure 2511 */ 2512 int genphy_soft_reset(struct phy_device *phydev) 2513 { 2514 u16 res = BMCR_RESET; 2515 int ret; 2516 2517 if (phydev->autoneg == AUTONEG_ENABLE) 2518 res |= BMCR_ANRESTART; 2519 2520 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2521 if (ret < 0) 2522 return ret; 2523 2524 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2525 * to their default value. Therefore the POWER DOWN bit is supposed to 2526 * be cleared after soft reset. 2527 */ 2528 phydev->suspended = 0; 2529 2530 ret = phy_poll_reset(phydev); 2531 if (ret) 2532 return ret; 2533 2534 /* BMCR may be reset to defaults */ 2535 if (phydev->autoneg == AUTONEG_DISABLE) 2536 ret = genphy_setup_forced(phydev); 2537 2538 return ret; 2539 } 2540 EXPORT_SYMBOL(genphy_soft_reset); 2541 2542 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2543 { 2544 /* It seems there are cases where the interrupts are handled by another 2545 * entity (ie an IRQ controller embedded inside the PHY) and do not 2546 * need any other interraction from phylib. In this case, just trigger 2547 * the state machine directly. 2548 */ 2549 phy_trigger_machine(phydev); 2550 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2554 2555 /** 2556 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2557 * @phydev: target phy_device struct 2558 * 2559 * Description: Reads the PHY's abilities and populates 2560 * phydev->supported accordingly. 2561 * 2562 * Returns: 0 on success, < 0 on failure 2563 */ 2564 int genphy_read_abilities(struct phy_device *phydev) 2565 { 2566 int val; 2567 2568 linkmode_set_bit_array(phy_basic_ports_array, 2569 ARRAY_SIZE(phy_basic_ports_array), 2570 phydev->supported); 2571 2572 val = phy_read(phydev, MII_BMSR); 2573 if (val < 0) 2574 return val; 2575 2576 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2577 val & BMSR_ANEGCAPABLE); 2578 2579 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2580 val & BMSR_100FULL); 2581 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2582 val & BMSR_100HALF); 2583 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2584 val & BMSR_10FULL); 2585 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2586 val & BMSR_10HALF); 2587 2588 if (val & BMSR_ESTATEN) { 2589 val = phy_read(phydev, MII_ESTATUS); 2590 if (val < 0) 2591 return val; 2592 2593 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2594 phydev->supported, val & ESTATUS_1000_TFULL); 2595 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2596 phydev->supported, val & ESTATUS_1000_THALF); 2597 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2598 phydev->supported, val & ESTATUS_1000_XFULL); 2599 } 2600 2601 return 0; 2602 } 2603 EXPORT_SYMBOL(genphy_read_abilities); 2604 2605 /* This is used for the phy device which doesn't support the MMD extended 2606 * register access, but it does have side effect when we are trying to access 2607 * the MMD register via indirect method. 2608 */ 2609 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2610 { 2611 return -EOPNOTSUPP; 2612 } 2613 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2614 2615 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2616 u16 regnum, u16 val) 2617 { 2618 return -EOPNOTSUPP; 2619 } 2620 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2621 2622 int genphy_suspend(struct phy_device *phydev) 2623 { 2624 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2625 } 2626 EXPORT_SYMBOL(genphy_suspend); 2627 2628 int genphy_resume(struct phy_device *phydev) 2629 { 2630 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2631 } 2632 EXPORT_SYMBOL(genphy_resume); 2633 2634 int genphy_loopback(struct phy_device *phydev, bool enable) 2635 { 2636 if (enable) { 2637 u16 val, ctl = BMCR_LOOPBACK; 2638 int ret; 2639 2640 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2641 2642 phy_modify(phydev, MII_BMCR, ~0, ctl); 2643 2644 