1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/pse-pd/pse.h> 30 #include <linux/property.h> 31 #include <linux/sfp.h> 32 #include <linux/skbuff.h> 33 #include <linux/slab.h> 34 #include <linux/string.h> 35 #include <linux/uaccess.h> 36 #include <linux/unistd.h> 37 38 MODULE_DESCRIPTION("PHY library"); 39 MODULE_AUTHOR("Andy Fleming"); 40 MODULE_LICENSE("GPL"); 41 42 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 43 EXPORT_SYMBOL_GPL(phy_basic_features); 44 45 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 46 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 47 48 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 49 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 50 51 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 52 EXPORT_SYMBOL_GPL(phy_gbit_features); 53 54 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 55 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 56 57 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 58 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 59 60 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 61 EXPORT_SYMBOL_GPL(phy_10gbit_features); 62 63 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 64 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 65 66 const int phy_basic_ports_array[3] = { 67 ETHTOOL_LINK_MODE_Autoneg_BIT, 68 ETHTOOL_LINK_MODE_TP_BIT, 69 ETHTOOL_LINK_MODE_MII_BIT, 70 }; 71 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 72 73 const int phy_fibre_port_array[1] = { 74 ETHTOOL_LINK_MODE_FIBRE_BIT, 75 }; 76 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 77 78 const int phy_all_ports_features_array[7] = { 79 ETHTOOL_LINK_MODE_Autoneg_BIT, 80 ETHTOOL_LINK_MODE_TP_BIT, 81 ETHTOOL_LINK_MODE_MII_BIT, 82 ETHTOOL_LINK_MODE_FIBRE_BIT, 83 ETHTOOL_LINK_MODE_AUI_BIT, 84 ETHTOOL_LINK_MODE_BNC_BIT, 85 ETHTOOL_LINK_MODE_Backplane_BIT, 86 }; 87 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 88 89 const int phy_10_100_features_array[4] = { 90 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 91 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 92 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 93 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 94 }; 95 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 96 97 const int phy_basic_t1_features_array[3] = { 98 ETHTOOL_LINK_MODE_TP_BIT, 99 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 100 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 101 }; 102 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 103 104 const int phy_basic_t1s_p2mp_features_array[2] = { 105 ETHTOOL_LINK_MODE_TP_BIT, 106 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 107 }; 108 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 109 110 const int phy_gbit_features_array[2] = { 111 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 112 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 113 }; 114 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 115 116 const int phy_10gbit_features_array[1] = { 117 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 118 }; 119 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 120 121 static const int phy_10gbit_fec_features_array[1] = { 122 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 123 }; 124 125 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 126 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 127 128 static const int phy_10gbit_full_features_array[] = { 129 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 130 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 131 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 132 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 133 }; 134 135 static const int phy_eee_cap1_features_array[] = { 136 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 137 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 138 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 139 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 140 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 141 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 142 }; 143 144 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 145 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 146 147 static void features_init(void) 148 { 149 /* 10/100 half/full*/ 150 linkmode_set_bit_array(phy_basic_ports_array, 151 ARRAY_SIZE(phy_basic_ports_array), 152 phy_basic_features); 153 linkmode_set_bit_array(phy_10_100_features_array, 154 ARRAY_SIZE(phy_10_100_features_array), 155 phy_basic_features); 156 157 /* 100 full, TP */ 158 linkmode_set_bit_array(phy_basic_t1_features_array, 159 ARRAY_SIZE(phy_basic_t1_features_array), 160 phy_basic_t1_features); 161 162 /* 10 half, P2MP, TP */ 163 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 164 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 165 phy_basic_t1s_p2mp_features); 166 167 /* 10/100 half/full + 1000 half/full */ 168 linkmode_set_bit_array(phy_basic_ports_array, 169 ARRAY_SIZE(phy_basic_ports_array), 170 phy_gbit_features); 171 linkmode_set_bit_array(phy_10_100_features_array, 172 ARRAY_SIZE(phy_10_100_features_array), 173 phy_gbit_features); 174 linkmode_set_bit_array(phy_gbit_features_array, 175 ARRAY_SIZE(phy_gbit_features_array), 176 phy_gbit_features); 177 178 /* 10/100 half/full + 1000 half/full + fibre*/ 179 linkmode_set_bit_array(phy_basic_ports_array, 180 ARRAY_SIZE(phy_basic_ports_array), 181 phy_gbit_fibre_features); 182 linkmode_set_bit_array(phy_10_100_features_array, 183 ARRAY_SIZE(phy_10_100_features_array), 184 phy_gbit_fibre_features); 185 linkmode_set_bit_array(phy_gbit_features_array, 186 ARRAY_SIZE(phy_gbit_features_array), 187 phy_gbit_fibre_features); 188 linkmode_set_bit_array(phy_fibre_port_array, 189 ARRAY_SIZE(phy_fibre_port_array), 190 phy_gbit_fibre_features); 191 192 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 193 linkmode_set_bit_array(phy_all_ports_features_array, 194 ARRAY_SIZE(phy_all_ports_features_array), 195 phy_gbit_all_ports_features); 196 linkmode_set_bit_array(phy_10_100_features_array, 197 ARRAY_SIZE(phy_10_100_features_array), 198 phy_gbit_all_ports_features); 199 linkmode_set_bit_array(phy_gbit_features_array, 200 ARRAY_SIZE(phy_gbit_features_array), 201 phy_gbit_all_ports_features); 202 203 /* 10/100 half/full + 1000 half/full + 10G full*/ 204 linkmode_set_bit_array(phy_all_ports_features_array, 205 ARRAY_SIZE(phy_all_ports_features_array), 206 phy_10gbit_features); 207 linkmode_set_bit_array(phy_10_100_features_array, 208 ARRAY_SIZE(phy_10_100_features_array), 209 phy_10gbit_features); 210 linkmode_set_bit_array(phy_gbit_features_array, 211 ARRAY_SIZE(phy_gbit_features_array), 212 phy_10gbit_features); 213 linkmode_set_bit_array(phy_10gbit_features_array, 214 ARRAY_SIZE(phy_10gbit_features_array), 215 phy_10gbit_features); 216 217 /* 10/100/1000/10G full */ 218 linkmode_set_bit_array(phy_all_ports_features_array, 219 ARRAY_SIZE(phy_all_ports_features_array), 220 phy_10gbit_full_features); 221 linkmode_set_bit_array(phy_10gbit_full_features_array, 222 ARRAY_SIZE(phy_10gbit_full_features_array), 223 phy_10gbit_full_features); 224 /* 10G FEC only */ 225 linkmode_set_bit_array(phy_10gbit_fec_features_array, 226 ARRAY_SIZE(phy_10gbit_fec_features_array), 227 phy_10gbit_fec_features); 228 linkmode_set_bit_array(phy_eee_cap1_features_array, 229 ARRAY_SIZE(phy_eee_cap1_features_array), 230 phy_eee_cap1_features); 231 232 } 233 234 void phy_device_free(struct phy_device *phydev) 235 { 236 put_device(&phydev->mdio.dev); 237 } 238 EXPORT_SYMBOL(phy_device_free); 239 240 static void phy_mdio_device_free(struct mdio_device *mdiodev) 241 { 242 struct phy_device *phydev; 243 244 phydev = container_of(mdiodev, struct phy_device, mdio); 245 phy_device_free(phydev); 246 } 247 248 static void phy_device_release(struct device *dev) 249 { 250 fwnode_handle_put(dev->fwnode); 251 kfree(to_phy_device(dev)); 252 } 253 254 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 255 { 256 struct phy_device *phydev; 257 258 phydev = container_of(mdiodev, struct phy_device, mdio); 259 phy_device_remove(phydev); 260 } 261 262 static struct phy_driver genphy_driver; 263 264 static LIST_HEAD(phy_fixup_list); 265 static DEFINE_MUTEX(phy_fixup_lock); 266 267 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 268 { 269 struct device_driver *drv = phydev->mdio.dev.driver; 270 struct phy_driver *phydrv = to_phy_driver(drv); 271 struct net_device *netdev = phydev->attached_dev; 272 273 if (!drv || !phydrv->suspend) 274 return false; 275 276 /* PHY not attached? May suspend if the PHY has not already been 277 * suspended as part of a prior call to phy_disconnect() -> 278 * phy_detach() -> phy_suspend() because the parent netdev might be the 279 * MDIO bus driver and clock gated at this point. 280 */ 281 if (!netdev) 282 goto out; 283 284 if (netdev->wol_enabled) 285 return false; 286 287 /* As long as not all affected network drivers support the 288 * wol_enabled flag, let's check for hints that WoL is enabled. 289 * Don't suspend PHY if the attached netdev parent may wake up. 290 * The parent may point to a PCI device, as in tg3 driver. 291 */ 292 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 293 return false; 294 295 /* Also don't suspend PHY if the netdev itself may wakeup. This 296 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 297 * e.g. SoC devices. 298 */ 299 if (device_may_wakeup(&netdev->dev)) 300 return false; 301 302 out: 303 return !phydev->suspended; 304 } 305 306 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 307 { 308 struct phy_device *phydev = to_phy_device(dev); 309 310 if (phydev->mac_managed_pm) 311 return 0; 312 313 /* Wakeup interrupts may occur during the system sleep transition when 314 * the PHY is inaccessible. Set flag to postpone handling until the PHY 315 * has resumed. Wait for concurrent interrupt handler to complete. 316 */ 317 if (phy_interrupt_is_valid(phydev)) { 318 phydev->irq_suspended = 1; 319 synchronize_irq(phydev->irq); 320 } 321 322 /* We must stop the state machine manually, otherwise it stops out of 323 * control, possibly with the phydev->lock held. Upon resume, netdev 324 * may call phy routines that try to grab the same lock, and that may 325 * lead to a deadlock. 326 */ 327 if (phydev->attached_dev && phydev->adjust_link) 328 phy_stop_machine(phydev); 329 330 if (!mdio_bus_phy_may_suspend(phydev)) 331 return 0; 332 333 phydev->suspended_by_mdio_bus = 1; 334 335 return phy_suspend(phydev); 336 } 337 338 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 339 { 340 struct phy_device *phydev = to_phy_device(dev); 341 int ret; 342 343 if (phydev->mac_managed_pm) 344 return 0; 345 346 if (!phydev->suspended_by_mdio_bus) 347 goto no_resume; 348 349 phydev->suspended_by_mdio_bus = 0; 350 351 /* If we managed to get here with the PHY state machine in a state 352 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 353 * that something went wrong and we should most likely be using 354 * MAC managed PM, but we are not. 355 */ 356 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 357 phydev->state != PHY_UP); 358 359 ret = phy_init_hw(phydev); 360 if (ret < 0) 361 return ret; 362 363 ret = phy_resume(phydev); 364 if (ret < 0) 365 return ret; 366 no_resume: 367 if (phy_interrupt_is_valid(phydev)) { 368 phydev->irq_suspended = 0; 369 synchronize_irq(phydev->irq); 370 371 /* Rerun interrupts which were postponed by phy_interrupt() 372 * because they occurred during the system sleep transition. 