1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phy_led_triggers.h> 31 #include <linux/pse-pd/pse.h> 32 #include <linux/property.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/sfp.h> 35 #include <linux/skbuff.h> 36 #include <linux/slab.h> 37 #include <linux/string.h> 38 #include <linux/uaccess.h> 39 #include <linux/unistd.h> 40 41 MODULE_DESCRIPTION("PHY library"); 42 MODULE_AUTHOR("Andy Fleming"); 43 MODULE_LICENSE("GPL"); 44 45 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 46 EXPORT_SYMBOL_GPL(phy_basic_features); 47 48 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 49 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 50 51 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 52 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 53 54 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 55 EXPORT_SYMBOL_GPL(phy_gbit_features); 56 57 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 58 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 59 60 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 61 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 62 63 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 64 EXPORT_SYMBOL_GPL(phy_10gbit_features); 65 66 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 67 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 68 69 const int phy_basic_ports_array[3] = { 70 ETHTOOL_LINK_MODE_Autoneg_BIT, 71 ETHTOOL_LINK_MODE_TP_BIT, 72 ETHTOOL_LINK_MODE_MII_BIT, 73 }; 74 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 75 76 const int phy_fibre_port_array[1] = { 77 ETHTOOL_LINK_MODE_FIBRE_BIT, 78 }; 79 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 80 81 const int phy_all_ports_features_array[7] = { 82 ETHTOOL_LINK_MODE_Autoneg_BIT, 83 ETHTOOL_LINK_MODE_TP_BIT, 84 ETHTOOL_LINK_MODE_MII_BIT, 85 ETHTOOL_LINK_MODE_FIBRE_BIT, 86 ETHTOOL_LINK_MODE_AUI_BIT, 87 ETHTOOL_LINK_MODE_BNC_BIT, 88 ETHTOOL_LINK_MODE_Backplane_BIT, 89 }; 90 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 91 92 const int phy_10_100_features_array[4] = { 93 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 94 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 95 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 97 }; 98 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 99 100 const int phy_basic_t1_features_array[3] = { 101 ETHTOOL_LINK_MODE_TP_BIT, 102 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 103 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 104 }; 105 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 106 107 const int phy_basic_t1s_p2mp_features_array[2] = { 108 ETHTOOL_LINK_MODE_TP_BIT, 109 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 110 }; 111 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 112 113 const int phy_gbit_features_array[2] = { 114 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 115 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 116 }; 117 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 118 119 const int phy_10gbit_features_array[1] = { 120 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 121 }; 122 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 123 124 static const int phy_10gbit_fec_features_array[1] = { 125 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 126 }; 127 128 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 129 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 130 131 static const int phy_10gbit_full_features_array[] = { 132 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 133 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 136 }; 137 138 static const int phy_eee_cap1_features_array[] = { 139 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 140 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 143 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 145 }; 146 147 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 148 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 149 150 static void features_init(void) 151 { 152 /* 10/100 half/full*/ 153 linkmode_set_bit_array(phy_basic_ports_array, 154 ARRAY_SIZE(phy_basic_ports_array), 155 phy_basic_features); 156 linkmode_set_bit_array(phy_10_100_features_array, 157 ARRAY_SIZE(phy_10_100_features_array), 158 phy_basic_features); 159 160 /* 100 full, TP */ 161 linkmode_set_bit_array(phy_basic_t1_features_array, 162 ARRAY_SIZE(phy_basic_t1_features_array), 163 phy_basic_t1_features); 164 165 /* 10 half, P2MP, TP */ 166 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 167 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 168 phy_basic_t1s_p2mp_features); 169 170 /* 10/100 half/full + 1000 half/full */ 171 linkmode_set_bit_array(phy_basic_ports_array, 172 ARRAY_SIZE(phy_basic_ports_array), 173 phy_gbit_features); 174 linkmode_set_bit_array(phy_10_100_features_array, 175 ARRAY_SIZE(phy_10_100_features_array), 176 phy_gbit_features); 177 linkmode_set_bit_array(phy_gbit_features_array, 178 ARRAY_SIZE(phy_gbit_features_array), 179 phy_gbit_features); 180 181 /* 10/100 half/full + 1000 half/full + fibre*/ 182 linkmode_set_bit_array(phy_basic_ports_array, 183 ARRAY_SIZE(phy_basic_ports_array), 184 phy_gbit_fibre_features); 185 linkmode_set_bit_array(phy_10_100_features_array, 186 ARRAY_SIZE(phy_10_100_features_array), 187 phy_gbit_fibre_features); 188 linkmode_set_bit_array(phy_gbit_features_array, 189 ARRAY_SIZE(phy_gbit_features_array), 190 phy_gbit_fibre_features); 191 linkmode_set_bit_array(phy_fibre_port_array, 192 ARRAY_SIZE(phy_fibre_port_array), 193 phy_gbit_fibre_features); 194 195 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 196 linkmode_set_bit_array(phy_all_ports_features_array, 197 ARRAY_SIZE(phy_all_ports_features_array), 198 phy_gbit_all_ports_features); 199 linkmode_set_bit_array(phy_10_100_features_array, 200 ARRAY_SIZE(phy_10_100_features_array), 201 phy_gbit_all_ports_features); 202 linkmode_set_bit_array(phy_gbit_features_array, 203 ARRAY_SIZE(phy_gbit_features_array), 204 phy_gbit_all_ports_features); 205 206 /* 10/100 half/full + 1000 half/full + 10G full*/ 207 linkmode_set_bit_array(phy_all_ports_features_array, 208 ARRAY_SIZE(phy_all_ports_features_array), 209 phy_10gbit_features); 210 linkmode_set_bit_array(phy_10_100_features_array, 211 ARRAY_SIZE(phy_10_100_features_array), 212 phy_10gbit_features); 213 linkmode_set_bit_array(phy_gbit_features_array, 214 ARRAY_SIZE(phy_gbit_features_array), 215 phy_10gbit_features); 216 linkmode_set_bit_array(phy_10gbit_features_array, 217 ARRAY_SIZE(phy_10gbit_features_array), 218 phy_10gbit_features); 219 220 /* 10/100/1000/10G full */ 221 linkmode_set_bit_array(phy_all_ports_features_array, 222 ARRAY_SIZE(phy_all_ports_features_array), 223 phy_10gbit_full_features); 224 linkmode_set_bit_array(phy_10gbit_full_features_array, 225 ARRAY_SIZE(phy_10gbit_full_features_array), 226 phy_10gbit_full_features); 227 /* 10G FEC only */ 228 linkmode_set_bit_array(phy_10gbit_fec_features_array, 229 ARRAY_SIZE(phy_10gbit_fec_features_array), 230 phy_10gbit_fec_features); 231 linkmode_set_bit_array(phy_eee_cap1_features_array, 232 ARRAY_SIZE(phy_eee_cap1_features_array), 233 phy_eee_cap1_features); 234 235 } 236 237 void phy_device_free(struct phy_device *phydev) 238 { 239 put_device(&phydev->mdio.dev); 240 } 241 EXPORT_SYMBOL(phy_device_free); 242 243 static void phy_mdio_device_free(struct mdio_device *mdiodev) 244 { 245 struct phy_device *phydev; 246 247 phydev = container_of(mdiodev, struct phy_device, mdio); 248 phy_device_free(phydev); 249 } 250 251 static void phy_device_release(struct device *dev) 252 { 253 fwnode_handle_put(dev->fwnode); 254 kfree(to_phy_device(dev)); 255 } 256 257 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 258 { 259 struct phy_device *phydev; 260 261 phydev = container_of(mdiodev, struct phy_device, mdio); 262 phy_device_remove(phydev); 263 } 264 265 static struct phy_driver genphy_driver; 266 267 static LIST_HEAD(phy_fixup_list); 268 static DEFINE_MUTEX(phy_fixup_lock); 269 270 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 271 { 272 struct device_driver *drv = phydev->mdio.dev.driver; 273 struct phy_driver *phydrv = to_phy_driver(drv); 274 struct net_device *netdev = phydev->attached_dev; 275 276 if (!drv || !phydrv->suspend) 277 return false; 278 279 /* PHY not attached? May suspend if the PHY has not already been 280 * suspended as part of a prior call to phy_disconnect() -> 281 * phy_detach() -> phy_suspend() because the parent netdev might be the 282 * MDIO bus driver and clock gated at this point. 283 */ 284 if (!netdev) 285 goto out; 286 287 if (netdev->wol_enabled) 288 return false; 289 290 /* As long as not all affected network drivers support the 291 * wol_enabled flag, let's check for hints that WoL is enabled. 292 * Don't suspend PHY if the attached netdev parent may wake up. 293 * The parent may point to a PCI device, as in tg3 driver. 294 */ 295 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 296 return false; 297 298 /* Also don't suspend PHY if the netdev itself may wakeup. This 299 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 300 * e.g. SoC devices. 301 */ 302 if (device_may_wakeup(&netdev->dev)) 303 return false; 304 305 out: 306 return !phydev->suspended; 307 } 308 309 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 310 { 311 struct phy_device *phydev = to_phy_device(dev); 312 313 if (phydev->mac_managed_pm) 314 return 0; 315 316 /* Wakeup interrupts may occur during the system sleep transition when 317 * the PHY is inaccessible. Set flag to postpone handling until the PHY 318 * has resumed. Wait for concurrent interrupt handler to complete. 319 */ 320 if (phy_interrupt_is_valid(phydev)) { 321 phydev->irq_suspended = 1; 322 synchronize_irq(phydev->irq); 323 } 324 325 /* We must stop the state machine manually, otherwise it stops out of 326 * control, possibly with the phydev->lock held. Upon resume, netdev 327 * may call phy routines that try to grab the same lock, and that may 328 * lead to a deadlock. 329 */ 330 if (phydev->attached_dev && phydev->adjust_link) 331 phy_stop_machine(phydev); 332 333 if (!mdio_bus_phy_may_suspend(phydev)) 334 return 0; 335 336 phydev->suspended_by_mdio_bus = 1; 337 338 return phy_suspend(phydev); 339 } 340 341 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 342 { 343 struct phy_device *phydev = to_phy_device(dev); 344 int ret; 345 346 if (phydev->mac_managed_pm) 347 return 0; 348 349 if (!phydev->suspended_by_mdio_bus) 350 goto no_resume; 351 352 phydev->suspended_by_mdio_bus = 0; 353 354 /* If we managed to get here with the PHY state machine in a state 355 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 356 * that something went wrong and we should most likely be using 357 * MAC managed PM, but we are not. 358 */ 359 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 360 phydev->state != PHY_UP); 361 362 ret = phy_init_hw(phydev); 363 if (ret < 0) 364 return ret; 365 366 ret = phy_resume(phydev); 367 if (ret < 0) 368 return ret; 369 no_resume: 370 if (phy_interrupt_is_valid(phydev)) { 371 phydev->irq_suspended = 0; 372 synchronize_irq(phydev->irq); 373 374 /* Rerun interrupts which were postponed by phy_interrupt() 375 * because they occurred during the system sleep transition. 