1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[2] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 96 }; 97 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 98 99 const int phy_gbit_features_array[2] = { 100 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 101 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 102 }; 103 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 104 105 const int phy_10gbit_features_array[1] = { 106 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 107 }; 108 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 109 110 static const int phy_10gbit_fec_features_array[1] = { 111 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 112 }; 113 114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 116 117 static const int phy_10gbit_full_features_array[] = { 118 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 119 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 124 static void features_init(void) 125 { 126 /* 10/100 half/full*/ 127 linkmode_set_bit_array(phy_basic_ports_array, 128 ARRAY_SIZE(phy_basic_ports_array), 129 phy_basic_features); 130 linkmode_set_bit_array(phy_10_100_features_array, 131 ARRAY_SIZE(phy_10_100_features_array), 132 phy_basic_features); 133 134 /* 100 full, TP */ 135 linkmode_set_bit_array(phy_basic_t1_features_array, 136 ARRAY_SIZE(phy_basic_t1_features_array), 137 phy_basic_t1_features); 138 139 /* 10/100 half/full + 1000 half/full */ 140 linkmode_set_bit_array(phy_basic_ports_array, 141 ARRAY_SIZE(phy_basic_ports_array), 142 phy_gbit_features); 143 linkmode_set_bit_array(phy_10_100_features_array, 144 ARRAY_SIZE(phy_10_100_features_array), 145 phy_gbit_features); 146 linkmode_set_bit_array(phy_gbit_features_array, 147 ARRAY_SIZE(phy_gbit_features_array), 148 phy_gbit_features); 149 150 /* 10/100 half/full + 1000 half/full + fibre*/ 151 linkmode_set_bit_array(phy_basic_ports_array, 152 ARRAY_SIZE(phy_basic_ports_array), 153 phy_gbit_fibre_features); 154 linkmode_set_bit_array(phy_10_100_features_array, 155 ARRAY_SIZE(phy_10_100_features_array), 156 phy_gbit_fibre_features); 157 linkmode_set_bit_array(phy_gbit_features_array, 158 ARRAY_SIZE(phy_gbit_features_array), 159 phy_gbit_fibre_features); 160 linkmode_set_bit_array(phy_fibre_port_array, 161 ARRAY_SIZE(phy_fibre_port_array), 162 phy_gbit_fibre_features); 163 164 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 165 linkmode_set_bit_array(phy_all_ports_features_array, 166 ARRAY_SIZE(phy_all_ports_features_array), 167 phy_gbit_all_ports_features); 168 linkmode_set_bit_array(phy_10_100_features_array, 169 ARRAY_SIZE(phy_10_100_features_array), 170 phy_gbit_all_ports_features); 171 linkmode_set_bit_array(phy_gbit_features_array, 172 ARRAY_SIZE(phy_gbit_features_array), 173 phy_gbit_all_ports_features); 174 175 /* 10/100 half/full + 1000 half/full + 10G full*/ 176 linkmode_set_bit_array(phy_all_ports_features_array, 177 ARRAY_SIZE(phy_all_ports_features_array), 178 phy_10gbit_features); 179 linkmode_set_bit_array(phy_10_100_features_array, 180 ARRAY_SIZE(phy_10_100_features_array), 181 phy_10gbit_features); 182 linkmode_set_bit_array(phy_gbit_features_array, 183 ARRAY_SIZE(phy_gbit_features_array), 184 phy_10gbit_features); 185 linkmode_set_bit_array(phy_10gbit_features_array, 186 ARRAY_SIZE(phy_10gbit_features_array), 187 phy_10gbit_features); 188 189 /* 10/100/1000/10G full */ 190 linkmode_set_bit_array(phy_all_ports_features_array, 191 ARRAY_SIZE(phy_all_ports_features_array), 192 phy_10gbit_full_features); 193 linkmode_set_bit_array(phy_10gbit_full_features_array, 194 ARRAY_SIZE(phy_10gbit_full_features_array), 195 phy_10gbit_full_features); 196 /* 10G FEC only */ 197 linkmode_set_bit_array(phy_10gbit_fec_features_array, 198 ARRAY_SIZE(phy_10gbit_fec_features_array), 199 phy_10gbit_fec_features); 200 } 201 202 void phy_device_free(struct phy_device *phydev) 203 { 204 put_device(&phydev->mdio.dev); 205 } 206 EXPORT_SYMBOL(phy_device_free); 207 208 static void phy_mdio_device_free(struct mdio_device *mdiodev) 209 { 210 struct phy_device *phydev; 211 212 phydev = container_of(mdiodev, struct phy_device, mdio); 213 phy_device_free(phydev); 214 } 215 216 static void phy_device_release(struct device *dev) 217 { 218 kfree(to_phy_device(dev)); 219 } 220 221 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 222 { 223 struct phy_device *phydev; 224 225 phydev = container_of(mdiodev, struct phy_device, mdio); 226 phy_device_remove(phydev); 227 } 228 229 static struct phy_driver genphy_driver; 230 231 static LIST_HEAD(phy_fixup_list); 232 static DEFINE_MUTEX(phy_fixup_lock); 233 234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 235 { 236 struct device_driver *drv = phydev->mdio.dev.driver; 237 struct phy_driver *phydrv = to_phy_driver(drv); 238 struct net_device *netdev = phydev->attached_dev; 239 240 if (!drv || !phydrv->suspend) 241 return false; 242 243 /* PHY not attached? May suspend if the PHY has not already been 244 * suspended as part of a prior call to phy_disconnect() -> 245 * phy_detach() -> phy_suspend() because the parent netdev might be the 246 * MDIO bus driver and clock gated at this point. 247 */ 248 if (!netdev) 249 goto out; 250 251 if (netdev->wol_enabled) 252 return false; 253 254 /* As long as not all affected network drivers support the 255 * wol_enabled flag, let's check for hints that WoL is enabled. 256 * Don't suspend PHY if the attached netdev parent may wake up. 257 * The parent may point to a PCI device, as in tg3 driver. 258 */ 259 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 260 return false; 261 262 /* Also don't suspend PHY if the netdev itself may wakeup. This 263 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 264 * e.g. SoC devices. 265 */ 266 if (device_may_wakeup(&netdev->dev)) 267 return false; 268 269 out: 270 return !phydev->suspended; 271 } 272 273 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 274 { 275 struct phy_device *phydev = to_phy_device(dev); 276 277 if (phydev->mac_managed_pm) 278 return 0; 279 280 /* We must stop the state machine manually, otherwise it stops out of 281 * control, possibly with the phydev->lock held. Upon resume, netdev 282 * may call phy routines that try to grab the same lock, and that may 283 * lead to a deadlock. 284 */ 285 if (phydev->attached_dev && phydev->adjust_link) 286 phy_stop_machine(phydev); 287 288 if (!mdio_bus_phy_may_suspend(phydev)) 289 return 0; 290 291 phydev->suspended_by_mdio_bus = 1; 292 293 return phy_suspend(phydev); 294 } 295 296 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 297 { 298 struct phy_device *phydev = to_phy_device(dev); 299 int ret; 300 301 if (phydev->mac_managed_pm) 302 return 0; 303 304 if (!phydev->suspended_by_mdio_bus) 305 goto no_resume; 306 307 phydev->suspended_by_mdio_bus = 0; 308 309 ret = phy_init_hw(phydev); 310 if (ret < 0) 311 return ret; 312 313 ret = phy_resume(phydev); 314 if (ret < 0) 315 return ret; 316 no_resume: 317 if (phydev->attached_dev && phydev->adjust_link) 318 phy_start_machine(phydev); 319 320 return 0; 321 } 322 323 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 324 mdio_bus_phy_resume); 325 326 /** 327 * phy_register_fixup - creates a new phy_fixup and adds it to the list 328 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 329 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 330 * It can also be PHY_ANY_UID 331 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 332 * comparison 333 * @run: The actual code to be run when a matching PHY is found 334 */ 335 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 336 int (*run)(struct phy_device *)) 337 { 338 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 339 340 if (!fixup) 341 return -ENOMEM; 342 343 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 344 fixup->phy_uid = phy_uid; 345 fixup->phy_uid_mask = phy_uid_mask; 346 fixup->run = run; 347 348 mutex_lock(&phy_fixup_lock); 349 list_add_tail(&fixup->list, &phy_fixup_list); 350 mutex_unlock(&phy_fixup_lock); 351 352 return 0; 353 } 354 EXPORT_SYMBOL(phy_register_fixup); 355 356 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 357 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 358 int (*run)(struct phy_device *)) 359 { 360 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 361 } 362 EXPORT_SYMBOL(phy_register_fixup_for_uid); 363 364 /* Registers a fixup to be run on the PHY with id string bus_id */ 365 int phy_register_fixup_for_id(const char *bus_id, 366 int (*run)(struct phy_device *)) 367 { 368 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 369 } 370 EXPORT_SYMBOL(phy_register_fixup_for_id); 371 372 /** 373 * phy_unregister_fixup - remove a phy_fixup from the list 374 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 375 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 376 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 377 */ 378 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 379 { 380 struct list_head *pos, *n; 381 struct phy_fixup *fixup; 382 int ret; 383 384 ret = -ENODEV; 385 386 mutex_lock(&phy_fixup_lock); 387 list_for_each_safe(pos, n, &phy_fixup_list) { 388 fixup = list_entry(pos, struct phy_fixup, list); 389 390 if ((!strcmp(fixup->bus_id, bus_id)) && 391 ((fixup->phy_uid & phy_uid_mask) == 392 (phy_uid & phy_uid_mask))) { 393 list_del(&fixup->list); 394 kfree(fixup); 395 ret = 0; 396 break; 397 } 398 } 399 mutex_unlock(&phy_fixup_lock); 400 401 return ret; 402 } 403 EXPORT_SYMBOL(phy_unregister_fixup); 404 405 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 406 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 407 { 408 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 409 } 410 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 411 412 /* Unregisters a fixup of the PHY with id string bus_id */ 413 int phy_unregister_fixup_for_id(const char *bus_id) 414 { 415 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 416 } 417 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 418 419 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 420 * Fixups can be set to match any in one or more fields. 