373 */ 374 if (phydev->irq_rerun) { 375 phydev->irq_rerun = 0; 376 enable_irq(phydev->irq); 377 irq_wake_thread(phydev->irq, phydev); 378 } 379 } 380 381 if (phydev->attached_dev && phydev->adjust_link) 382 phy_start_machine(phydev); 383 384 return 0; 385 } 386 387 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 388 mdio_bus_phy_resume); 389 390 /** 391 * phy_register_fixup - creates a new phy_fixup and adds it to the list 392 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 393 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 394 * It can also be PHY_ANY_UID 395 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 396 * comparison 397 * @run: The actual code to be run when a matching PHY is found 398 */ 399 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 400 int (*run)(struct phy_device *)) 401 { 402 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 403 404 if (!fixup) 405 return -ENOMEM; 406 407 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 408 fixup->phy_uid = phy_uid; 409 fixup->phy_uid_mask = phy_uid_mask; 410 fixup->run = run; 411 412 mutex_lock(&phy_fixup_lock); 413 list_add_tail(&fixup->list, &phy_fixup_list); 414 mutex_unlock(&phy_fixup_lock); 415 416 return 0; 417 } 418 EXPORT_SYMBOL(phy_register_fixup); 419 420 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 421 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 422 int (*run)(struct phy_device *)) 423 { 424 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 425 } 426 EXPORT_SYMBOL(phy_register_fixup_for_uid); 427 428 /* Registers a fixup to be run on the PHY with id string bus_id */ 429 int phy_register_fixup_for_id(const char *bus_id, 430 int (*run)(struct phy_device *)) 431 { 432 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 433 } 434 EXPORT_SYMBOL(phy_register_fixup_for_id); 435 436 /** 437 * phy_unregister_fixup - remove a phy_fixup from the list 438 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 439 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 440 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 441 */ 442 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 443 { 444 struct list_head *pos, *n; 445 struct phy_fixup *fixup; 446 int ret; 447 448 ret = -ENODEV; 449 450 mutex_lock(&phy_fixup_lock); 451 list_for_each_safe(pos, n, &phy_fixup_list) { 452 fixup = list_entry(pos, struct phy_fixup, list); 453 454 if ((!strcmp(fixup->bus_id, bus_id)) && 455 ((fixup->phy_uid & phy_uid_mask) == 456 (phy_uid & phy_uid_mask))) { 457 list_del(&fixup->list); 458 kfree(fixup); 459 ret = 0; 460 break; 461 } 462 } 463 mutex_unlock(&phy_fixup_lock); 464 465 return ret; 466 } 467 EXPORT_SYMBOL(phy_unregister_fixup); 468 469 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 470 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 471 { 472 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 473 } 474 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 475 476 /* Unregisters a fixup of the PHY with id string bus_id */ 477 int phy_unregister_fixup_for_id(const char *bus_id) 478 { 479 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 480 } 481 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 482 483 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 484 * Fixups can be set to match any in one or more fields. 485 */ 486 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 487 { 488 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 489 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 490 return 0; 491 492 if ((fixup->phy_uid & fixup->phy_uid_mask) != 493 (phydev->phy_id & fixup->phy_uid_mask)) 494 if (fixup->phy_uid != PHY_ANY_UID) 495 return 0; 496 497 return 1; 498 } 499 500 /* Runs any matching fixups for this phydev */ 501 static int phy_scan_fixups(struct phy_device *phydev) 502 { 503 struct phy_fixup *fixup; 504 505 mutex_lock(&phy_fixup_lock); 506 list_for_each_entry(fixup, &phy_fixup_list, list) { 507 if (phy_needs_fixup(phydev, fixup)) { 508 int err = fixup->run(phydev); 509 510 if (err < 0) { 511 mutex_unlock(&phy_fixup_lock); 512 return err; 513 } 514 phydev->has_fixups = true; 515 } 516 } 517 mutex_unlock(&phy_fixup_lock); 518 519 return 0; 520 } 521 522 static int phy_bus_match(struct device *dev, struct device_driver *drv) 523 { 524 struct phy_device *phydev = to_phy_device(dev); 525 struct phy_driver *phydrv = to_phy_driver(drv); 526 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 527 int i; 528 529 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 530 return 0; 531 532 if (phydrv->match_phy_device) 533 return phydrv->match_phy_device(phydev); 534 535 if (phydev->is_c45) { 536 for (i = 1; i < num_ids; i++) { 537 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 538 continue; 539 540 if ((phydrv->phy_id & phydrv->phy_id_mask) == 541 (phydev->c45_ids.device_ids[i] & 542 phydrv->phy_id_mask)) 543 return 1; 544 } 545 return 0; 546 } else { 547 return (phydrv->phy_id & phydrv->phy_id_mask) == 548 (phydev->phy_id & phydrv->phy_id_mask); 549 } 550 } 551 552 static ssize_t 553 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 554 { 555 struct phy_device *phydev = to_phy_device(dev); 556 557 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 558 } 559 static DEVICE_ATTR_RO(phy_id); 560 561 static ssize_t 562 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 563 { 564 struct phy_device *phydev = to_phy_device(dev); 565 const char *mode = NULL; 566 567 if (phy_is_internal(phydev)) 568 mode = "internal"; 569 else 570 mode = phy_modes(phydev->interface); 571 572 return sysfs_emit(buf, "%s\n", mode); 573 } 574 static DEVICE_ATTR_RO(phy_interface); 575 576 static ssize_t 577 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 578 char *buf) 579 { 580 struct phy_device *phydev = to_phy_device(dev); 581 582 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 583 } 584 static DEVICE_ATTR_RO(phy_has_fixups); 585 586 static ssize_t phy_dev_flags_show(struct device *dev, 587 struct device_attribute *attr, 588 char *buf) 589 { 590 struct phy_device *phydev = to_phy_device(dev); 591 592 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 593 } 594 static DEVICE_ATTR_RO(phy_dev_flags); 595 596 static struct attribute *phy_dev_attrs[] = { 597 &dev_attr_phy_id.attr, 598 &dev_attr_phy_interface.attr, 599 &dev_attr_phy_has_fixups.attr, 600 &dev_attr_phy_dev_flags.attr, 601 NULL, 602 }; 603 ATTRIBUTE_GROUPS(phy_dev); 604 605 static const struct device_type mdio_bus_phy_type = { 606 .name = "PHY", 607 .groups = phy_dev_groups, 608 .release = phy_device_release, 609 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 610 }; 611 612 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 613 { 614 int ret; 615 616 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 617 MDIO_ID_ARGS(phy_id)); 618 /* We only check for failures in executing the usermode binary, 619 * not whether a PHY driver module exists for the PHY ID. 620 * Accept -ENOENT because this may occur in case no initramfs exists, 621 * then modprobe isn't available. 622 */ 623 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 624 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 625 ret, (unsigned long)phy_id); 626 return ret; 627 } 628 629 return 0; 630 } 631 632 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 633 bool is_c45, 634 struct phy_c45_device_ids *c45_ids) 635 { 636 struct phy_device *dev; 637 struct mdio_device *mdiodev; 638 int ret = 0; 639 640 /* We allocate the device, and initialize the default values */ 641 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 642 if (!dev) 643 return ERR_PTR(-ENOMEM); 644 645 mdiodev = &dev->mdio; 646 mdiodev->dev.parent = &bus->dev; 647 mdiodev->dev.bus = &mdio_bus_type; 648 mdiodev->dev.type = &mdio_bus_phy_type; 649 mdiodev->bus = bus; 650 mdiodev->bus_match = phy_bus_match; 651 mdiodev->addr = addr; 652 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 653 mdiodev->device_free = phy_mdio_device_free; 654 mdiodev->device_remove = phy_mdio_device_remove; 655 656 dev->speed = SPEED_UNKNOWN; 657 dev->duplex = DUPLEX_UNKNOWN; 658 dev->pause = 0; 659 dev->asym_pause = 0; 660 dev->link = 0; 661 dev->port = PORT_TP; 662 dev->interface = PHY_INTERFACE_MODE_GMII; 663 664 dev->autoneg = AUTONEG_ENABLE; 665 666 dev->pma_extable = -ENODATA; 667 dev->is_c45 = is_c45; 668 dev->phy_id = phy_id; 669 if (c45_ids) 670 dev->c45_ids = *c45_ids; 671 dev->irq = bus->irq[addr]; 672 673 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 674 device_initialize(&mdiodev->dev); 675 676 dev->state = PHY_DOWN; 677 678 mutex_init(&dev->lock); 679 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 680 681 /* Request the appropriate module unconditionally; don't 682 * bother trying to do so only if it isn't already loaded, 683 * because that gets complicated. A hotplug event would have 684 * done an unconditional modprobe anyway. 685 * We don't do normal hotplug because it won't work for MDIO 686 * -- because it relies on the device staying around for long 687 * enough for the driver to get loaded. With MDIO, the NIC 688 * driver will get bored and give up as soon as it finds that 689 * there's no driver _already_ loaded. 690 */ 691 if (is_c45 && c45_ids) { 692 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 693 int i; 694 695 for (i = 1; i < num_ids; i++) { 696 if (c45_ids->device_ids[i] == 0xffffffff) 697 continue; 698 699 ret = phy_request_driver_module(dev, 700 c45_ids->device_ids[i]); 701 if (ret) 702 break; 703 } 704 } else { 705 ret = phy_request_driver_module(dev, phy_id); 706 } 707 708 if (ret) { 709 put_device(&mdiodev->dev); 710 dev = ERR_PTR(ret); 711 } 712 713 return dev; 714 } 715 EXPORT_SYMBOL(phy_device_create); 716 717 /* phy_c45_probe_present - checks to see if a MMD is present in the package 718 * @bus: the target MII bus 719 * @prtad: PHY package address on the MII bus 720 * @devad: PHY device (MMD) address 721 * 722 * Read the MDIO_STAT2 register, and check whether a device is responding 723 * at this address. 724 * 725 * Returns: negative error number on bus access error, zero if no device 726 * is responding, or positive if a device is present. 727 */ 728 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 729 { 730 int stat2; 731 732 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 733 if (stat2 < 0) 734 return stat2; 735 736 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 737 } 738 739 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 740 * @bus: the target MII bus 741 * @addr: PHY address on the MII bus 742 * @dev_addr: MMD address in the PHY. 743 * @devices_in_package: where to store the devices in package information. 744 * 745 * Description: reads devices in package registers of a MMD at @dev_addr 746 * from PHY at @addr on @bus. 747 * 748 * Returns: 0 on success, -EIO on failure. 749 */ 750 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 751 u32 *devices_in_package) 752 { 753 int phy_reg; 754 755 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 756 if (phy_reg < 0) 757 return -EIO; 758 *devices_in_package = phy_reg << 16; 759 760 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 761 if (phy_reg < 0) 762 return -EIO; 763 *devices_in_package |= phy_reg; 764 765 return 0; 766 } 767 768 /** 769 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 770 * @bus: the target MII bus 771 * @addr: PHY address on the MII bus 772 * @c45_ids: where to store the c45 ID information. 773 * 774 * Read the PHY "devices in package". If this appears to be valid, read 775 * the PHY identifiers for each device. Return the "devices in package" 776 * and identifiers in @c45_ids. 777 * 778 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 779 * the "devices in package" is invalid. 780 */ 781 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 782 struct phy_c45_device_ids *c45_ids) 783 { 784 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 785 u32 devs_in_pkg = 0; 786 int i, ret, phy_reg; 787 788 /* Find first non-zero Devices In package. Device zero is reserved 789 * for 802.3 c45 complied PHYs, so don't probe it at first. 790 */ 791 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 792 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 793 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 794 /* Check that there is a device present at this 795 * address before reading the devices-in-package 796 * register to avoid reading garbage from the PHY. 797 * Some PHYs (88x3310) vendor space is not IEEE802.3 798 * compliant. 799 */ 800 ret = phy_c45_probe_present(bus, addr, i); 801 if (ret < 0) 802 return -EIO; 803 804 if (!ret) 805 continue; 806 } 807 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 808 if (phy_reg < 0) 809 return -EIO; 810 } 811 812 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 813 /* If mostly Fs, there is no device there, then let's probe 814 * MMD 0, as some 10G PHYs have zero Devices In package, 815 * e.g. Cortina CS4315/CS4340 PHY. 816 */ 817 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 818 if (phy_reg < 0) 819 return -EIO; 820 821 /* no device there, let's get out of here */ 822 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 823 return -ENODEV; 824 } 825 826 /* Now probe Device Identifiers for each device present. */ 827 for (i = 1; i < num_ids; i++) { 828 if (!