376 */ 377 if (phydev->irq_rerun) { 378 phydev->irq_rerun = 0; 379 enable_irq(phydev->irq); 380 irq_wake_thread(phydev->irq, phydev); 381 } 382 } 383 384 if (phydev->attached_dev && phydev->adjust_link) 385 phy_start_machine(phydev); 386 387 return 0; 388 } 389 390 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 391 mdio_bus_phy_resume); 392 393 /** 394 * phy_register_fixup - creates a new phy_fixup and adds it to the list 395 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 396 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 397 * It can also be PHY_ANY_UID 398 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 399 * comparison 400 * @run: The actual code to be run when a matching PHY is found 401 */ 402 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 403 int (*run)(struct phy_device *)) 404 { 405 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 406 407 if (!fixup) 408 return -ENOMEM; 409 410 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 411 fixup->phy_uid = phy_uid; 412 fixup->phy_uid_mask = phy_uid_mask; 413 fixup->run = run; 414 415 mutex_lock(&phy_fixup_lock); 416 list_add_tail(&fixup->list, &phy_fixup_list); 417 mutex_unlock(&phy_fixup_lock); 418 419 return 0; 420 } 421 EXPORT_SYMBOL(phy_register_fixup); 422 423 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 424 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 425 int (*run)(struct phy_device *)) 426 { 427 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 428 } 429 EXPORT_SYMBOL(phy_register_fixup_for_uid); 430 431 /* Registers a fixup to be run on the PHY with id string bus_id */ 432 int phy_register_fixup_for_id(const char *bus_id, 433 int (*run)(struct phy_device *)) 434 { 435 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 436 } 437 EXPORT_SYMBOL(phy_register_fixup_for_id); 438 439 /** 440 * phy_unregister_fixup - remove a phy_fixup from the list 441 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 442 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 443 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 444 */ 445 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 446 { 447 struct list_head *pos, *n; 448 struct phy_fixup *fixup; 449 int ret; 450 451 ret = -ENODEV; 452 453 mutex_lock(&phy_fixup_lock); 454 list_for_each_safe(pos, n, &phy_fixup_list) { 455 fixup = list_entry(pos, struct phy_fixup, list); 456 457 if ((!strcmp(fixup->bus_id, bus_id)) && 458 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 459 list_del(&fixup->list); 460 kfree(fixup); 461 ret = 0; 462 break; 463 } 464 } 465 mutex_unlock(&phy_fixup_lock); 466 467 return ret; 468 } 469 EXPORT_SYMBOL(phy_unregister_fixup); 470 471 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 472 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 473 { 474 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 475 } 476 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 477 478 /* Unregisters a fixup of the PHY with id string bus_id */ 479 int phy_unregister_fixup_for_id(const char *bus_id) 480 { 481 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 482 } 483 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 484 485 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 486 * Fixups can be set to match any in one or more fields. 487 */ 488 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 489 { 490 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 491 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 492 return 0; 493 494 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 495 fixup->phy_uid_mask)) 496 if (fixup->phy_uid != PHY_ANY_UID) 497 return 0; 498 499 return 1; 500 } 501 502 /* Runs any matching fixups for this phydev */ 503 static int phy_scan_fixups(struct phy_device *phydev) 504 { 505 struct phy_fixup *fixup; 506 507 mutex_lock(&phy_fixup_lock); 508 list_for_each_entry(fixup, &phy_fixup_list, list) { 509 if (phy_needs_fixup(phydev, fixup)) { 510 int err = fixup->run(phydev); 511 512 if (err < 0) { 513 mutex_unlock(&phy_fixup_lock); 514 return err; 515 } 516 phydev->has_fixups = true; 517 } 518 } 519 mutex_unlock(&phy_fixup_lock); 520 521 return 0; 522 } 523 524 static int phy_bus_match(struct device *dev, struct device_driver *drv) 525 { 526 struct phy_device *phydev = to_phy_device(dev); 527 struct phy_driver *phydrv = to_phy_driver(drv); 528 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 529 int i; 530 531 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 532 return 0; 533 534 if (phydrv->match_phy_device) 535 return phydrv->match_phy_device(phydev); 536 537 if (phydev->is_c45) { 538 for (i = 1; i < num_ids; i++) { 539 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 540 continue; 541 542 if (phy_id_compare(phydev->c45_ids.device_ids[i], 543 phydrv->phy_id, phydrv->phy_id_mask)) 544 return 1; 545 } 546 return 0; 547 } else { 548 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 549 phydrv->phy_id_mask); 550 } 551 } 552 553 static ssize_t 554 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 555 { 556 struct phy_device *phydev = to_phy_device(dev); 557 558 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 559 } 560 static DEVICE_ATTR_RO(phy_id); 561 562 static ssize_t 563 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 564 { 565 struct phy_device *phydev = to_phy_device(dev); 566 const char *mode = NULL; 567 568 if (phy_is_internal(phydev)) 569 mode = "internal"; 570 else 571 mode = phy_modes(phydev->interface); 572 573 return sysfs_emit(buf, "%s\n", mode); 574 } 575 static DEVICE_ATTR_RO(phy_interface); 576 577 static ssize_t 578 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 579 char *buf) 580 { 581 struct phy_device *phydev = to_phy_device(dev); 582 583 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 584 } 585 static DEVICE_ATTR_RO(phy_has_fixups); 586 587 static ssize_t phy_dev_flags_show(struct device *dev, 588 struct device_attribute *attr, 589 char *buf) 590 { 591 struct phy_device *phydev = to_phy_device(dev); 592 593 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 594 } 595 static DEVICE_ATTR_RO(phy_dev_flags); 596 597 static struct attribute *phy_dev_attrs[] = { 598 &dev_attr_phy_id.attr, 599 &dev_attr_phy_interface.attr, 600 &dev_attr_phy_has_fixups.attr, 601 &dev_attr_phy_dev_flags.attr, 602 NULL, 603 }; 604 ATTRIBUTE_GROUPS(phy_dev); 605 606 static const struct device_type mdio_bus_phy_type = { 607 .name = "PHY", 608 .groups = phy_dev_groups, 609 .release = phy_device_release, 610 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 611 }; 612 613 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 614 { 615 int ret; 616 617 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 618 MDIO_ID_ARGS(phy_id)); 619 /* We only check for failures in executing the usermode binary, 620 * not whether a PHY driver module exists for the PHY ID. 621 * Accept -ENOENT because this may occur in case no initramfs exists, 622 * then modprobe isn't available. 623 */ 624 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 625 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 626 ret, (unsigned long)phy_id); 627 return ret; 628 } 629 630 return 0; 631 } 632 633 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 634 bool is_c45, 635 struct phy_c45_device_ids *c45_ids) 636 { 637 struct phy_device *dev; 638 struct mdio_device *mdiodev; 639 int ret = 0; 640 641 /* We allocate the device, and initialize the default values */ 642 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 643 if (!dev) 644 return ERR_PTR(-ENOMEM); 645 646 mdiodev = &dev->mdio; 647 mdiodev->dev.parent = &bus->dev; 648 mdiodev->dev.bus = &mdio_bus_type; 649 mdiodev->dev.type = &mdio_bus_phy_type; 650 mdiodev->bus = bus; 651 mdiodev->bus_match = phy_bus_match; 652 mdiodev->addr = addr; 653 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 654 mdiodev->device_free = phy_mdio_device_free; 655 mdiodev->device_remove = phy_mdio_device_remove; 656 657 dev->speed = SPEED_UNKNOWN; 658 dev->duplex = DUPLEX_UNKNOWN; 659 dev->pause = 0; 660 dev->asym_pause = 0; 661 dev->link = 0; 662 dev->port = PORT_TP; 663 dev->interface = PHY_INTERFACE_MODE_GMII; 664 665 dev->autoneg = AUTONEG_ENABLE; 666 667 dev->pma_extable = -ENODATA; 668 dev->is_c45 = is_c45; 669 dev->phy_id = phy_id; 670 if (c45_ids) 671 dev->c45_ids = *c45_ids; 672 dev->irq = bus->irq[addr]; 673 674 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 675 device_initialize(&mdiodev->dev); 676 677 dev->state = PHY_DOWN; 678 INIT_LIST_HEAD(&dev->leds); 679 680 mutex_init(&dev->lock); 681 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 682 683 /* Request the appropriate module unconditionally; don't 684 * bother trying to do so only if it isn't already loaded, 685 * because that gets complicated. A hotplug event would have 686 * done an unconditional modprobe anyway. 687 * We don't do normal hotplug because it won't work for MDIO 688 * -- because it relies on the device staying around for long 689 * enough for the driver to get loaded. With MDIO, the NIC 690 * driver will get bored and give up as soon as it finds that 691 * there's no driver _already_ loaded. 692 */ 693 if (is_c45 && c45_ids) { 694 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 695 int i; 696 697 for (i = 1; i < num_ids; i++) { 698 if (c45_ids->device_ids[i] == 0xffffffff) 699 continue; 700 701 ret = phy_request_driver_module(dev, 702 c45_ids->device_ids[i]); 703 if (ret) 704 break; 705 } 706 } else { 707 ret = phy_request_driver_module(dev, phy_id); 708 } 709 710 if (ret) { 711 put_device(&mdiodev->dev); 712 dev = ERR_PTR(ret); 713 } 714 715 return dev; 716 } 717 EXPORT_SYMBOL(phy_device_create); 718 719 /* phy_c45_probe_present - checks to see if a MMD is present in the package 720 * @bus: the target MII bus 721 * @prtad: PHY package address on the MII bus 722 * @devad: PHY device (MMD) address 723 * 724 * Read the MDIO_STAT2 register, and check whether a device is responding 725 * at this address. 726 * 727 * Returns: negative error number on bus access error, zero if no device 728 * is responding, or positive if a device is present. 729 */ 730 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 731 { 732 int stat2; 733 734 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 735 if (stat2 < 0) 736 return stat2; 737 738 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 739 } 740 741 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 742 * @bus: the target MII bus 743 * @addr: PHY address on the MII bus 744 * @dev_addr: MMD address in the PHY. 745 * @devices_in_package: where to store the devices in package information. 746 * 747 * Description: reads devices in package registers of a MMD at @dev_addr 748 * from PHY at @addr on @bus. 749 * 750 * Returns: 0 on success, -EIO on failure. 751 */ 752 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 753 u32 *devices_in_package) 754 { 755 int phy_reg; 756 757 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 758 if (phy_reg < 0) 759 return -EIO; 760 *devices_in_package = phy_reg << 16; 761 762 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 763 if (phy_reg < 0) 764 return -EIO; 765 *devices_in_package |= phy_reg; 766 767 return 0; 768 } 769 770 /** 771 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 772 * @bus: the target MII bus 773 * @addr: PHY address on the MII bus 774 * @c45_ids: where to store the c45 ID information. 775 * 776 * Read the PHY "devices in package". If this appears to be valid, read 777 * the PHY identifiers for each device. Return the "devices in package" 778 * and identifiers in @c45_ids. 779 * 780 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 781 * the "devices in package" is invalid. 782 */ 783 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 784 struct phy_c45_device_ids *c45_ids) 785 { 786 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 787 u32 devs_in_pkg = 0; 788 int i, ret, phy_reg; 789 790 /* Find first non-zero Devices In package. Device zero is reserved 791 * for 802.3 c45 complied PHYs, so don't probe it at first. 792 */ 793 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 794 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 795 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 796 /* Check that there is a device present at this 797 * address before reading the devices-in-package 798 * register to avoid reading garbage from the PHY. 799 * Some PHYs (88x3310) vendor space is not IEEE802.3 800 * compliant. 801 */ 802 ret = phy_c45_probe_present(bus, addr, i); 803 if (ret < 0) 804 return -EIO; 805 806 if (!ret) 807 continue; 808 } 809 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 810 if (phy_reg < 0) 811 return -EIO; 812 } 813 814 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 815 /* If mostly Fs, there is no device there, then let's probe 816 * MMD 0, as some 10G PHYs have zero Devices In package, 817 * e.g. Cortina CS4315/CS4340 PHY. 818 */ 819 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 820 if (phy_reg < 0) 821 return -EIO; 822 823 /* no device there, let's get out of here */ 824 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 825 return -ENODEV; 826 } 827 828 /* Now probe Device Identifiers for each device present. */ 829 for (i = 1; i < num_ids; i++) { 830 if (!(devs_in_pkg & (1 << i))) 831 continue; 832 833 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 834 /* Probe the "Device Present" bits for the vendor MMDs 835 * to ignore these if they do not contain IEEE 802.3 836 * registers. 837 */ 838 ret = phy_c45_probe_present(bus, addr, i); 839 if (ret < 0) 840 return ret; 841 842 if (!ret) 843 continue; 844 } 845 846 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 847 if (phy_reg < 0) 848 return -EIO; 849 c45_ids->device_ids[i] = phy_reg << 16; 850 851 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 852 if (phy_reg < 0) 853 return -EIO; 854 c45_ids->device_ids[i] |= phy_reg; 855 } 856 857 c45_ids->devices_in_package = devs_in_pkg; 858 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 859 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 860 861 return 0; 862 } 863 864 /** 865 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 866 * @bus: the target MII bus 867 * @addr: PHY address on the MII bus 868 * @phy_id: where to store the ID retrieved. 