421 */ 422 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 423 { 424 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 425 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 426 return 0; 427 428 if ((fixup->phy_uid & fixup->phy_uid_mask) != 429 (phydev->phy_id & fixup->phy_uid_mask)) 430 if (fixup->phy_uid != PHY_ANY_UID) 431 return 0; 432 433 return 1; 434 } 435 436 /* Runs any matching fixups for this phydev */ 437 static int phy_scan_fixups(struct phy_device *phydev) 438 { 439 struct phy_fixup *fixup; 440 441 mutex_lock(&phy_fixup_lock); 442 list_for_each_entry(fixup, &phy_fixup_list, list) { 443 if (phy_needs_fixup(phydev, fixup)) { 444 int err = fixup->run(phydev); 445 446 if (err < 0) { 447 mutex_unlock(&phy_fixup_lock); 448 return err; 449 } 450 phydev->has_fixups = true; 451 } 452 } 453 mutex_unlock(&phy_fixup_lock); 454 455 return 0; 456 } 457 458 static int phy_bus_match(struct device *dev, struct device_driver *drv) 459 { 460 struct phy_device *phydev = to_phy_device(dev); 461 struct phy_driver *phydrv = to_phy_driver(drv); 462 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 463 int i; 464 465 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 466 return 0; 467 468 if (phydrv->match_phy_device) 469 return phydrv->match_phy_device(phydev); 470 471 if (phydev->is_c45) { 472 for (i = 1; i < num_ids; i++) { 473 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 474 continue; 475 476 if ((phydrv->phy_id & phydrv->phy_id_mask) == 477 (phydev->c45_ids.device_ids[i] & 478 phydrv->phy_id_mask)) 479 return 1; 480 } 481 return 0; 482 } else { 483 return (phydrv->phy_id & phydrv->phy_id_mask) == 484 (phydev->phy_id & phydrv->phy_id_mask); 485 } 486 } 487 488 static ssize_t 489 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 490 { 491 struct phy_device *phydev = to_phy_device(dev); 492 493 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 494 } 495 static DEVICE_ATTR_RO(phy_id); 496 497 static ssize_t 498 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 499 { 500 struct phy_device *phydev = to_phy_device(dev); 501 const char *mode = NULL; 502 503 if (phy_is_internal(phydev)) 504 mode = "internal"; 505 else 506 mode = phy_modes(phydev->interface); 507 508 return sprintf(buf, "%s\n", mode); 509 } 510 static DEVICE_ATTR_RO(phy_interface); 511 512 static ssize_t 513 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 514 char *buf) 515 { 516 struct phy_device *phydev = to_phy_device(dev); 517 518 return sprintf(buf, "%d\n", phydev->has_fixups); 519 } 520 static DEVICE_ATTR_RO(phy_has_fixups); 521 522 static ssize_t phy_dev_flags_show(struct device *dev, 523 struct device_attribute *attr, 524 char *buf) 525 { 526 struct phy_device *phydev = to_phy_device(dev); 527 528 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 529 } 530 static DEVICE_ATTR_RO(phy_dev_flags); 531 532 static struct attribute *phy_dev_attrs[] = { 533 &dev_attr_phy_id.attr, 534 &dev_attr_phy_interface.attr, 535 &dev_attr_phy_has_fixups.attr, 536 &dev_attr_phy_dev_flags.attr, 537 NULL, 538 }; 539 ATTRIBUTE_GROUPS(phy_dev); 540 541 static const struct device_type mdio_bus_phy_type = { 542 .name = "PHY", 543 .groups = phy_dev_groups, 544 .release = phy_device_release, 545 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 546 }; 547 548 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 549 { 550 int ret; 551 552 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 553 MDIO_ID_ARGS(phy_id)); 554 /* We only check for failures in executing the usermode binary, 555 * not whether a PHY driver module exists for the PHY ID. 556 * Accept -ENOENT because this may occur in case no initramfs exists, 557 * then modprobe isn't available. 558 */ 559 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 560 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 561 ret, (unsigned long)phy_id); 562 return ret; 563 } 564 565 return 0; 566 } 567 568 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 569 bool is_c45, 570 struct phy_c45_device_ids *c45_ids) 571 { 572 struct phy_device *dev; 573 struct mdio_device *mdiodev; 574 int ret = 0; 575 576 /* We allocate the device, and initialize the default values */ 577 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 578 if (!dev) 579 return ERR_PTR(-ENOMEM); 580 581 mdiodev = &dev->mdio; 582 mdiodev->dev.parent = &bus->dev; 583 mdiodev->dev.bus = &mdio_bus_type; 584 mdiodev->dev.type = &mdio_bus_phy_type; 585 mdiodev->bus = bus; 586 mdiodev->bus_match = phy_bus_match; 587 mdiodev->addr = addr; 588 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 589 mdiodev->device_free = phy_mdio_device_free; 590 mdiodev->device_remove = phy_mdio_device_remove; 591 592 dev->speed = SPEED_UNKNOWN; 593 dev->duplex = DUPLEX_UNKNOWN; 594 dev->pause = 0; 595 dev->asym_pause = 0; 596 dev->link = 0; 597 dev->port = PORT_TP; 598 dev->interface = PHY_INTERFACE_MODE_GMII; 599 600 dev->autoneg = AUTONEG_ENABLE; 601 602 dev->is_c45 = is_c45; 603 dev->phy_id = phy_id; 604 if (c45_ids) 605 dev->c45_ids = *c45_ids; 606 dev->irq = bus->irq[addr]; 607 608 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 609 device_initialize(&mdiodev->dev); 610 611 dev->state = PHY_DOWN; 612 613 mutex_init(&dev->lock); 614 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 615 616 /* Request the appropriate module unconditionally; don't 617 * bother trying to do so only if it isn't already loaded, 618 * because that gets complicated. A hotplug event would have 619 * done an unconditional modprobe anyway. 620 * We don't do normal hotplug because it won't work for MDIO 621 * -- because it relies on the device staying around for long 622 * enough for the driver to get loaded. With MDIO, the NIC 623 * driver will get bored and give up as soon as it finds that 624 * there's no driver _already_ loaded. 625 */ 626 if (is_c45 && c45_ids) { 627 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 628 int i; 629 630 for (i = 1; i < num_ids; i++) { 631 if (c45_ids->device_ids[i] == 0xffffffff) 632 continue; 633 634 ret = phy_request_driver_module(dev, 635 c45_ids->device_ids[i]); 636 if (ret) 637 break; 638 } 639 } else { 640 ret = phy_request_driver_module(dev, phy_id); 641 } 642 643 if (ret) { 644 put_device(&mdiodev->dev); 645 dev = ERR_PTR(ret); 646 } 647 648 return dev; 649 } 650 EXPORT_SYMBOL(phy_device_create); 651 652 /* phy_c45_probe_present - checks to see if a MMD is present in the package 653 * @bus: the target MII bus 654 * @prtad: PHY package address on the MII bus 655 * @devad: PHY device (MMD) address 656 * 657 * Read the MDIO_STAT2 register, and check whether a device is responding 658 * at this address. 659 * 660 * Returns: negative error number on bus access error, zero if no device 661 * is responding, or positive if a device is present. 662 */ 663 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 664 { 665 int stat2; 666 667 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 668 if (stat2 < 0) 669 return stat2; 670 671 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 672 } 673 674 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 675 * @bus: the target MII bus 676 * @addr: PHY address on the MII bus 677 * @dev_addr: MMD address in the PHY. 678 * @devices_in_package: where to store the devices in package information. 679 * 680 * Description: reads devices in package registers of a MMD at @dev_addr 681 * from PHY at @addr on @bus. 682 * 683 * Returns: 0 on success, -EIO on failure. 684 */ 685 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 686 u32 *devices_in_package) 687 { 688 int phy_reg; 689 690 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 691 if (phy_reg < 0) 692 return -EIO; 693 *devices_in_package = phy_reg << 16; 694 695 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 696 if (phy_reg < 0) 697 return -EIO; 698 *devices_in_package |= phy_reg; 699 700 return 0; 701 } 702 703 /** 704 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 705 * @bus: the target MII bus 706 * @addr: PHY address on the MII bus 707 * @c45_ids: where to store the c45 ID information. 708 * 709 * Read the PHY "devices in package". If this appears to be valid, read 710 * the PHY identifiers for each device. Return the "devices in package" 711 * and identifiers in @c45_ids. 712 * 713 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 714 * the "devices in package" is invalid. 715 */ 716 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 717 struct phy_c45_device_ids *c45_ids) 718 { 719 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 720 u32 devs_in_pkg = 0; 721 int i, ret, phy_reg; 722 723 /* Find first non-zero Devices In package. Device zero is reserved 724 * for 802.3 c45 complied PHYs, so don't probe it at first. 725 */ 726 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 727 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 728 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 729 /* Check that there is a device present at this 730 * address before reading the devices-in-package 731 * register to avoid reading garbage from the PHY. 732 * Some PHYs (88x3310) vendor space is not IEEE802.3 733 * compliant. 734 */ 735 ret = phy_c45_probe_present(bus, addr, i); 736 if (ret < 0) 737 return -EIO; 738 739 if (!ret) 740 continue; 741 } 742 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 743 if (phy_reg < 0) 744 return -EIO; 745 } 746 747 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 748 /* If mostly Fs, there is no device there, then let's probe 749 * MMD 0, as some 10G PHYs have zero Devices In package, 750 * e.g. Cortina CS4315/CS4340 PHY. 751 */ 752 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 753 if (phy_reg < 0) 754 return -EIO; 755 756 /* no device there, let's get out of here */ 757 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 758 return -ENODEV; 759 } 760 761 /* Now probe Device Identifiers for each device present. */ 762 for (i = 1; i < num_ids; i++) { 763 if (!(devs_in_pkg & (1 << i))) 764 continue; 765 766 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 767 /* Probe the "Device Present" bits for the vendor MMDs 768 * to ignore these if they do not contain IEEE 802.3 769 * registers. 770 */ 771 ret = phy_c45_probe_present(bus, addr, i); 772 if (ret < 0) 773 return ret; 774 775 if (!ret) 776 continue; 777 } 778 779 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 780 if (phy_reg < 0) 781 return -EIO; 782 c45_ids->device_ids[i] = phy_reg << 16; 783 784 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 785 if (phy_reg < 0) 786 return -EIO; 787 c45_ids->device_ids[i] |= phy_reg; 788 } 789 790 c45_ids->devices_in_package = devs_in_pkg; 791 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 792 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 793 794 return 0; 795 } 796 797 /** 798 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 799 * @bus: the target MII bus 800 * @addr: PHY address on the MII bus 801 * @phy_id: where to store the ID retrieved. 802 * 803 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 804 * placing it in @phy_id. Return zero on successful read and the ID is 805 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 806 * or invalid ID. 807 */ 808 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 809 { 810 int phy_reg; 811 812 /* Grab the bits from PHYIR1, and put them in the upper half */ 813 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 814 if (phy_reg < 0) { 815 /* returning -ENODEV doesn't stop bus scanning */ 816 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 817 } 818 819 *phy_id = phy_reg << 16; 820 821 /* Grab the bits from PHYIR2, and put them in the lower half */ 822 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 823 if (phy_reg < 0) { 824 /* returning -ENODEV doesn't stop bus scanning */ 825 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 826 } 827 828 *phy_id |= phy_reg; 829 830 /* If the phy_id is mostly Fs, there is no device there */ 831 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 832 return -ENODEV; 833 834 return 0; 835 } 836 837 /* Extract the phy ID from the compatible string of the form 838 * ethernet-phy-idAAAA.BBBB. 839 */ 840 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 841 { 842 unsigned int upper, lower; 843 const char *cp; 844 int ret; 845 846 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 847 if (ret) 848 return ret; 849 850 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 851 return -EINVAL; 852 853 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 854 return 0; 855 } 856 EXPORT_SYMBOL(fwnode_get_phy_id); 857 858 /** 859 * get_phy_device - reads the specified PHY device and returns its @phy_device 860 * struct 861 * @bus: the target MII bus 862 * @addr: PHY address on the MII bus 863 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 864 * 865 * Probe for a PHY at @addr on @bus. 866 * 867 * When probing for a clause 22 PHY, then read the ID registers. If we find 868 * a valid ID, allocate and return a &struct phy_device. 869 * 870 * When probing for a clause 45 PHY, read the "devices in package" registers. 871 * If the "devices in package" appears valid, read the ID registers for each 872 * MMD, allocate and return a &struct phy_device. 