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2645 val & BMSR_LSTATUS, 2646 5000, 500000, true); 2647 if (ret) 2648 return ret; 2649 } else { 2650 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2651 2652 phy_config_aneg(phydev); 2653 } 2654 2655 return 0; 2656 } 2657 EXPORT_SYMBOL(genphy_loopback); 2658 2659 /** 2660 * phy_remove_link_mode - Remove a supported link mode 2661 * @phydev: phy_device structure to remove link mode from 2662 * @link_mode: Link mode to be removed 2663 * 2664 * Description: Some MACs don't support all link modes which the PHY 2665 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2666 * to remove a link mode. 2667 */ 2668 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2669 { 2670 linkmode_clear_bit(link_mode, phydev->supported); 2671 phy_advertise_supported(phydev); 2672 } 2673 EXPORT_SYMBOL(phy_remove_link_mode); 2674 2675 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2676 { 2677 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2678 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2679 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2680 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2681 } 2682 2683 /** 2684 * phy_advertise_supported - Advertise all supported modes 2685 * @phydev: target phy_device struct 2686 * 2687 * Description: Called to advertise all supported modes, doesn't touch 2688 * pause mode advertising. 2689 */ 2690 void phy_advertise_supported(struct phy_device *phydev) 2691 { 2692 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2693 2694 linkmode_copy(new, phydev->supported); 2695 phy_copy_pause_bits(new, phydev->advertising); 2696 linkmode_copy(phydev->advertising, new); 2697 } 2698 EXPORT_SYMBOL(phy_advertise_supported); 2699 2700 /** 2701 * phy_support_sym_pause - Enable support of symmetrical pause 2702 * @phydev: target phy_device struct 2703 * 2704 * Description: Called by the MAC to indicate is supports symmetrical 2705 * Pause, but not asym pause. 2706 */ 2707 void phy_support_sym_pause(struct phy_device *phydev) 2708 { 2709 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2710 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2711 } 2712 EXPORT_SYMBOL(phy_support_sym_pause); 2713 2714 /** 2715 * phy_support_asym_pause - Enable support of asym pause 2716 * @phydev: target phy_device struct 2717 * 2718 * Description: Called by the MAC to indicate is supports Asym Pause. 2719 */ 2720 void phy_support_asym_pause(struct phy_device *phydev) 2721 { 2722 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2723 } 2724 EXPORT_SYMBOL(phy_support_asym_pause); 2725 2726 /** 2727 * phy_set_sym_pause - Configure symmetric Pause 2728 * @phydev: target phy_device struct 2729 * @rx: Receiver Pause is supported 2730 * @tx: Transmit Pause is supported 2731 * @autoneg: Auto neg should be used 2732 * 2733 * Description: Configure advertised Pause support depending on if 2734 * receiver pause and pause auto neg is supported. Generally called 2735 * from the set_pauseparam .ndo. 2736 */ 2737 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2738 bool autoneg) 2739 { 2740 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2741 2742 if (rx && tx && autoneg) 2743 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2744 phydev->supported); 2745 2746 linkmode_copy(phydev->advertising, phydev->supported); 2747 } 2748 EXPORT_SYMBOL(phy_set_sym_pause); 2749 2750 /** 2751 * phy_set_asym_pause - Configure Pause and Asym Pause 2752 * @phydev: target phy_device struct 2753 * @rx: Receiver Pause is supported 2754 * @tx: Transmit Pause is supported 2755 * 2756 * Description: Configure advertised Pause support depending on if 2757 * transmit and receiver pause is supported. If there has been a 2758 * change in adverting, trigger a new autoneg. Generally called from 2759 * the set_pauseparam .ndo. 2760 */ 2761 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2762 { 2763 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2764 2765 linkmode_copy(oldadv, phydev->advertising); 2766 linkmode_set_pause(phydev->advertising, tx, rx); 2767 2768 if (!linkmode_equal(oldadv, phydev->advertising) && 2769 phydev->autoneg) 2770 phy_start_aneg(phydev); 2771 } 2772 EXPORT_SYMBOL(phy_set_asym_pause); 2773 2774 /** 2775 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2776 * @phydev: phy_device struct 2777 * @pp: requested pause configuration 2778 * 2779 * Description: Test if the PHY/MAC combination supports the Pause 2780 * configuration the user is requesting. Returns True if it is 2781 * supported, false otherwise. 2782 */ 2783 bool phy_validate_pause(struct phy_device *phydev, 2784 struct ethtool_pauseparam *pp) 2785 { 2786 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2787 phydev->supported) && pp->rx_pause) 2788 return false; 2789 2790 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2791 phydev->supported) && 2792 pp->rx_pause != pp->tx_pause) 2793 return false; 2794 2795 return true; 2796 } 2797 EXPORT_SYMBOL(phy_validate_pause); 2798 2799 /** 2800 * phy_get_pause - resolve negotiated pause modes 2801 * @phydev: phy_device struct 2802 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2803 * enabled. 2804 * @rx_pause: pointer to bool to indicate whether receive pause should be 2805 * enabled. 2806 * 2807 * Resolve and return the flow control modes according to the negotiation 2808 * result. This includes checking that we are operating in full duplex mode. 2809 * See linkmode_resolve_pause() for further details. 2810 */ 2811 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2812 { 2813 if (phydev->duplex != DUPLEX_FULL) { 2814 *tx_pause = false; 2815 *rx_pause = false; 2816 return; 2817 } 2818 2819 return linkmode_resolve_pause(phydev->advertising, 2820 phydev->lp_advertising, 2821 tx_pause, rx_pause); 2822 } 2823 EXPORT_SYMBOL(phy_get_pause); 2824 2825 #if IS_ENABLED(CONFIG_OF_MDIO) 2826 static int phy_get_int_delay_property(struct device *dev, const char *name) 2827 { 2828 s32 int_delay; 2829 int ret; 2830 2831 ret = device_property_read_u32(dev, name, &int_delay); 2832 if (ret) 2833 return ret; 2834 2835 return int_delay; 2836 } 2837 #else 2838 static int phy_get_int_delay_property(struct device *dev, const char *name) 2839 { 2840 return -EINVAL; 2841 } 2842 #endif 2843 2844 /** 2845 * phy_get_internal_delay - returns the index of the internal delay 2846 * @phydev: phy_device struct 2847 * @dev: pointer to the devices device struct 2848 * @delay_values: array of delays the PHY supports 2849 * @size: the size of the delay array 2850 * @is_rx: boolean to indicate to get the rx internal delay 2851 * 2852 * Returns the index within the array of internal delay passed in. 2853 * If the device property is not present then the interface type is checked 2854 * if the interface defines use of internal delay then a 1 is returned otherwise 2855 * a 0 is returned. 2856 * The array must be in ascending order. If PHY does not have an ascending order 2857 * array then size = 0 and the value of the delay property is returned. 2858 * Return -EINVAL if the delay is invalid or cannot be found. 2859 */ 2860 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2861 const int *delay_values, int size, bool is_rx) 2862 { 2863 s32 delay; 2864 int i; 2865 2866 if (is_rx) { 2867 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2868 if (delay < 0 && size == 0) { 2869 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2870 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2871 return 1; 2872 else 2873 return 0; 2874 } 2875 2876 } else { 2877 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2878 if (delay < 0 && size == 0) { 2879 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2880 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2881 return 1; 2882 else 