869 * 870 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 871 * placing it in @phy_id. Return zero on successful read and the ID is 872 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 873 * or invalid ID. 874 */ 875 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 876 { 877 int phy_reg; 878 879 /* Grab the bits from PHYIR1, and put them in the upper half */ 880 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 881 if (phy_reg < 0) { 882 /* returning -ENODEV doesn't stop bus scanning */ 883 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 884 } 885 886 *phy_id = phy_reg << 16; 887 888 /* Grab the bits from PHYIR2, and put them in the lower half */ 889 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 890 if (phy_reg < 0) { 891 /* returning -ENODEV doesn't stop bus scanning */ 892 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 893 } 894 895 *phy_id |= phy_reg; 896 897 /* If the phy_id is mostly Fs, there is no device there */ 898 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 899 return -ENODEV; 900 901 return 0; 902 } 903 904 /* Extract the phy ID from the compatible string of the form 905 * ethernet-phy-idAAAA.BBBB. 906 */ 907 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 908 { 909 unsigned int upper, lower; 910 const char *cp; 911 int ret; 912 913 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 914 if (ret) 915 return ret; 916 917 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 918 return -EINVAL; 919 920 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 921 return 0; 922 } 923 EXPORT_SYMBOL(fwnode_get_phy_id); 924 925 /** 926 * get_phy_device - reads the specified PHY device and returns its @phy_device 927 * struct 928 * @bus: the target MII bus 929 * @addr: PHY address on the MII bus 930 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 931 * 932 * Probe for a PHY at @addr on @bus. 933 * 934 * When probing for a clause 22 PHY, then read the ID registers. If we find 935 * a valid ID, allocate and return a &struct phy_device. 936 * 937 * When probing for a clause 45 PHY, read the "devices in package" registers. 938 * If the "devices in package" appears valid, read the ID registers for each 939 * MMD, allocate and return a &struct phy_device. 940 * 941 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 942 * no PHY present, or %-EIO on bus access error. 943 */ 944 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 945 { 946 struct phy_c45_device_ids c45_ids; 947 u32 phy_id = 0; 948 int r; 949 950 c45_ids.devices_in_package = 0; 951 c45_ids.mmds_present = 0; 952 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 953 954 if (is_c45) 955 r = get_phy_c45_ids(bus, addr, &c45_ids); 956 else 957 r = get_phy_c22_id(bus, addr, &phy_id); 958 959 if (r) 960 return ERR_PTR(r); 961 962 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 963 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 964 * probe with C45 to see if we're able to get a valid PHY ID in the C45 965 * space, if successful, create the C45 PHY device. 966 */ 967 if (!is_c45 && phy_id == 0 && bus->read_c45) { 968 r = get_phy_c45_ids(bus, addr, &c45_ids); 969 if (!r) 970 return phy_device_create(bus, addr, phy_id, 971 true, &c45_ids); 972 } 973 974 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 975 } 976 EXPORT_SYMBOL(get_phy_device); 977 978 /** 979 * phy_device_register - Register the phy device on the MDIO bus 980 * @phydev: phy_device structure to be added to the MDIO bus 981 */ 982 int phy_device_register(struct phy_device *phydev) 983 { 984 int err; 985 986 err = mdiobus_register_device(&phydev->mdio); 987 if (err) 988 return err; 989 990 /* Deassert the reset signal */ 991 phy_device_reset(phydev, 0); 992 993 /* Run all of the fixups for this PHY */ 994 err = phy_scan_fixups(phydev); 995 if (err) { 996 phydev_err(phydev, "failed to initialize\n"); 997 goto out; 998 } 999 1000 err = device_add(&phydev->mdio.dev); 1001 if (err) { 1002 phydev_err(phydev, "failed to add\n"); 1003 goto out; 1004 } 1005 1006 return 0; 1007 1008 out: 1009 /* Assert the reset signal */ 1010 phy_device_reset(phydev, 1); 1011 1012 mdiobus_unregister_device(&phydev->mdio); 1013 return err; 1014 } 1015 EXPORT_SYMBOL(phy_device_register); 1016 1017 /** 1018 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1019 * @phydev: phy_device structure to remove 1020 * 1021 * This doesn't free the phy_device itself, it merely reverses the effects 1022 * of phy_device_register(). Use phy_device_free() to free the device 1023 * after calling this function. 1024 */ 1025 void phy_device_remove(struct phy_device *phydev) 1026 { 1027 unregister_mii_timestamper(phydev->mii_ts); 1028 pse_control_put(phydev->psec); 1029 1030 device_del(&phydev->mdio.dev); 1031 1032 /* Assert the reset signal */ 1033 phy_device_reset(phydev, 1); 1034 1035 mdiobus_unregister_device(&phydev->mdio); 1036 } 1037 EXPORT_SYMBOL(phy_device_remove); 1038 1039 /** 1040 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1041 * @phydev: phy_device structure to read 802.3-c45 IDs 1042 * 1043 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1044 * the "devices in package" is invalid. 1045 */ 1046 int phy_get_c45_ids(struct phy_device *phydev) 1047 { 1048 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1049 &phydev->c45_ids); 1050 } 1051 EXPORT_SYMBOL(phy_get_c45_ids); 1052 1053 /** 1054 * phy_find_first - finds the first PHY device on the bus 1055 * @bus: the target MII bus 1056 */ 1057 struct phy_device *phy_find_first(struct mii_bus *bus) 1058 { 1059 struct phy_device *phydev; 1060 int addr; 1061 1062 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1063 phydev = mdiobus_get_phy(bus, addr); 1064 if (phydev) 1065 return phydev; 1066 } 1067 return NULL; 1068 } 1069 EXPORT_SYMBOL(phy_find_first); 1070 1071 static void phy_link_change(struct phy_device *phydev, bool up) 1072 { 1073 struct net_device *netdev = phydev->attached_dev; 1074 1075 if (up) 1076 netif_carrier_on(netdev); 1077 else 1078 netif_carrier_off(netdev); 1079 phydev->adjust_link(netdev); 1080 if (phydev->mii_ts && phydev->mii_ts->link_state) 1081 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1082 } 1083 1084 /** 1085 * phy_prepare_link - prepares the PHY layer to monitor link status 1086 * @phydev: target phy_device struct 1087 * @handler: callback function for link status change notifications 1088 * 1089 * Description: Tells the PHY infrastructure to handle the 1090 * gory details on monitoring link status (whether through 1091 * polling or an interrupt), and to call back to the 1092 * connected device driver when the link status changes. 1093 * If you want to monitor your own link state, don't call 1094 * this function. 1095 */ 1096 static void phy_prepare_link(struct phy_device *phydev, 1097 void (*handler)(struct net_device *)) 1098 { 1099 phydev->adjust_link = handler; 1100 } 1101 1102 /** 1103 * phy_connect_direct - connect an ethernet device to a specific phy_device 1104 * @dev: the network device to connect 1105 * @phydev: the pointer to the phy device 1106 * @handler: callback function for state change notifications 1107 * @interface: PHY device's interface 1108 */ 1109 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1110 void (*handler)(struct net_device *), 1111 phy_interface_t interface) 1112 { 1113 int rc; 1114 1115 if (!dev) 1116 return -EINVAL; 1117 1118 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1119 if (rc) 1120 return rc; 1121 1122 phy_prepare_link(phydev, handler); 1123 if (phy_interrupt_is_valid(phydev)) 1124 phy_request_interrupt(phydev); 1125 1126 return 0; 1127 } 1128 EXPORT_SYMBOL(phy_connect_direct); 1129 1130 /** 1131 * phy_connect - connect an ethernet device to a PHY device 1132 * @dev: the network device to connect 1133 * @bus_id: the id string of the PHY device to connect 1134 * @handler: callback function for state change notifications 1135 * @interface: PHY device's interface 1136 * 1137 * Description: Convenience function for connecting ethernet 1138 * devices to PHY devices. The default behavior is for 1139 * the PHY infrastructure to handle everything, and only notify 1140 * the connected driver when the link status changes. If you 1141 * don't want, or can't use the provided functionality, you may 1142 * choose to call only the subset of functions which provide 1143 * the desired functionality. 1144 */ 1145 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1146 void (*handler)(struct net_device *), 1147 phy_interface_t interface) 1148 { 1149 struct phy_device *phydev; 1150 struct device *d; 1151 int rc; 1152 1153 /* Search the list of PHY devices on the mdio bus for the 1154 * PHY with the requested name 1155 */ 1156 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1157 if (!d) { 1158 pr_err("PHY %s not found\n", bus_id); 1159 return ERR_PTR(-ENODEV); 1160 } 1161 phydev = to_phy_device(d); 1162 1163 rc = phy_connect_direct(dev, phydev, handler, interface); 1164 put_device(d); 1165 if (rc) 1166 return ERR_PTR(rc); 1167 1168 return phydev; 1169 } 1170 EXPORT_SYMBOL(phy_connect); 1171 1172 /** 1173 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1174 * device 1175 * @phydev: target phy_device struct 1176 */ 1177 void phy_disconnect(struct phy_device *phydev) 1178 { 1179 if (phy_is_started(phydev)) 1180 phy_stop(phydev); 1181 1182 if (phy_interrupt_is_valid(phydev)) 1183 phy_free_interrupt(phydev); 1184 1185 phydev->adjust_link = NULL; 1186 1187 phy_detach(phydev); 1188 } 1189 EXPORT_SYMBOL(phy_disconnect); 1190 1191 /** 1192 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1193 * @phydev: The PHY device to poll 1194 * 1195 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1196 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1197 * register must be polled until the BMCR_RESET bit clears. 1198 * 1199 * Furthermore, any attempts to write to PHY registers may have no effect 1200 * or even generate MDIO bus errors until this is complete. 1201 * 1202 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1203 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1204 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1205 * effort to support such broken PHYs, this function is separate from the 1206 * standard phy_init_hw() which will zero all the other bits in the BMCR 1207 * and reapply all driver-specific and board-specific fixups. 1208 */ 1209 static int phy_poll_reset(struct phy_device *phydev) 1210 { 1211 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1212 int ret, val; 1213 1214 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1215 50000, 600000, true); 1216 if (ret) 1217 return ret; 1218 /* Some chips (smsc911x) may still need up to another 1ms after the 1219 * BMCR_RESET bit is cleared before they are usable. 1220 */ 1221 msleep(1); 1222 return 0; 1223 } 1224 1225 int phy_init_hw(struct phy_device *phydev) 1226 { 1227 int ret = 0; 1228 1229 /* Deassert the reset signal */ 1230 phy_device_reset(phydev, 0); 1231 1232 if (!phydev->drv) 1233 return 0; 1234 1235 if (phydev->drv->soft_reset) { 1236 ret = phydev->drv->soft_reset(phydev); 1237 /* see comment in genphy_soft_reset for an explanation */ 1238 if (!ret) 1239 phydev->suspended = 0; 1240 } 1241 1242 if (ret < 0) 1243 return ret; 1244 1245 ret = phy_scan_fixups(phydev); 1246 if (ret < 0) 1247 return ret; 1248 1249 if (phydev->drv->config_init) { 1250 ret = phydev->drv->config_init(phydev); 1251 if (ret < 0) 1252 return ret; 1253 } 1254 1255 if (phydev->drv->config_intr) { 1256 ret = phydev->drv->config_intr(phydev); 1257 if (ret < 0) 1258 return ret; 1259 } 1260 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(phy_init_hw); 1264 1265 void phy_attached_info(struct phy_device *phydev) 1266 { 1267 phy_attached_print(phydev, NULL); 1268 } 1269 EXPORT_SYMBOL(phy_attached_info); 1270 1271 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1272 char *phy_attached_info_irq(struct phy_device *phydev) 1273 { 1274 char *irq_str; 1275 char irq_num[8]; 1276 1277 switch(phydev->irq) { 1278 case PHY_POLL: 1279 irq_str = "POLL"; 1280 break; 1281 case PHY_MAC_INTERRUPT: 1282 irq_str = "MAC"; 1283 break; 1284 default: 1285 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1286 irq_str = irq_num; 1287 break; 1288 } 1289 1290 return kasprintf(GFP_KERNEL, "%s", irq_str); 1291 } 1292 EXPORT_SYMBOL(phy_attached_info_irq); 1293 1294 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1295 { 1296 const char *unbound = phydev->drv ? "" : "[unbound] "; 1297 char *irq_str = phy_attached_info_irq(phydev); 1298 1299 if (!fmt) { 1300 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1301 phydev_name(phydev), irq_str); 1302 } else { 1303 va_list ap; 1304 1305 phydev_info(phydev, ATTACHED_FMT, unbound, 1306 phydev_name(phydev), irq_str); 1307 1308 va_start(ap, fmt); 1309 vprintk(fmt, ap); 1310 va_end(ap); 1311 } 1312 kfree(irq_str); 1313 } 1314 EXPORT_SYMBOL(phy_attached_print); 1315 1316 static void phy_sysfs_create_links(struct phy_device *phydev) 1317 { 1318 struct net_device *dev = phydev->attached_dev; 1319 int err; 1320 1321 if (!dev) 1322 return; 1323 1324 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1325 "attached_dev"); 1326 if (err) 1327 return; 1328 1329 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1330 &phydev->mdio.dev.kobj, 1331 "phydev"); 1332 if (err) { 1333 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1334 kobject_name(&phydev->mdio.dev.kobj), 1335 err); 1336 /* non-fatal - some net drivers can use one netdevice 1337 * with more then one phy 1338 */ 1339 } 1340 1341 phydev->sysfs_links = true; 1342 } 1343 1344 static ssize_t 1345 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1346 char *buf) 1347 { 1348 struct phy_device *phydev = to_phy_device(dev); 1349 1350 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1351 } 1352 static DEVICE_ATTR_RO(phy_standalone); 1353 1354 /** 1355 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1356 * @upstream: pointer to the phy device 1357 * @bus: sfp bus representing cage being attached 1358 * 1359 * This is used to fill in the sfp_upstream_ops .attach member. 