873 * 874 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 875 * no PHY present, or %-EIO on bus access error. 876 */ 877 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 878 { 879 struct phy_c45_device_ids c45_ids; 880 u32 phy_id = 0; 881 int r; 882 883 c45_ids.devices_in_package = 0; 884 c45_ids.mmds_present = 0; 885 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 886 887 if (is_c45) 888 r = get_phy_c45_ids(bus, addr, &c45_ids); 889 else 890 r = get_phy_c22_id(bus, addr, &phy_id); 891 892 if (r) 893 return ERR_PTR(r); 894 895 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 896 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 897 * probe with C45 to see if we're able to get a valid PHY ID in the C45 898 * space, if successful, create the C45 PHY device. 899 */ 900 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 901 r = get_phy_c45_ids(bus, addr, &c45_ids); 902 if (!r) 903 return phy_device_create(bus, addr, phy_id, 904 true, &c45_ids); 905 } 906 907 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 908 } 909 EXPORT_SYMBOL(get_phy_device); 910 911 /** 912 * phy_device_register - Register the phy device on the MDIO bus 913 * @phydev: phy_device structure to be added to the MDIO bus 914 */ 915 int phy_device_register(struct phy_device *phydev) 916 { 917 int err; 918 919 err = mdiobus_register_device(&phydev->mdio); 920 if (err) 921 return err; 922 923 /* Deassert the reset signal */ 924 phy_device_reset(phydev, 0); 925 926 /* Run all of the fixups for this PHY */ 927 err = phy_scan_fixups(phydev); 928 if (err) { 929 phydev_err(phydev, "failed to initialize\n"); 930 goto out; 931 } 932 933 err = device_add(&phydev->mdio.dev); 934 if (err) { 935 phydev_err(phydev, "failed to add\n"); 936 goto out; 937 } 938 939 return 0; 940 941 out: 942 /* Assert the reset signal */ 943 phy_device_reset(phydev, 1); 944 945 mdiobus_unregister_device(&phydev->mdio); 946 return err; 947 } 948 EXPORT_SYMBOL(phy_device_register); 949 950 /** 951 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 952 * @phydev: phy_device structure to remove 953 * 954 * This doesn't free the phy_device itself, it merely reverses the effects 955 * of phy_device_register(). Use phy_device_free() to free the device 956 * after calling this function. 957 */ 958 void phy_device_remove(struct phy_device *phydev) 959 { 960 unregister_mii_timestamper(phydev->mii_ts); 961 962 device_del(&phydev->mdio.dev); 963 964 /* Assert the reset signal */ 965 phy_device_reset(phydev, 1); 966 967 mdiobus_unregister_device(&phydev->mdio); 968 } 969 EXPORT_SYMBOL(phy_device_remove); 970 971 /** 972 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 973 * @phydev: phy_device structure to read 802.3-c45 IDs 974 * 975 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 976 * the "devices in package" is invalid. 977 */ 978 int phy_get_c45_ids(struct phy_device *phydev) 979 { 980 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 981 &phydev->c45_ids); 982 } 983 EXPORT_SYMBOL(phy_get_c45_ids); 984 985 /** 986 * phy_find_first - finds the first PHY device on the bus 987 * @bus: the target MII bus 988 */ 989 struct phy_device *phy_find_first(struct mii_bus *bus) 990 { 991 struct phy_device *phydev; 992 int addr; 993 994 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 995 phydev = mdiobus_get_phy(bus, addr); 996 if (phydev) 997 return phydev; 998 } 999 return NULL; 1000 } 1001 EXPORT_SYMBOL(phy_find_first); 1002 1003 static void phy_link_change(struct phy_device *phydev, bool up) 1004 { 1005 struct net_device *netdev = phydev->attached_dev; 1006 1007 if (up) 1008 netif_carrier_on(netdev); 1009 else 1010 netif_carrier_off(netdev); 1011 phydev->adjust_link(netdev); 1012 if (phydev->mii_ts && phydev->mii_ts->link_state) 1013 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1014 } 1015 1016 /** 1017 * phy_prepare_link - prepares the PHY layer to monitor link status 1018 * @phydev: target phy_device struct 1019 * @handler: callback function for link status change notifications 1020 * 1021 * Description: Tells the PHY infrastructure to handle the 1022 * gory details on monitoring link status (whether through 1023 * polling or an interrupt), and to call back to the 1024 * connected device driver when the link status changes. 1025 * If you want to monitor your own link state, don't call 1026 * this function. 1027 */ 1028 static void phy_prepare_link(struct phy_device *phydev, 1029 void (*handler)(struct net_device *)) 1030 { 1031 phydev->adjust_link = handler; 1032 } 1033 1034 /** 1035 * phy_connect_direct - connect an ethernet device to a specific phy_device 1036 * @dev: the network device to connect 1037 * @phydev: the pointer to the phy device 1038 * @handler: callback function for state change notifications 1039 * @interface: PHY device's interface 1040 */ 1041 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1042 void (*handler)(struct net_device *), 1043 phy_interface_t interface) 1044 { 1045 int rc; 1046 1047 if (!dev) 1048 return -EINVAL; 1049 1050 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1051 if (rc) 1052 return rc; 1053 1054 phy_prepare_link(phydev, handler); 1055 if (phy_interrupt_is_valid(phydev)) 1056 phy_request_interrupt(phydev); 1057 1058 return 0; 1059 } 1060 EXPORT_SYMBOL(phy_connect_direct); 1061 1062 /** 1063 * phy_connect - connect an ethernet device to a PHY device 1064 * @dev: the network device to connect 1065 * @bus_id: the id string of the PHY device to connect 1066 * @handler: callback function for state change notifications 1067 * @interface: PHY device's interface 1068 * 1069 * Description: Convenience function for connecting ethernet 1070 * devices to PHY devices. The default behavior is for 1071 * the PHY infrastructure to handle everything, and only notify 1072 * the connected driver when the link status changes. If you 1073 * don't want, or can't use the provided functionality, you may 1074 * choose to call only the subset of functions which provide 1075 * the desired functionality. 1076 */ 1077 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1078 void (*handler)(struct net_device *), 1079 phy_interface_t interface) 1080 { 1081 struct phy_device *phydev; 1082 struct device *d; 1083 int rc; 1084 1085 /* Search the list of PHY devices on the mdio bus for the 1086 * PHY with the requested name 1087 */ 1088 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1089 if (!d) { 1090 pr_err("PHY %s not found\n", bus_id); 1091 return ERR_PTR(-ENODEV); 1092 } 1093 phydev = to_phy_device(d); 1094 1095 rc = phy_connect_direct(dev, phydev, handler, interface); 1096 put_device(d); 1097 if (rc) 1098 return ERR_PTR(rc); 1099 1100 return phydev; 1101 } 1102 EXPORT_SYMBOL(phy_connect); 1103 1104 /** 1105 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1106 * device 1107 * @phydev: target phy_device struct 1108 */ 1109 void phy_disconnect(struct phy_device *phydev) 1110 { 1111 if (phy_is_started(phydev)) 1112 phy_stop(phydev); 1113 1114 if (phy_interrupt_is_valid(phydev)) 1115 phy_free_interrupt(phydev); 1116 1117 phydev->adjust_link = NULL; 1118 1119 phy_detach(phydev); 1120 } 1121 EXPORT_SYMBOL(phy_disconnect); 1122 1123 /** 1124 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1125 * @phydev: The PHY device to poll 1126 * 1127 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1128 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1129 * register must be polled until the BMCR_RESET bit clears. 1130 * 1131 * Furthermore, any attempts to write to PHY registers may have no effect 1132 * or even generate MDIO bus errors until this is complete. 1133 * 1134 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1135 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1136 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1137 * effort to support such broken PHYs, this function is separate from the 1138 * standard phy_init_hw() which will zero all the other bits in the BMCR 1139 * and reapply all driver-specific and board-specific fixups. 1140 */ 1141 static int phy_poll_reset(struct phy_device *phydev) 1142 { 1143 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1144 int ret, val; 1145 1146 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1147 50000, 600000, true); 1148 if (ret) 1149 return ret; 1150 /* Some chips (smsc911x) may still need up to another 1ms after the 1151 * BMCR_RESET bit is cleared before they are usable. 1152 */ 1153 msleep(1); 1154 return 0; 1155 } 1156 1157 int phy_init_hw(struct phy_device *phydev) 1158 { 1159 int ret = 0; 1160 1161 /* Deassert the reset signal */ 1162 phy_device_reset(phydev, 0); 1163 1164 if (!phydev->drv) 1165 return 0; 1166 1167 if (phydev->drv->soft_reset) { 1168 ret = phydev->drv->soft_reset(phydev); 1169 /* see comment in genphy_soft_reset for an explanation */ 1170 if (!ret) 1171 phydev->suspended = 0; 1172 } 1173 1174 if (ret < 0) 1175 return ret; 1176 1177 ret = phy_scan_fixups(phydev); 1178 if (ret < 0) 1179 return ret; 1180 1181 if (phydev->drv->config_init) { 1182 ret = phydev->drv->config_init(phydev); 1183 if (ret < 0) 1184 return ret; 1185 } 1186 1187 if (phydev->drv->config_intr) { 1188 ret = phydev->drv->config_intr(phydev); 1189 if (ret < 0) 1190 return ret; 1191 } 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL(phy_init_hw); 1196 1197 void phy_attached_info(struct phy_device *phydev) 1198 { 1199 phy_attached_print(phydev, NULL); 1200 } 1201 EXPORT_SYMBOL(phy_attached_info); 1202 1203 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1204 char *phy_attached_info_irq(struct phy_device *phydev) 1205 { 1206 char *irq_str; 1207 char irq_num[8]; 1208 1209 switch(phydev->irq) { 1210 case PHY_POLL: 1211 irq_str = "POLL"; 1212 break; 1213 case PHY_MAC_INTERRUPT: 1214 irq_str = "MAC"; 1215 break; 1216 default: 1217 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1218 irq_str = irq_num; 1219 break; 1220 } 1221 1222 return kasprintf(GFP_KERNEL, "%s", irq_str); 1223 } 1224 EXPORT_SYMBOL(phy_attached_info_irq); 1225 1226 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1227 { 1228 const char *unbound = phydev->drv ? "" : "[unbound] "; 1229 char *irq_str = phy_attached_info_irq(phydev); 1230 1231 if (!fmt) { 1232 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1233 phydev_name(phydev), irq_str); 1234 } else { 1235 va_list ap; 1236 1237 phydev_info(phydev, ATTACHED_FMT, unbound, 1238 phydev_name(phydev), irq_str); 1239 1240 va_start(ap, fmt); 1241 vprintk(fmt, ap); 1242 va_end(ap); 1243 } 1244 kfree(irq_str); 1245 } 1246 EXPORT_SYMBOL(phy_attached_print); 1247 1248 static void phy_sysfs_create_links(struct phy_device *phydev) 1249 { 1250 struct net_device *dev = phydev->attached_dev; 1251 int err; 1252 1253 if (!dev) 1254 return; 1255 1256 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1257 "attached_dev"); 1258 if (err) 1259 return; 1260 1261 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1262 &phydev->mdio.dev.kobj, 1263 "phydev"); 1264 if (err) { 1265 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1266 kobject_name(&phydev->mdio.dev.kobj), 1267 err); 1268 /* non-fatal - some net drivers can use one netdevice 1269 * with more then one phy 1270 */ 1271 } 1272 1273 phydev->sysfs_links = true; 1274 } 1275 1276 static ssize_t 1277 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1278 char *buf) 1279 { 1280 struct phy_device *phydev = to_phy_device(dev); 1281 1282 return sprintf(buf, "%d\n", !phydev->attached_dev); 1283 } 1284 static DEVICE_ATTR_RO(phy_standalone); 1285 1286 /** 1287 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1288 * @upstream: pointer to the phy device 1289 * @bus: sfp bus representing cage being attached 1290 * 1291 * This is used to fill in the sfp_upstream_ops .attach member. 