2883 return 0; 2884 } 2885 } 2886 2887 if (delay < 0) 2888 return delay; 2889 2890 if (delay && size == 0) 2891 return delay; 2892 2893 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2894 phydev_err(phydev, "Delay %d is out of range\n", delay); 2895 return -EINVAL; 2896 } 2897 2898 if (delay == delay_values[0]) 2899 return 0; 2900 2901 for (i = 1; i < size; i++) { 2902 if (delay == delay_values[i]) 2903 return i; 2904 2905 /* Find an approximate index by looking up the table */ 2906 if (delay > delay_values[i - 1] && 2907 delay < delay_values[i]) { 2908 if (delay - delay_values[i - 1] < 2909 delay_values[i] - delay) 2910 return i - 1; 2911 else 2912 return i; 2913 } 2914 } 2915 2916 phydev_err(phydev, "error finding internal delay index for %d\n", 2917 delay); 2918 2919 return -EINVAL; 2920 } 2921 EXPORT_SYMBOL(phy_get_internal_delay); 2922 2923 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2924 { 2925 return phydrv->config_intr && phydrv->handle_interrupt; 2926 } 2927 2928 /** 2929 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2930 * @fwnode: pointer to the mdio_device's fwnode 2931 * 2932 * If successful, returns a pointer to the mdio_device with the embedded 2933 * struct device refcount incremented by one, or NULL on failure. 2934 * The caller should call put_device() on the mdio_device after its use. 2935 */ 2936 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2937 { 2938 struct device *d; 2939 2940 if (!fwnode) 2941 return NULL; 2942 2943 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2944 if (!d) 2945 return NULL; 2946 2947 return to_mdio_device(d); 2948 } 2949 EXPORT_SYMBOL(fwnode_mdio_find_device); 2950 2951 /** 2952 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2953 * 2954 * @phy_fwnode: Pointer to the phy's fwnode. 2955 * 2956 * If successful, returns a pointer to the phy_device with the embedded 2957 * struct device refcount incremented by one, or NULL on failure. 2958 */ 2959 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2960 { 2961 struct mdio_device *mdiodev; 2962 2963 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2964 if (!mdiodev) 2965 return NULL; 2966 2967 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2968 return to_phy_device(&mdiodev->dev); 2969 2970 put_device(&mdiodev->dev); 2971 2972 return NULL; 2973 } 2974 EXPORT_SYMBOL(fwnode_phy_find_device); 2975 2976 /** 2977 * device_phy_find_device - For the given device, get the phy_device 2978 * @dev: Pointer to the given device 2979 * 2980 * Refer return conditions of fwnode_phy_find_device(). 2981 */ 2982 struct phy_device *device_phy_find_device(struct device *dev) 2983 { 2984 return fwnode_phy_find_device(dev_fwnode(dev)); 2985 } 2986 EXPORT_SYMBOL_GPL(device_phy_find_device); 2987 2988 /** 2989 * fwnode_get_phy_node - Get the phy_node using the named reference. 2990 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2991 * 2992 * Refer return conditions of fwnode_find_reference(). 2993 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2994 * and "phy-device" are not supported in ACPI. DT supports all the three 2995 * named references to the phy node. 2996 */ 2997 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 2998 { 2999 struct fwnode_handle *phy_node; 3000 3001 /* Only phy-handle is used for ACPI */ 3002 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3003 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3004 return phy_node; 3005 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3006 if (IS_ERR(phy_node)) 3007 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3008 return phy_node; 3009 } 3010 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3011 3012 /** 3013 * phy_probe - probe and init a PHY device 3014 * @dev: device to probe and init 3015 * 3016 * Description: Take care of setting up the phy_device structure, 3017 * set the state to READY (the driver's init function should 3018 * set it to STARTING if needed). 