(devs_in_pkg & (1 << i))) 829 continue; 830 831 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 832 /* Probe the "Device Present" bits for the vendor MMDs 833 * to ignore these if they do not contain IEEE 802.3 834 * registers. 835 */ 836 ret = phy_c45_probe_present(bus, addr, i); 837 if (ret < 0) 838 return ret; 839 840 if (!ret) 841 continue; 842 } 843 844 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 845 if (phy_reg < 0) 846 return -EIO; 847 c45_ids->device_ids[i] = phy_reg << 16; 848 849 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 850 if (phy_reg < 0) 851 return -EIO; 852 c45_ids->device_ids[i] |= phy_reg; 853 } 854 855 c45_ids->devices_in_package = devs_in_pkg; 856 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 857 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 858 859 return 0; 860 } 861 862 /** 863 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 864 * @bus: the target MII bus 865 * @addr: PHY address on the MII bus 866 * @phy_id: where to store the ID retrieved. 867 * 868 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 869 * placing it in @phy_id. Return zero on successful read and the ID is 870 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 871 * or invalid ID. 872 */ 873 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 874 { 875 int phy_reg; 876 877 /* Grab the bits from PHYIR1, and put them in the upper half */ 878 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 879 if (phy_reg < 0) { 880 /* returning -ENODEV doesn't stop bus scanning */ 881 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 882 } 883 884 *phy_id = phy_reg << 16; 885 886 /* Grab the bits from PHYIR2, and put them in the lower half */ 887 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 888 if (phy_reg < 0) { 889 /* returning -ENODEV doesn't stop bus scanning */ 890 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 891 } 892 893 *phy_id |= phy_reg; 894 895 /* If the phy_id is mostly Fs, there is no device there */ 896 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 897 return -ENODEV; 898 899 return 0; 900 } 901 902 /* Extract the phy ID from the compatible string of the form 903 * ethernet-phy-idAAAA.BBBB. 904 */ 905 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 906 { 907 unsigned int upper, lower; 908 const char *cp; 909 int ret; 910 911 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 912 if (ret) 913 return ret; 914 915 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 916 return -EINVAL; 917 918 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 919 return 0; 920 } 921 EXPORT_SYMBOL(fwnode_get_phy_id); 922 923 /** 924 * get_phy_device - reads the specified PHY device and returns its @phy_device 925 * struct 926 * @bus: the target MII bus 927 * @addr: PHY address on the MII bus 928 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 929 * 930 * Probe for a PHY at @addr on @bus. 931 * 932 * When probing for a clause 22 PHY, then read the ID registers. If we find 933 * a valid ID, allocate and return a &struct phy_device. 934 * 935 * When probing for a clause 45 PHY, read the "devices in package" registers. 936 * If the "devices in package" appears valid, read the ID registers for each 937 * MMD, allocate and return a &struct phy_device. 938 * 939 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 940 * no PHY present, or %-EIO on bus access error. 941 */ 942 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 943 { 944 struct phy_c45_device_ids c45_ids; 945 u32 phy_id = 0; 946 int r; 947 948 c45_ids.devices_in_package = 0; 949 c45_ids.mmds_present = 0; 950 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 951 952 if (is_c45) 953 r = get_phy_c45_ids(bus, addr, &c45_ids); 954 else 955 r = get_phy_c22_id(bus, addr, &phy_id); 956 957 if (r) 958 return ERR_PTR(r); 959 960 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 961 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 962 * probe with C45 to see if we're able to get a valid PHY ID in the C45 963 * space, if successful, create the C45 PHY device. 964 */ 965 if (!is_c45 && phy_id == 0 && bus->read_c45) { 966 r = get_phy_c45_ids(bus, addr, &c45_ids); 967 if (!r) 968 return phy_device_create(bus, addr, phy_id, 969 true, &c45_ids); 970 } 971 972 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 973 } 974 EXPORT_SYMBOL(get_phy_device); 975 976 /** 977 * phy_device_register - Register the phy device on the MDIO bus 978 * @phydev: phy_device structure to be added to the MDIO bus 979 */ 980 int phy_device_register(struct phy_device *phydev) 981 { 982 int err; 983 984 err = mdiobus_register_device(&phydev->mdio); 985 if (err) 986 return err; 987 988 /* Deassert the reset signal */ 989 phy_device_reset(phydev, 0); 990 991 /* Run all of the fixups for this PHY */ 992 err = phy_scan_fixups(phydev); 993 if (err) { 994 phydev_err(phydev, "failed to initialize\n"); 995 goto out; 996 } 997 998 err = device_add(&phydev->mdio.dev); 999 if (err) { 1000 phydev_err(phydev, "failed to add\n"); 1001 goto out; 1002 } 1003 1004 return 0; 1005 1006 out: 1007 /* Assert the reset signal */ 1008 phy_device_reset(phydev, 1); 1009 1010 mdiobus_unregister_device(&phydev->mdio); 1011 return err; 1012 } 1013 EXPORT_SYMBOL(phy_device_register); 1014 1015 /** 1016 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1017 * @phydev: phy_device structure to remove 1018 * 1019 * This doesn't free the phy_device itself, it merely reverses the effects 1020 * of phy_device_register(). Use phy_device_free() to free the device 1021 * after calling this function. 1022 */ 1023 void phy_device_remove(struct phy_device *phydev) 1024 { 1025 unregister_mii_timestamper(phydev->mii_ts); 1026 pse_control_put(phydev->psec); 1027 1028 device_del(&phydev->mdio.dev); 1029 1030 /* Assert the reset signal */ 1031 phy_device_reset(phydev, 1); 1032 1033 mdiobus_unregister_device(&phydev->mdio); 1034 } 1035 EXPORT_SYMBOL(phy_device_remove); 1036 1037 /** 1038 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1039 * @phydev: phy_device structure to read 802.3-c45 IDs 1040 * 1041 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1042 * the "devices in package" is invalid. 1043 */ 1044 int phy_get_c45_ids(struct phy_device *phydev) 1045 { 1046 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1047 &phydev->c45_ids); 1048 } 1049 EXPORT_SYMBOL(phy_get_c45_ids); 1050 1051 /** 1052 * phy_find_first - finds the first PHY device on the bus 1053 * @bus: the target MII bus 1054 */ 1055 struct phy_device *phy_find_first(struct mii_bus *bus) 1056 { 1057 struct phy_device *phydev; 1058 int addr; 1059 1060 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1061 phydev = mdiobus_get_phy(bus, addr); 1062 if (phydev) 1063 return phydev; 1064 } 1065 return NULL; 1066 } 1067 EXPORT_SYMBOL(phy_find_first); 1068 1069 static void phy_link_change(struct phy_device *phydev, bool up) 1070 { 1071 struct net_device *netdev = phydev->attached_dev; 1072 1073 if (up) 1074 netif_carrier_on(netdev); 1075 else 1076 netif_carrier_off(netdev); 1077 phydev->adjust_link(netdev); 1078 if (phydev->mii_ts && phydev->mii_ts->link_state) 1079 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1080 } 1081 1082 /** 1083 * phy_prepare_link - prepares the PHY layer to monitor link status 1084 * @phydev: target phy_device struct 1085 * @handler: callback function for link status change notifications 1086 * 1087 * Description: Tells the PHY infrastructure to handle the 1088 * gory details on monitoring link status (whether through 1089 * polling or an interrupt), and to call back to the 1090 * connected device driver when the link status changes. 1091 * If you want to monitor your own link state, don't call 1092 * this function. 1093 */ 1094 static void phy_prepare_link(struct phy_device *phydev, 1095 void (*handler)(struct net_device *)) 1096 { 1097 phydev->adjust_link = handler; 1098 } 1099 1100 /** 1101 * phy_connect_direct - connect an ethernet device to a specific phy_device 1102 * @dev: the network device to connect 1103 * @phydev: the pointer to the phy device 1104 * @handler: callback function for state change notifications 1105 * @interface: PHY device's interface 1106 */ 1107 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1108 void (*handler)(struct net_device *), 1109 phy_interface_t interface) 1110 { 1111 int rc; 1112 1113 if (!dev) 1114 return -EINVAL; 1115 1116 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1117 if (rc) 1118 return rc; 1119 1120 phy_prepare_link(phydev, handler); 1121 if (phy_interrupt_is_valid(phydev)) 1122 phy_request_interrupt(phydev); 1123 1124 return 0; 1125 } 1126 EXPORT_SYMBOL(phy_connect_direct); 1127 1128 /** 1129 * phy_connect - connect an ethernet device to a PHY device 1130 * @dev: the network device to connect 1131 * @bus_id: the id string of the PHY device to connect 1132 * @handler: callback function for state change notifications 1133 * @interface: PHY device's interface 1134 * 1135 * Description: Convenience function for connecting ethernet 1136 * devices to PHY devices. The default behavior is for 1137 * the PHY infrastructure to handle everything, and only notify 1138 * the connected driver when the link status changes. If you 1139 * don't want, or can't use the provided functionality, you may 1140 * choose to call only the subset of functions which provide 1141 * the desired functionality. 1142 */ 1143 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1144 void (*handler)(struct net_device *), 1145 phy_interface_t interface) 1146 { 1147 struct phy_device *phydev; 1148 struct device *d; 1149 int rc; 1150 1151 /* Search the list of PHY devices on the mdio bus for the 1152 * PHY with the requested name 1153 */ 1154 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1155 if (!d) { 1156 pr_err("PHY %s not found\n", bus_id); 1157 return ERR_PTR(-ENODEV); 1158 } 1159 phydev = to_phy_device(d); 1160 1161 rc = phy_connect_direct(dev, phydev, handler, interface); 1162 put_device(d); 1163 if (rc) 1164 return ERR_PTR(rc); 1165 1166 return phydev; 1167 } 1168 EXPORT_SYMBOL(phy_connect); 1169 1170 /** 1171 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1172 * device 1173 * @phydev: target phy_device struct 1174 */ 1175 void phy_disconnect(struct phy_device *phydev) 1176 { 1177 if (phy_is_started(phydev)) 1178 phy_stop(phydev); 1179 1180 if (phy_interrupt_is_valid(phydev)) 1181 phy_free_interrupt(phydev); 1182 1183 phydev->adjust_link = NULL; 1184 1185 phy_detach(phydev); 1186 } 1187 EXPORT_SYMBOL(phy_disconnect); 1188 1189 /** 1190 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1191 * @phydev: The PHY device to poll 1192 * 1193 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1194 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1195 * register must be polled until the BMCR_RESET bit clears. 1196 * 1197 * Furthermore, any attempts to write to PHY registers may have no effect 1198 * or even generate MDIO bus errors until this is complete. 1199 * 1200 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1201 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1202 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1203 * effort to support such broken PHYs, this function is separate from the 1204 * standard phy_init_hw() which will zero all the other bits in the BMCR 1205 * and reapply all driver-specific and board-specific fixups. 1206 */ 1207 static int phy_poll_reset(struct phy_device *phydev) 1208 { 1209 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1210 int ret, val; 1211 1212 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1213 50000, 600000, true); 1214 if (ret) 1215 return ret; 1216 /* Some chips (smsc911x) may still need up to another 1ms after the 1217 * BMCR_RESET bit is cleared before they are usable. 