1360 */ 1361 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1362 { 1363 struct phy_device *phydev = upstream; 1364 1365 if (phydev->attached_dev) 1366 phydev->attached_dev->sfp_bus = bus; 1367 phydev->sfp_bus_attached = true; 1368 } 1369 EXPORT_SYMBOL(phy_sfp_attach); 1370 1371 /** 1372 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1373 * @upstream: pointer to the phy device 1374 * @bus: sfp bus representing cage being attached 1375 * 1376 * This is used to fill in the sfp_upstream_ops .detach member. 1377 */ 1378 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1379 { 1380 struct phy_device *phydev = upstream; 1381 1382 if (phydev->attached_dev) 1383 phydev->attached_dev->sfp_bus = NULL; 1384 phydev->sfp_bus_attached = false; 1385 } 1386 EXPORT_SYMBOL(phy_sfp_detach); 1387 1388 /** 1389 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1390 * @phydev: Pointer to phy_device 1391 * @ops: SFP's upstream operations 1392 */ 1393 int phy_sfp_probe(struct phy_device *phydev, 1394 const struct sfp_upstream_ops *ops) 1395 { 1396 struct sfp_bus *bus; 1397 int ret = 0; 1398 1399 if (phydev->mdio.dev.fwnode) { 1400 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1401 if (IS_ERR(bus)) 1402 return PTR_ERR(bus); 1403 1404 phydev->sfp_bus = bus; 1405 1406 ret = sfp_bus_add_upstream(bus, phydev, ops); 1407 sfp_bus_put(bus); 1408 } 1409 return ret; 1410 } 1411 EXPORT_SYMBOL(phy_sfp_probe); 1412 1413 /** 1414 * phy_attach_direct - attach a network device to a given PHY device pointer 1415 * @dev: network device to attach 1416 * @phydev: Pointer to phy_device to attach 1417 * @flags: PHY device's dev_flags 1418 * @interface: PHY device's interface 1419 * 1420 * Description: Called by drivers to attach to a particular PHY 1421 * device. The phy_device is found, and properly hooked up 1422 * to the phy_driver. If no driver is attached, then a 1423 * generic driver is used. The phy_device is given a ptr to 1424 * the attaching device, and given a callback for link status 1425 * change. The phy_device is returned to the attaching driver. 1426 * This function takes a reference on the phy device. 1427 */ 1428 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1429 u32 flags, phy_interface_t interface) 1430 { 1431 struct mii_bus *bus = phydev->mdio.bus; 1432 struct device *d = &phydev->mdio.dev; 1433 struct module *ndev_owner = NULL; 1434 bool using_genphy = false; 1435 int err; 1436 1437 /* For Ethernet device drivers that register their own MDIO bus, we 1438 * will have bus->owner match ndev_mod, so we do not want to increment 1439 * our own module->refcnt here, otherwise we would not be able to 1440 * unload later on. 1441 */ 1442 if (dev) 1443 ndev_owner = dev->dev.parent->driver->owner; 1444 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1445 phydev_err(phydev, "failed to get the bus module\n"); 1446 return -EIO; 1447 } 1448 1449 get_device(d); 1450 1451 /* Assume that if there is no driver, that it doesn't 1452 * exist, and we should use the genphy driver. 1453 */ 1454 if (!d->driver) { 1455 if (phydev->is_c45) 1456 d->driver = &genphy_c45_driver.mdiodrv.driver; 1457 else 1458 d->driver = &genphy_driver.mdiodrv.driver; 1459 1460 using_genphy = true; 1461 } 1462 1463 if (!try_module_get(d->driver->owner)) { 1464 phydev_err(phydev, "failed to get the device driver module\n"); 1465 err = -EIO; 1466 goto error_put_device; 1467 } 1468 1469 if (using_genphy) { 1470 err = d->driver->probe(d); 1471 if (err >= 0) 1472 err = device_bind_driver(d); 1473 1474 if (err) 1475 goto error_module_put; 1476 } 1477 1478 if (phydev->attached_dev) { 1479 dev_err(&dev->dev, "PHY already attached\n"); 1480 err = -EBUSY; 1481 goto error; 1482 } 1483 1484 phydev->phy_link_change = phy_link_change; 1485 if (dev) { 1486 phydev->attached_dev = dev; 1487 dev->phydev = phydev; 1488 1489 if (phydev->sfp_bus_attached) 1490 dev->sfp_bus = phydev->sfp_bus; 1491 else if (dev->sfp_bus) 1492 phydev->is_on_sfp_module = true; 1493 } 1494 1495 /* Some Ethernet drivers try to connect to a PHY device before 1496 * calling register_netdevice() -> netdev_register_kobject() and 1497 * does the dev->dev.kobj initialization. Here we only check for 1498 * success which indicates that the network device kobject is 1499 * ready. Once we do that we still need to keep track of whether 1500 * links were successfully set up or not for phy_detach() to 1501 * remove them accordingly. 1502 */ 1503 phydev->sysfs_links = false; 1504 1505 phy_sysfs_create_links(phydev); 1506 1507 if (!phydev->attached_dev) { 1508 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1509 &dev_attr_phy_standalone.attr); 1510 if (err) 1511 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1512 } 1513 1514 phydev->dev_flags |= flags; 1515 1516 phydev->interface = interface; 1517 1518 phydev->state = PHY_READY; 1519 1520 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1521 1522 /* PHYs can request to use poll mode even though they have an 1523 * associated interrupt line. This could be the case if they 1524 * detect a broken interrupt handling. 1525 */ 1526 if (phydev->dev_flags & PHY_F_NO_IRQ) 1527 phydev->irq = PHY_POLL; 1528 1529 /* Port is set to PORT_TP by default and the actual PHY driver will set 1530 * it to different value depending on the PHY configuration. If we have 1531 * the generic PHY driver we can't figure it out, thus set the old 1532 * legacy PORT_MII value. 1533 */ 1534 if (using_genphy) 1535 phydev->port = PORT_MII; 1536 1537 /* Initial carrier state is off as the phy is about to be 1538 * (re)initialized. 1539 */ 1540 if (dev) 1541 netif_carrier_off(phydev->attached_dev); 1542 1543 /* Do initial configuration here, now that 1544 * we have certain key parameters 1545 * (dev_flags and interface) 1546 */ 1547 err = phy_init_hw(phydev); 1548 if (err) 1549 goto error; 1550 1551 phy_resume(phydev); 1552 phy_led_triggers_register(phydev); 1553 1554 /** 1555 * If the external phy used by current mac interface is managed by 1556 * another mac interface, so we should create a device link between 1557 * phy dev and mac dev. 1558 */ 1559 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1560 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1561 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1562 1563 return err; 1564 1565 error: 1566 /* phy_detach() does all of the cleanup below */ 1567 phy_detach(phydev); 1568 return err; 1569 1570 error_module_put: 1571 module_put(d->driver->owner); 1572 d->driver = NULL; 1573 error_put_device: 1574 put_device(d); 1575 if (ndev_owner != bus->owner) 1576 module_put(bus->owner); 1577 return err; 1578 } 1579 EXPORT_SYMBOL(phy_attach_direct); 1580 1581 /** 1582 * phy_attach - attach a network device to a particular PHY device 1583 * @dev: network device to attach 1584 * @bus_id: Bus ID of PHY device to attach 1585 * @interface: PHY device's interface 1586 * 1587 * Description: Same as phy_attach_direct() except that a PHY bus_id 1588 * string is passed instead of a pointer to a struct phy_device. 1589 */ 1590 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1591 phy_interface_t interface) 1592 { 1593 struct bus_type *bus = &mdio_bus_type; 1594 struct phy_device *phydev; 1595 struct device *d; 1596 int rc; 1597 1598 if (!dev) 1599 return ERR_PTR(-EINVAL); 1600 1601 /* Search the list of PHY devices on the mdio bus for the 1602 * PHY with the requested name 1603 */ 1604 d = bus_find_device_by_name(bus, NULL, bus_id); 1605 if (!d) { 1606 pr_err("PHY %s not found\n", bus_id); 1607 return ERR_PTR(-ENODEV); 1608 } 1609 phydev = to_phy_device(d); 1610 1611 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1612 put_device(d); 1613 if (rc) 1614 return ERR_PTR(rc); 1615 1616 return phydev; 1617 } 1618 EXPORT_SYMBOL(phy_attach); 1619 1620 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1621 struct device_driver *driver) 1622 { 1623 struct device *d = &phydev->mdio.dev; 1624 bool ret = false; 1625 1626 if (!phydev->drv) 1627 return ret; 1628 1629 get_device(d); 1630 ret = d->driver == driver; 1631 put_device(d); 1632 1633 return ret; 1634 } 1635 1636 bool phy_driver_is_genphy(struct phy_device *phydev) 1637 { 1638 return phy_driver_is_genphy_kind(phydev, 1639 &genphy_driver.mdiodrv.driver); 1640 } 1641 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1642 1643 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1644 { 1645 return phy_driver_is_genphy_kind(phydev, 1646 &genphy_c45_driver.mdiodrv.driver); 1647 } 1648 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1649 1650 /** 1651 * phy_package_join - join a common PHY group 1652 * @phydev: target phy_device struct 1653 * @addr: cookie and PHY address for global register access 1654 * @priv_size: if non-zero allocate this amount of bytes for private data 1655 * 1656 * This joins a PHY group and provides a shared storage for all phydevs in 1657 * this group. This is intended to be used for packages which contain 1658 * more than one PHY, for example a quad PHY transceiver. 1659 * 1660 * The addr parameter serves as a cookie which has to have the same value 1661 * for all members of one group and as a PHY address to access generic 1662 * registers of a PHY package. Usually, one of the PHY addresses of the 1663 * different PHYs in the package provides access to these global registers. 1664 * The address which is given here, will be used in the phy_package_read() 1665 * and phy_package_write() convenience functions. If your PHY doesn't have 1666 * global registers you can just pick any of the PHY addresses. 1667 * 1668 * This will set the shared pointer of the phydev to the shared storage. 1669 * If this is the first call for a this cookie the shared storage will be 1670 * allocated. If priv_size is non-zero, the given amount of bytes are 1671 * allocated for the priv member. 1672 * 1673 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1674 * with the same cookie but a different priv_size is an error. 1675 */ 1676 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1677 { 1678 struct mii_bus *bus = phydev->mdio.bus; 1679 struct phy_package_shared *shared; 1680 int ret; 1681 1682 if (addr < 0 || addr >= PHY_MAX_ADDR) 1683 return -EINVAL; 1684 1685 mutex_lock(&bus->shared_lock); 1686 shared = bus->shared[addr]; 1687 if (!shared) { 1688 ret = -ENOMEM; 1689 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1690 if (!shared) 1691 goto err_unlock; 1692 if (priv_size) { 1693 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1694 if (!shared->priv) 1695 goto err_free; 1696 shared->priv_size = priv_size; 1697 } 1698 shared->addr = addr; 1699 refcount_set(&shared->refcnt, 1); 1700 bus->shared[addr] = shared; 1701 } else { 1702 ret = -EINVAL; 1703 if (priv_size && priv_size != shared->priv_size) 1704 goto err_unlock; 1705 refcount_inc(&shared->refcnt); 1706 } 1707 mutex_unlock(&bus->shared_lock); 1708 1709 phydev->shared = shared; 1710 1711 return 0; 1712 1713 err_free: 1714 kfree(shared); 1715 err_unlock: 1716 mutex_unlock(&bus->shared_lock); 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(phy_package_join); 1720 1721 /** 1722 * phy_package_leave - leave a common PHY group 1723 * @phydev: target phy_device struct 1724 * 1725 * This leaves a PHY group created by phy_package_join(). If this phydev 1726 * was the last user of the shared data between the group, this data is 1727 * freed. Resets the phydev->shared pointer to NULL. 1728 */ 1729 void phy_package_leave(struct phy_device *phydev) 1730 { 1731 struct phy_package_shared *shared = phydev->shared; 1732 struct mii_bus *bus = phydev->mdio.bus; 1733 1734 if (!shared) 1735 return; 1736 1737 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1738 bus->shared[shared->addr] = NULL; 1739 mutex_unlock(&bus->shared_lock); 1740 kfree(shared->priv); 1741 kfree(shared); 1742 } 1743 1744 phydev->shared = NULL; 1745 } 1746 EXPORT_SYMBOL_GPL(phy_package_leave); 1747 1748 static void devm_phy_package_leave(struct device *dev, void *res) 1749 { 1750 phy_package_leave(*(struct phy_device **)res); 1751 } 1752 1753 /** 1754 * devm_phy_package_join - resource managed phy_package_join() 1755 * @dev: device that is registering this PHY package 1756 * @phydev: target phy_device struct 1757 * @addr: cookie and PHY address for global register access 1758 * @priv_size: if non-zero allocate this amount of bytes for private data 1759 * 1760 * Managed phy_package_join(). Shared storage fetched by this function, 1761 * phy_package_leave() is automatically called on driver detach. See 1762 * phy_package_join() for more information. 