3019 */ 3020 static int phy_probe(struct device *dev) 3021 { 3022 struct phy_device *phydev = to_phy_device(dev); 3023 struct device_driver *drv = phydev->mdio.dev.driver; 3024 struct phy_driver *phydrv = to_phy_driver(drv); 3025 int err = 0; 3026 3027 phydev->drv = phydrv; 3028 3029 /* Disable the interrupt if the PHY doesn't support it 3030 * but the interrupt is still a valid one 3031 */ 3032 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3033 phydev->irq = PHY_POLL; 3034 3035 if (phydrv->flags & PHY_IS_INTERNAL) 3036 phydev->is_internal = true; 3037 3038 mutex_lock(&phydev->lock); 3039 3040 /* Deassert the reset signal */ 3041 phy_device_reset(phydev, 0); 3042 3043 if (phydev->drv->probe) { 3044 err = phydev->drv->probe(phydev); 3045 if (err) 3046 goto out; 3047 } 3048 3049 /* Start out supporting everything. Eventually, 3050 * a controller will attach, and may modify one 3051 * or both of these values 3052 */ 3053 if (phydrv->features) 3054 linkmode_copy(phydev->supported, phydrv->features); 3055 else if (phydrv->get_features) 3056 err = phydrv->get_features(phydev); 3057 else if (phydev->is_c45) 3058 err = genphy_c45_pma_read_abilities(phydev); 3059 else 3060 err = genphy_read_abilities(phydev); 3061 3062 if (err) 3063 goto out; 3064 3065 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3066 phydev->supported)) 3067 phydev->autoneg = 0; 3068 3069 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3070 phydev->supported)) 3071 phydev->is_gigabit_capable = 1; 3072 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3073 phydev->supported)) 3074 phydev->is_gigabit_capable = 1; 3075 3076 of_set_phy_supported(phydev); 3077 phy_advertise_supported(phydev); 3078 3079 /* Get the EEE modes we want to prohibit. We will ask 3080 * the PHY stop advertising these mode later on 3081 */ 3082 of_set_phy_eee_broken(phydev); 3083 3084 /* The Pause Frame bits indicate that the PHY can support passing 3085 * pause frames. During autonegotiation, the PHYs will determine if 3086 * they should allow pause frames to pass. The MAC driver should then 3087 * use that result to determine whether to enable flow control via 3088 * pause frames. 3089 * 3090 * Normally, PHY drivers should not set the Pause bits, and instead 3091 * allow phylib to do that. However, there may be some situations 3092 * (e.g. hardware erratum) where the driver wants to set only one 3093 * of these bits. 3094 */ 3095 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3096 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3097 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3098 phydev->supported); 3099 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3100 phydev->supported); 3101 } 3102 3103 /* Set the state to READY by default */ 3104 phydev->state = PHY_READY; 3105 3106 out: 3107 /* Assert the reset signal */ 3108 if (err) 3109 phy_device_reset(phydev, 1); 3110 3111 mutex_unlock(&phydev->lock); 3112 3113 return err; 3114 } 3115 3116 static int phy_remove(struct device *dev) 3117 { 3118 struct phy_device *phydev = to_phy_device(dev); 3119 3120 cancel_delayed_work_sync(&phydev->state_queue); 3121 3122 mutex_lock(&phydev->lock); 3123 phydev->state = PHY_DOWN; 3124 mutex_unlock(&phydev->lock); 3125 3126 sfp_bus_del_upstream(phydev->sfp_bus); 3127 phydev->sfp_bus = NULL; 3128 3129 if (phydev->drv && phydev->drv->remove) 3130 phydev->drv->remove(phydev); 3131 3132 /* Assert the reset signal */ 3133 phy_device_reset(phydev, 1); 3134 3135 phydev->drv = NULL; 3136 3137 return 0; 3138 } 3139 3140 static void phy_shutdown(struct device *dev) 3141 { 3142 struct phy_device *phydev = to_phy_device(dev); 3143 3144 if (phydev->state == PHY_READY || !phydev->attached_dev) 3145 return; 3146 3147 phy_disable_interrupts(phydev); 3148 } 3149 3150 /** 3151 * phy_driver_register - register