1218 */ 1219 msleep(1); 1220 return 0; 1221 } 1222 1223 int phy_init_hw(struct phy_device *phydev) 1224 { 1225 int ret = 0; 1226 1227 /* Deassert the reset signal */ 1228 phy_device_reset(phydev, 0); 1229 1230 if (!phydev->drv) 1231 return 0; 1232 1233 if (phydev->drv->soft_reset) { 1234 ret = phydev->drv->soft_reset(phydev); 1235 /* see comment in genphy_soft_reset for an explanation */ 1236 if (!ret) 1237 phydev->suspended = 0; 1238 } 1239 1240 if (ret < 0) 1241 return ret; 1242 1243 ret = phy_scan_fixups(phydev); 1244 if (ret < 0) 1245 return ret; 1246 1247 if (phydev->drv->config_init) { 1248 ret = phydev->drv->config_init(phydev); 1249 if (ret < 0) 1250 return ret; 1251 } 1252 1253 if (phydev->drv->config_intr) { 1254 ret = phydev->drv->config_intr(phydev); 1255 if (ret < 0) 1256 return ret; 1257 } 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL(phy_init_hw); 1262 1263 void phy_attached_info(struct phy_device *phydev) 1264 { 1265 phy_attached_print(phydev, NULL); 1266 } 1267 EXPORT_SYMBOL(phy_attached_info); 1268 1269 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1270 char *phy_attached_info_irq(struct phy_device *phydev) 1271 { 1272 char *irq_str; 1273 char irq_num[8]; 1274 1275 switch(phydev->irq) { 1276 case PHY_POLL: 1277 irq_str = "POLL"; 1278 break; 1279 case PHY_MAC_INTERRUPT: 1280 irq_str = "MAC"; 1281 break; 1282 default: 1283 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1284 irq_str = irq_num; 1285 break; 1286 } 1287 1288 return kasprintf(GFP_KERNEL, "%s", irq_str); 1289 } 1290 EXPORT_SYMBOL(phy_attached_info_irq); 1291 1292 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1293 { 1294 const char *unbound = phydev->drv ? "" : "[unbound] "; 1295 char *irq_str = phy_attached_info_irq(phydev); 1296 1297 if (!fmt) { 1298 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1299 phydev_name(phydev), irq_str); 1300 } else { 1301 va_list ap; 1302 1303 phydev_info(phydev, ATTACHED_FMT, unbound, 1304 phydev_name(phydev), irq_str); 1305 1306 va_start(ap, fmt); 1307 vprintk(fmt, ap); 1308 va_end(ap); 1309 } 1310 kfree(irq_str); 1311 } 1312 EXPORT_SYMBOL(phy_attached_print); 1313 1314 static void phy_sysfs_create_links(struct phy_device *phydev) 1315 { 1316 struct net_device *dev = phydev->attached_dev; 1317 int err; 1318 1319 if (!dev) 1320 return; 1321 1322 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1323 "attached_dev"); 1324 if (err) 1325 return; 1326 1327 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1328 &phydev->mdio.dev.kobj, 1329 "phydev"); 1330 if (err) { 1331 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1332 kobject_name(&phydev->mdio.dev.kobj), 1333 err); 1334 /* non-fatal - some net drivers can use one netdevice 1335 * with more then one phy 1336 */ 1337 } 1338 1339 phydev->sysfs_links = true; 1340 } 1341 1342 static ssize_t 1343 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1344 char *buf) 1345 { 1346 struct phy_device *phydev = to_phy_device(dev); 1347 1348 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1349 } 1350 static DEVICE_ATTR_RO(phy_standalone); 1351 1352 /** 1353 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1354 * @upstream: pointer to the phy device 1355 * @bus: sfp bus representing cage being attached 1356 * 1357 * This is used to fill in the sfp_upstream_ops .attach member. 1358 */ 1359 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1360 { 1361 struct phy_device *phydev = upstream; 1362 1363 if (phydev->attached_dev) 1364 phydev->attached_dev->sfp_bus = bus; 1365 phydev->sfp_bus_attached = true; 1366 } 1367 EXPORT_SYMBOL(phy_sfp_attach); 1368 1369 /** 1370 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1371 * @upstream: pointer to the phy device 1372 * @bus: sfp bus representing cage being attached 1373 * 1374 * This is used to fill in the sfp_upstream_ops .detach member. 1375 */ 1376 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1377 { 1378 struct phy_device *phydev = upstream; 1379 1380 if (phydev->attached_dev) 1381 phydev->attached_dev->sfp_bus = NULL; 1382 phydev->sfp_bus_attached = false; 1383 } 1384 EXPORT_SYMBOL(phy_sfp_detach); 1385 1386 /** 1387 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1388 * @phydev: Pointer to phy_device 1389 * @ops: SFP's upstream operations 1390 */ 1391 int phy_sfp_probe(struct phy_device *phydev, 1392 const struct sfp_upstream_ops *ops) 1393 { 1394 struct sfp_bus *bus; 1395 int ret = 0; 1396 1397 if (phydev->mdio.dev.fwnode) { 1398 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1399 if (IS_ERR(bus)) 1400 return PTR_ERR(bus); 1401 1402 phydev->sfp_bus = bus; 1403 1404 ret = sfp_bus_add_upstream(bus, phydev, ops); 1405 sfp_bus_put(bus); 1406 } 1407 return ret; 1408 } 1409 EXPORT_SYMBOL(phy_sfp_probe); 1410 1411 /** 1412 * phy_attach_direct - attach a network device to a given PHY device pointer 1413 * @dev: network device to attach 1414 * @phydev: Pointer to phy_device to attach 1415 * @flags: PHY device's dev_flags 1416 * @interface: PHY device's interface 1417 * 1418 * Description: Called by drivers to attach to a particular PHY 1419 * device. The phy_device is found, and properly hooked up 1420 * to the phy_driver. If no driver is attached, then a 1421 * generic driver is used. The phy_device is given a ptr to 1422 * the attaching device, and given a callback for link status 1423 * change. The phy_device is returned to the attaching driver. 1424 * This function takes a reference on the phy device. 1425 */ 1426 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1427 u32 flags, phy_interface_t interface) 1428 { 1429 struct mii_bus *bus = phydev->mdio.bus; 1430 struct device *d = &phydev->mdio.dev; 1431 struct module *ndev_owner = NULL; 1432 bool using_genphy = false; 1433 int err; 1434 1435 /* For Ethernet device drivers that register their own MDIO bus, we 1436 * will have bus->owner match ndev_mod, so we do not want to increment 1437 * our own module->refcnt here, otherwise we would not be able to 1438 * unload later on. 1439 */ 1440 if (dev) 1441 ndev_owner = dev->dev.parent->driver->owner; 1442 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1443 phydev_err(phydev, "failed to get the bus module\n"); 1444 return -EIO; 1445 } 1446 1447 get_device(d); 1448 1449 /* Assume that if there is no driver, that it doesn't 1450 * exist, and we should use the genphy driver. 1451 */ 1452 if (!d->driver) { 1453 if (phydev->is_c45) 1454 d->driver = &genphy_c45_driver.mdiodrv.driver; 1455 else 1456 d->driver = &genphy_driver.mdiodrv.driver; 1457 1458 using_genphy = true; 1459 } 1460 1461 if (!try_module_get(d->driver->owner)) { 1462 phydev_err(phydev, "failed to get the device driver module\n"); 1463 err = -EIO; 1464 goto error_put_device; 1465 } 1466 1467 if (using_genphy) { 1468 err = d->driver->probe(d); 1469 if (err >= 0) 1470 err = device_bind_driver(d); 1471 1472 if (err) 1473 goto error_module_put; 1474 } 1475 1476 if (phydev->attached_dev) { 1477 dev_err(&dev->dev, "PHY already attached\n"); 1478 err = -EBUSY; 1479 goto error; 1480 } 1481 1482 phydev->phy_link_change = phy_link_change; 1483 if (dev) { 1484 phydev->attached_dev = dev; 1485 dev->phydev = phydev; 1486 1487 if (phydev->sfp_bus_attached) 1488 dev->sfp_bus = phydev->sfp_bus; 1489 else if (dev->sfp_bus) 1490 phydev->is_on_sfp_module = true; 1491 } 1492 1493 /* Some Ethernet drivers try to connect to a PHY device before 1494 * calling register_netdevice() -> netdev_register_kobject() and 1495 * does the dev->dev.kobj initialization. Here we only check for 1496 * success which indicates that the network device kobject is 1497 * ready. Once we do that we still need to keep track of whether 1498 * links were successfully set up or not for phy_detach() to 1499 * remove them accordingly. 1500 */ 1501 phydev->sysfs_links = false; 1502 1503 phy_sysfs_create_links(phydev); 1504 1505 if (!phydev->attached_dev) { 1506 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1507 &dev_attr_phy_standalone.attr); 1508 if (err) 1509 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1510 } 1511 1512 phydev->dev_flags |= flags; 1513 1514 phydev->interface = interface; 1515 1516 phydev->state = PHY_READY; 1517 1518 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1519 1520 /* PHYs can request to use poll mode even though they have an 1521 * associated interrupt line. This could be the case if they 1522 * detect a broken interrupt handling. 1523 */ 1524 if (phydev->dev_flags & PHY_F_NO_IRQ) 1525 phydev->irq = PHY_POLL; 1526 1527 /* Port is set to PORT_TP by default and the actual PHY driver will set 1528 * it to different value depending on the PHY configuration. If we have 1529 * the generic PHY driver we can't figure it out, thus set the old 1530 * legacy PORT_MII value. 1531 */ 1532 if (using_genphy) 1533 phydev->port = PORT_MII; 1534 1535 /* Initial carrier state is off as the phy is about to be 1536 * (re)initialized. 1537 */ 1538 if (dev) 1539 netif_carrier_off(phydev->attached_dev); 1540 1541 /* Do initial configuration here, now that 1542 * we have certain key parameters 1543 * (dev_flags and interface) 1544 */ 1545 err = phy_init_hw(phydev); 1546 if (err) 1547 goto error; 1548 1549 phy_resume(phydev); 1550 phy_led_triggers_register(phydev); 1551 1552 /** 1553 * If the external phy used by current mac interface is managed by 1554 * another mac interface, so we should create a device link between 1555 * phy dev and mac dev. 1556 */ 1557 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1558 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1559 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1560 1561 return err; 1562 1563 error: 1564 /* phy_detach() does all of the cleanup below */ 1565 phy_detach(phydev); 1566 return err; 1567 1568 error_module_put: 1569 module_put(d->driver->owner); 1570 d->driver = NULL; 1571 error_put_device: 1572 put_device(d); 1573 if (ndev_owner != bus->owner) 1574 module_put(bus->owner); 1575 return err; 1576 } 1577 EXPORT_SYMBOL(phy_attach_direct); 1578 1579 /** 1580 * phy_attach - attach a network device to a particular PHY device 1581 * @dev: network device to attach 1582 * @bus_id: Bus ID of PHY device to attach 1583 * @interface: PHY device's interface 1584 * 1585 * Description: Same as phy_attach_direct() except that a PHY bus_id 1586 * string is passed instead of a pointer to a struct phy_device. 1587 */ 1588 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1589 phy_interface_t interface) 1590 { 1591 struct bus_type *bus = &mdio_bus_type; 1592 struct phy_device *phydev; 1593 struct device *d; 1594 int rc; 1595 1596 if (!dev) 1597 return ERR_PTR(-EINVAL); 1598 1599 /* Search the list of PHY devices on the mdio bus for the 1600 * PHY with the requested name 1601 */ 1602 d = bus_find_device_by_name(bus, NULL, bus_id); 1603 if (!d) { 1604 pr_err("PHY %s not found\n", bus_id); 1605 return ERR_PTR(-ENODEV); 1606 } 1607 phydev = to_phy_device(d); 1608 1609 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1610 put_device(d); 1611 if (rc) 1612 return ERR_PTR(rc); 1613 1614 return phydev; 1615 } 1616 EXPORT_SYMBOL(phy_attach); 1617 1618 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1619 struct device_driver *driver) 1620 { 1621 struct device *d = &phydev->mdio.dev; 1622 bool ret = false; 1623 1624 if (!phydev->drv) 1625 return ret; 1626 1627 get_device(d); 1628 ret = d->driver == driver; 1629 put_device(d); 1630 1631 return ret; 1632 } 1633 1634 bool phy_driver_is_genphy(struct phy_device *phydev) 1635 { 1636 return phy_driver_is_genphy_kind(phydev, 1637 &genphy_driver.mdiodrv.driver); 1638 } 1639 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1640 1641 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1642 { 1643 return phy_driver_is_genphy_kind(phydev, 1644 &genphy_c45_driver.mdiodrv.driver); 1645 } 1646 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1647 1648 /** 1649 * phy_package_join - join a common PHY group 1650 * @phydev: target phy_device struct 1651 * @addr: cookie and PHY address for global register access 1652 * @priv_size: if non-zero allocate this amount of bytes for private data 1653 * 1654 * This joins a PHY group and provides a shared storage for all phydevs in 1655 * this group. This is intended to be used for packages which contain 1656 * more than one PHY, for example a quad PHY transceiver. 1657 * 1658 * The addr parameter serves as a cookie which has to have the same value 1659 * for all members of one group and as a PHY address to access generic 1660 * registers of a PHY package. Usually, one of the PHY addresses of the 1661 * different PHYs in the package provides access to these global registers. 1662 * The address which is given here, will be used in the phy_package_read() 1663 * and phy_package_write() convenience functions. If your PHY doesn't have 1664 * global registers you can just pick any of the PHY addresses. 1665 * 1666 * This will set the shared pointer of the phydev to the shared storage. 1667 * If this is the first call for a this cookie the shared storage will be 1668 * allocated. If priv_size is non-zero, the given amount of bytes are 1669 * allocated for the priv member. 