1763 */ 1764 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1765 int addr, size_t priv_size) 1766 { 1767 struct phy_device **ptr; 1768 int ret; 1769 1770 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1771 GFP_KERNEL); 1772 if (!ptr) 1773 return -ENOMEM; 1774 1775 ret = phy_package_join(phydev, addr, priv_size); 1776 1777 if (!ret) { 1778 *ptr = phydev; 1779 devres_add(dev, ptr); 1780 } else { 1781 devres_free(ptr); 1782 } 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1787 1788 /** 1789 * phy_detach - detach a PHY device from its network device 1790 * @phydev: target phy_device struct 1791 * 1792 * This detaches the phy device from its network device and the phy 1793 * driver, and drops the reference count taken in phy_attach_direct(). 1794 */ 1795 void phy_detach(struct phy_device *phydev) 1796 { 1797 struct net_device *dev = phydev->attached_dev; 1798 struct module *ndev_owner = NULL; 1799 struct mii_bus *bus; 1800 1801 if (phydev->devlink) 1802 device_link_del(phydev->devlink); 1803 1804 if (phydev->sysfs_links) { 1805 if (dev) 1806 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1807 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1808 } 1809 1810 if (!phydev->attached_dev) 1811 sysfs_remove_file(&phydev->mdio.dev.kobj, 1812 &dev_attr_phy_standalone.attr); 1813 1814 phy_suspend(phydev); 1815 if (dev) { 1816 phydev->attached_dev->phydev = NULL; 1817 phydev->attached_dev = NULL; 1818 } 1819 phydev->phylink = NULL; 1820 1821 phy_led_triggers_unregister(phydev); 1822 1823 if (phydev->mdio.dev.driver) 1824 module_put(phydev->mdio.dev.driver->owner); 1825 1826 /* If the device had no specific driver before (i.e. - it 1827 * was using the generic driver), we unbind the device 1828 * from the generic driver so that there's a chance a 1829 * real driver could be loaded 1830 */ 1831 if (phy_driver_is_genphy(phydev) || 1832 phy_driver_is_genphy_10g(phydev)) 1833 device_release_driver(&phydev->mdio.dev); 1834 1835 /* Assert the reset signal */ 1836 phy_device_reset(phydev, 1); 1837 1838 /* 1839 * The phydev might go away on the put_device() below, so avoid 1840 * a use-after-free bug by reading the underlying bus first. 1841 */ 1842 bus = phydev->mdio.bus; 1843 1844 put_device(&phydev->mdio.dev); 1845 if (dev) 1846 ndev_owner = dev->dev.parent->driver->owner; 1847 if (ndev_owner != bus->owner) 1848 module_put(bus->owner); 1849 } 1850 EXPORT_SYMBOL(phy_detach); 1851 1852 int phy_suspend(struct phy_device *phydev) 1853 { 1854 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1855 struct net_device *netdev = phydev->attached_dev; 1856 struct phy_driver *phydrv = phydev->drv; 1857 int ret; 1858 1859 if (phydev->suspended) 1860 return 0; 1861 1862 phy_ethtool_get_wol(phydev, &wol); 1863 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1864 /* If the device has WOL enabled, we cannot suspend the PHY */ 1865 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1866 return -EBUSY; 1867 1868 if (!phydrv || !phydrv->suspend) 1869 return 0; 1870 1871 ret = phydrv->suspend(phydev); 1872 if (!ret) 1873 phydev->suspended = true; 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL(phy_suspend); 1878 1879 int __phy_resume(struct phy_device *phydev) 1880 { 1881 struct phy_driver *phydrv = phydev->drv; 1882 int ret; 1883 1884 lockdep_assert_held(&phydev->lock); 1885 1886 if (!phydrv || !phydrv->resume) 1887 return 0; 1888 1889 ret = phydrv->resume(phydev); 1890 if (!ret) 1891 phydev->suspended = false; 1892 1893 return ret; 1894 } 1895 EXPORT_SYMBOL(__phy_resume); 1896 1897 int phy_resume(struct phy_device *phydev) 1898 { 1899 int ret; 1900 1901 mutex_lock(&phydev->lock); 1902 ret = __phy_resume(phydev); 1903 mutex_unlock(&phydev->lock); 1904 1905 return ret; 1906 } 1907 EXPORT_SYMBOL(phy_resume); 1908 1909 int phy_loopback(struct phy_device *phydev, bool enable) 1910 { 1911 int ret = 0; 1912 1913 if (!phydev->drv) 1914 return -EIO; 1915 1916 mutex_lock(&phydev->lock); 1917 1918 if (enable && phydev->loopback_enabled) { 1919 ret = -EBUSY; 1920 goto out; 1921 } 1922 1923 if (!enable && !phydev->loopback_enabled) { 1924 ret = -EINVAL; 1925 goto out; 1926 } 1927 1928 if (phydev->drv->set_loopback) 1929 ret = phydev->drv->set_loopback(phydev, enable); 1930 else 1931 ret = genphy_loopback(phydev, enable); 1932 1933 if (ret) 1934 goto out; 1935 1936 phydev->loopback_enabled = enable; 1937 1938 out: 1939 mutex_unlock(&phydev->lock); 1940 return ret; 1941 } 1942 EXPORT_SYMBOL(phy_loopback); 1943 1944 /** 1945 * phy_reset_after_clk_enable - perform a PHY reset if needed 1946 * @phydev: target phy_device struct 1947 * 1948 * Description: Some PHYs are known to need a reset after their refclk was 1949 * enabled. This function evaluates the flags and perform the reset if it's 1950 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1951 * was reset. 1952 */ 1953 int phy_reset_after_clk_enable(struct phy_device *phydev) 1954 { 1955 if (!phydev || !phydev->drv) 1956 return -ENODEV; 1957 1958 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1959 phy_device_reset(phydev, 1); 1960 phy_device_reset(phydev, 0); 1961 return 1; 1962 } 1963 1964 return 0; 1965 } 1966 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1967 1968 /* Generic PHY support and helper functions */ 1969 1970 /** 1971 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1972 * @phydev: target phy_device struct 1973 * 1974 * Description: Writes MII_ADVERTISE with the appropriate values, 1975 * after sanitizing the values to make sure we only advertise 1976 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1977 * hasn't changed, and > 0 if it has changed. 1978 */ 1979 static int genphy_config_advert(struct phy_device *phydev) 1980 { 1981 int err, bmsr, changed = 0; 1982 u32 adv; 1983 1984 /* Only allow advertising what this PHY supports */ 1985 linkmode_and(phydev->advertising, phydev->advertising, 1986 phydev->supported); 1987 1988 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1989 1990 /* Setup standard advertisement */ 1991 err = phy_modify_changed(phydev, MII_ADVERTISE, 1992 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1993 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1994 adv); 1995 if (err < 0) 1996 return err; 1997 if (err > 0) 1998 changed = 1; 1999 2000 bmsr = phy_read(phydev, MII_BMSR); 2001 if (bmsr < 0) 2002 return bmsr; 2003 2004 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2005 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2006 * logical 1. 2007 */ 2008 if (!(bmsr & BMSR_ESTATEN)) 2009 return changed; 2010 2011 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2012 2013 err = phy_modify_changed(phydev, MII_CTRL1000, 2014 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2015 adv); 2016 if (err < 0) 2017 return err; 2018 if (err > 0) 2019 changed = 1; 2020 2021 return changed; 2022 } 2023 2024 /** 2025 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2026 * @phydev: target phy_device struct 2027 * 2028 * Description: Writes MII_ADVERTISE with the appropriate values, 2029 * after sanitizing the values to make sure we only advertise 2030 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2031 * hasn't changed, and > 0 if it has changed. This function is intended 2032 * for Clause 37 1000Base-X mode. 2033 */ 2034 static int genphy_c37_config_advert(struct phy_device *phydev) 2035 { 2036 u16 adv = 0; 2037 2038 /* Only allow advertising what this PHY supports */ 2039 linkmode_and(phydev->advertising, phydev->advertising, 2040 phydev->supported); 2041 2042 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2043 phydev->advertising)) 2044 adv |= ADVERTISE_1000XFULL; 2045 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2046 phydev->advertising)) 2047 adv |= ADVERTISE_1000XPAUSE; 2048 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2049 phydev->advertising)) 2050 adv |= ADVERTISE_1000XPSE_ASYM; 2051 2052 return phy_modify_changed(phydev, MII_ADVERTISE, 2053 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2054 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2055 adv); 2056 } 2057 2058 /** 2059 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2060 * @phydev: target phy_device struct 2061 * 2062 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2063 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2064 * changed, and 1 if it has changed. 2065 */ 2066 int genphy_config_eee_advert(struct phy_device *phydev) 2067 { 2068 int err; 2069 2070 /* Nothing to disable */ 2071 if (!phydev->eee_broken_modes) 2072 return 0; 2073 2074 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2075 phydev->eee_broken_modes, 0); 2076 /* If the call failed, we assume that EEE is not supported */ 2077 return err < 0 ? 0 : err; 2078 } 2079 EXPORT_SYMBOL(genphy_config_eee_advert); 2080 2081 /** 2082 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2083 * @phydev: target phy_device struct 2084 * 2085 * Description: Configures MII_BMCR to force speed/duplex 2086 * to the values in phydev. Assumes that the values are valid. 2087 * Please see phy_sanitize_settings(). 2088 */ 2089 int genphy_setup_forced(struct phy_device *phydev) 2090 { 2091 u16 ctl; 2092 2093 phydev->pause = 0; 2094 phydev->asym_pause = 0; 2095 2096 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2097 2098 return phy_modify(phydev, MII_BMCR, 2099 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2100 } 2101 EXPORT_SYMBOL(genphy_setup_forced); 2102 2103 static int genphy_setup_master_slave(struct phy_device *phydev) 2104 { 2105 u16 ctl = 0; 2106 2107 if (!phydev->is_gigabit_capable) 2108 return 0; 2109 2110 switch (phydev->master_slave_set) { 2111 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2112 ctl |= CTL1000_PREFER_MASTER; 2113 break; 2114 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2115 break; 2116 case MASTER_SLAVE_CFG_MASTER_FORCE: 2117 ctl |= CTL1000_AS_MASTER; 2118 fallthrough; 2119 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2120 ctl |= CTL1000_ENABLE_MASTER; 2121 break; 2122 case MASTER_SLAVE_CFG_UNKNOWN: 2123 case MASTER_SLAVE_CFG_UNSUPPORTED: 2124 return 0; 2125 default: 2126 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2127 return -EOPNOTSUPP; 2128 } 2129 2130 return phy_modify_changed(phydev, MII_CTRL1000, 2131 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2132 CTL1000_PREFER_MASTER), ctl); 2133 } 2134 2135 int genphy_read_master_slave(struct phy_device *phydev) 2136 { 2137 int cfg, state; 2138 int val; 2139 2140 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2141 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2142 2143 val = phy_read(phydev, MII_CTRL1000); 2144 if (val < 0) 2145 return val; 2146 2147 if (val & CTL1000_ENABLE_MASTER) { 2148 if (val & CTL1000_AS_MASTER) 2149 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2150 else 2151 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2152 } else { 2153 if (val & CTL1000_PREFER_MASTER) 2154 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2155 else 2156 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2157 } 2158 2159 val = phy_read(phydev, MII_STAT1000); 2160 if (val < 0) 2161 return val; 2162 2163 if (val & LPA_1000MSFAIL) { 2164 state = MASTER_SLAVE_STATE_ERR; 2165 } else if (phydev->link) { 2166 /* this bits are valid only for active link */ 2167 if (val & LPA_1000MSRES) 2168 state = MASTER_SLAVE_STATE_MASTER; 2169 else 2170 state = MASTER_SLAVE_STATE_SLAVE; 2171 } else { 2172 state = MASTER_SLAVE_STATE_UNKNOWN; 2173 } 2174 2175 phydev->master_slave_get = cfg; 2176 phydev->master_slave_state = state; 2177 2178 return 0; 2179 } 2180 EXPORT_SYMBOL(genphy_read_master_slave); 2181 2182 /** 2183 * genphy_restart_aneg - Enable and Restart Autonegotiation 2184 * @phydev: target phy_device struct 2185 */ 2186 int genphy_restart_aneg(struct phy_device *phydev) 2187 { 2188 /* Don't isolate the PHY if we're negotiating */ 2189 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2190 BMCR_ANENABLE | BMCR_ANRESTART); 2191 } 2192 EXPORT_SYMBOL(genphy_restart_aneg); 2193 2194 /** 2195 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2196 * @phydev: target phy_device struct 2197 * @restart: whether aneg restart is requested 2198 * 2199 * Check, and restart auto-negotiation if needed. 