1292 */ 1293 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1294 { 1295 struct phy_device *phydev = upstream; 1296 1297 if (phydev->attached_dev) 1298 phydev->attached_dev->sfp_bus = bus; 1299 phydev->sfp_bus_attached = true; 1300 } 1301 EXPORT_SYMBOL(phy_sfp_attach); 1302 1303 /** 1304 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1305 * @upstream: pointer to the phy device 1306 * @bus: sfp bus representing cage being attached 1307 * 1308 * This is used to fill in the sfp_upstream_ops .detach member. 1309 */ 1310 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1311 { 1312 struct phy_device *phydev = upstream; 1313 1314 if (phydev->attached_dev) 1315 phydev->attached_dev->sfp_bus = NULL; 1316 phydev->sfp_bus_attached = false; 1317 } 1318 EXPORT_SYMBOL(phy_sfp_detach); 1319 1320 /** 1321 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1322 * @phydev: Pointer to phy_device 1323 * @ops: SFP's upstream operations 1324 */ 1325 int phy_sfp_probe(struct phy_device *phydev, 1326 const struct sfp_upstream_ops *ops) 1327 { 1328 struct sfp_bus *bus; 1329 int ret = 0; 1330 1331 if (phydev->mdio.dev.fwnode) { 1332 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1333 if (IS_ERR(bus)) 1334 return PTR_ERR(bus); 1335 1336 phydev->sfp_bus = bus; 1337 1338 ret = sfp_bus_add_upstream(bus, phydev, ops); 1339 sfp_bus_put(bus); 1340 } 1341 return ret; 1342 } 1343 EXPORT_SYMBOL(phy_sfp_probe); 1344 1345 /** 1346 * phy_attach_direct - attach a network device to a given PHY device pointer 1347 * @dev: network device to attach 1348 * @phydev: Pointer to phy_device to attach 1349 * @flags: PHY device's dev_flags 1350 * @interface: PHY device's interface 1351 * 1352 * Description: Called by drivers to attach to a particular PHY 1353 * device. The phy_device is found, and properly hooked up 1354 * to the phy_driver. If no driver is attached, then a 1355 * generic driver is used. The phy_device is given a ptr to 1356 * the attaching device, and given a callback for link status 1357 * change. The phy_device is returned to the attaching driver. 1358 * This function takes a reference on the phy device. 1359 */ 1360 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1361 u32 flags, phy_interface_t interface) 1362 { 1363 struct mii_bus *bus = phydev->mdio.bus; 1364 struct device *d = &phydev->mdio.dev; 1365 struct module *ndev_owner = NULL; 1366 bool using_genphy = false; 1367 int err; 1368 1369 /* For Ethernet device drivers that register their own MDIO bus, we 1370 * will have bus->owner match ndev_mod, so we do not want to increment 1371 * our own module->refcnt here, otherwise we would not be able to 1372 * unload later on. 1373 */ 1374 if (dev) 1375 ndev_owner = dev->dev.parent->driver->owner; 1376 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1377 phydev_err(phydev, "failed to get the bus module\n"); 1378 return -EIO; 1379 } 1380 1381 get_device(d); 1382 1383 /* Assume that if there is no driver, that it doesn't 1384 * exist, and we should use the genphy driver. 1385 */ 1386 if (!d->driver) { 1387 if (phydev->is_c45) 1388 d->driver = &genphy_c45_driver.mdiodrv.driver; 1389 else 1390 d->driver = &genphy_driver.mdiodrv.driver; 1391 1392 using_genphy = true; 1393 } 1394 1395 if (!try_module_get(d->driver->owner)) { 1396 phydev_err(phydev, "failed to get the device driver module\n"); 1397 err = -EIO; 1398 goto error_put_device; 1399 } 1400 1401 if (using_genphy) { 1402 err = d->driver->probe(d); 1403 if (err >= 0) 1404 err = device_bind_driver(d); 1405 1406 if (err) 1407 goto error_module_put; 1408 } 1409 1410 if (phydev->attached_dev) { 1411 dev_err(&dev->dev, "PHY already attached\n"); 1412 err = -EBUSY; 1413 goto error; 1414 } 1415 1416 phydev->phy_link_change = phy_link_change; 1417 if (dev) { 1418 phydev->attached_dev = dev; 1419 dev->phydev = phydev; 1420 1421 if (phydev->sfp_bus_attached) 1422 dev->sfp_bus = phydev->sfp_bus; 1423 else if (dev->sfp_bus) 1424 phydev->is_on_sfp_module = true; 1425 } 1426 1427 /* Some Ethernet drivers try to connect to a PHY device before 1428 * calling register_netdevice() -> netdev_register_kobject() and 1429 * does the dev->dev.kobj initialization. Here we only check for 1430 * success which indicates that the network device kobject is 1431 * ready. Once we do that we still need to keep track of whether 1432 * links were successfully set up or not for phy_detach() to 1433 * remove them accordingly. 1434 */ 1435 phydev->sysfs_links = false; 1436 1437 phy_sysfs_create_links(phydev); 1438 1439 if (!phydev->attached_dev) { 1440 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1441 &dev_attr_phy_standalone.attr); 1442 if (err) 1443 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1444 } 1445 1446 phydev->dev_flags |= flags; 1447 1448 phydev->interface = interface; 1449 1450 phydev->state = PHY_READY; 1451 1452 /* Port is set to PORT_TP by default and the actual PHY driver will set 1453 * it to different value depending on the PHY configuration. If we have 1454 * the generic PHY driver we can't figure it out, thus set the old 1455 * legacy PORT_MII value. 1456 */ 1457 if (using_genphy) 1458 phydev->port = PORT_MII; 1459 1460 /* Initial carrier state is off as the phy is about to be 1461 * (re)initialized. 1462 */ 1463 if (dev) 1464 netif_carrier_off(phydev->attached_dev); 1465 1466 /* Do initial configuration here, now that 1467 * we have certain key parameters 1468 * (dev_flags and interface) 1469 */ 1470 err = phy_init_hw(phydev); 1471 if (err) 1472 goto error; 1473 1474 err = phy_disable_interrupts(phydev); 1475 if (err) 1476 return err; 1477 1478 phy_resume(phydev); 1479 phy_led_triggers_register(phydev); 1480 1481 return err; 1482 1483 error: 1484 /* phy_detach() does all of the cleanup below */ 1485 phy_detach(phydev); 1486 return err; 1487 1488 error_module_put: 1489 module_put(d->driver->owner); 1490 error_put_device: 1491 put_device(d); 1492 if (ndev_owner != bus->owner) 1493 module_put(bus->owner); 1494 return err; 1495 } 1496 EXPORT_SYMBOL(phy_attach_direct); 1497 1498 /** 1499 * phy_attach - attach a network device to a particular PHY device 1500 * @dev: network device to attach 1501 * @bus_id: Bus ID of PHY device to attach 1502 * @interface: PHY device's interface 1503 * 1504 * Description: Same as phy_attach_direct() except that a PHY bus_id 1505 * string is passed instead of a pointer to a struct phy_device. 1506 */ 1507 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1508 phy_interface_t interface) 1509 { 1510 struct bus_type *bus = &mdio_bus_type; 1511 struct phy_device *phydev; 1512 struct device *d; 1513 int rc; 1514 1515 if (!dev) 1516 return ERR_PTR(-EINVAL); 1517 1518 /* Search the list of PHY devices on the mdio bus for the 1519 * PHY with the requested name 1520 */ 1521 d = bus_find_device_by_name(bus, NULL, bus_id); 1522 if (!d) { 1523 pr_err("PHY %s not found\n", bus_id); 1524 return ERR_PTR(-ENODEV); 1525 } 1526 phydev = to_phy_device(d); 1527 1528 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1529 put_device(d); 1530 if (rc) 1531 return ERR_PTR(rc); 1532 1533 return phydev; 1534 } 1535 EXPORT_SYMBOL(phy_attach); 1536 1537 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1538 struct device_driver *driver) 1539 { 1540 struct device *d = &phydev->mdio.dev; 1541 bool ret = false; 1542 1543 if (!phydev->drv) 1544 return ret; 1545 1546 get_device(d); 1547 ret = d->driver == driver; 1548 put_device(d); 1549 1550 return ret; 1551 } 1552 1553 bool phy_driver_is_genphy(struct phy_device *phydev) 1554 { 1555 return phy_driver_is_genphy_kind(phydev, 1556 &genphy_driver.mdiodrv.driver); 1557 } 1558 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1559 1560 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1561 { 1562 return phy_driver_is_genphy_kind(phydev, 1563 &genphy_c45_driver.mdiodrv.driver); 1564 } 1565 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1566 1567 /** 1568 * phy_package_join - join a common PHY group 1569 * @phydev: target phy_device struct 1570 * @addr: cookie and PHY address for global register access 1571 * @priv_size: if non-zero allocate this amount of bytes for private data 1572 * 1573 * This joins a PHY group and provides a shared storage for all phydevs in 1574 * this group. This is intended to be used for packages which contain 1575 * more than one PHY, for example a quad PHY transceiver. 1576 * 1577 * The addr parameter serves as a cookie which has to have the same value 1578 * for all members of one group and as a PHY address to access generic 1579 * registers of a PHY package. Usually, one of the PHY addresses of the 1580 * different PHYs in the package provides access to these global registers. 1581 * The address which is given here, will be used in the phy_package_read() 1582 * and phy_package_write() convenience functions. If your PHY doesn't have 1583 * global registers you can just pick any of the PHY addresses. 1584 * 1585 * This will set the shared pointer of the phydev to the shared storage. 1586 * If this is the first call for a this cookie the shared storage will be 1587 * allocated. If priv_size is non-zero, the given amount of bytes are 1588 * allocated for the priv member. 1589 * 1590 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1591 * with the same cookie but a different priv_size is an error. 1592 */ 1593 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1594 { 1595 struct mii_bus *bus = phydev->mdio.bus; 1596 struct phy_package_shared *shared; 1597 int ret; 1598 1599 if (addr < 0 || addr >= PHY_MAX_ADDR) 1600 return -EINVAL; 1601 1602 mutex_lock(&bus->shared_lock); 1603 shared = bus->shared[addr]; 1604 if (!shared) { 1605 ret = -ENOMEM; 1606 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1607 if (!shared) 1608 goto err_unlock; 1609 if (priv_size) { 1610 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1611 if (!shared->priv) 1612 goto err_free; 1613 shared->priv_size = priv_size; 1614 } 1615 shared->addr = addr; 1616 refcount_set(&shared->refcnt, 1); 1617 bus->shared[addr] = shared; 1618 } else { 1619 ret = -EINVAL; 1620 if (priv_size && priv_size != shared->priv_size) 1621 goto err_unlock; 1622 refcount_inc(&shared->refcnt); 1623 } 1624 mutex_unlock(&bus->shared_lock); 1625 1626 phydev->shared = shared; 1627 1628 return 0; 1629 1630 err_free: 1631 kfree(shared); 1632 err_unlock: 1633 mutex_unlock(&bus->shared_lock); 1634 return ret; 1635 } 1636 EXPORT_SYMBOL_GPL(phy_package_join); 1637 1638 /** 1639 * phy_package_leave - leave a common PHY group 1640 * @phydev: target phy_device struct 1641 * 1642 * This leaves a PHY group created by phy_package_join(). If this phydev 1643 * was the last user of the shared data between the group, this data is 1644 * freed. Resets the phydev->shared pointer to NULL. 1645 */ 1646 void phy_package_leave(struct phy_device *phydev) 1647 { 1648 struct phy_package_shared *shared = phydev->shared; 1649 struct mii_bus *bus = phydev->mdio.bus; 1650 1651 if (!shared) 1652 return; 1653 1654 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1655 bus->shared[shared->addr] = NULL; 1656 mutex_unlock(&bus->shared_lock); 1657 kfree(shared->priv); 1658 kfree(shared); 1659 } 1660 1661 phydev->shared = NULL; 1662 } 1663 EXPORT_SYMBOL_GPL(phy_package_leave); 1664 1665 static void devm_phy_package_leave(struct device *dev, void *res) 1666 { 1667 phy_package_leave(*(struct phy_device **)res); 1668 } 1669 1670 /** 1671 * devm_phy_package_join - resource managed phy_package_join() 1672 * @dev: device that is registering this PHY package 1673 * @phydev: target phy_device struct 1674 * @addr: cookie and PHY address for global register access 1675 * @priv_size: if non-zero allocate this amount of bytes for private data 1676 * 1677 * Managed phy_package_join(). Shared storage fetched by this function, 1678 * phy_package_leave() is automatically called on driver detach. See 1679 * phy_package_join() for more information. 