1670 * 1671 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1672 * with the same cookie but a different priv_size is an error. 1673 */ 1674 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1675 { 1676 struct mii_bus *bus = phydev->mdio.bus; 1677 struct phy_package_shared *shared; 1678 int ret; 1679 1680 if (addr < 0 || addr >= PHY_MAX_ADDR) 1681 return -EINVAL; 1682 1683 mutex_lock(&bus->shared_lock); 1684 shared = bus->shared[addr]; 1685 if (!shared) { 1686 ret = -ENOMEM; 1687 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1688 if (!shared) 1689 goto err_unlock; 1690 if (priv_size) { 1691 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1692 if (!shared->priv) 1693 goto err_free; 1694 shared->priv_size = priv_size; 1695 } 1696 shared->addr = addr; 1697 refcount_set(&shared->refcnt, 1); 1698 bus->shared[addr] = shared; 1699 } else { 1700 ret = -EINVAL; 1701 if (priv_size && priv_size != shared->priv_size) 1702 goto err_unlock; 1703 refcount_inc(&shared->refcnt); 1704 } 1705 mutex_unlock(&bus->shared_lock); 1706 1707 phydev->shared = shared; 1708 1709 return 0; 1710 1711 err_free: 1712 kfree(shared); 1713 err_unlock: 1714 mutex_unlock(&bus->shared_lock); 1715 return ret; 1716 } 1717 EXPORT_SYMBOL_GPL(phy_package_join); 1718 1719 /** 1720 * phy_package_leave - leave a common PHY group 1721 * @phydev: target phy_device struct 1722 * 1723 * This leaves a PHY group created by phy_package_join(). If this phydev 1724 * was the last user of the shared data between the group, this data is 1725 * freed. Resets the phydev->shared pointer to NULL. 1726 */ 1727 void phy_package_leave(struct phy_device *phydev) 1728 { 1729 struct phy_package_shared *shared = phydev->shared; 1730 struct mii_bus *bus = phydev->mdio.bus; 1731 1732 if (!shared) 1733 return; 1734 1735 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1736 bus->shared[shared->addr] = NULL; 1737 mutex_unlock(&bus->shared_lock); 1738 kfree(shared->priv); 1739 kfree(shared); 1740 } 1741 1742 phydev->shared = NULL; 1743 } 1744 EXPORT_SYMBOL_GPL(phy_package_leave); 1745 1746 static void devm_phy_package_leave(struct device *dev, void *res) 1747 { 1748 phy_package_leave(*(struct phy_device **)res); 1749 } 1750 1751 /** 1752 * devm_phy_package_join - resource managed phy_package_join() 1753 * @dev: device that is registering this PHY package 1754 * @phydev: target phy_device struct 1755 * @addr: cookie and PHY address for global register access 1756 * @priv_size: if non-zero allocate this amount of bytes for private data 1757 * 1758 * Managed phy_package_join(). Shared storage fetched by this function, 1759 * phy_package_leave() is automatically called on driver detach. See 1760 * phy_package_join() for more information. 1761 */ 1762 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1763 int addr, size_t priv_size) 1764 { 1765 struct phy_device **ptr; 1766 int ret; 1767 1768 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1769 GFP_KERNEL); 1770 if (!ptr) 1771 return -ENOMEM; 1772 1773 ret = phy_package_join(phydev, addr, priv_size); 1774 1775 if (!ret) { 1776 *ptr = phydev; 1777 devres_add(dev, ptr); 1778 } else { 1779 devres_free(ptr); 1780 } 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1785 1786 /** 1787 * phy_detach - detach a PHY device from its network device 1788 * @phydev: target phy_device struct 1789 * 1790 * This detaches the phy device from its network device and the phy 1791 * driver, and drops the reference count taken in phy_attach_direct(). 1792 */ 1793 void phy_detach(struct phy_device *phydev) 1794 { 1795 struct net_device *dev = phydev->attached_dev; 1796 struct module *ndev_owner = NULL; 1797 struct mii_bus *bus; 1798 1799 if (phydev->devlink) 1800 device_link_del(phydev->devlink); 1801 1802 if (phydev->sysfs_links) { 1803 if (dev) 1804 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1805 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1806 } 1807 1808 if (!phydev->attached_dev) 1809 sysfs_remove_file(&phydev->mdio.dev.kobj, 1810 &dev_attr_phy_standalone.attr); 1811 1812 phy_suspend(phydev); 1813 if (dev) { 1814 phydev->attached_dev->phydev = NULL; 1815 phydev->attached_dev = NULL; 1816 } 1817 phydev->phylink = NULL; 1818 1819 phy_led_triggers_unregister(phydev); 1820 1821 if (phydev->mdio.dev.driver) 1822 module_put(phydev->mdio.dev.driver->owner); 1823 1824 /* If the device had no specific driver before (i.e. - it 1825 * was using the generic driver), we unbind the device 1826 * from the generic driver so that there's a chance a 1827 * real driver could be loaded 1828 */ 1829 if (phy_driver_is_genphy(phydev) || 1830 phy_driver_is_genphy_10g(phydev)) 1831 device_release_driver(&phydev->mdio.dev); 1832 1833 /* Assert the reset signal */ 1834 phy_device_reset(phydev, 1); 1835 1836 /* 1837 * The phydev might go away on the put_device() below, so avoid 1838 * a use-after-free bug by reading the underlying bus first. 1839 */ 1840 bus = phydev->mdio.bus; 1841 1842 put_device(&phydev->mdio.dev); 1843 if (dev) 1844 ndev_owner = dev->dev.parent->driver->owner; 1845 if (ndev_owner != bus->owner) 1846 module_put(bus->owner); 1847 } 1848 EXPORT_SYMBOL(phy_detach); 1849 1850 int phy_suspend(struct phy_device *phydev) 1851 { 1852 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1853 struct net_device *netdev = phydev->attached_dev; 1854 struct phy_driver *phydrv = phydev->drv; 1855 int ret; 1856 1857 if (phydev->suspended) 1858 return 0; 1859 1860 /* If the device has WOL enabled, we cannot suspend the PHY */ 1861 phy_ethtool_get_wol(phydev, &wol); 1862 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1863 return -EBUSY; 1864 1865 if (!phydrv || !phydrv->suspend) 1866 return 0; 1867 1868 ret = phydrv->suspend(phydev); 1869 if (!ret) 1870 phydev->suspended = true; 1871 1872 return ret; 1873 } 1874 EXPORT_SYMBOL(phy_suspend); 1875 1876 int __phy_resume(struct phy_device *phydev) 1877 { 1878 struct phy_driver *phydrv = phydev->drv; 1879 int ret; 1880 1881 lockdep_assert_held(&phydev->lock); 1882 1883 if (!phydrv || !phydrv->resume) 1884 return 0; 1885 1886 ret = phydrv->resume(phydev); 1887 if (!ret) 1888 phydev->suspended = false; 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL(__phy_resume); 1893 1894 int phy_resume(struct phy_device *phydev) 1895 { 1896 int ret; 1897 1898 mutex_lock(&phydev->lock); 1899 ret = __phy_resume(phydev); 1900 mutex_unlock(&phydev->lock); 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(phy_resume); 1905 1906 int phy_loopback(struct phy_device *phydev, bool enable) 1907 { 1908 int ret = 0; 1909 1910 if (!phydev->drv) 1911 return -EIO; 1912 1913 mutex_lock(&phydev->lock); 1914 1915 if (enable && phydev->loopback_enabled) { 1916 ret = -EBUSY; 1917 goto out; 1918 } 1919 1920 if (!enable && !phydev->loopback_enabled) { 1921 ret = -EINVAL; 1922 goto out; 1923 } 1924 1925 if (phydev->drv->set_loopback) 1926 ret = phydev->drv->set_loopback(phydev, enable); 1927 else 1928 ret = genphy_loopback(phydev, enable); 1929 1930 if (ret) 1931 goto out; 1932 1933 phydev->loopback_enabled = enable; 1934 1935 out: 1936 mutex_unlock(&phydev->lock); 1937 return ret; 1938 } 1939 EXPORT_SYMBOL(phy_loopback); 1940 1941 /** 1942 * phy_reset_after_clk_enable - perform a PHY reset if needed 1943 * @phydev: target phy_device struct 1944 * 1945 * Description: Some PHYs are known to need a reset after their refclk was 1946 * enabled. This function evaluates the flags and perform the reset if it's 1947 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1948 * was reset. 1949 */ 1950 int phy_reset_after_clk_enable(struct phy_device *phydev) 1951 { 1952 if (!phydev || !phydev->drv) 1953 return -ENODEV; 1954 1955 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1956 phy_device_reset(phydev, 1); 1957 phy_device_reset(phydev, 0); 1958 return 1; 1959 } 1960 1961 return 0; 1962 } 1963 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1964 1965 /* Generic PHY support and helper functions */ 1966 1967 /** 1968 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1969 * @phydev: target phy_device struct 1970 * 1971 * Description: Writes MII_ADVERTISE with the appropriate values, 1972 * after sanitizing the values to make sure we only advertise 1973 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1974 * hasn't changed, and > 0 if it has changed. 1975 */ 1976 static int genphy_config_advert(struct phy_device *phydev) 1977 { 1978 int err, bmsr, changed = 0; 1979 u32 adv; 1980 1981 /* Only allow advertising what this PHY supports */ 1982 linkmode_and(phydev->advertising, phydev->advertising, 1983 phydev->supported); 1984 1985 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1986 1987 /* Setup standard advertisement */ 1988 err = phy_modify_changed(phydev, MII_ADVERTISE, 1989 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1990 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1991 adv); 1992 if (err < 0) 1993 return err; 1994 if (err > 0) 1995 changed = 1; 1996 1997 bmsr = phy_read(phydev, MII_BMSR); 1998 if (bmsr < 0) 1999 return bmsr; 2000 2001 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2002 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2003 * logical 1. 2004 */ 2005 if (!(bmsr & BMSR_ESTATEN)) 2006 return changed; 2007 2008 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2009 2010 err = phy_modify_changed(phydev, MII_CTRL1000, 2011 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2012 adv); 2013 if (err < 0) 2014 return err; 2015 if (err > 0) 2016 changed = 1; 2017 2018 return changed; 2019 } 2020 2021 /** 2022 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2023 * @phydev: target phy_device struct 2024 * 2025 * Description: Writes MII_ADVERTISE with the appropriate values, 2026 * after sanitizing the values to make sure we only advertise 2027 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2028 * hasn't changed, and > 0 if it has changed. This function is intended 2029 * for Clause 37 1000Base-X mode. 2030 */ 2031 static int genphy_c37_config_advert(struct phy_device *phydev) 2032 { 2033 u16 adv = 0; 2034 2035 /* Only allow advertising what this PHY supports */ 2036 linkmode_and(phydev->advertising, phydev->advertising, 2037 phydev->supported); 2038 2039 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2040 phydev->advertising)) 2041 adv |= ADVERTISE_1000XFULL; 2042 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2043 phydev->advertising)) 2044 adv |= ADVERTISE_1000XPAUSE; 2045 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2046 phydev->advertising)) 2047 adv |= ADVERTISE_1000XPSE_ASYM; 2048 2049 return phy_modify_changed(phydev, MII_ADVERTISE, 2050 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2051 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2052 adv); 2053 } 2054 2055 /** 2056 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2057 * @phydev: target phy_device struct 2058 * 2059 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2060 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2061 * changed, and 1 if it has changed. 2062 */ 2063 int genphy_config_eee_advert(struct phy_device *phydev) 2064 { 2065 int err; 2066 2067 /* Nothing to disable */ 2068 if (!phydev->eee_broken_modes) 2069 return 0; 2070 2071 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2072 phydev->eee_broken_modes, 0); 2073 /* If the call failed, we assume that EEE is not supported */ 2074 return err < 0 ? 0 : err; 2075 } 2076 EXPORT_SYMBOL(genphy_config_eee_advert); 2077 2078 /** 2079 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2080 * @phydev: target phy_device struct 2081 * 2082 * Description: Configures MII_BMCR to force speed/duplex 2083 * to the values in phydev. Assumes that the values are valid. 2084 * Please see phy_sanitize_settings(). 