2200 */ 2201 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2202 { 2203 int ret; 2204 2205 if (!restart) { 2206 /* Advertisement hasn't changed, but maybe aneg was never on to 2207 * begin with? Or maybe phy was isolated? 2208 */ 2209 ret = phy_read(phydev, MII_BMCR); 2210 if (ret < 0) 2211 return ret; 2212 2213 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2214 restart = true; 2215 } 2216 2217 if (restart) 2218 return genphy_restart_aneg(phydev); 2219 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2223 2224 /** 2225 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2226 * @phydev: target phy_device struct 2227 * @changed: whether autoneg is requested 2228 * 2229 * Description: If auto-negotiation is enabled, we configure the 2230 * advertising, and then restart auto-negotiation. If it is not 2231 * enabled, then we write the BMCR. 2232 */ 2233 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2234 { 2235 int err; 2236 2237 err = genphy_c45_an_config_eee_aneg(phydev); 2238 if (err < 0) 2239 return err; 2240 else if (err) 2241 changed = true; 2242 2243 err = genphy_setup_master_slave(phydev); 2244 if (err < 0) 2245 return err; 2246 else if (err) 2247 changed = true; 2248 2249 if (AUTONEG_ENABLE != phydev->autoneg) 2250 return genphy_setup_forced(phydev); 2251 2252 err = genphy_config_advert(phydev); 2253 if (err < 0) /* error */ 2254 return err; 2255 else if (err) 2256 changed = true; 2257 2258 return genphy_check_and_restart_aneg(phydev, changed); 2259 } 2260 EXPORT_SYMBOL(__genphy_config_aneg); 2261 2262 /** 2263 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2264 * @phydev: target phy_device struct 2265 * 2266 * Description: If auto-negotiation is enabled, we configure the 2267 * advertising, and then restart auto-negotiation. If it is not 2268 * enabled, then we write the BMCR. This function is intended 2269 * for use with Clause 37 1000Base-X mode. 2270 */ 2271 int genphy_c37_config_aneg(struct phy_device *phydev) 2272 { 2273 int err, changed; 2274 2275 if (phydev->autoneg != AUTONEG_ENABLE) 2276 return genphy_setup_forced(phydev); 2277 2278 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2279 BMCR_SPEED1000); 2280 if (err) 2281 return err; 2282 2283 changed = genphy_c37_config_advert(phydev); 2284 if (changed < 0) /* error */ 2285 return changed; 2286 2287 if (!changed) { 2288 /* Advertisement hasn't changed, but maybe aneg was never on to 2289 * begin with? Or maybe phy was isolated? 2290 */ 2291 int ctl = phy_read(phydev, MII_BMCR); 2292 2293 if (ctl < 0) 2294 return ctl; 2295 2296 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2297 changed = 1; /* do restart aneg */ 2298 } 2299 2300 /* Only restart aneg if we are advertising something different 2301 * than we were before. 2302 */ 2303 if (changed > 0) 2304 return genphy_restart_aneg(phydev); 2305 2306 return 0; 2307 } 2308 EXPORT_SYMBOL(genphy_c37_config_aneg); 2309 2310 /** 2311 * genphy_aneg_done - return auto-negotiation status 2312 * @phydev: target phy_device struct 2313 * 2314 * Description: Reads the status register and returns 0 either if 2315 * auto-negotiation is incomplete, or if there was an error. 2316 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2317 */ 2318 int genphy_aneg_done(struct phy_device *phydev) 2319 { 2320 int retval = phy_read(phydev, MII_BMSR); 2321 2322 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2323 } 2324 EXPORT_SYMBOL(genphy_aneg_done); 2325 2326 /** 2327 * genphy_update_link - update link status in @phydev 2328 * @phydev: target phy_device struct 2329 * 2330 * Description: Update the value in phydev->link to reflect the 2331 * current link value. In order to do this, we need to read 2332 * the status register twice, keeping the second value. 2333 */ 2334 int genphy_update_link(struct phy_device *phydev) 2335 { 2336 int status = 0, bmcr; 2337 2338 bmcr = phy_read(phydev, MII_BMCR); 2339 if (bmcr < 0) 2340 return bmcr; 2341 2342 /* Autoneg is being started, therefore disregard BMSR value and 2343 * report link as down. 2344 */ 2345 if (bmcr & BMCR_ANRESTART) 2346 goto done; 2347 2348 /* The link state is latched low so that momentary link 2349 * drops can be detected. Do not double-read the status 2350 * in polling mode to detect such short link drops except 2351 * the link was already down. 2352 */ 2353 if (!phy_polling_mode(phydev) || !phydev->link) { 2354 status = phy_read(phydev, MII_BMSR); 2355 if (status < 0) 2356 return status; 2357 else if (status & BMSR_LSTATUS) 2358 goto done; 2359 } 2360 2361 /* Read link and autonegotiation status */ 2362 status = phy_read(phydev, MII_BMSR); 2363 if (status < 0) 2364 return status; 2365 done: 2366 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2367 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2368 2369 /* Consider the case that autoneg was started and "aneg complete" 2370 * bit has been reset, but "link up" bit not yet. 2371 */ 2372 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2373 phydev->link = 0; 2374 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(genphy_update_link); 2378 2379 int genphy_read_lpa(struct phy_device *phydev) 2380 { 2381 int lpa, lpagb; 2382 2383 if (phydev->autoneg == AUTONEG_ENABLE) { 2384 if (!phydev->autoneg_complete) { 2385 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2386 0); 2387 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2388 return 0; 2389 } 2390 2391 if (phydev->is_gigabit_capable) { 2392 lpagb = phy_read(phydev, MII_STAT1000); 2393 if (lpagb < 0) 2394 return lpagb; 2395 2396 if (lpagb & LPA_1000MSFAIL) { 2397 int adv = phy_read(phydev, MII_CTRL1000); 2398 2399 if (adv < 0) 2400 return adv; 2401 2402 if (adv & CTL1000_ENABLE_MASTER) 2403 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2404 else 2405 phydev_err(phydev, "Master/Slave resolution failed\n"); 2406 return -ENOLINK; 2407 } 2408 2409 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2410 lpagb); 2411 } 2412 2413 lpa = phy_read(phydev, MII_LPA); 2414 if (lpa < 0) 2415 return lpa; 2416 2417 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2418 } else { 2419 linkmode_zero(phydev->lp_advertising); 2420 } 2421 2422 return 0; 2423 } 2424 EXPORT_SYMBOL(genphy_read_lpa); 2425 2426 /** 2427 * genphy_read_status_fixed - read the link parameters for !aneg mode 2428 * @phydev: target phy_device struct 2429 * 2430 * Read the current duplex and speed state for a PHY operating with 2431 * autonegotiation disabled. 2432 */ 2433 int genphy_read_status_fixed(struct phy_device *phydev) 2434 { 2435 int bmcr = phy_read(phydev, MII_BMCR); 2436 2437 if (bmcr < 0) 2438 return bmcr; 2439 2440 if (bmcr & BMCR_FULLDPLX) 2441 phydev->duplex = DUPLEX_FULL; 2442 else 2443 phydev->duplex = DUPLEX_HALF; 2444 2445 if (bmcr & BMCR_SPEED1000) 2446 phydev->speed = SPEED_1000; 2447 else if (bmcr & BMCR_SPEED100) 2448 phydev->speed = SPEED_100; 2449 else 2450 phydev->speed = SPEED_10; 2451 2452 return 0; 2453 } 2454 EXPORT_SYMBOL(genphy_read_status_fixed); 2455 2456 /** 2457 * genphy_read_status - check the link status and update current link state 2458 * @phydev: target phy_device struct 2459 * 2460 * Description: Check the link, then figure out the current state 2461 * by comparing what we advertise with what the link partner 2462 * advertises. Start by checking the gigabit possibilities, 2463 * then move on to 10/100. 2464 */ 2465 int genphy_read_status(struct phy_device *phydev) 2466 { 2467 int err, old_link = phydev->link; 2468 2469 /* Update the link, but return if there was an error */ 2470 err = genphy_update_link(phydev); 2471 if (err) 2472 return err; 2473 2474 /* why bother the PHY if nothing can have changed */ 2475 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2476 return 0; 2477 2478 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2479 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2480 phydev->speed = SPEED_UNKNOWN; 2481 phydev->duplex = DUPLEX_UNKNOWN; 2482 phydev->pause = 0; 2483 phydev->asym_pause = 0; 2484 2485 if (phydev->is_gigabit_capable) { 2486 err = genphy_read_master_slave(phydev); 2487 if (err < 0) 2488 return err; 2489 } 2490 2491 err = genphy_read_lpa(phydev); 2492 if (err < 0) 2493 return err; 2494 2495 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2496 phy_resolve_aneg_linkmode(phydev); 2497 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2498 err = genphy_read_status_fixed(phydev); 2499 if (err < 0) 2500 return err; 2501 } 2502 2503 return 0; 2504 } 2505 EXPORT_SYMBOL(genphy_read_status); 2506 2507 /** 2508 * genphy_c37_read_status - check the link status and update current link state 2509 * @phydev: target phy_device struct 2510 * 2511 * Description: Check the link, then figure out the current state 2512 * by comparing what we advertise with what the link partner 2513 * advertises. This function is for Clause 37 1000Base-X mode. 2514 */ 2515 int genphy_c37_read_status(struct phy_device *phydev) 2516 { 2517 int lpa, err, old_link = phydev->link; 2518 2519 /* Update the link, but return if there was an error */ 2520 err = genphy_update_link(phydev); 2521 if (err) 2522 return err; 2523 2524 /* why bother the PHY if nothing can have changed */ 2525 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2526 return 0; 2527 2528 phydev->duplex = DUPLEX_UNKNOWN; 2529 phydev->pause = 0; 2530 phydev->asym_pause = 0; 2531 2532 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2533 lpa = phy_read(phydev, MII_LPA); 2534 if (lpa < 0) 2535 return lpa; 2536 2537 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2538 phydev->lp_advertising, lpa & LPA_LPACK); 2539 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2540 phydev->lp_advertising, lpa & LPA_1000XFULL); 2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2542 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2543 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2544 phydev->lp_advertising, 2545 lpa & LPA_1000XPAUSE_ASYM); 2546 2547 phy_resolve_aneg_linkmode(phydev); 2548 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2549 int bmcr = phy_read(phydev, MII_BMCR); 2550 2551 if (bmcr < 0) 2552 return bmcr; 2553 2554 if (bmcr & BMCR_FULLDPLX) 2555 phydev->duplex = DUPLEX_FULL; 2556 else 2557 phydev->duplex = DUPLEX_HALF; 2558 } 2559 2560 return 0; 2561 } 2562 EXPORT_SYMBOL(genphy_c37_read_status); 2563 2564 /** 2565 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2566 * @phydev: target phy_device struct 2567 * 2568 * Description: Perform a software PHY reset using the standard 2569 * BMCR_RESET bit and poll for the reset bit to be cleared. 2570 * 2571 * Returns: 0 on success, < 0 on failure 2572 */ 2573 int genphy_soft_reset(struct phy_device *phydev) 2574 { 2575 u16 res = BMCR_RESET; 2576 int ret; 2577 2578 if (phydev->autoneg == AUTONEG_ENABLE) 2579 res |= BMCR_ANRESTART; 2580 2581 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2582 if (ret < 0) 2583 return ret; 2584 2585 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2586 * to their default value. Therefore the POWER DOWN bit is supposed to 2587 * be cleared after soft reset. 2588 */ 2589 phydev->suspended = 0; 2590 2591 ret = phy_poll_reset(phydev); 2592 if (ret) 2593 return ret; 2594 2595 /* BMCR may be reset to defaults */ 2596 if (phydev->autoneg == AUTONEG_DISABLE) 2597 ret = genphy_setup_forced(phydev); 2598 2599 return ret; 2600 } 2601 EXPORT_SYMBOL(genphy_soft_reset); 2602 2603 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2604 { 2605 /* It seems there are cases where the interrupts are handled by another 2606 * entity (ie an IRQ controller embedded inside the PHY) and do not 2607 * need any other interraction from phylib. In this case, just trigger 2608 * the state machine directly. 2609 */ 2610 phy_trigger_machine(phydev); 2611 2612 return 0; 2613 } 2614 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2615 2616 /** 2617 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2618 * @phydev: target phy_device struct 2619 * 2620 * Description: Reads the PHY's abilities and populates 2621 * phydev->supported accordingly. 