1680 */ 1681 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1682 int addr, size_t priv_size) 1683 { 1684 struct phy_device **ptr; 1685 int ret; 1686 1687 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1688 GFP_KERNEL); 1689 if (!ptr) 1690 return -ENOMEM; 1691 1692 ret = phy_package_join(phydev, addr, priv_size); 1693 1694 if (!ret) { 1695 *ptr = phydev; 1696 devres_add(dev, ptr); 1697 } else { 1698 devres_free(ptr); 1699 } 1700 1701 return ret; 1702 } 1703 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1704 1705 /** 1706 * phy_detach - detach a PHY device from its network device 1707 * @phydev: target phy_device struct 1708 * 1709 * This detaches the phy device from its network device and the phy 1710 * driver, and drops the reference count taken in phy_attach_direct(). 1711 */ 1712 void phy_detach(struct phy_device *phydev) 1713 { 1714 struct net_device *dev = phydev->attached_dev; 1715 struct module *ndev_owner = NULL; 1716 struct mii_bus *bus; 1717 1718 if (phydev->sysfs_links) { 1719 if (dev) 1720 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1721 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1722 } 1723 1724 if (!phydev->attached_dev) 1725 sysfs_remove_file(&phydev->mdio.dev.kobj, 1726 &dev_attr_phy_standalone.attr); 1727 1728 phy_suspend(phydev); 1729 if (dev) { 1730 phydev->attached_dev->phydev = NULL; 1731 phydev->attached_dev = NULL; 1732 } 1733 phydev->phylink = NULL; 1734 1735 phy_led_triggers_unregister(phydev); 1736 1737 if (phydev->mdio.dev.driver) 1738 module_put(phydev->mdio.dev.driver->owner); 1739 1740 /* If the device had no specific driver before (i.e. - it 1741 * was using the generic driver), we unbind the device 1742 * from the generic driver so that there's a chance a 1743 * real driver could be loaded 1744 */ 1745 if (phy_driver_is_genphy(phydev) || 1746 phy_driver_is_genphy_10g(phydev)) 1747 device_release_driver(&phydev->mdio.dev); 1748 1749 /* Assert the reset signal */ 1750 phy_device_reset(phydev, 1); 1751 1752 /* 1753 * The phydev might go away on the put_device() below, so avoid 1754 * a use-after-free bug by reading the underlying bus first. 1755 */ 1756 bus = phydev->mdio.bus; 1757 1758 put_device(&phydev->mdio.dev); 1759 if (dev) 1760 ndev_owner = dev->dev.parent->driver->owner; 1761 if (ndev_owner != bus->owner) 1762 module_put(bus->owner); 1763 } 1764 EXPORT_SYMBOL(phy_detach); 1765 1766 int phy_suspend(struct phy_device *phydev) 1767 { 1768 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1769 struct net_device *netdev = phydev->attached_dev; 1770 struct phy_driver *phydrv = phydev->drv; 1771 int ret; 1772 1773 if (phydev->suspended) 1774 return 0; 1775 1776 /* If the device has WOL enabled, we cannot suspend the PHY */ 1777 phy_ethtool_get_wol(phydev, &wol); 1778 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1779 return -EBUSY; 1780 1781 if (!phydrv || !phydrv->suspend) 1782 return 0; 1783 1784 ret = phydrv->suspend(phydev); 1785 if (!ret) 1786 phydev->suspended = true; 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(phy_suspend); 1791 1792 int __phy_resume(struct phy_device *phydev) 1793 { 1794 struct phy_driver *phydrv = phydev->drv; 1795 int ret; 1796 1797 lockdep_assert_held(&phydev->lock); 1798 1799 if (!phydrv || !phydrv->resume) 1800 return 0; 1801 1802 ret = phydrv->resume(phydev); 1803 if (!ret) 1804 phydev->suspended = false; 1805 1806 return ret; 1807 } 1808 EXPORT_SYMBOL(__phy_resume); 1809 1810 int phy_resume(struct phy_device *phydev) 1811 { 1812 int ret; 1813 1814 mutex_lock(&phydev->lock); 1815 ret = __phy_resume(phydev); 1816 mutex_unlock(&phydev->lock); 1817 1818 return ret; 1819 } 1820 EXPORT_SYMBOL(phy_resume); 1821 1822 int phy_loopback(struct phy_device *phydev, bool enable) 1823 { 1824 int ret = 0; 1825 1826 if (!phydev->drv) 1827 return -EIO; 1828 1829 mutex_lock(&phydev->lock); 1830 1831 if (enable && phydev->loopback_enabled) { 1832 ret = -EBUSY; 1833 goto out; 1834 } 1835 1836 if (!enable && !phydev->loopback_enabled) { 1837 ret = -EINVAL; 1838 goto out; 1839 } 1840 1841 if (phydev->drv->set_loopback) 1842 ret = phydev->drv->set_loopback(phydev, enable); 1843 else 1844 ret = genphy_loopback(phydev, enable); 1845 1846 if (ret) 1847 goto out; 1848 1849 phydev->loopback_enabled = enable; 1850 1851 out: 1852 mutex_unlock(&phydev->lock); 1853 return ret; 1854 } 1855 EXPORT_SYMBOL(phy_loopback); 1856 1857 /** 1858 * phy_reset_after_clk_enable - perform a PHY reset if needed 1859 * @phydev: target phy_device struct 1860 * 1861 * Description: Some PHYs are known to need a reset after their refclk was 1862 * enabled. This function evaluates the flags and perform the reset if it's 1863 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1864 * was reset. 1865 */ 1866 int phy_reset_after_clk_enable(struct phy_device *phydev) 1867 { 1868 if (!phydev || !phydev->drv) 1869 return -ENODEV; 1870 1871 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1872 phy_device_reset(phydev, 1); 1873 phy_device_reset(phydev, 0); 1874 return 1; 1875 } 1876 1877 return 0; 1878 } 1879 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1880 1881 /* Generic PHY support and helper functions */ 1882 1883 /** 1884 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1885 * @phydev: target phy_device struct 1886 * 1887 * Description: Writes MII_ADVERTISE with the appropriate values, 1888 * after sanitizing the values to make sure we only advertise 1889 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1890 * hasn't changed, and > 0 if it has changed. 1891 */ 1892 static int genphy_config_advert(struct phy_device *phydev) 1893 { 1894 int err, bmsr, changed = 0; 1895 u32 adv; 1896 1897 /* Only allow advertising what this PHY supports */ 1898 linkmode_and(phydev->advertising, phydev->advertising, 1899 phydev->supported); 1900 1901 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1902 1903 /* Setup standard advertisement */ 1904 err = phy_modify_changed(phydev, MII_ADVERTISE, 1905 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1906 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1907 adv); 1908 if (err < 0) 1909 return err; 1910 if (err > 0) 1911 changed = 1; 1912 1913 bmsr = phy_read(phydev, MII_BMSR); 1914 if (bmsr < 0) 1915 return bmsr; 1916 1917 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1918 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1919 * logical 1. 1920 */ 1921 if (!(bmsr & BMSR_ESTATEN)) 1922 return changed; 1923 1924 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1925 1926 err = phy_modify_changed(phydev, MII_CTRL1000, 1927 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1928 adv); 1929 if (err < 0) 1930 return err; 1931 if (err > 0) 1932 changed = 1; 1933 1934 return changed; 1935 } 1936 1937 /** 1938 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1939 * @phydev: target phy_device struct 1940 * 1941 * Description: Writes MII_ADVERTISE with the appropriate values, 1942 * after sanitizing the values to make sure we only advertise 1943 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1944 * hasn't changed, and > 0 if it has changed. This function is intended 1945 * for Clause 37 1000Base-X mode. 1946 */ 1947 static int genphy_c37_config_advert(struct phy_device *phydev) 1948 { 1949 u16 adv = 0; 1950 1951 /* Only allow advertising what this PHY supports */ 1952 linkmode_and(phydev->advertising, phydev->advertising, 1953 phydev->supported); 1954 1955 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1956 phydev->advertising)) 1957 adv |= ADVERTISE_1000XFULL; 1958 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1959 phydev->advertising)) 1960 adv |= ADVERTISE_1000XPAUSE; 1961 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1962 phydev->advertising)) 1963 adv |= ADVERTISE_1000XPSE_ASYM; 1964 1965 return phy_modify_changed(phydev, MII_ADVERTISE, 1966 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1967 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1968 adv); 1969 } 1970 1971 /** 1972 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1973 * @phydev: target phy_device struct 1974 * 1975 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1976 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1977 * changed, and 1 if it has changed. 1978 */ 1979 int genphy_config_eee_advert(struct phy_device *phydev) 1980 { 1981 int err; 1982 1983 /* Nothing to disable */ 1984 if (!phydev->eee_broken_modes) 1985 return 0; 1986 1987 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1988 phydev->eee_broken_modes, 0); 1989 /* If the call failed, we assume that EEE is not supported */ 1990 return err < 0 ? 0 : err; 1991 } 1992 EXPORT_SYMBOL(genphy_config_eee_advert); 1993 1994 /** 1995 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1996 * @phydev: target phy_device struct 1997 * 1998 * Description: Configures MII_BMCR to force speed/duplex 1999 * to the values in phydev. Assumes that the values are valid. 2000 * Please see phy_sanitize_settings(). 2001 */ 2002 int genphy_setup_forced(struct phy_device *phydev) 2003 { 2004 u16 ctl = 0; 2005 2006 phydev->pause = 0; 2007 phydev->asym_pause = 0; 2008 2009 if (SPEED_1000 == phydev->speed) 2010 ctl |= BMCR_SPEED1000; 2011 else if (SPEED_100 == phydev->speed) 2012 ctl |= BMCR_SPEED100; 2013 2014 if (DUPLEX_FULL == phydev->duplex) 2015 ctl |= BMCR_FULLDPLX; 2016 2017 return phy_modify(phydev, MII_BMCR, 2018 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2019 } 2020 EXPORT_SYMBOL(genphy_setup_forced); 2021 2022 static int genphy_setup_master_slave(struct phy_device *phydev) 2023 { 2024 u16 ctl = 0; 2025 2026 if (!phydev->is_gigabit_capable) 2027 return 0; 2028 2029 switch (phydev->master_slave_set) { 2030 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2031 ctl |= CTL1000_PREFER_MASTER; 2032 break; 2033 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2034 break; 2035 case MASTER_SLAVE_CFG_MASTER_FORCE: 2036 ctl |= CTL1000_AS_MASTER; 2037 fallthrough; 2038 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2039 ctl |= CTL1000_ENABLE_MASTER; 2040 break; 2041 case MASTER_SLAVE_CFG_UNKNOWN: 2042 case MASTER_SLAVE_CFG_UNSUPPORTED: 2043 return 0; 2044 default: 2045 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2046 return -EOPNOTSUPP; 2047 } 2048 2049 return phy_modify_changed(phydev, MII_CTRL1000, 2050 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2051 CTL1000_PREFER_MASTER), ctl); 2052 } 2053 2054 int genphy_read_master_slave(struct phy_device *phydev) 2055 { 2056 int cfg, state; 2057 int val; 2058 2059 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2060 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2061 2062 val = phy_read(phydev, MII_CTRL1000); 2063 if (val < 0) 2064 return val; 2065 2066 if (val & CTL1000_ENABLE_MASTER) { 2067 if (val & CTL1000_AS_MASTER) 2068 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2069 else 2070 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2071 } else { 2072 if (val & CTL1000_PREFER_MASTER) 2073 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2074 else 2075 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2076 } 2077 2078 val = phy_read(phydev, MII_STAT1000); 2079 if (val < 0) 2080 return val; 2081 2082 if (val & LPA_1000MSFAIL) { 2083 state = MASTER_SLAVE_STATE_ERR; 2084 } else if (phydev->link) { 2085 /* this bits are valid only for active link */ 2086 if (val & LPA_1000MSRES) 2087 state = MASTER_SLAVE_STATE_MASTER; 2088 else 2089 state = MASTER_SLAVE_STATE_SLAVE; 2090 } else { 2091 state = MASTER_SLAVE_STATE_UNKNOWN; 2092 } 2093 2094 phydev->master_slave_get = cfg; 2095 phydev->master_slave_state = state; 2096 2097 return 0; 2098 } 2099 EXPORT_SYMBOL(genphy_read_master_slave); 2100 2101 /** 2102 * genphy_restart_aneg - Enable and Restart Autonegotiation 2103 * @phydev: target phy_device struct 2104 */ 2105 int genphy_restart_aneg(struct phy_device *phydev) 2106 { 2107 /* Don't isolate the PHY if we're negotiating */ 2108 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2109 BMCR_ANENABLE | BMCR_ANRESTART); 2110 } 2111 EXPORT_SYMBOL(genphy_restart_aneg); 2112 2113 /** 2114 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2115 * @phydev: target phy_device struct 2116 * @restart: whether aneg restart is requested 2117 * 2118 * Check, and restart auto-negotiation if needed. 