a phy_driver with the PHY layer 3152 * @new_driver: new phy_driver to register 3153 * @owner: module owning this PHY 3154 */ 3155 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3156 { 3157 int retval; 3158 3159 /* Either the features are hard coded, or dynamically 3160 * determined. It cannot be both. 3161 */ 3162 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3163 pr_err("%s: features and get_features must not both be set\n", 3164 new_driver->name); 3165 return -EINVAL; 3166 } 3167 3168 /* PHYLIB device drivers must not match using a DT compatible table 3169 * as this bypasses our checks that the mdiodev that is being matched 3170 * is backed by a struct phy_device. If such a case happens, we will 3171 * make out-of-bounds accesses and lockup in phydev->lock. 3172 */ 3173 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3174 "%s: driver must not provide a DT match table\n", 3175 new_driver->name)) 3176 return -EINVAL; 3177 3178 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3179 new_driver->mdiodrv.driver.name = new_driver->name; 3180 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3181 new_driver->mdiodrv.driver.probe = phy_probe; 3182 new_driver->mdiodrv.driver.remove = phy_remove; 3183 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3184 new_driver->mdiodrv.driver.owner = owner; 3185 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3186 3187 retval = driver_register(&new_driver->mdiodrv.driver); 3188 if (retval) { 3189 pr_err("%s: Error %d in registering driver\n", 3190 new_driver->name, retval); 3191 3192 return retval; 3193 } 3194 3195 pr_debug("%s: Registered new driver\n", new_driver->name); 3196 3197 return 0; 3198 } 3199 EXPORT_SYMBOL(phy_driver_register); 3200 3201 int phy_drivers_register(struct phy_driver *new_driver, int n, 3202 struct module *owner) 3203 { 3204 int i, ret = 0; 3205 3206 for (i = 0; i < n; i++) { 3207 ret = phy_driver_register(new_driver + i, owner); 3208 if (ret) { 3209 while (i-- > 0) 3210 phy_driver_unregister(new_driver + i); 3211 break; 3212 } 3213 } 3214 return ret; 3215 } 3216 EXPORT_SYMBOL(phy_drivers_register); 3217 3218 void phy_driver_unregister(struct phy_driver *drv) 3219 { 3220 driver_unregister(&drv->mdiodrv.driver); 3221 } 3222 EXPORT_SYMBOL(phy_driver_unregister); 3223 3224 void phy_drivers_unregister(struct phy_driver *drv, int n) 3225 { 3226 int i; 3227 3228 for (i = 0; i < n; i++) 3229 phy_driver_unregister(drv + i); 3230 } 3231 EXPORT_SYMBOL(phy_drivers_unregister); 3232 3233 static struct phy_driver genphy_driver = { 3234 .phy_id = 0xffffffff, 3235 .phy_id_mask = 0xffffffff, 3236 .name = "Generic PHY", 3237 .get_features = genphy_read_abilities, 3238 .suspend = genphy_suspend, 3239 .resume = genphy_resume, 3240 .set_loopback = genphy_loopback, 3241 }; 3242 3243 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3244 .get_sset_count = phy_ethtool_get_sset_count, 3245 .get_strings = phy_ethtool_get_strings, 3246 .get_stats = phy_ethtool_get_stats, 3247 .start_cable_test = phy_start_cable_test, 3248 .start_cable_test_tdr = phy_start_cable_test_tdr, 3249 }; 3250 3251 static int __init phy_init(void) 3252 { 3253 int rc; 3254 3255 rc = mdio_bus_init(); 3256 if (rc) 3257 return rc; 3258 3259 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3260 features_init(); 3261 3262 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3263 if (rc) 3264 goto err_c45; 3265 3266 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3267 if (rc) { 3268 phy_driver_unregister(&genphy_c45_driver); 3269 err_c45: 3270 mdio_bus_exit(); 3271 } 3272 3273 return rc; 3274 } 3275 3276 static void __exit phy_exit(void) 3277 { 3278 phy_driver_unregister(&genphy_c45_driver); 3279 phy_driver_unregister(&genphy_driver); 3280 mdio_bus_exit(); 3281 ethtool_set_ethtool_phy_ops(NULL); 3282 } 3283 3284 subsys_initcall(phy_init); 3285 module_exit(phy_exit); 3286