2085 */ 2086 int genphy_setup_forced(struct phy_device *phydev) 2087 { 2088 u16 ctl; 2089 2090 phydev->pause = 0; 2091 phydev->asym_pause = 0; 2092 2093 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2094 2095 return phy_modify(phydev, MII_BMCR, 2096 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2097 } 2098 EXPORT_SYMBOL(genphy_setup_forced); 2099 2100 static int genphy_setup_master_slave(struct phy_device *phydev) 2101 { 2102 u16 ctl = 0; 2103 2104 if (!phydev->is_gigabit_capable) 2105 return 0; 2106 2107 switch (phydev->master_slave_set) { 2108 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2109 ctl |= CTL1000_PREFER_MASTER; 2110 break; 2111 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2112 break; 2113 case MASTER_SLAVE_CFG_MASTER_FORCE: 2114 ctl |= CTL1000_AS_MASTER; 2115 fallthrough; 2116 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2117 ctl |= CTL1000_ENABLE_MASTER; 2118 break; 2119 case MASTER_SLAVE_CFG_UNKNOWN: 2120 case MASTER_SLAVE_CFG_UNSUPPORTED: 2121 return 0; 2122 default: 2123 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2124 return -EOPNOTSUPP; 2125 } 2126 2127 return phy_modify_changed(phydev, MII_CTRL1000, 2128 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2129 CTL1000_PREFER_MASTER), ctl); 2130 } 2131 2132 int genphy_read_master_slave(struct phy_device *phydev) 2133 { 2134 int cfg, state; 2135 int val; 2136 2137 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2138 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2139 2140 val = phy_read(phydev, MII_CTRL1000); 2141 if (val < 0) 2142 return val; 2143 2144 if (val & CTL1000_ENABLE_MASTER) { 2145 if (val & CTL1000_AS_MASTER) 2146 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2147 else 2148 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2149 } else { 2150 if (val & CTL1000_PREFER_MASTER) 2151 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2152 else 2153 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2154 } 2155 2156 val = phy_read(phydev, MII_STAT1000); 2157 if (val < 0) 2158 return val; 2159 2160 if (val & LPA_1000MSFAIL) { 2161 state = MASTER_SLAVE_STATE_ERR; 2162 } else if (phydev->link) { 2163 /* this bits are valid only for active link */ 2164 if (val & LPA_1000MSRES) 2165 state = MASTER_SLAVE_STATE_MASTER; 2166 else 2167 state = MASTER_SLAVE_STATE_SLAVE; 2168 } else { 2169 state = MASTER_SLAVE_STATE_UNKNOWN; 2170 } 2171 2172 phydev->master_slave_get = cfg; 2173 phydev->master_slave_state = state; 2174 2175 return 0; 2176 } 2177 EXPORT_SYMBOL(genphy_read_master_slave); 2178 2179 /** 2180 * genphy_restart_aneg - Enable and Restart Autonegotiation 2181 * @phydev: target phy_device struct 2182 */ 2183 int genphy_restart_aneg(struct phy_device *phydev) 2184 { 2185 /* Don't isolate the PHY if we're negotiating */ 2186 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2187 BMCR_ANENABLE | BMCR_ANRESTART); 2188 } 2189 EXPORT_SYMBOL(genphy_restart_aneg); 2190 2191 /** 2192 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2193 * @phydev: target phy_device struct 2194 * @restart: whether aneg restart is requested 2195 * 2196 * Check, and restart auto-negotiation if needed. 2197 */ 2198 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2199 { 2200 int ret; 2201 2202 if (!restart) { 2203 /* Advertisement hasn't changed, but maybe aneg was never on to 2204 * begin with? Or maybe phy was isolated? 2205 */ 2206 ret = phy_read(phydev, MII_BMCR); 2207 if (ret < 0) 2208 return ret; 2209 2210 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2211 restart = true; 2212 } 2213 2214 if (restart) 2215 return genphy_restart_aneg(phydev); 2216 2217 return 0; 2218 } 2219 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2220 2221 /** 2222 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2223 * @phydev: target phy_device struct 2224 * @changed: whether autoneg is requested 2225 * 2226 * Description: If auto-negotiation is enabled, we configure the 2227 * advertising, and then restart auto-negotiation. If it is not 2228 * enabled, then we write the BMCR. 2229 */ 2230 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2231 { 2232 int err; 2233 2234 err = genphy_c45_an_config_eee_aneg(phydev); 2235 if (err < 0) 2236 return err; 2237 else if (err) 2238 changed = true; 2239 2240 err = genphy_setup_master_slave(phydev); 2241 if (err < 0) 2242 return err; 2243 else if (err) 2244 changed = true; 2245 2246 if (AUTONEG_ENABLE != phydev->autoneg) 2247 return genphy_setup_forced(phydev); 2248 2249 err = genphy_config_advert(phydev); 2250 if (err < 0) /* error */ 2251 return err; 2252 else if (err) 2253 changed = true; 2254 2255 return genphy_check_and_restart_aneg(phydev, changed); 2256 } 2257 EXPORT_SYMBOL(__genphy_config_aneg); 2258 2259 /** 2260 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2261 * @phydev: target phy_device struct 2262 * 2263 * Description: If auto-negotiation is enabled, we configure the 2264 * advertising, and then restart auto-negotiation. If it is not 2265 * enabled, then we write the BMCR. This function is intended 2266 * for use with Clause 37 1000Base-X mode. 2267 */ 2268 int genphy_c37_config_aneg(struct phy_device *phydev) 2269 { 2270 int err, changed; 2271 2272 if (phydev->autoneg != AUTONEG_ENABLE) 2273 return genphy_setup_forced(phydev); 2274 2275 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2276 BMCR_SPEED1000); 2277 if (err) 2278 return err; 2279 2280 changed = genphy_c37_config_advert(phydev); 2281 if (changed < 0) /* error */ 2282 return changed; 2283 2284 if (!changed) { 2285 /* Advertisement hasn't changed, but maybe aneg was never on to 2286 * begin with? Or maybe phy was isolated? 2287 */ 2288 int ctl = phy_read(phydev, MII_BMCR); 2289 2290 if (ctl < 0) 2291 return ctl; 2292 2293 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2294 changed = 1; /* do restart aneg */ 2295 } 2296 2297 /* Only restart aneg if we are advertising something different 2298 * than we were before. 2299 */ 2300 if (changed > 0) 2301 return genphy_restart_aneg(phydev); 2302 2303 return 0; 2304 } 2305 EXPORT_SYMBOL(genphy_c37_config_aneg); 2306 2307 /** 2308 * genphy_aneg_done - return auto-negotiation status 2309 * @phydev: target phy_device struct 2310 * 2311 * Description: Reads the status register and returns 0 either if 2312 * auto-negotiation is incomplete, or if there was an error. 2313 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2314 */ 2315 int genphy_aneg_done(struct phy_device *phydev) 2316 { 2317 int retval = phy_read(phydev, MII_BMSR); 2318 2319 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2320 } 2321 EXPORT_SYMBOL(genphy_aneg_done); 2322 2323 /** 2324 * genphy_update_link - update link status in @phydev 2325 * @phydev: target phy_device struct 2326 * 2327 * Description: Update the value in phydev->link to reflect the 2328 * current link value. In order to do this, we need to read 2329 * the status register twice, keeping the second value. 2330 */ 2331 int genphy_update_link(struct phy_device *phydev) 2332 { 2333 int status = 0, bmcr; 2334 2335 bmcr = phy_read(phydev, MII_BMCR); 2336 if (bmcr < 0) 2337 return bmcr; 2338 2339 /* Autoneg is being started, therefore disregard BMSR value and 2340 * report link as down. 2341 */ 2342 if (bmcr & BMCR_ANRESTART) 2343 goto done; 2344 2345 /* The link state is latched low so that momentary link 2346 * drops can be detected. Do not double-read the status 2347 * in polling mode to detect such short link drops except 2348 * the link was already down. 2349 */ 2350 if (!phy_polling_mode(phydev) || !phydev->link) { 2351 status = phy_read(phydev, MII_BMSR); 2352 if (status < 0) 2353 return status; 2354 else if (status & BMSR_LSTATUS) 2355 goto done; 2356 } 2357 2358 /* Read link and autonegotiation status */ 2359 status = phy_read(phydev, MII_BMSR); 2360 if (status < 0) 2361 return status; 2362 done: 2363 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2364 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2365 2366 /* Consider the case that autoneg was started and "aneg complete" 2367 * bit has been reset, but "link up" bit not yet. 2368 */ 2369 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2370 phydev->link = 0; 2371 2372 return 0; 2373 } 2374 EXPORT_SYMBOL(genphy_update_link); 2375 2376 int genphy_read_lpa(struct phy_device *phydev) 2377 { 2378 int lpa, lpagb; 2379 2380 if (phydev->autoneg == AUTONEG_ENABLE) { 2381 if (!phydev->autoneg_complete) { 2382 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2383 0); 2384 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2385 return 0; 2386 } 2387 2388 if (phydev->is_gigabit_capable) { 2389 lpagb = phy_read(phydev, MII_STAT1000); 2390 if (lpagb < 0) 2391 return lpagb; 2392 2393 if (lpagb & LPA_1000MSFAIL) { 2394 int adv = phy_read(phydev, MII_CTRL1000); 2395 2396 if (adv < 0) 2397 return adv; 2398 2399 if (adv & CTL1000_ENABLE_MASTER) 2400 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2401 else 2402 phydev_err(phydev, "Master/Slave resolution failed\n"); 2403 return -ENOLINK; 2404 } 2405 2406 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2407 lpagb); 2408 } 2409 2410 lpa = phy_read(phydev, MII_LPA); 2411 if (lpa < 0) 2412 return lpa; 2413 2414 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2415 } else { 2416 linkmode_zero(phydev->lp_advertising); 2417 } 2418 2419 return 0; 2420 } 2421 EXPORT_SYMBOL(genphy_read_lpa); 2422 2423 /** 2424 * genphy_read_status_fixed - read the link parameters for !aneg mode 2425 * @phydev: target phy_device struct 2426 * 2427 * Read the current duplex and speed state for a PHY operating with 2428 * autonegotiation disabled. 2429 */ 2430 int genphy_read_status_fixed(struct phy_device *phydev) 2431 { 2432 int bmcr = phy_read(phydev, MII_BMCR); 2433 2434 if (bmcr < 0) 2435 return bmcr; 2436 2437 if (bmcr & BMCR_FULLDPLX) 2438 phydev->duplex = DUPLEX_FULL; 2439 else 2440 phydev->duplex = DUPLEX_HALF; 2441 2442 if (bmcr & BMCR_SPEED1000) 2443 phydev->speed = SPEED_1000; 2444 else if (bmcr & BMCR_SPEED100) 2445 phydev->speed = SPEED_100; 2446 else 2447 phydev->speed = SPEED_10; 2448 2449 return 0; 2450 } 2451 EXPORT_SYMBOL(genphy_read_status_fixed); 2452 2453 /** 2454 * genphy_read_status - check the link status and update current link state 2455 * @phydev: target phy_device struct 2456 * 2457 * Description: Check the link, then figure out the current state 2458 * by comparing what we advertise with what the link partner 2459 * advertises. Start by checking the gigabit possibilities, 2460 * then move on to 10/100. 2461 */ 2462 int genphy_read_status(struct phy_device *phydev) 2463 { 2464 int err, old_link = phydev->link; 2465 2466 /* Update the link, but return if there was an error */ 2467 err = genphy_update_link(phydev); 2468 if (err) 2469 return err; 2470 2471 /* why bother the PHY if nothing can have changed */ 2472 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2473 return 0; 2474 2475 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2476 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2477 phydev->speed = SPEED_UNKNOWN; 2478 phydev->duplex = DUPLEX_UNKNOWN; 2479 phydev->pause = 0; 2480 phydev->asym_pause = 0; 2481 2482 if (phydev->is_gigabit_capable) { 2483 err = genphy_read_master_slave(phydev); 2484 if (err < 0) 2485 return err; 2486 } 2487 2488 err = genphy_read_lpa(phydev); 2489 if (err < 0) 2490 return err; 2491 2492 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2493 phy_resolve_aneg_linkmode(phydev); 2494 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2495 err = genphy_read_status_fixed(phydev); 2496 if (err < 0) 2497 return err; 2498 } 2499 2500 return 0; 2501 } 2502 EXPORT_SYMBOL(genphy_read_status); 2503 2504 /** 2505 * genphy_c37_read_status - check the link status and update current link state 2506 * @phydev: target phy_device struct 2507 * 2508 * Description: Check the link, then figure out the current state 2509 * by comparing what we advertise with what the link partner 2510 * advertises. This function is for Clause 37 1000Base-X mode. 2511 */ 2512 int genphy_c37_read_status(struct phy_device *phydev) 2513 { 2514 int lpa, err, old_link = phydev->link; 2515 2516 /* Update the link, but return if there was an error */ 2517 err = genphy_update_link(phydev); 2518 if (err) 2519 return err; 2520 2521 /* why bother the PHY if nothing can have changed */ 2522 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2523 return 0; 2524 2525 phydev->duplex = DUPLEX_UNKNOWN; 2526 phydev->pause = 0; 2527 phydev->asym_pause = 0; 2528 2529 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2530 lpa = phy_read(phydev, MII_LPA); 2531 if (lpa < 0) 2532 return lpa; 2533 2534 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2535 phydev->lp_advertising, lpa & LPA_LPACK); 2536 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2537 phydev->lp_advertising, lpa & LPA_1000XFULL); 2538 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2539 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2540 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2541 phydev->lp_advertising, 2542 lpa & LPA_1000XPAUSE_ASYM); 2543 2544 phy_resolve_aneg_linkmode(phydev); 2545 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2546 int bmcr = phy_read(phydev, MII_BMCR); 2547 2548 if (bmcr < 0) 2549 return bmcr; 2550 2551 if (bmcr & BMCR_FULLDPLX) 2552 phydev->duplex = DUPLEX_FULL; 2553 else 2554 phydev->duplex = DUPLEX_HALF; 2555 } 2556 2557 return 0; 2558 } 2559 EXPORT_SYMBOL(genphy_c37_read_status); 2560 2561 /** 2562 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2563 * @phydev: target phy_device struct 2564 * 2565 * Description: Perform a software PHY reset using the standard 2566 * BMCR_RESET bit and poll for the reset bit to be cleared. 