2119 */ 2120 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2121 { 2122 int ret; 2123 2124 if (!restart) { 2125 /* Advertisement hasn't changed, but maybe aneg was never on to 2126 * begin with? Or maybe phy was isolated? 2127 */ 2128 ret = phy_read(phydev, MII_BMCR); 2129 if (ret < 0) 2130 return ret; 2131 2132 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2133 restart = true; 2134 } 2135 2136 if (restart) 2137 return genphy_restart_aneg(phydev); 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2142 2143 /** 2144 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2145 * @phydev: target phy_device struct 2146 * @changed: whether autoneg is requested 2147 * 2148 * Description: If auto-negotiation is enabled, we configure the 2149 * advertising, and then restart auto-negotiation. If it is not 2150 * enabled, then we write the BMCR. 2151 */ 2152 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2153 { 2154 int err; 2155 2156 if (genphy_config_eee_advert(phydev)) 2157 changed = true; 2158 2159 err = genphy_setup_master_slave(phydev); 2160 if (err < 0) 2161 return err; 2162 else if (err) 2163 changed = true; 2164 2165 if (AUTONEG_ENABLE != phydev->autoneg) 2166 return genphy_setup_forced(phydev); 2167 2168 err = genphy_config_advert(phydev); 2169 if (err < 0) /* error */ 2170 return err; 2171 else if (err) 2172 changed = true; 2173 2174 return genphy_check_and_restart_aneg(phydev, changed); 2175 } 2176 EXPORT_SYMBOL(__genphy_config_aneg); 2177 2178 /** 2179 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2180 * @phydev: target phy_device struct 2181 * 2182 * Description: If auto-negotiation is enabled, we configure the 2183 * advertising, and then restart auto-negotiation. If it is not 2184 * enabled, then we write the BMCR. This function is intended 2185 * for use with Clause 37 1000Base-X mode. 2186 */ 2187 int genphy_c37_config_aneg(struct phy_device *phydev) 2188 { 2189 int err, changed; 2190 2191 if (phydev->autoneg != AUTONEG_ENABLE) 2192 return genphy_setup_forced(phydev); 2193 2194 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2195 BMCR_SPEED1000); 2196 if (err) 2197 return err; 2198 2199 changed = genphy_c37_config_advert(phydev); 2200 if (changed < 0) /* error */ 2201 return changed; 2202 2203 if (!changed) { 2204 /* Advertisement hasn't changed, but maybe aneg was never on to 2205 * begin with? Or maybe phy was isolated? 2206 */ 2207 int ctl = phy_read(phydev, MII_BMCR); 2208 2209 if (ctl < 0) 2210 return ctl; 2211 2212 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2213 changed = 1; /* do restart aneg */ 2214 } 2215 2216 /* Only restart aneg if we are advertising something different 2217 * than we were before. 2218 */ 2219 if (changed > 0) 2220 return genphy_restart_aneg(phydev); 2221 2222 return 0; 2223 } 2224 EXPORT_SYMBOL(genphy_c37_config_aneg); 2225 2226 /** 2227 * genphy_aneg_done - return auto-negotiation status 2228 * @phydev: target phy_device struct 2229 * 2230 * Description: Reads the status register and returns 0 either if 2231 * auto-negotiation is incomplete, or if there was an error. 2232 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2233 */ 2234 int genphy_aneg_done(struct phy_device *phydev) 2235 { 2236 int retval = phy_read(phydev, MII_BMSR); 2237 2238 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2239 } 2240 EXPORT_SYMBOL(genphy_aneg_done); 2241 2242 /** 2243 * genphy_update_link - update link status in @phydev 2244 * @phydev: target phy_device struct 2245 * 2246 * Description: Update the value in phydev->link to reflect the 2247 * current link value. In order to do this, we need to read 2248 * the status register twice, keeping the second value. 2249 */ 2250 int genphy_update_link(struct phy_device *phydev) 2251 { 2252 int status = 0, bmcr; 2253 2254 bmcr = phy_read(phydev, MII_BMCR); 2255 if (bmcr < 0) 2256 return bmcr; 2257 2258 /* Autoneg is being started, therefore disregard BMSR value and 2259 * report link as down. 2260 */ 2261 if (bmcr & BMCR_ANRESTART) 2262 goto done; 2263 2264 /* The link state is latched low so that momentary link 2265 * drops can be detected. Do not double-read the status 2266 * in polling mode to detect such short link drops except 2267 * the link was already down. 2268 */ 2269 if (!phy_polling_mode(phydev) || !phydev->link) { 2270 status = phy_read(phydev, MII_BMSR); 2271 if (status < 0) 2272 return status; 2273 else if (status & BMSR_LSTATUS) 2274 goto done; 2275 } 2276 2277 /* Read link and autonegotiation status */ 2278 status = phy_read(phydev, MII_BMSR); 2279 if (status < 0) 2280 return status; 2281 done: 2282 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2283 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2284 2285 /* Consider the case that autoneg was started and "aneg complete" 2286 * bit has been reset, but "link up" bit not yet. 2287 */ 2288 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2289 phydev->link = 0; 2290 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(genphy_update_link); 2294 2295 int genphy_read_lpa(struct phy_device *phydev) 2296 { 2297 int lpa, lpagb; 2298 2299 if (phydev->autoneg == AUTONEG_ENABLE) { 2300 if (!phydev->autoneg_complete) { 2301 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2302 0); 2303 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2304 return 0; 2305 } 2306 2307 if (phydev->is_gigabit_capable) { 2308 lpagb = phy_read(phydev, MII_STAT1000); 2309 if (lpagb < 0) 2310 return lpagb; 2311 2312 if (lpagb & LPA_1000MSFAIL) { 2313 int adv = phy_read(phydev, MII_CTRL1000); 2314 2315 if (adv < 0) 2316 return adv; 2317 2318 if (adv & CTL1000_ENABLE_MASTER) 2319 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2320 else 2321 phydev_err(phydev, "Master/Slave resolution failed\n"); 2322 return -ENOLINK; 2323 } 2324 2325 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2326 lpagb); 2327 } 2328 2329 lpa = phy_read(phydev, MII_LPA); 2330 if (lpa < 0) 2331 return lpa; 2332 2333 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2334 } else { 2335 linkmode_zero(phydev->lp_advertising); 2336 } 2337 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(genphy_read_lpa); 2341 2342 /** 2343 * genphy_read_status_fixed - read the link parameters for !aneg mode 2344 * @phydev: target phy_device struct 2345 * 2346 * Read the current duplex and speed state for a PHY operating with 2347 * autonegotiation disabled. 2348 */ 2349 int genphy_read_status_fixed(struct phy_device *phydev) 2350 { 2351 int bmcr = phy_read(phydev, MII_BMCR); 2352 2353 if (bmcr < 0) 2354 return bmcr; 2355 2356 if (bmcr & BMCR_FULLDPLX) 2357 phydev->duplex = DUPLEX_FULL; 2358 else 2359 phydev->duplex = DUPLEX_HALF; 2360 2361 if (bmcr & BMCR_SPEED1000) 2362 phydev->speed = SPEED_1000; 2363 else if (bmcr & BMCR_SPEED100) 2364 phydev->speed = SPEED_100; 2365 else 2366 phydev->speed = SPEED_10; 2367 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(genphy_read_status_fixed); 2371 2372 /** 2373 * genphy_read_status - check the link status and update current link state 2374 * @phydev: target phy_device struct 2375 * 2376 * Description: Check the link, then figure out the current state 2377 * by comparing what we advertise with what the link partner 2378 * advertises. Start by checking the gigabit possibilities, 2379 * then move on to 10/100. 2380 */ 2381 int genphy_read_status(struct phy_device *phydev) 2382 { 2383 int err, old_link = phydev->link; 2384 2385 /* Update the link, but return if there was an error */ 2386 err = genphy_update_link(phydev); 2387 if (err) 2388 return err; 2389 2390 /* why bother the PHY if nothing can have changed */ 2391 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2392 return 0; 2393 2394 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2395 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2396 phydev->speed = SPEED_UNKNOWN; 2397 phydev->duplex = DUPLEX_UNKNOWN; 2398 phydev->pause = 0; 2399 phydev->asym_pause = 0; 2400 2401 if (phydev->is_gigabit_capable) { 2402 err = genphy_read_master_slave(phydev); 2403 if (err < 0) 2404 return err; 2405 } 2406 2407 err = genphy_read_lpa(phydev); 2408 if (err < 0) 2409 return err; 2410 2411 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2412 phy_resolve_aneg_linkmode(phydev); 2413 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2414 err = genphy_read_status_fixed(phydev); 2415 if (err < 0) 2416 return err; 2417 } 2418 2419 return 0; 2420 } 2421 EXPORT_SYMBOL(genphy_read_status); 2422 2423 /** 2424 * genphy_c37_read_status - check the link status and update current link state 2425 * @phydev: target phy_device struct 2426 * 2427 * Description: Check the link, then figure out the current state 2428 * by comparing what we advertise with what the link partner 2429 * advertises. This function is for Clause 37 1000Base-X mode. 2430 */ 2431 int genphy_c37_read_status(struct phy_device *phydev) 2432 { 2433 int lpa, err, old_link = phydev->link; 2434 2435 /* Update the link, but return if there was an error */ 2436 err = genphy_update_link(phydev); 2437 if (err) 2438 return err; 2439 2440 /* why bother the PHY if nothing can have changed */ 2441 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2442 return 0; 2443 2444 phydev->duplex = DUPLEX_UNKNOWN; 2445 phydev->pause = 0; 2446 phydev->asym_pause = 0; 2447 2448 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2449 lpa = phy_read(phydev, MII_LPA); 2450 if (lpa < 0) 2451 return lpa; 2452 2453 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2454 phydev->lp_advertising, lpa & LPA_LPACK); 2455 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2456 phydev->lp_advertising, lpa & LPA_1000XFULL); 2457 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2458 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2459 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2460 phydev->lp_advertising, 2461 lpa & LPA_1000XPAUSE_ASYM); 2462 2463 phy_resolve_aneg_linkmode(phydev); 2464 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2465 int bmcr = phy_read(phydev, MII_BMCR); 2466 2467 if (bmcr < 0) 2468 return bmcr; 2469 2470 if (bmcr & BMCR_FULLDPLX) 2471 phydev->duplex = DUPLEX_FULL; 2472 else 2473 phydev->duplex = DUPLEX_HALF; 2474 } 2475 2476 return 0; 2477 } 2478 EXPORT_SYMBOL(genphy_c37_read_status); 2479 2480 /** 2481 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2482 * @phydev: target phy_device struct 2483 * 2484 * Description: Perform a software PHY reset using the standard 2485 * BMCR_RESET bit and poll for the reset bit to be cleared. 