2622 * 2623 * Returns: 0 on success, < 0 on failure 2624 */ 2625 int genphy_read_abilities(struct phy_device *phydev) 2626 { 2627 int val; 2628 2629 linkmode_set_bit_array(phy_basic_ports_array, 2630 ARRAY_SIZE(phy_basic_ports_array), 2631 phydev->supported); 2632 2633 val = phy_read(phydev, MII_BMSR); 2634 if (val < 0) 2635 return val; 2636 2637 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2638 val & BMSR_ANEGCAPABLE); 2639 2640 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2641 val & BMSR_100FULL); 2642 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2643 val & BMSR_100HALF); 2644 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2645 val & BMSR_10FULL); 2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2647 val & BMSR_10HALF); 2648 2649 if (val & BMSR_ESTATEN) { 2650 val = phy_read(phydev, MII_ESTATUS); 2651 if (val < 0) 2652 return val; 2653 2654 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2655 phydev->supported, val & ESTATUS_1000_TFULL); 2656 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2657 phydev->supported, val & ESTATUS_1000_THALF); 2658 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2659 phydev->supported, val & ESTATUS_1000_XFULL); 2660 } 2661 2662 /* This is optional functionality. If not supported, we may get an error 2663 * which should be ignored. 2664 */ 2665 genphy_c45_read_eee_abilities(phydev); 2666 2667 return 0; 2668 } 2669 EXPORT_SYMBOL(genphy_read_abilities); 2670 2671 /* This is used for the phy device which doesn't support the MMD extended 2672 * register access, but it does have side effect when we are trying to access 2673 * the MMD register via indirect method. 2674 */ 2675 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2676 { 2677 return -EOPNOTSUPP; 2678 } 2679 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2680 2681 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2682 u16 regnum, u16 val) 2683 { 2684 return -EOPNOTSUPP; 2685 } 2686 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2687 2688 int genphy_suspend(struct phy_device *phydev) 2689 { 2690 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2691 } 2692 EXPORT_SYMBOL(genphy_suspend); 2693 2694 int genphy_resume(struct phy_device *phydev) 2695 { 2696 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2697 } 2698 EXPORT_SYMBOL(genphy_resume); 2699 2700 int genphy_loopback(struct phy_device *phydev, bool enable) 2701 { 2702 if (enable) { 2703 u16 val, ctl = BMCR_LOOPBACK; 2704 int ret; 2705 2706 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2707 2708 phy_modify(phydev, MII_BMCR, ~0, ctl); 2709 2710 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2711 val & BMSR_LSTATUS, 2712 5000, 500000, true); 2713 if (ret) 2714 return ret; 2715 } else { 2716 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2717 2718 phy_config_aneg(phydev); 2719 } 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL(genphy_loopback); 2724 2725 /** 2726 * phy_remove_link_mode - Remove a supported link mode 2727 * @phydev: phy_device structure to remove link mode from 2728 * @link_mode: Link mode to be removed 2729 * 2730 * Description: Some MACs don't support all link modes which the PHY 2731 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2732 * to remove a link mode. 2733 */ 2734 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2735 { 2736 linkmode_clear_bit(link_mode, phydev->supported); 2737 phy_advertise_supported(phydev); 2738 } 2739 EXPORT_SYMBOL(phy_remove_link_mode); 2740 2741 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2742 { 2743 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2744 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2745 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2746 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2747 } 2748 2749 /** 2750 * phy_advertise_supported - Advertise all supported modes 2751 * @phydev: target phy_device struct 2752 * 2753 * Description: Called to advertise all supported modes, doesn't touch 2754 * pause mode advertising. 2755 */ 2756 void phy_advertise_supported(struct phy_device *phydev) 2757 { 2758 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2759 2760 linkmode_copy(new, phydev->supported); 2761 phy_copy_pause_bits(new, phydev->advertising); 2762 linkmode_copy(phydev->advertising, new); 2763 } 2764 EXPORT_SYMBOL(phy_advertise_supported); 2765 2766 /** 2767 * phy_support_sym_pause - Enable support of symmetrical pause 2768 * @phydev: target phy_device struct 2769 * 2770 * Description: Called by the MAC to indicate is supports symmetrical 2771 * Pause, but not asym pause. 2772 */ 2773 void phy_support_sym_pause(struct phy_device *phydev) 2774 { 2775 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2776 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2777 } 2778 EXPORT_SYMBOL(phy_support_sym_pause); 2779 2780 /** 2781 * phy_support_asym_pause - Enable support of asym pause 2782 * @phydev: target phy_device struct 2783 * 2784 * Description: Called by the MAC to indicate is supports Asym Pause. 2785 */ 2786 void phy_support_asym_pause(struct phy_device *phydev) 2787 { 2788 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2789 } 2790 EXPORT_SYMBOL(phy_support_asym_pause); 2791 2792 /** 2793 * phy_set_sym_pause - Configure symmetric Pause 2794 * @phydev: target phy_device struct 2795 * @rx: Receiver Pause is supported 2796 * @tx: Transmit Pause is supported 2797 * @autoneg: Auto neg should be used 2798 * 2799 * Description: Configure advertised Pause support depending on if 2800 * receiver pause and pause auto neg is supported. Generally called 2801 * from the set_pauseparam .ndo. 2802 */ 2803 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2804 bool autoneg) 2805 { 2806 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2807 2808 if (rx && tx && autoneg) 2809 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2810 phydev->supported); 2811 2812 linkmode_copy(phydev->advertising, phydev->supported); 2813 } 2814 EXPORT_SYMBOL(phy_set_sym_pause); 2815 2816 /** 2817 * phy_set_asym_pause - Configure Pause and Asym Pause 2818 * @phydev: target phy_device struct 2819 * @rx: Receiver Pause is supported 2820 * @tx: Transmit Pause is supported 2821 * 2822 * Description: Configure advertised Pause support depending on if 2823 * transmit and receiver pause is supported. If there has been a 2824 * change in adverting, trigger a new autoneg. Generally called from 2825 * the set_pauseparam .ndo. 2826 */ 2827 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2828 { 2829 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2830 2831 linkmode_copy(oldadv, phydev->advertising); 2832 linkmode_set_pause(phydev->advertising, tx, rx); 2833 2834 if (!linkmode_equal(oldadv, phydev->advertising) && 2835 phydev->autoneg) 2836 phy_start_aneg(phydev); 2837 } 2838 EXPORT_SYMBOL(phy_set_asym_pause); 2839 2840 /** 2841 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2842 * @phydev: phy_device struct 2843 * @pp: requested pause configuration 2844 * 2845 * Description: Test if the PHY/MAC combination supports the Pause 2846 * configuration the user is requesting. Returns True if it is 2847 * supported, false otherwise. 2848 */ 2849 bool phy_validate_pause(struct phy_device *phydev, 2850 struct ethtool_pauseparam *pp) 2851 { 2852 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2853 phydev->supported) && pp->rx_pause) 2854 return false; 2855 2856 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2857 phydev->supported) && 2858 pp->rx_pause != pp->tx_pause) 2859 return false; 2860 2861 return true; 2862 } 2863 EXPORT_SYMBOL(phy_validate_pause); 2864 2865 /** 2866 * phy_get_pause - resolve negotiated pause modes 2867 * @phydev: phy_device struct 2868 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2869 * enabled. 2870 * @rx_pause: pointer to bool to indicate whether receive pause should be 2871 * enabled. 2872 * 2873 * Resolve and return the flow control modes according to the negotiation 2874 * result. This includes checking that we are operating in full duplex mode. 2875 * See linkmode_resolve_pause() for further details. 2876 */ 2877 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2878 { 2879 if (phydev->duplex != DUPLEX_FULL) { 2880 *tx_pause = false; 2881 *rx_pause = false; 2882 return; 2883 } 2884 2885 return linkmode_resolve_pause(phydev->advertising, 2886 phydev->lp_advertising, 2887 tx_pause, rx_pause); 2888 } 2889 EXPORT_SYMBOL(phy_get_pause); 2890 2891 #if IS_ENABLED(CONFIG_OF_MDIO) 2892 static int phy_get_int_delay_property(struct device *dev, const char *name) 2893 { 2894 s32 int_delay; 2895 int ret; 2896 2897 ret = device_property_read_u32(dev, name, &int_delay); 2898 if (ret) 2899 return ret; 2900 2901 return int_delay; 2902 } 2903 #else 2904 static int phy_get_int_delay_property(struct device *dev, const char *name) 2905 { 2906 return -EINVAL; 2907 } 2908 #endif 2909 2910 /** 2911 * phy_get_internal_delay - returns the index of the internal delay 2912 * @phydev: phy_device struct 2913 * @dev: pointer to the devices device struct 2914 * @delay_values: array of delays the PHY supports 2915 * @size: the size of the delay array 2916 * @is_rx: boolean to indicate to get the rx internal delay 2917 * 2918 * Returns the index within the array of internal delay passed in. 2919 * If the device property is not present then the interface type is checked 2920 * if the interface defines use of internal delay then a 1 is returned otherwise 2921 * a 0 is returned. 2922 * The array must be in ascending order. If PHY does not have an ascending order 2923 * array then size = 0 and the value of the delay property is returned. 2924 * Return -EINVAL if the delay is invalid or cannot be found. 2925 */ 2926 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2927 const int *delay_values, int size, bool is_rx) 2928 { 2929 s32 delay; 2930 int i; 2931 2932 if (is_rx) { 2933 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2934 if (delay < 0 && size == 0) { 2935 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2936 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2937 return 1; 2938 else 2939 return 0; 2940 } 2941 2942 } else { 2943 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2944 if (delay < 0 && size == 0) { 2945 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2946 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2947 return 1; 2948 else 2949 return 0; 2950 } 2951 } 2952 2953 if (delay < 0) 2954 return delay; 2955 2956 if (delay && size == 0) 2957 return delay; 2958 2959 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2960 phydev_err(phydev, "Delay %d is out of range\n", delay); 2961 return -EINVAL; 2962 } 2963 2964 if (delay == delay_values[0]) 2965 return 0; 2966 2967 for (i = 1; i < size; i++) { 2968 if (delay == delay_values[i]) 2969 return i; 2970 2971 /* Find an approximate index by looking up the table */ 2972 if (delay > delay_values[i - 1] && 2973 delay < delay_values[i]) { 2974 if (delay - delay_values[i - 1] < 2975 delay_values[i] - delay) 2976 return i - 1; 2977 else 2978 return i; 2979 } 2980 } 2981 2982 phydev_err(phydev, "error finding internal delay index for %d\n", 2983 delay); 2984 2985 return -EINVAL; 2986 } 2987 EXPORT_SYMBOL(phy_get_internal_delay); 2988 2989 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2990 { 2991 return phydrv->config_intr && phydrv->handle_interrupt; 2992 } 2993 2994 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2995 enum led_brightness value) 2996 { 2997 struct phy_led *phyled = to_phy_led(led_cdev); 2998 struct phy_device *phydev = phyled->phydev; 2999 int err; 3000 3001 mutex_lock(&phydev->lock); 3002 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3003 mutex_unlock(&phydev->lock); 3004 3005 return err; 3006 } 3007 3008 static int phy_led_blink_set(struct led_classdev *led_cdev, 3009 unsigned long *delay_on, 3010 unsigned long *delay_off) 3011 { 3012 struct phy_led *phyled = to_phy_led(led_cdev); 3013 struct phy_device *phydev = phyled->phydev; 3014 int err; 3015 3016 mutex_lock(&phydev->lock); 3017 err = phydev->drv->led_blink_set(phydev, phyled->index, 3018 delay_on, delay_off); 3019 mutex_unlock(&phydev->lock); 3020 3021 return err; 3022 } 3023 3024 static void phy_leds_unregister(struct phy_device *phydev) 3025 { 3026 struct phy_led *phyled; 3027 3028 list_for_each_entry(phyled, &phydev->leds, list) { 3029 led_classdev_unregister(&phyled->led_cdev); 3030 } 3031 } 3032 3033 static int of_phy_led(struct phy_device *phydev, 3034 struct device_node *led) 3035 { 3036 struct device *dev = &phydev->mdio.dev; 3037 struct led_init_data init_data = {}; 3038 struct led_classdev *cdev; 3039 struct phy_led *phyled; 3040 u32 index; 3041 int err; 3042 3043 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3044 if (!phyled) 3045 return -ENOMEM; 3046 3047 cdev = &phyled->led_cdev; 3048 phyled->phydev = phydev; 3049 3050 err = of_property_read_u32(led, "reg", &index); 3051 if (err) 3052 return err; 3053 if (index > U8_MAX) 3054 return -EINVAL; 3055 3056 phyled->index = index; 3057 if (phydev->drv->led_brightness_set) 3058 cdev->brightness_set_blocking = phy_led_set_brightness; 3059 if (phydev->drv->led_blink_set) 3060 cdev->blink_set = phy_led_blink_set; 3061 cdev->max_brightness = 1; 3062 init_data.devicename = dev_name(&phydev->mdio.dev); 3063 init_data.fwnode = of_fwnode_handle(led); 3064 init_data.devname_mandatory = true; 3065 3066 err = led_classdev_register_ext(dev, cdev, &init_data); 3067 if (err) 3068 return err; 3069 3070 list_add(&phyled->list, &phydev->leds); 3071 3072 return 0; 3073 } 3074 3075 static int of_phy_leds(struct phy_device *phydev) 3076 { 3077 struct device_node *node = phydev->mdio.dev.of_node; 3078 struct device_node *leds, *led; 3079 int err; 3080 3081 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3082 return 0; 3083 3084 if (!node) 3085 return 0; 3086 3087 leds = of_get_child_by_name(node, "leds"); 3088 if (!leds) 3089 return 0; 3090 3091 for_each_available_child_of_node(leds, led) { 3092 err = of_phy_led(phydev, led); 3093 if (err) { 3094 of_node_put(led); 3095 phy_leds_unregister(phydev); 3096 return err; 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 /** 3104 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3105 * @fwnode: pointer to the mdio_device's fwnode 3106 * 3107 * If successful, returns a pointer to the mdio_device with the embedded 3108 * struct device refcount incremented by one, or NULL on failure. 