2567 * 2568 * Returns: 0 on success, < 0 on failure 2569 */ 2570 int genphy_soft_reset(struct phy_device *phydev) 2571 { 2572 u16 res = BMCR_RESET; 2573 int ret; 2574 2575 if (phydev->autoneg == AUTONEG_ENABLE) 2576 res |= BMCR_ANRESTART; 2577 2578 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2579 if (ret < 0) 2580 return ret; 2581 2582 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2583 * to their default value. Therefore the POWER DOWN bit is supposed to 2584 * be cleared after soft reset. 2585 */ 2586 phydev->suspended = 0; 2587 2588 ret = phy_poll_reset(phydev); 2589 if (ret) 2590 return ret; 2591 2592 /* BMCR may be reset to defaults */ 2593 if (phydev->autoneg == AUTONEG_DISABLE) 2594 ret = genphy_setup_forced(phydev); 2595 2596 return ret; 2597 } 2598 EXPORT_SYMBOL(genphy_soft_reset); 2599 2600 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2601 { 2602 /* It seems there are cases where the interrupts are handled by another 2603 * entity (ie an IRQ controller embedded inside the PHY) and do not 2604 * need any other interraction from phylib. In this case, just trigger 2605 * the state machine directly. 2606 */ 2607 phy_trigger_machine(phydev); 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2612 2613 /** 2614 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2615 * @phydev: target phy_device struct 2616 * 2617 * Description: Reads the PHY's abilities and populates 2618 * phydev->supported accordingly. 2619 * 2620 * Returns: 0 on success, < 0 on failure 2621 */ 2622 int genphy_read_abilities(struct phy_device *phydev) 2623 { 2624 int val; 2625 2626 linkmode_set_bit_array(phy_basic_ports_array, 2627 ARRAY_SIZE(phy_basic_ports_array), 2628 phydev->supported); 2629 2630 val = phy_read(phydev, MII_BMSR); 2631 if (val < 0) 2632 return val; 2633 2634 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2635 val & BMSR_ANEGCAPABLE); 2636 2637 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2638 val & BMSR_100FULL); 2639 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2640 val & BMSR_100HALF); 2641 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2642 val & BMSR_10FULL); 2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2644 val & BMSR_10HALF); 2645 2646 if (val & BMSR_ESTATEN) { 2647 val = phy_read(phydev, MII_ESTATUS); 2648 if (val < 0) 2649 return val; 2650 2651 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2652 phydev->supported, val & ESTATUS_1000_TFULL); 2653 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2654 phydev->supported, val & ESTATUS_1000_THALF); 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2656 phydev->supported, val & ESTATUS_1000_XFULL); 2657 } 2658 2659 /* This is optional functionality. If not supported, we may get an error 2660 * which should be ignored. 2661 */ 2662 genphy_c45_read_eee_abilities(phydev); 2663 2664 return 0; 2665 } 2666 EXPORT_SYMBOL(genphy_read_abilities); 2667 2668 /* This is used for the phy device which doesn't support the MMD extended 2669 * register access, but it does have side effect when we are trying to access 2670 * the MMD register via indirect method. 2671 */ 2672 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2673 { 2674 return -EOPNOTSUPP; 2675 } 2676 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2677 2678 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2679 u16 regnum, u16 val) 2680 { 2681 return -EOPNOTSUPP; 2682 } 2683 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2684 2685 int genphy_suspend(struct phy_device *phydev) 2686 { 2687 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2688 } 2689 EXPORT_SYMBOL(genphy_suspend); 2690 2691 int genphy_resume(struct phy_device *phydev) 2692 { 2693 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2694 } 2695 EXPORT_SYMBOL(genphy_resume); 2696 2697 int genphy_loopback(struct phy_device *phydev, bool enable) 2698 { 2699 if (enable) { 2700 u16 val, ctl = BMCR_LOOPBACK; 2701 int ret; 2702 2703 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2704 2705 phy_modify(phydev, MII_BMCR, ~0, ctl); 2706 2707 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2708 val & BMSR_LSTATUS, 2709 5000, 500000, true); 2710 if (ret) 2711 return ret; 2712 } else { 2713 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2714 2715 phy_config_aneg(phydev); 2716 } 2717 2718 return 0; 2719 } 2720 EXPORT_SYMBOL(genphy_loopback); 2721 2722 /** 2723 * phy_remove_link_mode - Remove a supported link mode 2724 * @phydev: phy_device structure to remove link mode from 2725 * @link_mode: Link mode to be removed 2726 * 2727 * Description: Some MACs don't support all link modes which the PHY 2728 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2729 * to remove a link mode. 2730 */ 2731 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2732 { 2733 linkmode_clear_bit(link_mode, phydev->supported); 2734 phy_advertise_supported(phydev); 2735 } 2736 EXPORT_SYMBOL(phy_remove_link_mode); 2737 2738 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2739 { 2740 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2741 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2742 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2743 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2744 } 2745 2746 /** 2747 * phy_advertise_supported - Advertise all supported modes 2748 * @phydev: target phy_device struct 2749 * 2750 * Description: Called to advertise all supported modes, doesn't touch 2751 * pause mode advertising. 2752 */ 2753 void phy_advertise_supported(struct phy_device *phydev) 2754 { 2755 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2756 2757 linkmode_copy(new, phydev->supported); 2758 phy_copy_pause_bits(new, phydev->advertising); 2759 linkmode_copy(phydev->advertising, new); 2760 } 2761 EXPORT_SYMBOL(phy_advertise_supported); 2762 2763 /** 2764 * phy_support_sym_pause - Enable support of symmetrical pause 2765 * @phydev: target phy_device struct 2766 * 2767 * Description: Called by the MAC to indicate is supports symmetrical 2768 * Pause, but not asym pause. 2769 */ 2770 void phy_support_sym_pause(struct phy_device *phydev) 2771 { 2772 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2773 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2774 } 2775 EXPORT_SYMBOL(phy_support_sym_pause); 2776 2777 /** 2778 * phy_support_asym_pause - Enable support of asym pause 2779 * @phydev: target phy_device struct 2780 * 2781 * Description: Called by the MAC to indicate is supports Asym Pause. 2782 */ 2783 void phy_support_asym_pause(struct phy_device *phydev) 2784 { 2785 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2786 } 2787 EXPORT_SYMBOL(phy_support_asym_pause); 2788 2789 /** 2790 * phy_set_sym_pause - Configure symmetric Pause 2791 * @phydev: target phy_device struct 2792 * @rx: Receiver Pause is supported 2793 * @tx: Transmit Pause is supported 2794 * @autoneg: Auto neg should be used 2795 * 2796 * Description: Configure advertised Pause support depending on if 2797 * receiver pause and pause auto neg is supported. Generally called 2798 * from the set_pauseparam .ndo. 2799 */ 2800 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2801 bool autoneg) 2802 { 2803 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2804 2805 if (rx && tx && autoneg) 2806 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2807 phydev->supported); 2808 2809 linkmode_copy(phydev->advertising, phydev->supported); 2810 } 2811 EXPORT_SYMBOL(phy_set_sym_pause); 2812 2813 /** 2814 * phy_set_asym_pause - Configure Pause and Asym Pause 2815 * @phydev: target phy_device struct 2816 * @rx: Receiver Pause is supported 2817 * @tx: Transmit Pause is supported 2818 * 2819 * Description: Configure advertised Pause support depending on if 2820 * transmit and receiver pause is supported. If there has been a 2821 * change in adverting, trigger a new autoneg. Generally called from 2822 * the set_pauseparam .ndo. 2823 */ 2824 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2825 { 2826 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2827 2828 linkmode_copy(oldadv, phydev->advertising); 2829 linkmode_set_pause(phydev->advertising, tx, rx); 2830 2831 if (!linkmode_equal(oldadv, phydev->advertising) && 2832 phydev->autoneg) 2833 phy_start_aneg(phydev); 2834 } 2835 EXPORT_SYMBOL(phy_set_asym_pause); 2836 2837 /** 2838 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2839 * @phydev: phy_device struct 2840 * @pp: requested pause configuration 2841 * 2842 * Description: Test if the PHY/MAC combination supports the Pause 2843 * configuration the user is requesting. Returns True if it is 2844 * supported, false otherwise. 2845 */ 2846 bool phy_validate_pause(struct phy_device *phydev, 2847 struct ethtool_pauseparam *pp) 2848 { 2849 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2850 phydev->supported) && pp->rx_pause) 2851 return false; 2852 2853 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2854 phydev->supported) && 2855 pp->rx_pause != pp->tx_pause) 2856 return false; 2857 2858 return true; 2859 } 2860 EXPORT_SYMBOL(phy_validate_pause); 2861 2862 /** 2863 * phy_get_pause - resolve negotiated pause modes 2864 * @phydev: phy_device struct 2865 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2866 * enabled. 2867 * @rx_pause: pointer to bool to indicate whether receive pause should be 2868 * enabled. 2869 * 2870 * Resolve and return the flow control modes according to the negotiation 2871 * result. This includes checking that we are operating in full duplex mode. 2872 * See linkmode_resolve_pause() for further details. 2873 */ 2874 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2875 { 2876 if (phydev->duplex != DUPLEX_FULL) { 2877 *tx_pause = false; 2878 *rx_pause = false; 2879 return; 2880 } 2881 2882 return linkmode_resolve_pause(phydev->advertising, 2883 phydev->lp_advertising, 2884 tx_pause, rx_pause); 2885 } 2886 EXPORT_SYMBOL(phy_get_pause); 2887 2888 #if IS_ENABLED(CONFIG_OF_MDIO) 2889 static int phy_get_int_delay_property(struct device *dev, const char *name) 2890 { 2891 s32 int_delay; 2892 int ret; 2893 2894 ret = device_property_read_u32(dev, name, &int_delay); 2895 if (ret) 2896 return ret; 2897 2898 return int_delay; 2899 } 2900 #else 2901 static int phy_get_int_delay_property(struct device *dev, const char *name) 2902 { 2903 return -EINVAL; 2904 } 2905 #endif 2906 2907 /** 2908 * phy_get_internal_delay - returns the index of the internal delay 2909 * @phydev: phy_device struct 2910 * @dev: pointer to the devices device struct 2911 * @delay_values: array of delays the PHY supports 2912 * @size: the size of the delay array 2913 * @is_rx: boolean to indicate to get the rx internal delay 2914 * 2915 * Returns the index within the array of internal delay passed in. 2916 * If the device property is not present then the interface type is checked 2917 * if the interface defines use of internal delay then a 1 is returned otherwise 2918 * a 0 is returned. 2919 * The array must be in ascending order. If PHY does not have an ascending order 2920 * array then size = 0 and the value of the delay property is returned. 2921 * Return -EINVAL if the delay is invalid or cannot be found. 