2486 * 2487 * Returns: 0 on success, < 0 on failure 2488 */ 2489 int genphy_soft_reset(struct phy_device *phydev) 2490 { 2491 u16 res = BMCR_RESET; 2492 int ret; 2493 2494 if (phydev->autoneg == AUTONEG_ENABLE) 2495 res |= BMCR_ANRESTART; 2496 2497 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2498 if (ret < 0) 2499 return ret; 2500 2501 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2502 * to their default value. Therefore the POWER DOWN bit is supposed to 2503 * be cleared after soft reset. 2504 */ 2505 phydev->suspended = 0; 2506 2507 ret = phy_poll_reset(phydev); 2508 if (ret) 2509 return ret; 2510 2511 /* BMCR may be reset to defaults */ 2512 if (phydev->autoneg == AUTONEG_DISABLE) 2513 ret = genphy_setup_forced(phydev); 2514 2515 return ret; 2516 } 2517 EXPORT_SYMBOL(genphy_soft_reset); 2518 2519 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2520 { 2521 /* It seems there are cases where the interrupts are handled by another 2522 * entity (ie an IRQ controller embedded inside the PHY) and do not 2523 * need any other interraction from phylib. In this case, just trigger 2524 * the state machine directly. 2525 */ 2526 phy_trigger_machine(phydev); 2527 2528 return 0; 2529 } 2530 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2531 2532 /** 2533 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2534 * @phydev: target phy_device struct 2535 * 2536 * Description: Reads the PHY's abilities and populates 2537 * phydev->supported accordingly. 2538 * 2539 * Returns: 0 on success, < 0 on failure 2540 */ 2541 int genphy_read_abilities(struct phy_device *phydev) 2542 { 2543 int val; 2544 2545 linkmode_set_bit_array(phy_basic_ports_array, 2546 ARRAY_SIZE(phy_basic_ports_array), 2547 phydev->supported); 2548 2549 val = phy_read(phydev, MII_BMSR); 2550 if (val < 0) 2551 return val; 2552 2553 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2554 val & BMSR_ANEGCAPABLE); 2555 2556 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2557 val & BMSR_100FULL); 2558 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2559 val & BMSR_100HALF); 2560 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2561 val & BMSR_10FULL); 2562 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2563 val & BMSR_10HALF); 2564 2565 if (val & BMSR_ESTATEN) { 2566 val = phy_read(phydev, MII_ESTATUS); 2567 if (val < 0) 2568 return val; 2569 2570 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2571 phydev->supported, val & ESTATUS_1000_TFULL); 2572 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2573 phydev->supported, val & ESTATUS_1000_THALF); 2574 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2575 phydev->supported, val & ESTATUS_1000_XFULL); 2576 } 2577 2578 return 0; 2579 } 2580 EXPORT_SYMBOL(genphy_read_abilities); 2581 2582 /* This is used for the phy device which doesn't support the MMD extended 2583 * register access, but it does have side effect when we are trying to access 2584 * the MMD register via indirect method. 2585 */ 2586 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2587 { 2588 return -EOPNOTSUPP; 2589 } 2590 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2591 2592 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2593 u16 regnum, u16 val) 2594 { 2595 return -EOPNOTSUPP; 2596 } 2597 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2598 2599 int genphy_suspend(struct phy_device *phydev) 2600 { 2601 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2602 } 2603 EXPORT_SYMBOL(genphy_suspend); 2604 2605 int genphy_resume(struct phy_device *phydev) 2606 { 2607 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2608 } 2609 EXPORT_SYMBOL(genphy_resume); 2610 2611 int genphy_loopback(struct phy_device *phydev, bool enable) 2612 { 2613 if (enable) { 2614 u16 val, ctl = BMCR_LOOPBACK; 2615 int ret; 2616 2617 if (phydev->speed == SPEED_1000) 2618 ctl |= BMCR_SPEED1000; 2619 else if (phydev->speed == SPEED_100) 2620 ctl |= BMCR_SPEED100; 2621 2622 if (phydev->duplex == DUPLEX_FULL) 2623 ctl |= BMCR_FULLDPLX; 2624 2625 phy_modify(phydev, MII_BMCR, ~0, ctl); 2626 2627 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2628 val & BMSR_LSTATUS, 2629 5000, 500000, true); 2630 if (ret) 2631 return ret; 2632 } else { 2633 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2634 2635 phy_config_aneg(phydev); 2636 } 2637 2638 return 0; 2639 } 2640 EXPORT_SYMBOL(genphy_loopback); 2641 2642 /** 2643 * phy_remove_link_mode - Remove a supported link mode 2644 * @phydev: phy_device structure to remove link mode from 2645 * @link_mode: Link mode to be removed 2646 * 2647 * Description: Some MACs don't support all link modes which the PHY 2648 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2649 * to remove a link mode. 2650 */ 2651 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2652 { 2653 linkmode_clear_bit(link_mode, phydev->supported); 2654 phy_advertise_supported(phydev); 2655 } 2656 EXPORT_SYMBOL(phy_remove_link_mode); 2657 2658 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2659 { 2660 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2661 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2662 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2663 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2664 } 2665 2666 /** 2667 * phy_advertise_supported - Advertise all supported modes 2668 * @phydev: target phy_device struct 2669 * 2670 * Description: Called to advertise all supported modes, doesn't touch 2671 * pause mode advertising. 2672 */ 2673 void phy_advertise_supported(struct phy_device *phydev) 2674 { 2675 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2676 2677 linkmode_copy(new, phydev->supported); 2678 phy_copy_pause_bits(new, phydev->advertising); 2679 linkmode_copy(phydev->advertising, new); 2680 } 2681 EXPORT_SYMBOL(phy_advertise_supported); 2682 2683 /** 2684 * phy_support_sym_pause - Enable support of symmetrical pause 2685 * @phydev: target phy_device struct 2686 * 2687 * Description: Called by the MAC to indicate is supports symmetrical 2688 * Pause, but not asym pause. 2689 */ 2690 void phy_support_sym_pause(struct phy_device *phydev) 2691 { 2692 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2693 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2694 } 2695 EXPORT_SYMBOL(phy_support_sym_pause); 2696 2697 /** 2698 * phy_support_asym_pause - Enable support of asym pause 2699 * @phydev: target phy_device struct 2700 * 2701 * Description: Called by the MAC to indicate is supports Asym Pause. 2702 */ 2703 void phy_support_asym_pause(struct phy_device *phydev) 2704 { 2705 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2706 } 2707 EXPORT_SYMBOL(phy_support_asym_pause); 2708 2709 /** 2710 * phy_set_sym_pause - Configure symmetric Pause 2711 * @phydev: target phy_device struct 2712 * @rx: Receiver Pause is supported 2713 * @tx: Transmit Pause is supported 2714 * @autoneg: Auto neg should be used 2715 * 2716 * Description: Configure advertised Pause support depending on if 2717 * receiver pause and pause auto neg is supported. Generally called 2718 * from the set_pauseparam .ndo. 2719 */ 2720 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2721 bool autoneg) 2722 { 2723 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2724 2725 if (rx && tx && autoneg) 2726 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2727 phydev->supported); 2728 2729 linkmode_copy(phydev->advertising, phydev->supported); 2730 } 2731 EXPORT_SYMBOL(phy_set_sym_pause); 2732 2733 /** 2734 * phy_set_asym_pause - Configure Pause and Asym Pause 2735 * @phydev: target phy_device struct 2736 * @rx: Receiver Pause is supported 2737 * @tx: Transmit Pause is supported 2738 * 2739 * Description: Configure advertised Pause support depending on if 2740 * transmit and receiver pause is supported. If there has been a 2741 * change in adverting, trigger a new autoneg. Generally called from 2742 * the set_pauseparam .ndo. 2743 */ 2744 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2745 { 2746 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2747 2748 linkmode_copy(oldadv, phydev->advertising); 2749 linkmode_set_pause(phydev->advertising, tx, rx); 2750 2751 if (!linkmode_equal(oldadv, phydev->advertising) && 2752 phydev->autoneg) 2753 phy_start_aneg(phydev); 2754 } 2755 EXPORT_SYMBOL(phy_set_asym_pause); 2756 2757 /** 2758 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2759 * @phydev: phy_device struct 2760 * @pp: requested pause configuration 2761 * 2762 * Description: Test if the PHY/MAC combination supports the Pause 2763 * configuration the user is requesting. Returns True if it is 2764 * supported, false otherwise. 2765 */ 2766 bool phy_validate_pause(struct phy_device *phydev, 2767 struct ethtool_pauseparam *pp) 2768 { 2769 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2770 phydev->supported) && pp->rx_pause) 2771 return false; 2772 2773 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2774 phydev->supported) && 2775 pp->rx_pause != pp->tx_pause) 2776 return false; 2777 2778 return true; 2779 } 2780 EXPORT_SYMBOL(phy_validate_pause); 2781 2782 /** 2783 * phy_get_pause - resolve negotiated pause modes 2784 * @phydev: phy_device struct 2785 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2786 * enabled. 2787 * @rx_pause: pointer to bool to indicate whether receive pause should be 2788 * enabled. 2789 * 2790 * Resolve and return the flow control modes according to the negotiation 2791 * result. This includes checking that we are operating in full duplex mode. 2792 * See linkmode_resolve_pause() for further details. 2793 */ 2794 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2795 { 2796 if (phydev->duplex != DUPLEX_FULL) { 2797 *tx_pause = false; 2798 *rx_pause = false; 2799 return; 2800 } 2801 2802 return linkmode_resolve_pause(phydev->advertising, 2803 phydev->lp_advertising, 2804 tx_pause, rx_pause); 2805 } 2806 EXPORT_SYMBOL(phy_get_pause); 2807 2808 #if IS_ENABLED(CONFIG_OF_MDIO) 2809 static int phy_get_int_delay_property(struct device *dev, const char *name) 2810 { 2811 s32 int_delay; 2812 int ret; 2813 2814 ret = device_property_read_u32(dev, name, &int_delay); 2815 if (ret) 2816 return ret; 2817 2818 return int_delay; 2819 } 2820 #else 2821 static int phy_get_int_delay_property(struct device *dev, const char *name) 2822 { 2823 return -EINVAL; 2824 } 2825 #endif 2826 2827 /** 2828 * phy_get_internal_delay - returns the index of the internal delay 2829 * @phydev: phy_device struct 2830 * @dev: pointer to the devices device struct 2831 * @delay_values: array of delays the PHY supports 2832 * @size: the size of the delay array 2833 * @is_rx: boolean to indicate to get the rx internal delay 2834 * 2835 * Returns the index within the array of internal delay passed in. 2836 * If the device property is not present then the interface type is checked 2837 * if the interface defines use of internal delay then a 1 is returned otherwise 2838 * a 0 is returned. 2839 * The array must be in ascending order. If PHY does not have an ascending order 2840 * array then size = 0 and the value of the delay property is returned. 2841 * Return -EINVAL if the delay is invalid or cannot be found. 