3109 * The caller should call put_device() on the mdio_device after its use. 3110 */ 3111 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3112 { 3113 struct device *d; 3114 3115 if (!fwnode) 3116 return NULL; 3117 3118 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3119 if (!d) 3120 return NULL; 3121 3122 return to_mdio_device(d); 3123 } 3124 EXPORT_SYMBOL(fwnode_mdio_find_device); 3125 3126 /** 3127 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3128 * 3129 * @phy_fwnode: Pointer to the phy's fwnode. 3130 * 3131 * If successful, returns a pointer to the phy_device with the embedded 3132 * struct device refcount incremented by one, or NULL on failure. 3133 */ 3134 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3135 { 3136 struct mdio_device *mdiodev; 3137 3138 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3139 if (!mdiodev) 3140 return NULL; 3141 3142 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3143 return to_phy_device(&mdiodev->dev); 3144 3145 put_device(&mdiodev->dev); 3146 3147 return NULL; 3148 } 3149 EXPORT_SYMBOL(fwnode_phy_find_device); 3150 3151 /** 3152 * device_phy_find_device - For the given device, get the phy_device 3153 * @dev: Pointer to the given device 3154 * 3155 * Refer return conditions of fwnode_phy_find_device(). 3156 */ 3157 struct phy_device *device_phy_find_device(struct device *dev) 3158 { 3159 return fwnode_phy_find_device(dev_fwnode(dev)); 3160 } 3161 EXPORT_SYMBOL_GPL(device_phy_find_device); 3162 3163 /** 3164 * fwnode_get_phy_node - Get the phy_node using the named reference. 3165 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3166 * 3167 * Refer return conditions of fwnode_find_reference(). 3168 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3169 * and "phy-device" are not supported in ACPI. DT supports all the three 3170 * named references to the phy node. 3171 */ 3172 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3173 { 3174 struct fwnode_handle *phy_node; 3175 3176 /* Only phy-handle is used for ACPI */ 3177 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3178 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3179 return phy_node; 3180 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3181 if (IS_ERR(phy_node)) 3182 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3183 return phy_node; 3184 } 3185 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3186 3187 /** 3188 * phy_probe - probe and init a PHY device 3189 * @dev: device to probe and init 3190 * 3191 * Take care of setting up the phy_device structure, set the state to READY. 3192 */ 3193 static int phy_probe(struct device *dev) 3194 { 3195 struct phy_device *phydev = to_phy_device(dev); 3196 struct device_driver *drv = phydev->mdio.dev.driver; 3197 struct phy_driver *phydrv = to_phy_driver(drv); 3198 int err = 0; 3199 3200 phydev->drv = phydrv; 3201 3202 /* Disable the interrupt if the PHY doesn't support it 3203 * but the interrupt is still a valid one 3204 */ 3205 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3206 phydev->irq = PHY_POLL; 3207 3208 if (phydrv->flags & PHY_IS_INTERNAL) 3209 phydev->is_internal = true; 3210 3211 /* Deassert the reset signal */ 3212 phy_device_reset(phydev, 0); 3213 3214 if (phydev->drv->probe) { 3215 err = phydev->drv->probe(phydev); 3216 if (err) 3217 goto out; 3218 } 3219 3220 /* Start out supporting everything. Eventually, 3221 * a controller will attach, and may modify one 3222 * or both of these values 3223 */ 3224 if (phydrv->features) { 3225 linkmode_copy(phydev->supported, phydrv->features); 3226 genphy_c45_read_eee_abilities(phydev); 3227 } 3228 else if (phydrv->get_features) 3229 err = phydrv->get_features(phydev); 3230 else if (phydev->is_c45) 3231 err = genphy_c45_pma_read_abilities(phydev); 3232 else 3233 err = genphy_read_abilities(phydev); 3234 3235 if (err) 3236 goto out; 3237 3238 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3239 phydev->supported)) 3240 phydev->autoneg = 0; 3241 3242 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3243 phydev->supported)) 3244 phydev->is_gigabit_capable = 1; 3245 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3246 phydev->supported)) 3247 phydev->is_gigabit_capable = 1; 3248 3249 of_set_phy_supported(phydev); 3250 phy_advertise_supported(phydev); 3251 3252 /* Get PHY default EEE advertising modes and handle them as potentially 3253 * safe initial configuration. 3254 */ 3255 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3256 if (err) 3257 goto out; 3258 3259 /* There is no "enabled" flag. If PHY is advertising, assume it is 3260 * kind of enabled. 3261 */ 3262 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3263 3264 /* Some PHYs may advertise, by default, not support EEE modes. So, 3265 * we need to clean them. 3266 */ 3267 if (phydev->eee_enabled) 3268 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3269 phydev->advertising_eee); 3270 3271 /* Get the EEE modes we want to prohibit. We will ask 3272 * the PHY stop advertising these mode later on 3273 */ 3274 of_set_phy_eee_broken(phydev); 3275 3276 /* The Pause Frame bits indicate that the PHY can support passing 3277 * pause frames. During autonegotiation, the PHYs will determine if 3278 * they should allow pause frames to pass. The MAC driver should then 3279 * use that result to determine whether to enable flow control via 3280 * pause frames. 3281 * 3282 * Normally, PHY drivers should not set the Pause bits, and instead 3283 * allow phylib to do that. However, there may be some situations 3284 * (e.g. hardware erratum) where the driver wants to set only one 3285 * of these bits. 3286 */ 3287 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3288 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3289 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3290 phydev->supported); 3291 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3292 phydev->supported); 3293 } 3294 3295 /* Set the state to READY by default */ 3296 phydev->state = PHY_READY; 3297 3298 /* Get the LEDs from the device tree, and instantiate standard 3299 * LEDs for them. 3300 */ 3301 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3302 err = of_phy_leds(phydev); 3303 3304 out: 3305 /* Re-assert the reset signal on error */ 3306 if (err) 3307 phy_device_reset(phydev, 1); 3308 3309 return err; 3310 } 3311 3312 static int phy_remove(struct device *dev) 3313 { 3314 struct phy_device *phydev = to_phy_device(dev); 3315 3316 cancel_delayed_work_sync(&phydev->state_queue); 3317 3318 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3319 phy_leds_unregister(phydev); 3320 3321 phydev->state = PHY_DOWN; 3322 3323 sfp_bus_del_upstream(phydev->sfp_bus); 3324 phydev->sfp_bus = NULL; 3325 3326 if (phydev->drv && phydev->drv->remove) 3327 phydev->drv->remove(phydev); 3328 3329 /* Assert the reset signal */ 3330 phy_device_reset(phydev, 1); 3331 3332 phydev->drv = NULL; 3333 3334 return 0; 3335 } 3336 3337 static void phy_shutdown(struct device *dev) 3338 { 3339 struct phy_device *phydev = to_phy_device(dev); 3340 3341 if (phydev->state == PHY_READY || !phydev->attached_dev) 3342 return; 3343 3344 phy_disable_interrupts(phydev); 3345 } 3346 3347 /** 3348 * phy_driver_register - register a phy_driver with the PHY layer 3349 * @new_driver: new phy_driver to register 3350 * @owner: module owning this PHY 3351 */ 3352 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3353 { 3354 int retval; 3355 3356 /* Either the features are hard coded, or dynamically 3357 * determined. It cannot be both. 3358 */ 3359 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3360 pr_err("%s: features and get_features must not both be set\n", 3361 new_driver->name); 3362 return -EINVAL; 3363 } 3364 3365 /* PHYLIB device drivers must not match using a DT compatible table 3366 * as this bypasses our checks that the mdiodev that is being matched 3367 * is backed by a struct phy_device. If such a case happens, we will 3368 * make out-of-bounds accesses and lockup in phydev->lock. 3369 */ 3370 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3371 "%s: driver must not provide a DT match table\n", 3372 new_driver->name)) 3373 return -EINVAL; 3374 3375 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3376 new_driver->mdiodrv.driver.name = new_driver->name; 3377 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3378 new_driver->mdiodrv.driver.probe = phy_probe; 3379 new_driver->mdiodrv.driver.remove = phy_remove; 3380 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3381 new_driver->mdiodrv.driver.owner = owner; 3382 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3383 3384 retval = driver_register(&new_driver->mdiodrv.driver); 3385 if (retval) { 3386 pr_err("%s: Error %d in registering driver\n", 3387 new_driver->name, retval); 3388 3389 return retval; 3390 } 3391 3392 pr_debug("%s: Registered new driver\n", new_driver->name); 3393 3394 return 0; 3395 } 3396 EXPORT_SYMBOL(phy_driver_register); 3397 3398 int phy_drivers_register(struct phy_driver *new_driver, int n, 3399 struct module *owner) 3400 { 3401 int i, ret = 0; 3402 3403 for (i = 0; i < n; i++) { 3404 ret = phy_driver_register(new_driver + i, owner); 3405 if (ret) { 3406 while (i-- > 0) 3407 phy_driver_unregister(new_driver + i); 3408 break; 3409 } 3410 } 3411 return ret; 3412 } 3413 EXPORT_SYMBOL(phy_drivers_register); 3414 3415 void phy_driver_unregister(struct phy_driver *drv) 3416 { 3417 driver_unregister(&drv->mdiodrv.driver); 3418 } 3419 EXPORT_SYMBOL(phy_driver_unregister); 3420 3421 void phy_drivers_unregister(struct phy_driver *drv, int n) 3422 { 3423 int i; 3424 3425 for (i = 0; i < n; i++) 3426 phy_driver_unregister(drv + i); 3427 } 3428 EXPORT_SYMBOL(phy_drivers_unregister); 3429 3430 static struct phy_driver genphy_driver = { 3431 .phy_id = 0xffffffff, 3432 .phy_id_mask = 0xffffffff, 3433 .name = "Generic PHY", 3434 .get_features = genphy_read_abilities, 3435 .suspend = genphy_suspend, 3436 .resume = genphy_resume, 3437 .set_loopback = genphy_loopback, 3438 }; 3439 3440 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3441 .get_sset_count = phy_ethtool_get_sset_count, 3442 .get_strings = phy_ethtool_get_strings, 3443 .get_stats = phy_ethtool_get_stats, 3444 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3445 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3446 .get_plca_status = phy_ethtool_get_plca_status, 3447 .start_cable_test = phy_start_cable_test, 3448 .start_cable_test_tdr = phy_start_cable_test_tdr, 3449 }; 3450 3451 static int __init phy_init(void) 3452 { 3453 int rc; 3454 3455 rtnl_lock(); 3456 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3457 rtnl_unlock(); 3458 3459 rc = mdio_bus_init(); 3460 if (rc) 3461 goto err_ethtool_phy_ops; 3462 3463 features_init(); 3464 3465 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3466 if (rc) 3467 goto err_mdio_bus; 3468 3469 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3470 if (rc) 3471 goto err_c45; 3472 3473 return 0; 3474 3475 err_c45: 3476 phy_driver_unregister(&genphy_c45_driver); 3477 err_mdio_bus: 3478 mdio_bus_exit(); 3479 err_ethtool_phy_ops: 3480 rtnl_lock(); 3481 ethtool_set_ethtool_phy_ops(NULL); 3482 rtnl_unlock(); 3483 3484 return rc; 3485 } 3486 3487 static void __exit phy_exit(void) 3488 { 3489 phy_driver_unregister(&genphy_c45_driver); 3490 phy_driver_unregister(&genphy_driver); 3491 mdio_bus_exit(); 3492 rtnl_lock(); 3493 ethtool_set_ethtool_phy_ops(NULL); 3494 rtnl_unlock(); 3495 } 3496 3497 subsys_initcall(phy_init); 3498 module_exit(phy_exit); 3499