2922 */ 2923 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2924 const int *delay_values, int size, bool is_rx) 2925 { 2926 s32 delay; 2927 int i; 2928 2929 if (is_rx) { 2930 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2931 if (delay < 0 && size == 0) { 2932 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2933 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2934 return 1; 2935 else 2936 return 0; 2937 } 2938 2939 } else { 2940 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2941 if (delay < 0 && size == 0) { 2942 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2943 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2944 return 1; 2945 else 2946 return 0; 2947 } 2948 } 2949 2950 if (delay < 0) 2951 return delay; 2952 2953 if (delay && size == 0) 2954 return delay; 2955 2956 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2957 phydev_err(phydev, "Delay %d is out of range\n", delay); 2958 return -EINVAL; 2959 } 2960 2961 if (delay == delay_values[0]) 2962 return 0; 2963 2964 for (i = 1; i < size; i++) { 2965 if (delay == delay_values[i]) 2966 return i; 2967 2968 /* Find an approximate index by looking up the table */ 2969 if (delay > delay_values[i - 1] && 2970 delay < delay_values[i]) { 2971 if (delay - delay_values[i - 1] < 2972 delay_values[i] - delay) 2973 return i - 1; 2974 else 2975 return i; 2976 } 2977 } 2978 2979 phydev_err(phydev, "error finding internal delay index for %d\n", 2980 delay); 2981 2982 return -EINVAL; 2983 } 2984 EXPORT_SYMBOL(phy_get_internal_delay); 2985 2986 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2987 { 2988 return phydrv->config_intr && phydrv->handle_interrupt; 2989 } 2990 2991 /** 2992 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2993 * @fwnode: pointer to the mdio_device's fwnode 2994 * 2995 * If successful, returns a pointer to the mdio_device with the embedded 2996 * struct device refcount incremented by one, or NULL on failure. 2997 * The caller should call put_device() on the mdio_device after its use. 2998 */ 2999 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3000 { 3001 struct device *d; 3002 3003 if (!fwnode) 3004 return NULL; 3005 3006 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3007 if (!d) 3008 return NULL; 3009 3010 return to_mdio_device(d); 3011 } 3012 EXPORT_SYMBOL(fwnode_mdio_find_device); 3013 3014 /** 3015 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3016 * 3017 * @phy_fwnode: Pointer to the phy's fwnode. 3018 * 3019 * If successful, returns a pointer to the phy_device with the embedded 3020 * struct device refcount incremented by one, or NULL on failure. 3021 */ 3022 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3023 { 3024 struct mdio_device *mdiodev; 3025 3026 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3027 if (!mdiodev) 3028 return NULL; 3029 3030 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3031 return to_phy_device(&mdiodev->dev); 3032 3033 put_device(&mdiodev->dev); 3034 3035 return NULL; 3036 } 3037 EXPORT_SYMBOL(fwnode_phy_find_device); 3038 3039 /** 3040 * device_phy_find_device - For the given device, get the phy_device 3041 * @dev: Pointer to the given device 3042 * 3043 * Refer return conditions of fwnode_phy_find_device(). 3044 */ 3045 struct phy_device *device_phy_find_device(struct device *dev) 3046 { 3047 return fwnode_phy_find_device(dev_fwnode(dev)); 3048 } 3049 EXPORT_SYMBOL_GPL(device_phy_find_device); 3050 3051 /** 3052 * fwnode_get_phy_node - Get the phy_node using the named reference. 3053 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3054 * 3055 * Refer return conditions of fwnode_find_reference(). 3056 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3057 * and "phy-device" are not supported in ACPI. DT supports all the three 3058 * named references to the phy node. 3059 */ 3060 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 3061 { 3062 struct fwnode_handle *phy_node; 3063 3064 /* Only phy-handle is used for ACPI */ 3065 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3066 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3067 return phy_node; 3068 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3069 if (IS_ERR(phy_node)) 3070 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3071 return phy_node; 3072 } 3073 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3074 3075 /** 3076 * phy_probe - probe and init a PHY device 3077 * @dev: device to probe and init 3078 * 3079 * Description: Take care of setting up the phy_device structure, 3080 * set the state to READY (the driver's init function should 3081 * set it to STARTING if needed). 3082 */ 3083 static int phy_probe(struct device *dev) 3084 { 3085 struct phy_device *phydev = to_phy_device(dev); 3086 struct device_driver *drv = phydev->mdio.dev.driver; 3087 struct phy_driver *phydrv = to_phy_driver(drv); 3088 int err = 0; 3089 3090 phydev->drv = phydrv; 3091 3092 /* Disable the interrupt if the PHY doesn't support it 3093 * but the interrupt is still a valid one 3094 */ 3095 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3096 phydev->irq = PHY_POLL; 3097 3098 if (phydrv->flags & PHY_IS_INTERNAL) 3099 phydev->is_internal = true; 3100 3101 /* Deassert the reset signal */ 3102 phy_device_reset(phydev, 0); 3103 3104 if (phydev->drv->probe) { 3105 err = phydev->drv->probe(phydev); 3106 if (err) 3107 goto out; 3108 } 3109 3110 /* Start out supporting everything. Eventually, 3111 * a controller will attach, and may modify one 3112 * or both of these values 3113 */ 3114 if (phydrv->features) { 3115 linkmode_copy(phydev->supported, phydrv->features); 3116 genphy_c45_read_eee_abilities(phydev); 3117 } 3118 else if (phydrv->get_features) 3119 err = phydrv->get_features(phydev); 3120 else if (phydev->is_c45) 3121 err = genphy_c45_pma_read_abilities(phydev); 3122 else 3123 err = genphy_read_abilities(phydev); 3124 3125 if (err) 3126 goto out; 3127 3128 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3129 phydev->supported)) 3130 phydev->autoneg = 0; 3131 3132 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3133 phydev->supported)) 3134 phydev->is_gigabit_capable = 1; 3135 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3136 phydev->supported)) 3137 phydev->is_gigabit_capable = 1; 3138 3139 of_set_phy_supported(phydev); 3140 phy_advertise_supported(phydev); 3141 3142 /* Get PHY default EEE advertising modes and handle them as potentially 3143 * safe initial configuration. 3144 */ 3145 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3146 if (err) 3147 goto out; 3148 3149 /* There is no "enabled" flag. If PHY is advertising, assume it is 3150 * kind of enabled. 3151 */ 3152 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3153 3154 /* Some PHYs may advertise, by default, not support EEE modes. So, 3155 * we need to clean them. 3156 */ 3157 if (phydev->eee_enabled) 3158 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3159 phydev->advertising_eee); 3160 3161 /* Get the EEE modes we want to prohibit. We will ask 3162 * the PHY stop advertising these mode later on 3163 */ 3164 of_set_phy_eee_broken(phydev); 3165 3166 /* The Pause Frame bits indicate that the PHY can support passing 3167 * pause frames. During autonegotiation, the PHYs will determine if 3168 * they should allow pause frames to pass. The MAC driver should then 3169 * use that result to determine whether to enable flow control via 3170 * pause frames. 3171 * 3172 * Normally, PHY drivers should not set the Pause bits, and instead 3173 * allow phylib to do that. However, there may be some situations 3174 * (e.g. hardware erratum) where the driver wants to set only one 3175 * of these bits. 3176 */ 3177 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3178 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3179 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3180 phydev->supported); 3181 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3182 phydev->supported); 3183 } 3184 3185 /* Set the state to READY by default */ 3186 phydev->state = PHY_READY; 3187 3188 out: 3189 /* Re-assert the reset signal on error */ 3190 if (err) 3191 phy_device_reset(phydev, 1); 3192 3193 return err; 3194 } 3195 3196 static int phy_remove(struct device *dev) 3197 { 3198 struct phy_device *phydev = to_phy_device(dev); 3199 3200 cancel_delayed_work_sync(&phydev->state_queue); 3201 3202 phydev->state = PHY_DOWN; 3203 3204 sfp_bus_del_upstream(phydev->sfp_bus); 3205 phydev->sfp_bus = NULL; 3206 3207 if (phydev->drv && phydev->drv->remove) 3208 phydev->drv->remove(phydev); 3209 3210 /* Assert the reset signal */ 3211 phy_device_reset(phydev, 1); 3212 3213 phydev->drv = NULL; 3214 3215 return 0; 3216 } 3217 3218 static void phy_shutdown(struct device *dev) 3219 { 3220 struct phy_device *phydev = to_phy_device(dev); 3221 3222 if (phydev->state == PHY_READY || !phydev->attached_dev) 3223 return; 3224 3225 phy_disable_interrupts(phydev); 3226 } 3227 3228 /** 3229 * phy_driver_register - register a phy_driver with the PHY layer 3230 * @new_driver: new phy_driver to register 3231 * @owner: module owning this PHY 3232 */ 3233 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3234 { 3235 int retval; 3236 3237 /* Either the features are hard coded, or dynamically 3238 * determined. It cannot be both. 3239 */ 3240 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3241 pr_err("%s: features and get_features must not both be set\n", 3242 new_driver->name); 3243 return -EINVAL; 3244 } 3245 3246 /* PHYLIB device drivers must not match using a DT compatible table 3247 * as this bypasses our checks that the mdiodev that is being matched 3248 * is backed by a struct phy_device. If such a case happens, we will 3249 * make out-of-bounds accesses and lockup in phydev->lock. 3250 */ 3251 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3252 "%s: driver must not provide a DT match table\n", 3253 new_driver->name)) 3254 return -EINVAL; 3255 3256 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3257 new_driver->mdiodrv.driver.name = new_driver->name; 3258 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3259 new_driver->mdiodrv.driver.probe = phy_probe; 3260 new_driver->mdiodrv.driver.remove = phy_remove; 3261 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3262 new_driver->mdiodrv.driver.owner = owner; 3263 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3264 3265 retval = driver_register(&new_driver->mdiodrv.driver); 3266 if (retval) { 3267 pr_err("%s: Error %d in registering driver\n", 3268 new_driver->name, retval); 3269 3270 return retval; 3271 } 3272 3273 pr_debug("%s: Registered new driver\n", new_driver->name); 3274 3275 return 0; 3276 } 3277 EXPORT_SYMBOL(phy_driver_register); 3278 3279 int phy_drivers_register(struct phy_driver *new_driver, int n, 3280 struct module *owner) 3281 { 3282 int i, ret = 0; 3283 3284 for (i = 0; i < n; i++) { 3285 ret = phy_driver_register(new_driver + i, owner); 3286 if (ret) { 3287 while (i-- > 0) 3288 phy_driver_unregister(new_driver + i); 3289 break; 3290 } 3291 } 3292 return ret; 3293 } 3294 EXPORT_SYMBOL(phy_drivers_register); 3295 3296 void phy_driver_unregister(struct phy_driver *drv) 3297 { 3298 driver_unregister(&drv->mdiodrv.driver); 3299 } 3300 EXPORT_SYMBOL(phy_driver_unregister); 3301 3302 void phy_drivers_unregister(struct phy_driver *drv, int n) 3303 { 3304 int i; 3305 3306 for (i = 0; i < n; i++) 3307 phy_driver_unregister(drv + i); 3308 } 3309 EXPORT_SYMBOL(phy_drivers_unregister); 3310 3311 static struct phy_driver genphy_driver = { 3312 .phy_id = 0xffffffff, 3313 .phy_id_mask = 0xffffffff, 3314 .name = "Generic PHY", 3315 .get_features = genphy_read_abilities, 3316 .suspend = genphy_suspend, 3317 .resume = genphy_resume, 3318 .set_loopback = genphy_loopback, 3319 }; 3320 3321 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3322 .get_sset_count = phy_ethtool_get_sset_count, 3323 .get_strings = phy_ethtool_get_strings, 3324 .get_stats = phy_ethtool_get_stats, 3325 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3326 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3327 .get_plca_status = phy_ethtool_get_plca_status, 3328 .start_cable_test = phy_start_cable_test, 3329 .start_cable_test_tdr = phy_start_cable_test_tdr, 3330 }; 3331 3332 static int __init phy_init(void) 3333 { 3334 int rc; 3335 3336 rc = mdio_bus_init(); 3337 if (rc) 3338 return rc; 3339 3340 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3341 features_init(); 3342 3343 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3344 if (rc) 3345 goto err_c45; 3346 3347 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3348 if (rc) { 3349 phy_driver_unregister(&genphy_c45_driver); 3350 err_c45: 3351 mdio_bus_exit(); 3352 } 3353 3354 return rc; 3355 } 3356 3357 static void __exit phy_exit(void) 3358 { 3359 phy_driver_unregister(&genphy_c45_driver); 3360 phy_driver_unregister(&genphy_driver); 3361 mdio_bus_exit(); 3362 ethtool_set_ethtool_phy_ops(NULL); 3363 } 3364 3365 subsys_initcall(phy_init); 3366 module_exit(phy_exit); 3367