2842 */ 2843 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2844 const int *delay_values, int size, bool is_rx) 2845 { 2846 s32 delay; 2847 int i; 2848 2849 if (is_rx) { 2850 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2851 if (delay < 0 && size == 0) { 2852 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2853 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2854 return 1; 2855 else 2856 return 0; 2857 } 2858 2859 } else { 2860 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2861 if (delay < 0 && size == 0) { 2862 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2863 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2864 return 1; 2865 else 2866 return 0; 2867 } 2868 } 2869 2870 if (delay < 0) 2871 return delay; 2872 2873 if (delay && size == 0) 2874 return delay; 2875 2876 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2877 phydev_err(phydev, "Delay %d is out of range\n", delay); 2878 return -EINVAL; 2879 } 2880 2881 if (delay == delay_values[0]) 2882 return 0; 2883 2884 for (i = 1; i < size; i++) { 2885 if (delay == delay_values[i]) 2886 return i; 2887 2888 /* Find an approximate index by looking up the table */ 2889 if (delay > delay_values[i - 1] && 2890 delay < delay_values[i]) { 2891 if (delay - delay_values[i - 1] < 2892 delay_values[i] - delay) 2893 return i - 1; 2894 else 2895 return i; 2896 } 2897 } 2898 2899 phydev_err(phydev, "error finding internal delay index for %d\n", 2900 delay); 2901 2902 return -EINVAL; 2903 } 2904 EXPORT_SYMBOL(phy_get_internal_delay); 2905 2906 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2907 { 2908 return phydrv->config_intr && phydrv->handle_interrupt; 2909 } 2910 2911 /** 2912 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2913 * @fwnode: pointer to the mdio_device's fwnode 2914 * 2915 * If successful, returns a pointer to the mdio_device with the embedded 2916 * struct device refcount incremented by one, or NULL on failure. 2917 * The caller should call put_device() on the mdio_device after its use. 2918 */ 2919 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2920 { 2921 struct device *d; 2922 2923 if (!fwnode) 2924 return NULL; 2925 2926 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2927 if (!d) 2928 return NULL; 2929 2930 return to_mdio_device(d); 2931 } 2932 EXPORT_SYMBOL(fwnode_mdio_find_device); 2933 2934 /** 2935 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2936 * 2937 * @phy_fwnode: Pointer to the phy's fwnode. 2938 * 2939 * If successful, returns a pointer to the phy_device with the embedded 2940 * struct device refcount incremented by one, or NULL on failure. 2941 */ 2942 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2943 { 2944 struct mdio_device *mdiodev; 2945 2946 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2947 if (!mdiodev) 2948 return NULL; 2949 2950 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2951 return to_phy_device(&mdiodev->dev); 2952 2953 put_device(&mdiodev->dev); 2954 2955 return NULL; 2956 } 2957 EXPORT_SYMBOL(fwnode_phy_find_device); 2958 2959 /** 2960 * device_phy_find_device - For the given device, get the phy_device 2961 * @dev: Pointer to the given device 2962 * 2963 * Refer return conditions of fwnode_phy_find_device(). 2964 */ 2965 struct phy_device *device_phy_find_device(struct device *dev) 2966 { 2967 return fwnode_phy_find_device(dev_fwnode(dev)); 2968 } 2969 EXPORT_SYMBOL_GPL(device_phy_find_device); 2970 2971 /** 2972 * fwnode_get_phy_node - Get the phy_node using the named reference. 2973 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2974 * 2975 * Refer return conditions of fwnode_find_reference(). 2976 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2977 * and "phy-device" are not supported in ACPI. DT supports all the three 2978 * named references to the phy node. 2979 */ 2980 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 2981 { 2982 struct fwnode_handle *phy_node; 2983 2984 /* Only phy-handle is used for ACPI */ 2985 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 2986 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 2987 return phy_node; 2988 phy_node = fwnode_find_reference(fwnode, "phy", 0); 2989 if (IS_ERR(phy_node)) 2990 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 2991 return phy_node; 2992 } 2993 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 2994 2995 /** 2996 * phy_probe - probe and init a PHY device 2997 * @dev: device to probe and init 2998 * 2999 * Description: Take care of setting up the phy_device structure, 3000 * set the state to READY (the driver's init function should 3001 * set it to STARTING if needed). 3002 */ 3003 static int phy_probe(struct device *dev) 3004 { 3005 struct phy_device *phydev = to_phy_device(dev); 3006 struct device_driver *drv = phydev->mdio.dev.driver; 3007 struct phy_driver *phydrv = to_phy_driver(drv); 3008 int err = 0; 3009 3010 phydev->drv = phydrv; 3011 3012 /* Disable the interrupt if the PHY doesn't support it 3013 * but the interrupt is still a valid one 3014 */ 3015 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3016 phydev->irq = PHY_POLL; 3017 3018 if (phydrv->flags & PHY_IS_INTERNAL) 3019 phydev->is_internal = true; 3020 3021 mutex_lock(&phydev->lock); 3022 3023 /* Deassert the reset signal */ 3024 phy_device_reset(phydev, 0); 3025 3026 if (phydev->drv->probe) { 3027 err = phydev->drv->probe(phydev); 3028 if (err) 3029 goto out; 3030 } 3031 3032 /* Start out supporting everything. Eventually, 3033 * a controller will attach, and may modify one 3034 * or both of these values 3035 */ 3036 if (phydrv->features) 3037 linkmode_copy(phydev->supported, phydrv->features); 3038 else if (phydrv->get_features) 3039 err = phydrv->get_features(phydev); 3040 else if (phydev->is_c45) 3041 err = genphy_c45_pma_read_abilities(phydev); 3042 else 3043 err = genphy_read_abilities(phydev); 3044 3045 if (err) 3046 goto out; 3047 3048 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3049 phydev->supported)) 3050 phydev->autoneg = 0; 3051 3052 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3053 phydev->supported)) 3054 phydev->is_gigabit_capable = 1; 3055 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3056 phydev->supported)) 3057 phydev->is_gigabit_capable = 1; 3058 3059 of_set_phy_supported(phydev); 3060 phy_advertise_supported(phydev); 3061 3062 /* Get the EEE modes we want to prohibit. We will ask 3063 * the PHY stop advertising these mode later on 3064 */ 3065 of_set_phy_eee_broken(phydev); 3066 3067 /* The Pause Frame bits indicate that the PHY can support passing 3068 * pause frames. During autonegotiation, the PHYs will determine if 3069 * they should allow pause frames to pass. The MAC driver should then 3070 * use that result to determine whether to enable flow control via 3071 * pause frames. 3072 * 3073 * Normally, PHY drivers should not set the Pause bits, and instead 3074 * allow phylib to do that. However, there may be some situations 3075 * (e.g. hardware erratum) where the driver wants to set only one 3076 * of these bits. 3077 */ 3078 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3079 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3080 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3081 phydev->supported); 3082 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3083 phydev->supported); 3084 } 3085 3086 /* Set the state to READY by default */ 3087 phydev->state = PHY_READY; 3088 3089 out: 3090 /* Assert the reset signal */ 3091 if (err) 3092 phy_device_reset(phydev, 1); 3093 3094 mutex_unlock(&phydev->lock); 3095 3096 return err; 3097 } 3098 3099 static int phy_remove(struct device *dev) 3100 { 3101 struct phy_device *phydev = to_phy_device(dev); 3102 3103 cancel_delayed_work_sync(&phydev->state_queue); 3104 3105 mutex_lock(&phydev->lock); 3106 phydev->state = PHY_DOWN; 3107 mutex_unlock(&phydev->lock); 3108 3109 sfp_bus_del_upstream(phydev->sfp_bus); 3110 phydev->sfp_bus = NULL; 3111 3112 if (phydev->drv && phydev->drv->remove) 3113 phydev->drv->remove(phydev); 3114 3115 /* Assert the reset signal */ 3116 phy_device_reset(phydev, 1); 3117 3118 phydev->drv = NULL; 3119 3120 return 0; 3121 } 3122 3123 static void phy_shutdown(struct device *dev) 3124 { 3125 struct phy_device *phydev = to_phy_device(dev); 3126 3127 if (phydev->state == PHY_READY || !phydev->attached_dev) 3128 return; 3129 3130 phy_disable_interrupts(phydev); 3131 } 3132 3133 /** 3134 * phy_driver_register - register a phy_driver with the PHY layer 3135 * @new_driver: new phy_driver to register 3136 * @owner: module owning this PHY 3137 */ 3138 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3139 { 3140 int retval; 3141 3142 /* Either the features are hard coded, or dynamically 3143 * determined. It cannot be both. 3144 */ 3145 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3146 pr_err("%s: features and get_features must not both be set\n", 3147 new_driver->name); 3148 return -EINVAL; 3149 } 3150 3151 /* PHYLIB device drivers must not match using a DT compatible table 3152 * as this bypasses our checks that the mdiodev that is being matched 3153 * is backed by a struct phy_device. If such a case happens, we will 3154 * make out-of-bounds accesses and lockup in phydev->lock. 3155 */ 3156 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3157 "%s: driver must not provide a DT match table\n", 3158 new_driver->name)) 3159 return -EINVAL; 3160 3161 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3162 new_driver->mdiodrv.driver.name = new_driver->name; 3163 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3164 new_driver->mdiodrv.driver.probe = phy_probe; 3165 new_driver->mdiodrv.driver.remove = phy_remove; 3166 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3167 new_driver->mdiodrv.driver.owner = owner; 3168 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3169 3170 retval = driver_register(&new_driver->mdiodrv.driver); 3171 if (retval) { 3172 pr_err("%s: Error %d in registering driver\n", 3173 new_driver->name, retval); 3174 3175 return retval; 3176 } 3177 3178 pr_debug("%s: Registered new driver\n", new_driver->name); 3179 3180 return 0; 3181 } 3182 EXPORT_SYMBOL(phy_driver_register); 3183 3184 int phy_drivers_register(struct phy_driver *new_driver, int n, 3185 struct module *owner) 3186 { 3187 int i, ret = 0; 3188 3189 for (i = 0; i < n; i++) { 3190 ret = phy_driver_register(new_driver + i, owner); 3191 if (ret) { 3192 while (i-- > 0) 3193 phy_driver_unregister(new_driver + i); 3194 break; 3195 } 3196 } 3197 return ret; 3198 } 3199 EXPORT_SYMBOL(phy_drivers_register); 3200 3201 void phy_driver_unregister(struct phy_driver *drv) 3202 { 3203 driver_unregister(&drv->mdiodrv.driver); 3204 } 3205 EXPORT_SYMBOL(phy_driver_unregister); 3206 3207 void phy_drivers_unregister(struct phy_driver *drv, int n) 3208 { 3209 int i; 3210 3211 for (i = 0; i < n; i++) 3212 phy_driver_unregister(drv + i); 3213 } 3214 EXPORT_SYMBOL(phy_drivers_unregister); 3215 3216 static struct phy_driver genphy_driver = { 3217 .phy_id = 0xffffffff, 3218 .phy_id_mask = 0xffffffff, 3219 .name = "Generic PHY", 3220 .get_features = genphy_read_abilities, 3221 .suspend = genphy_suspend, 3222 .resume = genphy_resume, 3223 .set_loopback = genphy_loopback, 3224 }; 3225 3226 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3227 .get_sset_count = phy_ethtool_get_sset_count, 3228 .get_strings = phy_ethtool_get_strings, 3229 .get_stats = phy_ethtool_get_stats, 3230 .start_cable_test = phy_start_cable_test, 3231 .start_cable_test_tdr = phy_start_cable_test_tdr, 3232 }; 3233 3234 static int __init phy_init(void) 3235 { 3236 int rc; 3237 3238 rc = mdio_bus_init(); 3239 if (rc) 3240 return rc; 3241 3242 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3243 features_init(); 3244 3245 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3246 if (rc) 3247 goto err_c45; 3248 3249 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3250 if (rc) { 3251 phy_driver_unregister(&genphy_c45_driver); 3252 err_c45: 3253 mdio_bus_exit(); 3254 } 3255 3256 return rc; 3257 } 3258 3259 static void __exit phy_exit(void) 3260 { 3261 phy_driver_unregister(&genphy_c45_driver); 3262 phy_driver_unregister(&genphy_driver); 3263 mdio_bus_exit(); 3264 ethtool_set_ethtool_phy_ops(NULL); 3265 } 3266 3267 subsys_initcall(phy_init); 3268 module_exit(phy_exit); 3269